This uses the simple O(N2) Particle Dynamics Problem as a motivator to discuss solution of ordinary differential equations |
We discuss Euler, Runge Kutta and predictor corrector methods |
F90 and HPF Data parallel O(N2) algorithms are described with performance comments |
There is a related message parallel module sharing the same initial foils |
CPS615-95E CPS615 Foils -- set E: ODE's and Particle Dynamics
CPS615-95E 073 001 CPS 615 -- Computational Science in Simulation Track Data Parallel Module on ODE's and Particle Dynamics February 20, 1998 CPS615-95E 074 002 Abstract of Message Parallel ODE and Particle Dynamics
CPS615-95E 003 003 Particle (N-Body) Applications and Ordinary Differential Equations (ODE's) CPS615-95E 004 004 Particle Applications - Ordinary Differential Equations (ODE's) CPS615-95E 005 005 Particle Applications - the N-body problem CPS615-95E 006 006 Newton's First Law -- The Gravitational Force on a Particle CPS615-95E 007 007 Equations of Motion -- Newton's Second Law
CPS615-95E 008 008 Numerical techniques for solving ODE's CPS615-95E 009 009 Second and Higher Order Equations CPS615-95E 010 010 Basic Discretization of Single First Order Equation CPS615-95E 011 011 Errors in numerical approximations CPS615-95E 012 012 Runge-Kutta Methods: Euler's method CPS615-95E 013 013 Estimate of Error in Euler's method CPS615-95E 014 014 Relationship of Error to Computation CPS615-95E 015 015 Example using Euler's method from the CSEP book CPS615-95E 016 016 Approximate solutions at t=1,using Euler's method with different values of h CPS615-95E 017 017 Runge-Kutta Methods: Modified Euler's method CPS615-95E 018 018 Approximate solutions of the ODE for et at t=1, using modified Euler's method with different values of h CPS615-95E 019 019 The Classical Runge-Kutta -- In Words CPS615-95E 020 020 The Classical Runge-Kutta -- Formally CPS615-95E 021 021 The Classical Runge-Kutta Pictorially CPS615-95E 022 022 Predictor / Corrector Methods CPS615-95E 023 023 Definition of Multi-step methods CPS615-95E 024 024 Features of Multi-Step Methods CPS615-95E 025 025 Comparison of Explicit and Implicit Methods
CPS615-95E 026 026 Solving the N-body equations of motion CPS615-95E 027 027 Representing the N-Body problem CPS615-95E 028 028 Form of the Computation -- Data v. Message Parallel CPS615-95E 053 029 Summary of Parallel N-Body Programming Methods and Algorithms CPS615-95E 054 030 Status of Parallelism in Various N Body Cases CPS615-95E 055 031 Other N-Body Like Problems - I CPS615-95E 056 032 Other N-Body Like Problems - II
CPS615-95E 029 033 N-body Runge Kutta Routine in Fortran90 - I CPS615-95E 030 034 Runge Kutta Routine in Fortran90 - II CPS615-95E 031 035 Computation of accelerations - a simple parallel array algorithm CPS615-95E 032 036 Simple Data Parallel Version of N Body Force Computation -- Grav -- I CPS615-95E 033 037 The Grav Function in Data Parallel Algorithm - II
CPS615-95E 034 038 Some Inefficiencies of the Data Parallel N2 Algorithm - I CPS615-95E 035 039 Some Inefficiencies of the Data Parallel N2 Algorithm - II
CPS615-95E 036 040 Better Data Parallel Pipeline Algorithm for Computation of Accelerations, taking 1/2 the iterations of force computation - I CPS615-95E 037 041 Data Parallel Pipeline Algorithm in detail CPS615-95E 038 042 Basic Data Parallel pipeline operation CPS615-95E 039 043 Examples of Data Parallel Pipeline Algorithm CPS615-95E 040 044 Data Parallel Pipeline Algorithm Grav -- Part I CPS615-95E 041 045 Data Parallel Pipeline Algorithm for Grav -- Part II CPS615-95E 042 046 Data Parallel Grav Pipeline Algorithm, concluded
CPS615-95E 043 047 Data Parallel Parallel Decomposition CPS615-95E 044 048 Data Parallel Parallel Execution Time -I CPS615-95E 045 049 Data Parallel Parallel Execution Time -II
CPS615-95E 046 050 N-body Problem is a one dimensional Algorithm
CPS615-95E 047 051 Excerpts from an HPF program for this algorithm CPS615-95E 048 052 HPF program excerpts - II CPS615-95E 049 053 HPF program excerpts - finished
CPS615-95E 050 054 Notes and References
CPS615-95E CPS615 Foils -- set E: ODE's and Particle Dynamics73 74 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 53 54 55 56 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
CPS615-95E CPS615 Foils -- set E: ODE's and Particle Dynamics3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 53 54 55 56 73 74