This introduces array notation and describes basic array operators |
Array Constructors and Array Sections |
The Where Construct |
Forall available in some compilers and critical for parallelism |
Subroutines and Interfaces |
Intrinsic Functions |
A simple Gauss-Jordan Matrix Inversion is used as an example |
001 Introduction to Fortran90 for CPS615 Fall 95 002 Abstract of Fortran90 Overview for CPS615 003 A Brief Description of Fortran 90 History 004 Fortran90 extends Fortran77 -- A summary of new features: 005 Elementwise Operations in Fortran90: Addition of Arrays 006 Elementwise Operations in Fortran90: Array Assignment 007 Global Operations in Fortran90: Reduction 008 Example of sum reduction -- Numerical Integration 009 How to create Arrays in Fortran90 010 Completing the Integration Example 011 Array Expressions 012 Selection: Conditional Evaluation of Array Operations 013 Integration Again! Simpson's Rule 014 More General Elementwise Operations 015 More Details on Array Operations in Fortran90 --- The Parts of a Fortran Program 016 The same program in Free Form syntax How to declare Array Properties 017 Array Indexing 018 Array Constructors for Array Objects 019 Array Sections for Array Objects 020 Use of Subscript Triples to Specify array Sections 021 How to Specify Array Sections with Vector Valued Subscripts 022 Using Arrays in Expressions and Statements: Arrays must be same shape(conformable) 023 Sample Program Using Array Sections 024 The Where Construct 025 The Forall Construct 026 Scan (Parallel Prefix) -- Another Global Operation 027 Example Application Using Scans -- Calculation of Binomial Coefficients 028 Arguments for Procedures 029 Interface Blocks for Called Subroutines 030 Intrinsic Functions -- Optional and Keyword Arguments 031 The Elemental and Inquiry Functions 032 Array Transformation Functions 033 The Arrray Location Functions 034 Array Construction Functions 035 An Example of Use of Intrinsic Functions 036 Shift Intrinsic Transformation Functions 037 Some Simple Matrix Manipulation Intrinsic Functions 038 The Algorithm for Gauss-Jordan Matrix Inversion 039 The array operations needed before and after pivot row handled separately 040 The part of Gauss-Jordan addressing first set of rows before row i 041 The Fortran90 Gauss Jordan Program