This derives the finite element method for a simple two dimensional Laplacian with triangular elements |
We use this to motivate conjugate gradient as a variant of steepest descent for variational principle underlying FEM |
We discuss preconditioning, parallelism and convergence of general conjugate gradient method |
CPS615-Master95 Miscellaneous CPS615 Foils CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators
CPS615-Master95 005 001 CPS615 -- Base Course for the Simulation Track of Computational Science Fall Semester 1995 -- Finite Element Methods and Conjugate Gradient Methods CPS615-Master95 006 002 Abstract of CPS615 Finite Element/Conjugate Gradient Presentation CPS615FEMetc95 019 003 19:Integral Formulation of Finite Element Method CPS615FEMetc95 020 004 20:Variation in Integral CPS615FEMetc95 021 005 21:Equivalence of Integral and Differential Formulation of Laplace's Equation CPS615FEMetc95 022 006 22:Discretization of Integral CPS615FEMetc95 023 007 23:Triangular Elements in Two Dimensions CPS615FEMetc95 024 008 24:Example for Two-Dimensional Triangular Elements CPS615FEMetc95 025 009 25:Bilinear Form of Integral with Triangular Elements CPS615FEMetc95 026 010 26:Formula for Stiffness Matrix Element CPS615FEMetc95 027 011 27:Finite Element Equations CPS615FEMetc95 028 012 28:Structure of Stiffness Matrix and Its Assembly CPS615FEMetc95 029 013 29:Conditions on Triangulation CPS615FEMetc95 030 014 30:Introduction to Poor Person's Conjugate Gradient CPS615FEMetc95 031 015 31:Conjugate Gradient Iteration for Quadratic Form CPS615FEMetc95 032 016 32:Conjugate Gradient and Method of Steepest Descent CPS615FEMetc95 033 017 33:Conjugate Gradient for Finite Element Problems CPS615FEMetc95 034 018 34:Poor Person's Conjugate Gradient and Eigenvalues of Matrix CPS615FEMetc95 035 019 35:Diagonalization of Quadratic Form CPS615FEMetc95 036 020 36:Diagonalization of Conjugate Gradient Equations CPS615FEMetc95 037 021 37:Convergence of Conjugate Gradient in Diagonalized Form CPS615FEMetc95 038 022 38:Clarification of Eigenvalue Analysis for Conjugate Gradient and Jacobi Iteration CPS615FEMetc95 039 023 39:Intuitive Description of Poor Person's Conjugate Gradient Algorithm CPS615FEMetc95 040 024 40:Improvement of Poor Person's Conjugate Gradient with Orthonormal Iteration CPS615FEMetc95 041 025 41:Full Conjugate Gradient Algorithm CPS615FEMetc95 042 026 42:Overview of Parallelism in Conjugate Gradient CPS615FEMetc95 043 027 43:Parallel Issues in Calculation of Matrix Elements CPS615FEMetc95 044 028 44:Scalar Products in Parallel Conjugate Gradient CPS615FEMetc95 045 029 45:Preconditioning in Conjugate Gradient CPS615FEMetc95 046 030 46:Convergence of Conjugate Gradient
CPS615-Master95 Miscellaneous CPS615 Foils5 6
CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
CPS615-Master95 Miscellaneous CPS615 Foils5 6
CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46