Find this at http://www.npac.syr.edu/users/gcf/cps615femcg95/

CPS615 Finite Element and Conjugate Gradient Presentation

Given by Geoffrey C. Fox at CPS615 Fall Semester 95 Simulation Track on 18 November 95. Foils prepared 8 Nov 1995

This derives the finite element method for a simple two dimensional Laplacian with triangular elements
We use this to motivate conjugate gradient as a variant of steepest descent for variational principle underlying FEM
We discuss preconditioning, parallelism and convergence of general conjugate gradient method


This mixed presentation uses parts of the following base foilsets which can also be looked at on their own!
CPS615-Master95          Miscellaneous CPS615 Foils
CPS615FEMetc95           CPS615 Foils on Finite Element Methods, Gauss
                           Seidel, Conjugate Gradient and Differential
                           Operators

Table of Contents for CPS615 Finite Element and Conjugate Gradient Presentation


          CPS615-Master95 005 001 CPS615 -- Base Course for the 
                                  Simulation Track of Computational 
                                  Science
                                  Fall Semester 1995 --
                                  Finite Element Methods and Conjugate
                                   Gradient Methods
          CPS615-Master95 006 002 Abstract of CPS615 Finite 
                                  Element/Conjugate Gradient 
                                  Presentation
           CPS615FEMetc95 019 003 19:Integral Formulation of  Finite 
                                  Element Method
           CPS615FEMetc95 020 004 20:Variation in Integral
           CPS615FEMetc95 021 005 21:Equivalence of Integral and  
                                  Differential Formulation of  
                                  Laplace's Equation
           CPS615FEMetc95 022 006 22:Discretization of Integral
           CPS615FEMetc95 023 007 23:Triangular Elements in Two 
                                  Dimensions
           CPS615FEMetc95 024 008 24:Example for Two-Dimensional  
                                  Triangular Elements
           CPS615FEMetc95 025 009 25:Bilinear Form of Integral  with 
                                  Triangular Elements
           CPS615FEMetc95 026 010 26:Formula for Stiffness Matrix 
                                  Element
           CPS615FEMetc95 027 011 27:Finite Element Equations
           CPS615FEMetc95 028 012 28:Structure of Stiffness Matrix  
                                  and Its Assembly
           CPS615FEMetc95 029 013 29:Conditions on Triangulation
           CPS615FEMetc95 030 014 30:Introduction to Poor Person's  
                                  Conjugate Gradient
           CPS615FEMetc95 031 015 31:Conjugate Gradient Iteration  for
                                   Quadratic Form
           CPS615FEMetc95 032 016 32:Conjugate Gradient and Method  of
                                   Steepest Descent
           CPS615FEMetc95 033 017 33:Conjugate Gradient  for Finite 
                                  Element Problems
           CPS615FEMetc95 034 018 34:Poor Person's Conjugate Gradient 
                                   and Eigenvalues of Matrix
           CPS615FEMetc95 035 019 35:Diagonalization of Quadratic Form
           CPS615FEMetc95 036 020 36:Diagonalization of Conjugate  
                                  Gradient Equations
           CPS615FEMetc95 037 021 37:Convergence of Conjugate Gradient
                                    in Diagonalized Form
           CPS615FEMetc95 038 022 38:Clarification of Eigenvalue 
                                  Analysis  for Conjugate Gradient  
                                  and Jacobi Iteration
           CPS615FEMetc95 039 023 39:Intuitive Description of Poor 
                                  Person's  Conjugate Gradient 
                                  Algorithm
           CPS615FEMetc95 040 024 40:Improvement of Poor Person's  
                                  Conjugate Gradient with  Orthonormal
                                   Iteration
           CPS615FEMetc95 041 025 41:Full Conjugate Gradient Algorithm
           CPS615FEMetc95 042 026 42:Overview of Parallelism in  
                                  Conjugate Gradient
           CPS615FEMetc95 043 027 43:Parallel Issues in Calculation  
                                  of Matrix Elements
           CPS615FEMetc95 044 028 44:Scalar Products in Parallel  
                                  Conjugate Gradient
           CPS615FEMetc95 045 029 45:Preconditioning in Conjugate 
                                  Gradient
           CPS615FEMetc95 046 030 46:Convergence of Conjugate Gradient

List of Foils Used as they occur

CPS615-Master95          Miscellaneous CPS615 Foils
5 6
CPS615FEMetc95           CPS615 Foils on Finite Element Methods, Gauss
                           Seidel, Conjugate Gradient and Differential
                           Operators
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Sorted List of Foils Used

CPS615-Master95          Miscellaneous CPS615 Foils
5 6
CPS615FEMetc95           CPS615 Foils on Finite Element Methods, Gauss
                           Seidel, Conjugate Gradient and Differential
                           Operators
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


© Northeast Parallel Architectures Center, Syracuse University, npac@npac.syr.edu

If you have any comments about this server, send e-mail to webmaster@npac.syr.edu.

Page produced by wwwfoil on Thu Aug 14 1997