This covers essentially all the finite element method and its solution using the conjugate gradient method |
Only the simple 2D Laplace equation using triangular nodes is discussed |
We stress variational method as an optimization method and you use this analogy to motivate conjugate gradient as an improved steepest descent approach |
We discuss parallel computing issues for both finite element and conjugate gradient |
CPS615Master96 Master Set of Foils for 1996 Session of CPS615 CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators
CPS615Master96 082 001 Delivered Lectures for CPS615 -- Base Course for the Simulation Track of Computational Science Fall Semester 1996 -- Lecture of November 26 - 1996 CPS615Master96 085 002 Abstract of Nov 26 1996 CPS615 Lecture
CPS615FEMetc95 024 003 24:Example for Two-Dimensional Triangular Elements CPS615FEMetc95 025 004 25:Bilinear Form of Integral with Triangular Elements CPS615FEMetc95 026 005 26:Formula for Stiffness Matrix Element CPS615FEMetc95 027 006 27:Finite Element Equations CPS615FEMetc95 028 007 28:Structure of Stiffness Matrix and Its Assembly CPS615FEMetc95 029 008 29:Conditions on Triangulation
CPS615FEMetc95 030 009 30:Introduction to Poor Person's Conjugate Gradient CPS615FEMetc95 031 010 31:Conjugate Gradient Iteration for Quadratic Form CPS615FEMetc95 032 011 32:Conjugate Gradient and Method of Steepest Descent CPS615FEMetc95 033 012 33:Conjugate Gradient for Finite Element Problems CPS615FEMetc95 034 013 34:Poor Person's Conjugate Gradient and Eigenvalues of Matrix CPS615FEMetc95 035 014 35:Diagonalization of Quadratic Form CPS615FEMetc95 036 015 36:Diagonalization of Conjugate Gradient Equations CPS615FEMetc95 037 016 37:Convergence of Conjugate Gradient in Diagonalized Form CPS615FEMetc95 036 017 36:Diagonalization of Conjugate Gradient Equations CPS615FEMetc95 038 018 38:Clarification of Eigenvalue Analysis for Conjugate Gradient and Jacobi Iteration CPS615FEMetc95 039 019 39:Intuitive Description of Poor Person's Conjugate Gradient Algorithm CPS615FEMetc95 040 020 40:Improvement of Poor Person's Conjugate Gradient with Orthonormal Iteration CPS615FEMetc95 041 021 41:Full Conjugate Gradient Algorithm
CPS615FEMetc95 042 022 42:Overview of Parallelism in Conjugate Gradient CPS615FEMetc95 043 023 43:Parallel Issues in Calculation of Matrix Elements CPS615FEMetc95 044 024 44:Scalar Products in Parallel Conjugate Gradient CPS615FEMetc95 045 025 45:Preconditioning in Conjugate Gradient CPS615FEMetc95 046 026 46:Convergence of Conjugate Gradient
CPS615Master96 Master Set of Foils for 1996 Session of CPS61582 85
CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 38 39 40 41 42 43 44 45 46
CPS615Master96 Master Set of Foils for 1996 Session of CPS61582 85
CPS615FEMetc95 CPS615 Foils on Finite Element Methods, Gauss Seidel, Conjugate Gradient and Differential Operators24 25 26 27 28 29 30 31 32 33 34 35 36 36 37 38 39 40 41 42 43 44 45 46