This discusses solution of systems of ordinary differential equations (ODE) in the context of N squared particle dynamics problems |
We start with motivation with brief discussion of relevant problems |
We go through basic theory of ODE's including Euler, Runge-Kutta, Predictor-Corrector and Multistep Methods |
We begin the discussion of solving N body problems using classic Connection Machine elegant but inefficient algorithm |
Note -- Some foils expanded to two after talk and second one is given without audio in script |
CPS615Master96 Master Set of Foils for 1996 Session of CPS615 CPS615-95E CPS615 Foils -- set E: ODE's and Particle Dynamics
CPS615Master96 067 001 Delivered Lectures for CPS615 -- Base Course for the Simulation Track of Computational Science Fall Semester 1996 -- Lecture of October 10 - 1996 CPS615Master96 080 002 Abstract of Oct 10 1996 CPS615 Lecture
CPS615-95E 004 003 Particle Applications - Ordinary Differential Equations (ODE's) CPS615-95E 005 004 Particle Applications - the N-body problem CPS615-95E 006 005 Newton's First Law -- The Gravitational Force on a Particle CPS615-95E 007 006 Equations of Motion -- Newton's Second Law
CPS615-95E 008 007 Numerical techniques for solving ODE's CPS615-95E 009 008 Second and Higher Order Equations CPS615-95E 010 009 Basic Discretization of Single First Order Equation CPS615-95E 011 010 Errors in numerical approximations CPS615-95E 012 011 Runge-Kutta Methods: Euler's method CPS615-95E 013 012 Estimate of Error in Euler's method CPS615-95E 014 013 Relationship of Error to Computation CPS615-95E 015 014 Example using Euler's method from the CSEP book CPS615-95E 016 015 Approximate solutions at t=1,using Euler's method with different values of h CPS615-95E 017 016 Runge-Kutta Methods: Modified Euler's method CPS615-95E 018 017 Approximate solutions of the ODE for et at t=1, using modified Euler's method with different values of h CPS615-95E 019 018 The Classical Runge-Kutta -- In Words CPS615-95E 020 019 The Classical Runge-Kutta -- Formally CPS615-95E 021 020 The Classical Runge-Kutta Pictorially CPS615-95E 022 021 Predictor / Corrector Methods CPS615-95E 023 022 Definition of Multi-step methods CPS615-95E 024 023 Features of Multi-Step Methods CPS615-95E 025 024 Comparison of Explicit and Implicit Methods
CPS615-95E 026 025 Solving the N-body equations of motion CPS615-95E 027 026 Representing the N-Body problem CPS615-95E 028 027 Form of the Computation CPS615-95E 029 028 N-body Runge Kutta Routine in Fortran90 - I CPS615-95E 030 029 Runge Kutta Routine in Fortran90 - II CPS615-95E 031 030 Computation of accelerations - a simple parallel array algorithm CPS615-95E 032 031 Simple Data Parallel Version of N Body Force Computation -- Grav -- I CPS615-95E 033 032 The Grav Function in Data Parallel Algorithm - II
CPS615Master96 Master Set of Foils for 1996 Session of CPS61567 80
CPS615-95E CPS615 Foils -- set E: ODE's and Particle Dynamics4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
CPS615Master96 Master Set of Foils for 1996 Session of CPS61567 80
CPS615-95E CPS615 Foils -- set E: ODE's and Particle Dynamics4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33