This starts by finishing the simple overview of statistics |
Covering Gaussian Random Numbers, Numerical Generation of Random Numbers both sequentially and in parallel |
Then we describe the central limit theorem which underlies Monte Carlo method |
Then it returns to Numerical Integration with the first part of discussion of Monte Carlo Integration |
CPS615Master96 Master Set of Foils for 1996 Session of CPS615 CPS615-95D CPS615 Foils -- set D: Statistics and Random Numbers (In preparation for Monte Carlo) CPS615NI95 CPS615 Numerical Integration Module
CPS615Master96 069 001 Delivered Lectures for CPS615 -- Base Course for the Simulation Track of Computational Science Fall Semester 1996 -- Lecture of October 22 - 1996 CPS615Master96 075 002 Abstract of Oct 22 1996 CPS615 Lecture
CPS615-95D 010 003 Generation of Gaussian Distributions CPS615-95D 011 004 How do computers get random numbers? CPS615-95D 012 005 Simple Random Number Generator CPS615-95D 013 006 More on Generation of Random Numbers Numerically CPS615-95D 014 007 An Illustration of Dangers of Correlations! CPS615-95D 015 008 Parallel Random Numbers CPS615-95D 016 009 The Law of Large Numbers or the Central Limit Theorem. CPS615-95D 017 010 Shapes of Probability Distributions in Central Limit Theorem CPS615-95D 018 011 Central Limit Theorem for Functions CPS615-95D 019 012 Error in Central Limit Averaging CPS615-95D 020 013 Simpson and Trapezoidal Rule Integrations CPS615-95D 021 014 Newton-Cotes and Iterated Rules CPS615-95D 022 015 Gaussian and Monte Carlo Integration
CPS615NI95 033 016 33:Why Monte Carlo Methods Are Best in Multidimensional Integrals CPS615NI95 034 017 34:Best Multidimensional Integration Formulae CPS615NI95 035 018 35:Distribution of Points in Two-dimensional Integral Done by Newton-Cotes Style Formulae CPS615NI95 036 019 36:Distribution of Points in Two-dimensional Integral Done by Monte Carlo CPS615NI95 037 020 37:Use of Bounding Boxes to Calculate --- I CPS615NI95 038 021 38:Use of Bounding Boxes to Calculate --- II CPS615NI95 039 022 39:Use of Bounding Boxes in Complicated Geometries --- I CPS615NI95 040 023 40:Use of Bounding Boxes in Complicated Geometries --- II CPS615NI95 041 024 41:IMPORTANCE Sampling Basic Theory CPS615NI95 042 025 42:Choice of Importance Sampling Weight Function --- I CPS615NI95 043 026 43:Choice of Importance Sampling Weight Function --- II CPS615NI95 044 027 44:Monte Carlo Approach to Discrete Integrals CPS615NI95 045 028 45:Why Use Monte Carlo for Summations? CPS615NI95 046 029 46:Example of using Monte Carlo for Summations CPS615NI95 047 030 47:The Wrong Way to Perform Multiple Monte Carlo CPS615NI95 048 031 48:Stock Market Example of Multiple Monte Carlos --- I
CPS615Master96 Master Set of Foils for 1996 Session of CPS61569 75
CPS615-95D CPS615 Foils -- set D: Statistics and Random Numbers (In preparation for Monte Carlo)10 11 12 13 14 15 16 17 18 19 20 21 22
CPS615NI95 CPS615 Numerical Integration Module33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
CPS615Master96 Master Set of Foils for 1996 Session of CPS61569 75
CPS615-95D CPS615 Foils -- set D: Statistics and Random Numbers (In preparation for Monte Carlo)10 11 12 13 14 15 16 17 18 19 20 21 22
CPS615NI95 CPS615 Numerical Integration Module33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48