Scripted HTML version of Foils prepared January 26 97

Foil 19 Basic Structure of Complete CPS615 Base Course on Computational Science Simulation Track -- III

From Remarks on Parallel Computing and HPCC Education Ohio Supercomputer Center Workshop -- January 24 1997. by Geoffrey C. Fox *
Secs 96
This introduction is followed by a set of "vignettes" discussing problem classes which illustrate parallel programming and parallel algorithms
Ordinary Differential Equations
  • N body Problem by both O(N^2) and "fast multipole" O(N) method
Numerical Integration including adaptive methods
Floating Point Arithmetic
Monte Carlo Methods including Random Numbers
Full Matrix Algebra as in
  • Computational Electromagnetism
  • Computational Chemistry
Partial Differential Equations implemented as sparse matrix problems (as in Computational Fluid Dynamics)
  • Iterative Algorithms from Gauss Seidel to Conjugate Gradient
  • Finite Element Methods



© Northeast Parallel Architectures Center, Syracuse University, npac@npac.syr.edu

If you have any comments about this server, send e-mail to webmaster@npac.syr.edu.

Page produced by wwwfoil on Sun Aug 10 1997