
Heterogeneous Parallel Computing using
Java and WMPI

Luis M. Silva                       Paulo Martins             João Gabriel Silva

Departamento Engenharia Informática
Universidade de Coimbra  - POLO II

Vila Franca  - 3030  Coimbra
PORTUGAL

Email: luis@dei.uc.pt

Abstract
In this paper, we describe the implementation of a Java interface for WMPI, a Windows-based

implementation of MPI that have been developed by our group. We show some details about the
implementation and we present some experimental results that compare the performance of JWMPI, Java
WPVM and the C programs counterparts.

In the second part of the paper we describe another tool that is oriented for Web-based computing and
we present a solution to integrate WMPI with this tool, by making use of a Java bridge component and our
Java bindings for WMPI. This solution allows the execution of meta-applications over a mixed
configuration of platforms, execution models and programming languages. The overall system provides an
integrated solution to solve the problem of heterogeneity and to unleash the potential of diverse
computational resources and programming tools.

1. Introduction
PVM and MPI have become widely accepted in the high-performance community and
there are several implementations of PVM and MPI for UNIX Workstations,
supercomputers and parallel machines [PVM][MPI]. Both libraries provide a C, C++ and
a Fortran interface. In the recent past we saw the release of some implementations of
PVM and MPI for personal computers running the Windows operating system: two of
them were implemented by our group at the University of Coimbra, namely WPVM
[Alves95] and WMPI [Marinho98]. Some other implementations can be found in
[PVMWIN32][MPICH/NT].

The libraries WPVM and WMPI already include interfaces for C and Fortran, but with
the increasing number of Java programmers it seems quite promising that those
communication libraries should also provide a Java interface.



According to [Blundon98] the current number of Java programmers varies between
250.000 and 2.5000.000. The same author predicts that in 2001 year there would be at
least 5.000.000 Java programmers and Java will be the dominant language.

Java was developed as a language for the Internet but it is not restricted for the
development of Web-pages with animated applets. In fact, the language is also being used
for other class of applications, like client/server computing, office applications,
embedded systems, programs that use databases and GUI-based interfaces and business
applications [Hoff98]. The nice features provided by Java, like portability, robustness and
flexibility can also be of much use for the development of scientific and parallel
applications. Several projects and several people started also to use Java in parallel and
scientific computing, and, as a consequence, a Java Grande Forum was even created in
order to establish some consensus among the HPC community for the establishment of
Java for parallel and scientific computing [Grande].

In this line it is meaningful to provide Java bindings for the existing standards, like MPI,
and other libraries that have been widely used, like PVM. The idea is not to replace all the
software written in traditional languages with new Java programs. By the contrary, the
access to standard libraries is essential not only for performance reasons, but also for
software engineering considerations: it would allow existing Fortran and C code to be
reused at virtually no extra cost when writing new applications in Java.

With all these goals in mind we have ported the jPVM interface [jPVM] for the Windows
version of PVM (WPVM) and we develop from scratch a similar Java interface for
WMPI. JWPVM and JWMPI extend the capabilities of WPVM/WMPI to the new,
exciting world of Java. These bindings allow Java applications and existing C/C++
applications to communicate with one another using the PVM/MPI API. In this paper we
only describe the implementation of the JWMPI interface.

In this paper we also present an experimental study that uses our Java bindings to merge
Web-based computing with Cluster-based computing. Some performance results and
interesting conclusions about this study are presented in section 5.

The rest of the paper is organized as follows: the next section presents a brief overview of
WPVM and WMPI libraries. Section 3 describes the features of our Java binding for
WMPI, while section 4 describes how JWMPI has been integrated with another Java-
based tool that is oriented to Web-based computing. Section 5 presents some performance
results that were taken our Java bindings and with the integration of WMPI with the other
tool. The related work is described in section 6, while section 7 concludes the paper.



2. WPVM and WMPI
WPVM and WMPI are full ports of the standard specifications of PVM and MPI, thereby
ensuring that parallel applications developed on top of PVM and MPI can be executed in
the MS Windows operating system, as long as they do not use any special feature of the
underlying operating system. Both ports can run together in heterogeneous clusters of
Windows 95/NT and Unix machines.

WPVM1 (Windows Parallel Virtual Machine) is an implementation of the PVM message
passing environment as defined in release 3.3 the original PVM package from the Oak
Ridge National Laboratory. WPVM includes libraries for Borland C++ 4.51, Microsoft
VisualC++ 2.0, Watcom 10.5 and Microsoft Fortran PowerStation.

On the other hand, WMPI2 is an implementation of the Message Passing Interface
standard for Microsoft Win32 platforms. It is based on MPICH 1.0.13 with the ch_p4
device from Argonne National Laboratory/Mississippi State University (ANL). WMPI
includes libraries for Borland C++ 5.0, Microsoft Visual C++ 4.51 and Microsoft Fortran
PowerStation.

3. JWMPI: The Java Binding for WMPI
To develop a Java binding we need a programming interface for the native methods. The
JDK release from Sun provides a Java-to-native programming interface, called JNI [JNI].
It allows Java code that runs inside a Java Virtual Machine to interoperate with
applications and libraries written in other programming languages, such as C and C++.

3.1 Overview
All JWMPI classes, constants, and methods are declared within the scope of a wmpi
package. Thus, by importing the wmpi package or using the wmpi.xxx prefix, we can
reference the WMPI Java wrapper. The classes of the wmpi package are those
corresponding to the objects implicitly used by WMPI. An abbreviated definition of the
wmpi package and its member classes is as follows:

package wmpi;

public class JWMPI;
public class MPI_Status;
public class MPI_Comm;
public class MPI_Group;
public class MPI_Datatype;
public class MPI_Op;
public class MPI_Request;
public class MPI_Errhandler;

Figure 1: The wmpi package.

                                                          
1 WPVM is available at: http://dsg.dei.uc.pt/wpvm/
2 WMPI is available at: http://dsg.dei.uc.pt/w32mpi/



In the development of this package we tried to provide the user with a MPI-like API. The
usual programmer of MPI will not find any difficulty with using JWMPI. To achieve this
similarity, all the methods corresponding to WMPI functions are defined in class JWMPI
and have exactly the same name and number of parameters. The user just needs to extend
the JWMPI class.

In Figure 2 we can see a piece of a WMPI program written in C. In Figure 3 is presented
the equivalent program ported to Java using our Java-to-WMPI interface. As we can see
both programs look quite very similar.

#include <mpi.h>

void main(int argc, char ** argv){

   /* initialize MPI system */
   MPI_Init (&argc, &argv);

   MPI_Comm_rank (MPI_COMM_WORLD, &rank);
   MPI_Comm_size (MPI_COMM_WORLD, &size);
   ...
}

Figure 2: C code example using WMPI.

import wmpi.*;

public class MyClass extends JWMPI{

   public static void main(String args[]){

 /* initialize MPI system */
      MPI_Init(args);

MPI_Comm_rank(MPI_COMM_WORLD,rank);
MPI_Comm_size(MPI_COMM_WORLD,size);

      ...
   }
}

Figure 3: Java code example using the package wmpi.

3.2 Opaque objects used by WMPI
Opaque objects are system objects that are accessed through a handle. The user knows the
handle to the object but does not know what is inside. Since the MPI does not specify the
internal structure of these objects, there is no way to reconstruct them in Java. So, the best
thing to do is to keep the handle to the object. To do this, we have implemented one Java
class for each opaque object used by WMPI (see Figure 1).

These Java classes hide the handle to the real WMPI opaque objects. The programmer
only has to create new instances of these objects and use them as arguments to JWMPI
methods. In order to fit into some system that has 64 bits pointers, we use a Java long to
store the WMPI object handle.



3.3 MPI_Status structure
Unlike the previous case, the MPI_Status structure fields are fully implemented by a
Java object, as is represented in Figure 4.

    Package wmpi;

Public class MPI_Status{

Int count;
  public int MPI_SOURCE;
  public int MPI_TAG;
  public int MPI_ERROR;

}

Figure 4: Java representation of the MPI_Status structure.

The field count is not public because the MPI standard specifies that this field
cannot be accessed directly by the user. There are specific methods to access this field.

3.4 Java Datatypes
The following table lists all the Java basic types and their corresponding C/C++ and MPI
datatypes.

Java
datatype

C/C++
Datatype

MPI datatype JWMPI
datatype

Byte signed char MPI_CHAR MPI_BYTE

Char unsigned short int MPI_UNSIGNED_SHORT MPI_CHAR
Short signed short int MPI_SHORT MPI_SHORT
Boolean unsigned char MPI_UNSIGNED_CHAR MPI_BOOLEAN
Int signed long int MPI_LONG MPI_INT
Long signed long long int MPI_LONG_LONG_INT MPI_LONG
Float Float MPI_FLOAT MPI_FLOAT
Double Double MPI_DOUBLE MPI_DOUBLE

Table 1: JWMPI datatypes.

Because Java is platform independent the size of simple types will be the same in all
platforms. We have defined JWMPI datatypes that map directly to the Java datatypes and
the user does not need to worry about the mapping between Java datatypes and MPI
datatypes.

Beside these datatypes, JWMPI also provides the MPI_PACKED datatype that is used
with packed messages, the MPI_LB pseudo-datatype that can be used to mark the lower
bound of a datatype and MPI_UB that is used to mark the upper bound of a datatype.



4. Integrating Web-based Computing with JWMPI
In this section we will describe how JWMPI has been integrated with another tool for
parallel processing that exploits the idea of Web-based computing. This tool is called JET
and is described in [Silva97].

Originally the JET system was strictly oriented for Internet computing. However, in the
recent version of JET it became possible to use some other existing high-performance
computing resources, like cluster of workstations or parallel machines. The basic idea is
to allow existing clusters of machines running PVM or MPI to inter-operate with a JET
computation. The next sub-sections present an overview of the JET project and briefly
describe the JET-Bridge, a software module that allows the integration of JET with
WPVM/WMPI applications [Silva98].

4.1 A General Overview of the JET Project
JET is a Java software infrastructure that supports parallel processing of CPU-intensive
problems that can be programmed in the Master/Worker paradigm. There is a Master
process that is responsible for the decomposition of the problem into small and
independent tasks. The tasks are distributed among the Worker processes that execute a
quite simple cycle: receive a task, compute it and send the result back to the master. The
Master is responsible for gathering the partial results and to merge them into the problem
solution. Since every task is independent from each other, there is no need for
communication between worker processes.

The Worker processes execute as Java applets inside a Web browser. The user that wants
to volunteer his spare CPU cycles to a JET computation just need to access a Web page
by using a Java-enabled browser. Then, she just has to click somewhere inside the page
and one Worker Applet is downloaded to the client machine. This Applet will
communicate with a JET Master that executes on the same remote machine where the
Web page came from. Figure 5 presents the structure of the JET virtual machine.

The volunteer machines may join and leave the computation at any instant of time.
Thereby, the execution environment is completely dynamic. The JET system provides
some mechanisms to tolerate the frequent changes on the parallel virtual machine and
include support for dynamic task distribution. These mechanisms are used for fault-
tolerance and load-balancing purposes.



HTTP + UDP sockets

HTTP + UDP sockets

Checkpoint
Data

Checkpoint
Data

Checkpoint
Data

World Wide Web

JET
Server

JET
Master

JET
Master

Statistics Database

   Clusters of Workstations running PVM or MPI

Query Module

                           Figure 5: The Structure of the JET virtual machine.

4.2 The JET-Bridge
The functioning of the JET-Bridge assumes that the applications that will execute in the
cluster elect one of the processes as the Master of the cluster. Usually this is the process
with rank 0. The Master process is the only one that interacts with the JET-Bridge. Inside
the cluster the application may follow any programming paradigm although we have only
been used the JET-Bridge with Task-Farming applications.

The Master process of a WPVM/WMPI cluster needs to create an instance of an object
(JetBridge) that implements a bridge between the cluster and the JET Master. This
object is responsible by all the communication with the JET Master. The Master process
from a WPVM/WMPI cluster gets some set of jobs from the JET Master, and maintains
them in an internal buffer. These jobs are then distributed among the Workers of the
cluster. Similarly, the results gathered by the WPVM/WMPI Master process are placed in
a separate buffer and will be sent later to the JET Master. This scheme is represented in
Figure 6.



WPVM WPVM WPVM WMPI WMPI WMPI

WPVM Master

Cluster

Sender Receiver Sender Receiver

Cluster

WMPI Master

TCP/IP Network

JET Master

 Figure 6: Interoperability of JET with PVM/MPI clusters.

The Master is the only process of the cluster that connects directly with the JET machine.
This process is the only one that needs to be written in Java. The Worker processes can be
implemented in any of the languages supported by WMPI/WPVM libraries (i.e. C,
Fortran and Java) and all the heterogeneity is solved using the Java bindings. In the next
section we present some performance results that show the effectiveness of this approach.

5. Performance Results
In this section we present some performance results of the two Java bindings that we have
implemented: JWMPI and JWPVM. We also present some results of an experimental
study that made use of JET-Bridge together with our Java bindings, to show the
effectiveness of combining WPVM and WMPI with Web-based computations. All the
measurements were taken with the NQueens benchmark with 14 queens in a cluster of
Pentiums 200MHz running Windows NT 4.0, which are connected through a non-
dedicated 10 Mbit/sec Ethernet.



The next Table presents the legend to some versions of the NQueens benchmark that we
have implemented in our study. This legend will be used in some of the Figures that are
presented in the rest of the section.

Versions of Nqueens Benchmark

Legend Description
CWMPI
CWPVM

C version.

JWMPI
JWPVM

Java version.

JWMPI (Native)
JWPVM (Native)

Java version where the real computation is done by a call to a native method written in C.

Table 2: Legend to the different versions of NQueens Benchmark.

5.1 Java Bindings
In the first experiment that is presented in Figure 7 we compare the performance of the
Java against the C version of the NQueens benchmark. Both versions were using WMPI
and WPVM libraries to communicate. The Java processes are executing with a Just-in-
Time compiler by using the Symantec JIT that is distributed with JDK1.1.4. It uses our
Java bindings to access the WMPI/WPVM routines.

NQueens Benchmark

0,000

10,000

20,000

30,000

40,000

50,000

60,000

8 x Java
(JIT)

8 x Java
(Native)

8 x C

T
im

e 
in

 S
ec

on
ds

WMPI

WPVM

Figure 7: The performance of Java versus C.

As can be seen in Figure 7, Just-in-Time compilation cannot achieve the performance of
C compiled code, but when compared with interpreted Java (see Figure 8) it presents a
drastic increase in performance. We believe that with the evolution of JIT compilers and
the appearance of new technologies that make use of dynamic compilation techniques,
like the new HotSpot VM of Sun [Armstrong98] the Java performance gap of Java will
be resolved. Figure 7 also presents a Java version of the NQueens benchmark that uses a
native method written in C to compute the kernel of the algorithm. The results obtained
with this Java (Native) version allow us to conclude that practically no overhead is
introduced by our Java bindings.



In the next Figure we present the Java interpreted version results together with the
previous ones. We can see that interpreted Java run approximately 10 times slower when
compared with Just-in-Time compilation and near 20 times slower when compared with
C compiled code. From now on all the presented performance results will use Just-in-
Time compilation.

NQueens Benchmark

0

100

200

300

400

500

600

8 x Java
(JDK)

8 x Java
(JIT)

8 x Java
(Native)

8 x C

T
im

e 
in

 S
ec

on
ds

WMPI

WPVM

Figure 8: Interpreted Java versus JIT and C compiled code.

In Figure 9 we present several different combinations of using WMPI and an
heterogeneous configuration of processes, where some of them were written in Java,
others were written in C, and others were using Java and native code. These experiments
are quite interesting since they show we can have real heterogeneous computations thanks
to use of the Java bindings.

NQueens Benchmark (WMPI)

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000

4x JWMPI(JIT) / 4x JWMPI(Nat.)

4x CWMPI / 4x JWMPI(Native)

4x CWMPI / 4x JWMPI (JIT)

8x CWMPI

8x JWMPI(Native)

8x JWMPI (JIT)

Time in Seconds

Figure 9: Heterogeneous clusters of processes using the WMPI library.



In our implementations of the NQueens Benchmark the jobs are delivered on demand,
allowing the faster workers to compute more jobs than the slower ones. All the
computations that include C processes or Java processes that use the native version of the
kernel present the best performance.

The next sub-section presents some performance results of an experimental study that
combines Web-based computations with PVM/MPI clusters.

5.2 Heterogeneous Parallel Computing
In Figure 10 we compare the performance results of four different computations. The first
two columns represent the execution time of a JET computation in a cluster of 8
machines running the Java WMPI/WPVM versions of the NQueens benchmark. The
third column presents a JET computation with 8 Java Applets running inside the Netscape
Navigator 4.0. The last column presents a heterogeneous computation that combines a
cluster of 3 Java WMPI processes, a cluster of 3 Java WPVM processes and 2 Java
Applets.

NQueens Benchmark (WMPI + WPVM + JET)

0.000
10.000
20.000
30.000

40.000
50.000
60.000
70.000

8 x
JWMPI(JIT)

8 x
JWPVM(JIT)

8 x Applets 3x JWMPI /
3x JWPVM /
2x Applets

T
im

e 
in

 S
ec

o
n

d
s

Figure 10: The performance of Cluster computing and Applet-based computing.

As we can see the results obtained with the WMPI and WPVM cluster running Java
applications, are slightly better from the results obtained with Java Applets. Nevertheless,
the execution time in the last configuration (JWMPI+JWPVM+Applets) seems very
competitive with the results taken in pure clusters. In Table 3 we present the distribution
of jobs among the different workers in this last heterogeneous configuration. These
results are an average of 3 experiments. The Applet workers compute fewer jobs than the
cluster workers (both in WMPI and WPVM).



NQueens Benchmark Average
Machine Process No of Jobs

#1 Applet 19.33
#2 Applet 19.00
#3 JWPVM(JIT) 21.00
#4 JWPVM(JIT) 20.67
#5 JWPVM(JIT) 21.00
#6 JWMPI(JIT) 21.00
#7 JWMPI(JIT) 21.00
#8 JWMPI(JIT) 21.00

Total Time (sec): 61.723
Table 3: Distribution of jobs in a heterogeneous JET computation.

In Figure 11 we present several different combinations of heterogeneous WMPI
configurations. More important than the absolute results this experiment has shown the
importance of the JET-Bridge and the Java bindings: these two modules allow the user to
exploit the potential of a heterogeneous computation. Where some processes were
executing as Java Applets, other as Java applications with WMPI, other processes were
written in C and still others in a hybrid approach: Java and native C code. All these
processes were executing inside the same application.

NQueens Benchmark (WMPI + JET)

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000

2x JWMPI(JIT) / 2x JWMPI(Nat.) /
2x CWMPI / 2x Applets

4x CWMPI / 4x Applets

4x JWMPI(Nat.) / 4x Applets

4x JWMPI(JIT) / 4x Applets

4x JWMPI(JIT) / 4x JWMPI(Nat.)

4x CWMPI / 4x JWMPI(Native)

4x CWMPI / 4x JWMPI (JIT)

8x CWMPI

8x JWMPI(Native)

8x JWMPI (JIT)

Time in Seconds

Figure 11: Performance results of heterogeneous configurations using WMPI.

This last heterogeneous configuration results in a sort of meta-application. Table 4
presents the distribution of jobs among the different type of workers in this computation.
It presents the average results of 3 experiments.



NQueens Benchmark Average
Machine Process No of Jobs

#1 JWMPI (JIT) 14.00
#2 JWMPI (JIT) 14.00
#3 Applet 13.00
#4 Applet 12.67
#5 JWMPI(Native) 26.67
#6 JWMPI(Native) 26.67
#7 CWMPI 27.00
#8 CWMPI 26.67

Total Time (sec): 42.332
Table 4: Distribution of jobs among different WMPI processes in a JET computation.

As we can see from the Table, the majority of the jobs are performed by the C version and
by the Java version that uses the native method. This sort of Master-Worker applications
is automatically load-balanced, where the faster workers are able to compute more jobs
than the slower ones.

6. Related Work
The idea of providing access to standard libraries written in other languages is very
attractive and there are several similar on going projects.

JavaMPI is a Java binding for MPI that was developed in Syracuse University [JavaMPI].
In this binding only a few routines of MPI were implemented. JavaMPI does not use JNI;
it uses instead the old native programming interface provided by JDK1.0.2 that is no
longer supported in future releases of JDK.

The mpiJava [Baker98] is an object-oriented Java interface to the standard Message
Passing Interface (MPI). The interface was developed as part of the HPJava project, but
mpiJava itself does not assume any special extensions to the Java language - it should be
portable to any platform that provides compatible Java-development and native MPI
environments. The current release of mpiJava provides the full functionality of MPI 1.1
and, like JWMPI, is implemented as a set of JNI wrappers to native MPI packages. They
intend to add new features such as object serialization.

jPVM is a Java to PVM interface [jPVM]. Like our binding jPVM also made use of JNI
and we have ported this binding to our Windows version of PVM.

A very interesting idea was presented in [Mintchev97] and [Getov98]. They developed a
tool, called JCI, that can be used for automatically binding existing native C libraries to
Java. They used the JCI tool to bind MPI, PBLAS and ScaLAPACK to Java.



The JPVM library presented in [Ferrari98] provides a Java-based tool for PVM
programming. Unlike jPVM, JPVM is a real implementation of PVM in Java and it
presents a serious drawback: the lack of compatibility with PVM.

JavaNOW is another Java-based parallel programming tool presented in [JavaNOW].
This system implements the Linda programming model in Java and is not directly related
with PVM and MPI. Finally, in [Foster96] was presented another Java binding, but this
one is oriented to the Nexus system.

7. Conclusions
Providing access to standard libraries often used in high-performance and scientific
programming seems imperative in order to allow the reuse of existing code that was
developed with MPI and PVM.

In this paper, we have described the implementation of a Java interface for WMPI and we
compared the performance of a parallel benchmark when using the Java interface in
WMPI, WPVM and the corresponding C versions. The first results are quite promising
and show the effectiveness of our Java binding for WMPI. Although the use of pure Java
code seems quite promising there is still a small performance gap between Java and C
code. Until the Java compiler technology reaches maturity, the use of native code in Java
programs is certainly a way to improve performance.

The second set of results were taken in a mixed configuration where some of the
processes were executing in Java and others in C. Those experiments show that it is
possible to achieve really heterogeneous computations where we can have processes of
the same parallel application running in different languages.

More than the heterogeneity at the language level we also presented a solution that masks
the heterogeneity at the platforms level. With the use of the Java bindings for WMPI and
the software module that was implemented in the JET system (JET-Bridge) it became
possible to execute meta-applications using different tools: some tasks are executed in a
Web-based computing tool while the other tasks can be executed in a cluster platform
running WMPI.

It is our believe that Java will be the dominant language in the next coming years and that
it can also be used for high-performance and scientific computing provided there are the
right tools to achieve this goal. The Java components that were described in this paper
can be a small but useful contribution to that goal.



References
[Alves95] A.Alves, L.M.Silva, J.Carreira, J.G.Silva, “WPVM: Parallel Computing for the People”, Proc.

of HPCN’95, High Performance Computing and Networking Europe, May 1995, Milano, Italy,
Lecture Notes in Computer Science 918, pp. 582-587

[Armstrong98] Eric Armstrong, “HotSpot: A new breed of virtual machine”, JavaWorld, March 1998,
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.html

[Baker98] M. Baker, B. Carpenter, Sung H. Ko, and X. Li. “mpiJava: A Java interface to MPI”. Presented
at First UK Workshop on Java for High Performance Network Computing, Europar 1998.

[Blundon98] W.Blundon, “Predictions for the Millenium”, Java World Magazine, February 1998,
[Ferrari98] A.J. Ferrari, “JPVM: Network Parallel Computing in Java”, Proc. of ACM 1998 Workshop on

Java for High-Performance Network Computing, February 1998, Palo Alto, California
[Foster96] I.Foster, G.K.Thiruvathukal, S.Tuecke. “Technologies for Ubiquitous Supercomputing: A Java

Interface to the Nexus Communication System”, Syracuse NY, August 1996.
[Getov98] V. Getov, S. Flynn-Hummel, S. Mintchev, “High-Performance Parallel Programming in Java:

Exploiting Native Libraries”, Proc. of ACM 1998 Workshop on Java for High-Performance Network
Computing, February 1998, Palo Alto, California

[Grande] Java Grande Forum home page, http://www.javagrande.org/
[Hoff98] A. van Hoff, “Java: Getting Down to Business”, Dr Dobbs Journal, pp. 20-24, January 1998
[JavaMPI] MPI Java Wrapper Inplementation, by Yuh-Jye Chang, B. Carpenter, G. Fox,

http://www.npac.syr.edu/users/yjchang/mpi/mpi.html
[JavaNOW] JavaNOW Project, http://www.mcs.anl.gov/george/projects.htm
[JNI] Java Native Interface Homepage, http://www.javasoft.com/docs/books/tutorial/native1.1/
[jPVM] jPVM Homepage, http://homer.isye.gatech.edu/chmsr/jPVM/
[Marinho98] J. Marinho, J. G. Silva, “WMPI: Message Passing Interface for Win32 Clusters”, Proceedings

of EuroPVM/MPI98, 5th European PVM/MPI User’s Group Meeting, September 1998, Liverpool,
UK, Lecture Notes in Computer Science 1497, pp. 113-120

[Mintchev97] S. Mintchev, V. Getov, “Automatic Binding of Native Scientific Libraries to Java”,
Proceedings of ISCOPE’97, Springer LNCS, September 5, 1997

[MPI] Message Passing Interface, http://www.mcs.anl.gov/mpi/
[MPICH/NT] MPI on Windows NT, http://www.erc.msstate.edu/mpi/mpiNT.html/
[PVM] Parallel Virtual Machine, http://www.epm.ornl.gov/pvm/
[PVMWIN32] PVMWIN32 ftp site, http://www.netlib.org/pvm3/win32/
[Silva97]  L.M.Silva, H.Pedroso, J.G.Silva. “The Design of JET: A Java Library for Embarrassingly

Parallel Applications”, WOTUG’20 - Parallel Programming and Java Conference, Twente,
Netherlands, 1997

[Silva98] L.M.Silva, P. Martins, J. G. Silva, “Merging Web-Based with Cluster-Based Computing”,
Proceedings of ISCOPE’98, Second International Symposium in Object-Oriented Parallel
Environments, Santa Fe, NM, USA, December 1998, Springer LNCS 1505, pp. 119-126

http://www.javaworld.com/javaworld/jw-02-1998/jw-02-blundon.html/


