
109

Chapter 4

Porting HPCC Applications onto the

World-Wide Virtual Machine Platform

A major goal of this thesis was to make various commonly used programming models

available on top of the WWVM. Due to the construction of its communication layer, the WWVM

naturally supports PVM-based [GBD+ 93, DGMS 93] message-passing programming. WWVM

also provides an interface layer that emulates MPI, Express, and TCGMSG message-passing calls

in terms of PVM library calls. For many potential users, parallel programming on the WWVM

could be tedious if message-passing programming were the only parallel programming model

supported by the WWVM. The programmer had to deal with low-level synchronization and

message-passing details in such a case. A representative library-based, shared-memory model

(Global Arrays) and a language-based, shared-memory model (HPF) were therefore ported onto

the WWVM platform. This chapter will discuss the programming models supported by the

WWVM and their implementation in the context of the WWVM.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 110

4.1 Parallel Programming Models

Programmers view a computer in terms of a high-level abstraction called a programming

model. The programming model defines the types of operations available to the programmer. For

sequential computers, the von Neumann model serves as a common programming model but

parallel computing lacks a single, universal programming model. Parallel programming models

can be divided into two broad categories, the message-passing model and the shared-memory

model, are further divided into subcategories, depending on their implementation. These memory

models have a significant impact on the amount of effort required to produce correct and efficient

parallel programs.

Parallel Programming ModelsParallel Programming Models

Message-PassingMessage-Passing Shared-MemoryShared-Memory

Distributed
Memory

Architecture

Distributed
Shared Memory

Architecture

Virtual
Shared Memory

Architecture

Shared Memory
Multiprocessor

Architecture

Multi-threaded
Architecture

 Memory
 Access

Task
Granularity

Scalability unlimited

 coarse

only local local&remote

fine

medium

only local

coarse

unlimited

central

fine

low unlimited

 fine/medium

local&remote

Figure 4�1. Message-passing and shared-memory programming models implemented
on top of various types of parallel architectures, and their prominent features.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 111

In the message-passing model, program variables are partitioned among the instances of some

type of a processor abstraction. Each process can directly access to local variables on its own

processor, while it must send messages to other processes in order to access their variables. The

message-passing model is based on send and receives that are usually implemented as part of

library packages with Fortran and C programming interfaces. The user is responsible for all

aspects of parallelization and data placement. In the shared-memory model, processes can access

all variables in the same way, irrespective of their location. This makes the shared-memory model

easier to use than the message-passing model.

As shown in Figure 4-1, the message-passing programming model is the native model for

distributed-memory parallel architectures. On the other hand, by a combination of architecture

and operating system mechanisms, a shared-memory abstraction can be supported on a wide

variety of parallel architectures. Further information about these mechanisms can be found in

[Giloi 94]. However, only the user-level, software-based shared-memory models in the

framework of the WWVM will be investigated here. The two common software approaches for

implementing a user-level, shared-memory model are library-based and language-based.

4.1.1 Library-Based Shared-Memory Implementations

Library-based implementations provide a set of software library routines for automatically

accessing non-local partitions of data indirectly through pointers obtained from these routines.

The library package is linked into programs written in a conventional sequential language.

Library-based implementations have the advantages of portability and simplicity, but they are

limited to a subroutine-call interface and cannot take advantage of a compiler-based static

analysis of program control and data flow. Global Arrays libraries that will later be elaborated on

in Section 4.4 are an example for this category.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 112

4.1.2 Language-Based Shared-Memory Implementations

Language-based implementations are accepted as a more viable long-term solution for

shared-memory parallel programming than library-based shared-memory implementations,

because the use of specialized compilers relieves the user of the burden of operating at the low

level required by library-based implementations. Language-based shared-memory

implementations are targeted toward promoting a wider use of parallel systems and can be

presented in four groups [Zoma 96]:

1. New parallel languages. Specially designed parallel languages can help to express only

application algorithms, not the implementation issues dictated by hardware and system

software. The parallelism inherent in an application is made available to the compilers, and

the potential parallelism can be utilized to take advantage of system resources. Sisal [McGr

93] is the best known of such languages in the high-performance computing community. It is

a functional language that provides special constructs to express scientific parallel numerical

algorithms in a form close to their mathematical formulation. The Sisal compiler

automatically detects the parallelism inherent in the program and exploits it.

2. Coordination languages. These languages are targeted toward coordinating parallel activities.

A parallel program is viewed as a collection of interacting distinct processes with

coordination operations such as synchronization, information exchange, or process

management. Linda [Gele 85, Gele 88, Gele 89, GCCC 85, GelP 90] is a representative

example of this category. Evolved from a Yale University research project and that has

become commercialized, it uses an abstraction called “tuple-space” via which cooperating

processes communicate by writing or reading data items. Tuple space is a shared,

associatively addressed, semi-persistent store that holds tuples. Tuple space effectively

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 113

replaces message passing and shared memory. A Linda program is initiated by putting tuples

containing code in tuple space. These tuples are then extracted and executed.

3. Parallelizing compilers and preprocessors. The compiler of an existing sequential language

is enhanced to detect inherent parallelism in a sequentially constructed program. The

principal advantage of this approach is that sequential programs can be moved to the target

parallel machine without requiring any changes in the existing codes, thus exploiting its

parallel facilities relatively inexpensively and quickly. Early work on parallel Fortran dialects

such as Parafrase [PGH+ 89] focused on restructuring loops to minimize data dependencies

and spread the iterations of the loop across different processors.

4. Extending an existing language with features that explicitly deal with parallellism. This

approach requires some minor changes to the existing software before being ported onto a

parallel machine. Many extensions have been developed by different groups using the same

language base, thus leading to the definition of nonstandard variants. This approach is

reflected in several Fortran proposals recently proposed for distributed-memory systems

programming, such as Vienna Fortran [CMZ 92] and Fortran D [FHK+ 91], and their

standardized version, High Performance Fortran [HPFF 93]. HPF is an emerging shared-

memory parallel language standard that makes the underlying distributed-memory

architecture transparent to the programmer. Similar approaches have been taken in the

development of pC++ [BFG+ 93, LiG 91, MMB+ 94], a parallel C++ dialect, and Jade [RinL

93, RSL 93], a parallel dialect of C; pC++ is suitable for expressing medium to coarse-

grained parallelism and its distributed collection model represents a data structure as a

collection of homogeneous elements and allows the programmer to specify how the data

structure is to be partitioned among the processors. Communication is done through messages

and synchronization implemented through the compiler. Jade is a parallel programming

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 114

language designed to exploit coarse-grained control parallelism in a shared-memory system.

It provides convenience of shared-memory model by allowing any task to access shared

objects transparently. The programmer, however, must supply information about how to

decompose the computation into tasks and how tasks access the shared objects.

4.1.3 Evaluation of Message-Passing and Shared-Memory Models

Using parallelizing compilers is very attractive in terms of application development, but their

performance is limited by the fact that they only parallelize loops. On the other hand, the

application and development of new languages has been hindered by the fact that vendors will

support a new language only if many users request it, and many users will try a new language

only if there are mature vendor-supported compilers. As a result, evolutionary approaches such as

extending a language with parallel statements or directives have become more practical. A few,

such as HPF, have succeeded in being commercialized. Developers and users of extended

languages report encouraging performance results (see [BCF+ 94, HKT 92, MMB+ 94]), but still

more work is needed in order to deliver a scalable high performance for real-world applications.

Although the shared-memory model automatically provides global memory abstraction,

because of the limitations in current tools many real-world application developers still prefer low-

level tools such as message-passing libraries that have better performance figures as compared to

shared-memory tools. Actually, the message-passing model is the most commonly used parallel

programming model in today’s high-performance computing arena, and the problem of having

numerous nonstandard variants of message-passing libraries is about to disappear with the arrival

of MPI. The MPI standard [MPIF 94] of 1994 defines both the syntax and semantics of core

message-passing library routines and, with its portable, high-performance implementations, MPI

will soon become the most commonly used (and possibly the only) message-passing library.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 115

4.2 MPI–to–PVM Interface Layer

This section describes the building of MPI protocols over the underlying PVM

communication layer of WWVM. The main features of MPI not supported by PVM are

summarized and then porting strategy is described.

4.2.1 Message-Passing Interface (MPI)

Users’ and developers’ experience with PVM and other first generation libraries formed the

foundation for standardizing message-passing interfaces. This experience revealed two main

weaknesses in those early systems:

1. Lack of safe message passing that causes a message exchange in one part of a program to

interfere with the message exchange in other parts of the program, although such interference

is not intentional.

2. Lack of flexible group operations, although many applications require that processes be

organized into groups and that global operations be performed only over the members of a

particular group.

MPI, on the other hand, is a large step forward in support of standard library development. It

was proposed as a standard message-passing interface by a committee of vendors, implementers,

and users [MPIF 94, GLS 95]. Its design gathers the most attractive features of a number of

existing message-passing systems such as the work at the IBM T. J. Watson Research Center

[BBC+ 93, FBH+ 92], Intel’s NX/2 [Pier 88], ParaSoft’s Express [FKB 91, Kola 92, Para 90,

Para 92], nCUBE’s Vertex [nCUB 90], PARMACS [Hemp 91] (developed at ANL), and p4

[LO+ 87, ButL 92, LusB 92] which is a successor of PARMACS. Other important contributions

have come from Zipcode [SkjL 90, SSL+ 92] (developed at Livermore), Chimp [CHI 91, CHI 92]

(developed at UK), PVM [GBD+ 93], Chameleon [GS 93], and PICL [GHP+ 90].

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 116

Process 0

Process 1

Process 2

Recv_From(*)

Recv_From(*)

Send_To(0)

Recv_From(2)

Send_To(0)

Send_To(1)

Recv_From(0)

Recv_From(1)

Send_To(2)

Send_To(1)

Computation

??

?

?

2

1

Figure 4�3. Illustration of a possible anomaly (i.e., deadlock situation) in a message-
passing code when contexts are not used in message-passing calls.

Process 0

Process 1

Process 2

Recv_From(*)

Recv_From(*)

Send_To(0)

Recv_From(2)

Send_To(0)

Send_To(1)

Recv_From(0)

Recv_From(1)

Send_To(2)

Send_To(1)

1

2

4

3

5

Figure 4-2. Illustration of the intended behavior of a message-passing code with
embedded library calls.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 117

MPI defines both the syntax and semantics (i.e., behavior) of a core set of library routines.

Those routines will be useful to a wide range of users, can be efficiently implemented on a wide

range of computers, and will establish a high performance on both massively parallel machines

and clusters of workstations. MPI focuses on the standardization of process communication,

synchronization, and group operations. It supports contexts and groups, and it adds some new

functionality not found in PVM such as thread safety, user-defined data types, gather/scatters,

overlapping groups, and virtual topologies. It offers portability and high performance for a wide

variety of problems.

Several MPI implementations are built upon established message-passing libraries.

Chameleon-based MPICH [DGLS 93, GLDS 96] is a product of the collaboration between the

Argonne National Lab and Mississippi State University; LAM MPI [BDV 94] comes from the

Ohio Supercomputing Center; the Chimp implementation of MPI was developed at Edinburgh

Parallel Computing Centre; and Unify [Cheng 94] of Mississippi State University runs over the

PVM. There are also other freely available versions of MPI for Windows NT workstations, MS-

Win32 clusters, MS-Windows 3.1, and SPARCstation clusters. There also exist proprietary MPI

versions for Cray T3D, IBM SP-2, Fujitsu AP1000, and SGI Power Challenge from their

vendors.

In the MPI programming model, a computation comprises one or more processes that

communicate by calling library routines to send and receive messages to other processes. In most

MPI implementations a fixed set of processes is created at program initialization, and one process

is created per processor. However, these processes may execute different programs, hence the

MPI programming model is sometimes referred to as multiple-program/multiple-data (MPMD) –

in which different executable codes with separate data sets are assigned to each process – to

distinguish it from the single-program/multiple-data (SPMD) model. In the SPMD model, every

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 118

processor executes the same program but takes different branches, depending on the unique

identifier assigned to each process.

4.2.1.1 Safe Message Passing in MPI

Applications often need to call subprograms (such as numerical solvers) and perform global

operations (such as global summation). These subprograms may be developed as libraries by

different organizations. In these cases, messages used in the subprograms must not

unintentionally interfere with the messages used in other parts of the program.

There are two ways in which a call to a library routine can lead to ambiguities in the message

traffic of different libraries or in the rest of the application:

• A message may be received incorrectly in the library routine if the application process enters

a library routine synchronously when a send has been initiated but the matching receive is

posted after the library call either for overlapping communication and computation or

because of some application-dependent requirements.

• A non-deterministic behavior may occur, as shown in Figures 4-2 and 4-3, when different

processes enter a library routine asynchronously. Embedded library calls are shown in shared

areas. The intended behavior is that processes 0 and 1 each receive a message from processor

2 and all three processes call a library routine. In the library routine, each processor receives a

message from its right neighbor and sends a message to its left neighbor. To achieve high

performance, it is a common practice to use a receive() that matches any incoming

messages. If contexts are not used, this may fail and a wildcarded receive in process 0 may be

satisfied by a send from process 1 instead of process 2 if process 2 lags a little before the

second send operation. Obviously, this will lead to incorrect results, as illustrated in Figure 4-

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 119

3. Furthermore, this kind of intermittent, time-dependent error can be very difficult to

reproduce and locate.

4.2.2 Implementation of the MPI-to-PVM Interface Layer

The MPI-to-PVM interface layer emulates MPI calls in terms of PVM calls. It is based on

Mississippi State University’s public domain software, Unify1 [Cheng 94, CVRS 94, VSRC 95].

Besides Unify, there are two other experimental MPI implementations on top of the PVM system,

namely, PVMPI [FagD 96] from the University of Tennessee and EZP [Cole 96] from NASA.

However, these became available much later than Unify, therefore Unify was used as the only

available PVM-based MPI implementation when this study was conducted.

Unify supports a dual-API that permits the communication functions of PVM, MPI, or both

message-passing libraries to co-exist in the same application program. This enables users to take

current PVM applications written in C or Fortran and slowly migrate toward complete MPI

applications without having to make a complete conceptual jump from one system to another.

Unify modifies PVM functions by adding the communication “contexts” needed for MPI

protocols. Unify also addresses the difficulty of mapping identifiers between the PVM and MPI

domains where each system uses a different scheme; PVM uses a 32-bit integer and MPI uses a

handle to an opaque internal structure together with a rank inside that structure. Unify provides

only two new additional calls: one from MPI to PVM task identifier (task ID), and vice versa.

Although all the MPI intra-communicator point-to-point and collective operations and

communicator management and environment management functions are supported, Unify does

not support virtual topologies, profiling, attribute caching, and inter-communicators.

1 Version 0.9.2 of September 1994.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 120

Unify supports only the SPMD model where all processes get copies of the same code. Unify

failed to exploit PVM's dynamic spawning capability and forced the user to spawn a fixed

number of master–slave SPMD processes from the command line.2 Thus no other PVM process

(including the console process) could start a Unify application.

Since the Unify project was originally a master’s project and has never reached full maturity,

numerous bugs in Unify had to be eliminated in order to cope with the requirements of real-world

applications written in MPI. Making this interface bulletproof was an important step during the

implementation of the WWVM, because the proper functioning of the communication and

runtime support libraries of the Syracuse F90D/HPF compiler, a large number of benchmark

programs, and Global arrays libraries rely on this interface. The implementation of the WWVM

MPI-to-PVM interface layer necessitated adding new routines to Unify in order to support

Cartesian coordinates processor topologies. Ports to other systems that would be part of the

WWVM were also accomplished.

2 More specifically, the start-up sequence consisted of a process that checked to see whether it was a master
by the existence of a parent process and then spawned N-1 copies of itself. If a parent existed, the process
was assumed to be a slave and would block on a receive(), awaiting a task id list so that it could build
its MPI_COMM_WORLD, MPI_COMM_SIZE, and MPI_COMM_RANK values [FagD 96].

Point-to-point

Primitives

Collective

Operations
Groups Context

Application

Topologies

General

Data Types

PVM yes yes
yes

(dynamic)

no

(yes in v3.4)
no no

MPI yes yes yes (static) yes yes yes

Table 4�1. A general comparison of functionality provided by PVM and MPI.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 121

The implementation of the interface layer functionality is not difficult as far as the following

two points are taken into consideration:

1. PVM point-to-point primitives and collective operations have poor performance

characteristics. In addition, PVM functions are unable to overlap computation and

communication. PVM is more appropriate for problems where the message-passing

performance is not very important. This low performance issue is not a problem in WWVM,

since the targeted problems are coarse-grained and not communication intensive.

2. The PVM library has significantly less functionality than the MPI library. As shown in Table

4-1, PVM lacks the contexts, certain group operations, application topologies, and general

data types found in MPI. The forthcoming sections will present a detailed comparison of MPI

PVM Task IDs

Context Info

Internal Info

MPI Communicator

Group

Process Name 1

Process Name 0

Process Name N-1

Figure 4�4. An MPI communicator consists of a group, context and some other internal
information. Group Ids are matched to PVM task Ids.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 122

and PVM routines and emphasize ways to present the required MPI functionality by using

PVM routines.

4.2.2.1 Contexts, Process Groups, and Communicators

Communication Contexts

MPI uses a system-defined tag, or context, to divide a communication domain into non-

interfering subdomains. Contexts are generally used by different layers in a library to eliminate

possible interference between those layers, i.e., to ensure safety, when using libraries with

embedded message-passing within an application. In PVM, for example, any task can send a

message to any other task, whether the receiving task wishes to interact with the sender or not (as

in the case of two separate applications). In MPI, on the other hand, the two applications have two

separate message universes or contexts and only processes in the same context can communicate

with each other. The use of contexts also promotes software modularity by allowing the

construction of independent communication streams between processes.

There are two alternative methods for representing communication contexts in PVM:

• Communication contexts can be directly embedded within PVM tags by using the upper half-

word to represent the communication context, while leaving the lower half-word to keep the

message tags. However, this limits the range of MPI tags to 64K and does not permit

wildcarded sends and receives.

• Communication contexts can be carried as separate words with communication primitives.

Unify uses this approach by upgrading the receipt selectivity of certain primitives and extends

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 123

the PVM’s message envelope3 to include the sender’s or receiver’s rank, message tag, and

communicator. Modified PVM primitives are transparent to the user and are called indirectly

through macro extensions.

Process Groups

A process group is an ordered collection of processes (or tasks) in which each process is

uniquely identified by its rank within the ordering. Process groups are useful in two situations:

first, they can be used to specify the processes involved in collective operations; second, they are

used to introduce MIMD task parallelism to the application by helping to assign different tasks to

different groups. Process groups play a crucial role in the representation of certain data structures

of complex applications, such as fluid-structures in interdisciplinary applications, or

rows/columns of a matrix in linear algebra computations.

PVM processes can join and leave any number of groups at any time, making membership

completely dynamic. Processes are allocated instance numbers in the order in which they join a

group. The first join operation creates the group, which is destroyed when membership falls to

zero. This dynamic characteristic brings inefficiency, since it requires a group server that

supervises all collective operations in order to resolve race conditions.

MPI provides extensive support for groups, including overlapping groups (overlap possible in

PVM but not as useful) and virtual topologies on groups. Processes in MPI are arranged in rank

order from 0 to N-1, where N is the number of processes in a group. These process groups define

the scope for all collective operations within that group. The process groups in Unify are

implemented as a list of PVM task IDs.

3 In addition to the data part, the messages carry information that can be used to distinguish them and
selectively receive them. This information is called the message envelope, and consists of a number of
fields such as source processor, destination processor, tag, and possibly a communicator in the case of MPI.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 124

Although the MPI standard does not state how processes are started, it does state how and in

which order processes become MPI processes. All MPI processes join the MPI system by calling

MPI_Init() and leave by calling MPI_Finalize(). Once all the expected processes have

joined the system, a common communicator, MPI_COMM_WORLD, is created that allows all

processes in that “world” to communicate with each other. Communications between processes

within the same communicator or group are referred to as intracommunicator communications.

Communicator Objects

The process group and context, together with other information about topologies and local at-

tributes, constitute a communicator (Figure 4-4). Use of a communicator object specifies the

scope of a communication operation and isolates the communication operations within that

communicator from other communication that is taking place within the system.

When sending or receiving a message, the process and message identifiers must be specified.

A process involved in a communication operation is identified by group and rank with that group

(i.e., Process ID=(group, rank)), whereas messages are considered labeled by

communication context and message tag within that context (i.e., Message ID=(context,

tag)). The group and context are specified by means of a communicator object in the argument

list of the send and receive routines. Within a given scope, the group and context components of a

communicator must be indicated, whereas either or both of the rank and tag parameters may be

wildcarded.

4.2.2.2 Application Topologies

Application topologies help to efficiently assign processes to physical processors and handle

the translation between process identifier and location in the topology, and vice versa. An MPI

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 125

group may be assigned a Cartesian or graph topology. General application topologies are

specified by a graph topology with arcs connecting communicating processes. In many other

applications the processes are arranged with a particular Cartesian topology instead, such as a

two- or three-dimensional grid with periodic or non-periodic boundary conditions in any specific

dimension.

Cartesian topologies provide support for shifting data along a specified dimension of a

Cartesian grid. It is also possible to perform collective communication operations, such as

multicast, within groups by partitioning a Cartesian grid into hyper-plane groups by removing a

specified set of dimensions. Cartesian topology operations are extensively used in the

implementation of runtime support libraries and communication libraries of the F90D/HPF

compiler, as well as in many other parallel applications with regularly distributed data structures.

Cartesian topologies are initialized by a special routine, MPI_CART_CREATE(), that

specifies the topology of a given group, and new processes are added into a topology using the

MPI_CART_INC() function. Cartesian query functions for returning the associated topology for

a group (MPI_TOPO_TEST()), determining the size and periodicity of a topology

(MPI_CARTDIM_GET()), finding the rank for a given location (MPI_CART_RANK()), and

for determining the location of a process in the topology (MPI_CART_COORDS()) were

implemented. Cartesian functions for set operations like union, intersection, and difference were

also added to the implementation. For shift operations, a special function called

MPI_CART_SHIFT() returns the ranks of the processes that a process participating in the shift

must send data to and receive data from. Once the source and destination processes are known for

each process, the shift is performed by calling the routine MPI_SENDRECV() that allows each

process to send data to one process while receiving data from another.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 126

4.2.2.3 Point-to-Point Communication

Point-to-point send and receive modules are the core of any message-passing library. The

differences between two message-passing libraries come from the semantics and implementation

of functions. Semantics is the behavior of a library routine, while the implementation consists of

the low-level coding details required for insuring correct semantics. Whether or not the send

buffer can be modified immediately after a message is sent is related to semantics, but using

buffered or unbuffered messages in send operations is an implementation decision.

Both MPI and PVM provide blocking and non-blocking point-to-point send and receive

(Table 4-2). Non-blocking sends can be matched by the blocking receives, and vice versa.

In blocking4 or synchronous communication, control is not returned to the calling process

until the communication action has completed. The process has no requirement to check for

completion of the communication and is assured of the integrity of the communication buffer

when it receives control.

In non-blocking5 or asynchronous communication, control returns to the calling process

before the actual communication action has been completed. This allows the processes to perform

other tasks while waiting for communication to complete (i.e., overlapping communication and

computation.) The burden of insuring uncorrupted data belongs to the process making the call.

This process also needs to check for completion of the send/receive before reusing the

communication buffers.

4 A routine is blocking if its completion (return of control to the calling routine) may depend on an external
event (an event that is outside the control of the routine itself.) Example: a send is blocking if it does not
return until there is a matching receive.
5 A routine is non-blocking if it is guaranteed to complete regardless of external events. Example: a send is
non-blocking if it is guaranteed to return whether or not there is a matching receive.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 127

A routine is synchronizing if it causes two separate processes to become synchronized.

MPI offers a choice of several communication modes that specify the conditions under which

the sending of a message may be initiated, or when it completes:

• In the standard mode a message may be sent, regardless of whether a corresponding receive

has been initiated.

Routine Blocking Comment

pvm_send no
may block under unusual circumstances, returns

whether or not a matching receive

pvm_recv yes

pvm_nrecv noPVM

pvm_trecv yes
returns if message does not arrive within a specified

period of time (timeout)

MPI_Send yes implementation may block or not

MPI_Isend no

MPI_Ssend yes synchronizes with receiver

MPI_Issend no synchronizes with receiver

MPI_Bsend no employs a user-supplied buffer

MPI_Ibsend no

MPI_Rsend no a matching receive must be waiting

MPI_Irsend no a matching receive must be waiting

MPI_Recv yes

MPI

MPI_Irecv no

Table 4�2. Semantics of PVM and MPI point-to-point primitives.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 128

• The buffered mode communication operation can be started whether or not a matching

receive has been posted. Unlike the standard send, this operation is local and its completion

does not depend on the occurrence of a matching receive.

• The ready mode requires a message to be sent only if a corresponding receive has been

initiated.

• The synchronous mode is similar to the standard mode except that a send operation will not

complete until a corresponding receive has been initiated on the receiving process.

MPI uses all four modes for message sending, and only the standard mode for message

receiving.

Implementation of Point-to-Point Operations

The point-to-point functions of MPI can be mapped one-to-one to the PVM’s functions. The

same thing is true for environmental management and collective functions. Table 4-3 shows the C

bindings for both PVM and MPI; the full Fortran translations are similar. Group arguments for

PVM correspond to the dynamic groups, while those for MPI correspond to the static groups.

PVM has both probe and nonblocking receive. PVM’s nonblocking receive is not like MPI’s

MPI_Irecv(); rather, it combines the effects of MPI_Iprobe() and MPI_Recv(). Every

send in MPI has a datatype argument that matches PVM’s use of different datatypes for different

types of data.

An evaluation of MPI’s various send and receive primitives can be found in [Saph 94].

According to this study, MPI_Send(), MPI_Recv(),MPI_Isend(), and MPI_Irecv() can be

efficiently implemented on any platform, but others have limited usage and poor performance

characteristics. Therefore, WWVM MPI-to-PVM interface ignores the translation of those

primitives.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 129

Communication Completion

Following a call to a non-blocking send or receive routine, the handle returned by the call can

be used to check the completion status of the communication operation or to suspend further

execution until the operation is complete. The functions MPI_Wait() and MPI_Test() are

used to complete a non-blocking communication call. MPI_Wait() is a non-local and blocking

function that returns when a message has been safely sent (not when it is delivered to the

receiver), whereas MPI_Test() is local.

MPI PVM

MPI_Init(argc, argv) mytid = pvm_mytid()

MPI_Finalize() pvm_exit()

MPI_Comm_Rank(comm, rank) rank = pvm_getinst(grp, mytid)

MPI_Comm_Size(comm, size) size = pvm_gsize(grp)

MPI_Send(buf, buflen, datatype, dest, tag, comm) pvm_psend(tid, tag, buf, buflen,

datatype)

MPI_Recv(buf, buflen, datatype, dest, tag, comm) pvm_precv(tid, tag, buf, buflen,

datatype)

MPI_Iprobe(…)

if (flag) MPI_Recv(buf_type, count, datatype, src,

tag, comm, status)

bufid = pvm_nrecv(tid, tag, len)

if(bufid>=0) pvm_upk(datatype)

Table 4�3. PVM mapping of point-to-point and environmental management primitives of
MPI.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 130

Send-and-Receive Operations

Send-and-receive operations combine in one call the sending of a message to one destination

and the receiving of another message from another process. This operation is especially useful for

executing a shift operation across a chain of processes. The send-and-receive operation also helps

to prevent cyclic-dependencies that may lead to deadlock due to improper ordering of separate

send and receive primitives. PVM lacks a send-receive primitive, therefore it needs to be

implemented using separate send and receive primitives.

4.2.2.4 Collective Communication Operations

Collective communication is the communication that takes place among a group of processes.

All processes in a group must call the associated collective communication routine with matching

arguments. Collective communication operations include broadcast, synchronization (barrier),

global operations (reductions), scatter/gather, and parallel prefix (scan). All collective operations

defined by MPI and PVM are blocking and synchronizing. PVM provides a limited number of

collective operations such as barrier and reduce (Table 4-4). Also provided is a broadcast

operation that allows messages to be sent to all members of a group.

Global Computation Collective data movement

barrier
reduce

user

reduce
scan scatter gather broadcast

PVM Yes yes no no no no yes

MPI Yes
all-all

all-one
yes yes

one-all

all-all

all-all

one-all

one-all

all-all

Table 4�4. Collective communication routines of PVM and MPI.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 131

Missing collective operations were implemented using point-to-point operations and required

an explicit look-up to process addresses. Simple operations (broadcast, global sum) should scale

as ln N if implemented with point-to-point (if network scales). Complex operations (all-to-all)

should scale as N (if network scales well).

As shown in Table 4-5, the MPI broadcast operation maps to the pvm_bcast() call in

PVM. Note that the tag argument of PVM’s broadcast has no corresponding entry in MPI. The tag

is implicitly specified in MPI functions using a communicator, while it is explicit in PVM.

Furthermore, while PVM uses a list of task IDs to specify the processes that will participate in a

multicast or broadcast operation, MPI specifies them by means of a communicator object that is

associated with a previously formed process group. Another difference between the two libraries

is that PVM always uses the active message buffer in communication operations.

4.2.2.5 General and User-Defined Data Types

Both MPI and PVM can send typed data and allow type checking for C programs. PVM has

support for most of the basic datatypes supported by the host language, whether Fortran or C.

MPI predefines an MPI basic data type for all data types specified in Fortran and C.

MPI also has some other mechanisms to describe arbitrarily complicated user-defined data

types similar to an array of data items or structures. In this way, communication of array sections

MPI PVM

MPI_Bcast(buf, buflen, datatype, root, comm) pvm_mcast(ntask, tids, tag)

MPI_Bcast(buf, count, datatype, root, comm) pvm_bcast(grp, tag)

MPI_Barrier(comm) pvm_barrier(grp, count)

Table 4�5. PVM mapping of MPI collective communication routines.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 132

and structures involves combinations of primitive data types. In order to emulate the user-defined

data types of MPI, PVM’s pack/unpack functions are used. Data is explicitly packed into a

contiguous buffer before receiving it, and unpacked from a contiguous buffer after it is received.

4.3 High Performance Fortran (HPF) and PCRC Runtime

Support Libraries

For large-scale scientific computing, where distributed-memory machines dominate the

market, much attention recently has been devoted to the development of efficient shared-memory

programming models. Most notably, many research groups have cooperated in the development

of HPF [HPFF 93]. HPF is an attempt to stop the proliferation of Fortran language extensions. It

extends Fortran 90’s array operations on whole arrays and array sections with data parallel

constructs, intrinsic functions, and data distribution and alignment directives developed in the

context of Fortran D [FHK+ 91] and Vienna Fortran [CMZ 92] projects. The programmer

specifies how and where data are located, which loops are to be executed in parallel and,

indirectly, where the work will be performed. The HPF compiler does the data partitioning and

generates the required communication calls.

Syracuse Fortran 90D/HPF compiler [BCF+ 94] and its associated runtime support (RTS)

libraries [ABB+ 92] were ported onto the WWVM platform. This compiler is targeted toward

implementing a chosen set of functionalities defined in the Subset HPF [HPFF 93] which is a

minimal starting set of features from Fortran 90 and HPF to encourage early release of compilers

with HPF features. Static data mapping features of HPF such as PROCESSORS, TEMPLATE,

ALIGN, and DISTRIBUTE, the single statement FORALL, and some of the Fortran 90

intrinsics were implemented, whereas the INHERIT directive, INDEPENDENT directive,

FORALL construct, and HPF intrinsics were not included in the prototype implementation.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 133

The Fortran 90D/HPF compiler translates HPF source code into Fortran 77 with calls to the

message-passing and RTS libraries. It parses the HPF program, partitions work and data, and

detects and generates required communication. The compiler bases its parallelization on the

owner-computes rule, which causes the computation to be partitioned according to the

distribution of the assigned portion of the computation and involves localization based on the left-

hand-side (lhs) of an array assignment statement. For example, in a FORALL statement this

involves localizing the bounds of the FORALL statement according to the array elements owned

by the lhs and adjusting the loop bounds to index the slice of data owned by the current processor.

CompileCompile

Source
 Code

LinkLink
UNIFY MPI

Library

UNIFY MPI
Library

 PCRC Runtime
Support
Libraries

 PCRC Runtime
Support
Libraries

ExecuteExecute

Object
File

Object
File

Executable
File

Executable
File

Data
Files

Data
Files

Data
Files

Data
Files

Job Execution Subsystem

Machines that are
part of the WWVM
Configuration

Job Execution Subsystem

Job Execution Subsystem

WWVM Site 2

WWVM Site 3

Figure 4�5. The life cycle of a HPF program from compilation to execution on the
WWVM.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 134

The compiled SPMD node programs are linked with the RTS libraries to obtain executable

codes on each node. The HPF tasks are then mapped onto the nodes of the WWVM with one or

more processes per Web server, according to the number of machines coordinated by each server

(Figure 4-5.)

The HPF program passes information about an array to the runtime support libraries by

means of a distributed array descriptor (DAD). This DAD contains the lower and upper bounds of

an array with and without overlap areas in each dimension, and the stride for each array

dimension. A representative array section and the specification of its properties to RTS library

routines by means of a DAD are displayed in Figure 4-6. Furthermore, the id and Cartesian

lb ub

ubolbo

1 2 3 4 5 6 7

lb

ub

 lbo

ubo

stride

(upper bound)(lower bound)

(lower bound
with overlap
area)

(upper bound
with overlap
area)

Dimensions

Local Array Section

DAD

Figure 4�6. A local array section and its corresponding DAD in Fortran 90D/HPF RTS
libraries. This is used to pass array specifications to the intrinsic routines.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 135

coordinates of each processor, and the number of processors in each Cartesian dimension, are

kept separately and used during the computation of local and/or global coordinates of distributed

arrays.

NPAC’s PCRC runtime support group has recently replaced the communication layer of the

Fortran 90D/HPF RTS libraries with a portable one that uses the MPI for inter-node

communication and renamed it as PCRC (Portable Compiler and Runtime Support Consortium)

libraries [LDL 95]. This makes the executable codes portable on a wide variety of platforms. By

F90D Express

MINVAL(array, dim, mask)

MAXVAL(array, dim, mask)
excombine

ALL(mask, dim)

ANY(mask, dim)

COUNT(mask, dim)

excombine

SUM(array, dim, mask) excombine

CSHIFT(array, shift, dim)

EOSHIFT(array, shift, boundary, dim)
exread & exwrite

TRANSPOSE(matrix)

only (BLOCK, BLOCK)
exread & exwrite

MINLOC(array, mask)

MAXLOC(array, mask)
excombine

DOT_PRODUCT(vectorA, vectorB) excombine

MATMUL(matrixA, matrixB) exread & exwrite

Table 4�6. Express functions used in the implementation of Fortran 90D/HPF compiler
intrinsic routines.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 136

means of the MPI-to-PVM interface, they were also ported onto the WWVM platform.

4.3.1 Fortran 90D/HPF Intrinsic Functions

Many of the frequently required primitives that operate on one- or more dimensional arrays

are provided as part of the HPF language and called intrinsic functions. The implemented

intrinsic routines are the ones that are included in Fortran 90 and contain:

• All vector and matrix multiply functions: DOT_PRODUCT, MATMUL

• Array reduction functions: ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT, and SUM

• One of the array construction functions: SPREAD

• All array manipulation functions: CSHIFT, EOSHIFT, TRANSPOSE

• All array location functions: MAXLOC, MINLOC.

The mapping between Fortran 90D/HPF intrinsics functions and Express functions is given in

Table 4-6.

F90D/HPF Express

BROADCAST exbroadcast

CONCATENATE excombine & exconcat

COPY exread & exwrite

SHIFT exread & exwrite

SPREAD exbroadcast

Table 4�7. Express functions used in the implementation of Fortran 90D/HPF compiler
collective communication routines.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 137

Express MPI

exparam(&env) MPI_Init(argc, argv)

rank = env.procnum MPI_Comm_rank(MPI_COMM_WORLD, rank)

size = env.nprocs MPI_Comm_size(MPI_COMM_WORLD, size)

exread(buf, buflen, src, tag) MPI_Send(buf, buflen, MPI_BYTE, dest, tag, comm)

exwrite(buf, buflen, dest, tag) MPI_Recv(buf, buflen, MPI_BYTE, src, tag, comm, status)

exsend(buf, buflen, src, tag,

status)

MPI_Isend(buf, buflen, MPI_BYTE, dest, tag, comm,

request)

exreceive(buf, buflen, src, tag,

status)

MPI_Irecv(buf, buflen, MPI_BYTE, src, tag, comm,

request)

(status < 0) ? MPI_TEST(request, status)

exvread(buf, buflen, offset,

count, src, tag)

MPI_Recv(…)

MPI_UnPack(inbuf, inbuflen, datatype, outbuf, outbuflen,

pos, comm)

exvwrite(buf, buflen, offset,

count, src, tag)

MPI_Pack(inbuf, inbuflen, datatype, outbuf, outbuflen,

pos, comm)

MPI_Send(…)

Table 4�8. One-to-one mapping of Express and MPI point-to-point communication and
environment management routines.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 138

4.3.2 Collective Communication Functions

The collective communication routines perform common forms of data movement operations

among processors such as broadcast, concatenate, copy, shift, and spread. The Fortran 90D/HPF

compiler analyzes the given HPF program, automatically detects patterns that match the

collective communication calls, and replaces them with calls to these routines. Express functions

used in the implementation of the collective communication functions are shown in Table 4-7.

4.3.3 Implementing Express Routines in Terms of MPI Routines

The original Fortran 90D/HPF libraries employ the Express message-passing libraries for

conducting inter-process communication on distributed-memory machines. Express is a

commercial product that includes a portable message-passing library as well as other associated

tools and utilities for debugging, graphics, and performance tuning. Its basic functions can be

ported to MPI in a one-to-one fashion, as shown in Table 4-8.

Express has a simple set of collective operations that are limited to synchronization,

broadcast, and combine. Many of the collective operations are performed by specifying different

functions to the combine() function. All or some of the processes may participate in the

collective operations. The list of processors that will participate in an operation is specified by an

argument. They can be simply converted to MPI collective functions (Table 4-9). The MPI

communicator argument specifies the processors participating in the collective communication

operations, which should be explicitly specified using two arguments, nnodes and nodelist

in Express.

The feature of Express that has been extensively used in F90D/HPF RTS libraries is the

support for a virtual grid topology of processors. Express provides a set of conversion routines

between the physical processor numbers and their logical positions on the processor grid. This

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 139

allows the construction of a virtual grid by merely specifying the number of dimensions in the

grid and the number of physical processors on each dimension. Express implicitly creates a

virtual grid to keep the mapping of actual physical processor numbers to the coordinates of the

grid, and allows the performance of grid-based communication in a convenient manner.

4.4 Global Arrays Programming Model

Global Arrays (GA) [NHL 94, NieF 96, NieH 96, NHL 95, NLR 95] is a library-based

shared-memory programming model developed at the Pacific Northwest Laboratory

Environmental and Molecular Science Laboratory. The GA programming model acknowledges

that the remote data access is slower than the local data access due to the NUMA properties of the

underlying distributed-memory parallel architectures. It provides the programmer with explicit

data distribution and transfer mechanisms for specifying and exploiting data locality.

The design and implementation of the GA library were motivated by the distinctive

characteristics of computational chemistry applications. These applications manipulate very large

matrices and require MIMD-style task parallelism in addition to data parallelism where each task

accesses only small matrix sections in an unpredictable manner (shown in Figure 4-7).

Express MPI

exsync() MPI_Barrier(comm)

exbroadcast(buf, comm, buflen, nnodes,

nodelist, tag)

MPI_Bcast(buf, buflen, datatype, root,

comm)

excombine(buf, func, buflen, count,

nnodes, nodelist, tag)

MPI_Allreduce(sendbuf, recvbuf, count,

datatype, func, comm)

Table 4�9. One-to-one mapping of Express and MPI collective communication routines.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 140

The task execution times vary greatly. The amount of computation required is generally on

the order of O(N3) to O(N4), which makes the computation-to-data-movement ratio large.

The GA library was designed to complement rather than replace the message-passing

programming model. The programmer is free to use both the shared-memory and the message-

passing paradigms in the same program, and to take advantage of the existing message-passing

library routines.

The GA library provides the user with the means to exploit data locality by specifying the

distribution of data on distributed-memory platforms. Arrays can be distributed block-wise or in

an irregular fashion on each dimension. All non-GA data items are replicated on each processor

by default, which ensures MIMD parallelism. Each task can determine which portion of each

distributed matrix is stored locally and can communicate with peers either by directly accessing

A Distributed Global Array

4 x 4 Processor Grid

Put() & Get()

Put()

Get()

Figure 4�7. Asynchronous one-sided get() and put() accesses to arbitrary sections of
a distributed GA matrix.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 141

sections of distributed matrices or by using explicit asynchronous message-passing primitives

without requiring the explicit cooperation of other tasks.

GA operations can be classified into two categories, primitive and composite, based on the

complexity of the operation. Primitive operations are implementation-dependent and can be

divided into two classes according to whether they should be executed synchronously or not.

Cooperation of all processes is required to call the synchronous primitive operations, such as

process synchronization, or array creation/destruction. On the other hand, any process may call

asynchronous primitive operations independently. Non-atomic fetch and store (i.e., get and put),

array gather and scatter, read-and-increment operation, inquiry operations, direct access to local

array elements, and atomic accumulate operations on one- or two-dimensional arrays are some of

the asynchronous primitive operations.

Composite operations are built on top of the primitive operations in an implementation-

independent manner. They are optimized to reduce communication and data copying costs by

directly accessing to local data. They are able to manipulate full arrays or selected array sections,

GA

 integer gl_A, lb1, ub1, lb2, ub2, locdim

 double precision loc_A(1:locdim, *)

 call ga_create(MT_DBL, n, m, ‘A’, 10, 5, gl_A)

 call ga_zero(gl_A)

 call ga_put(gl_A, lb1, ub1, lb2, ub2, loc_A,locdim)

HPF

 integer lb1,ub1,lb2,ub2,locdim

 double precision A(n, m)

 double precision loc_A(1:locdim, *)

!HPF$ distribute A(block(10), block(5))

 A = 0.0

 A(lb1:ub1,lb2:ub2) = loc_A(1:ub1- lb1+1, 1:ub2-lb2+1)

Table 4�10. Two code samples with similar functionality written using GA library calls
and HPF.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 142

and they include vector operations like dot-product or scale and matrix operations like matrix

multiplication.

4.4.1 A Brief Comparison of HPF and GA Libraries

Most of GA’s basic functionality (such as create, fetch, store, accumulate, gather, scatter, and

the data parallel operations) can be expressed with array notation, data parallel statements, and

data distribution directives of HPF. Yet GA provides random, independent access to distributed

array regions from within an MIMD parallel subroutine call-tree and reduction into overlapping

regions (patches, sections) of shared arrays that are not supported by HPF [NHL 94].

Furthermore, as opposed to HPF, arrays involved in matrix operations do not have to be

conforming  it is enough if they have elements of the same type and number.

The GA and HPF code samples given in Table 4-10 are similar in functionality except for the

following three differences: First, HPF uses a separate directive to distribute an array, while the

GA ga_create() call both declares and specifies the distribution for the array. Second, GA

uses library calls for performing array operations, while HPF uses Fortran statements. Third, HPF

executes the assignment statements in a data-parallel fashion using the owner computes rule,

whereas the corresponding GA put and get operations are executed in MIMD mode, i.e., each

process references a different array section.

4.4.2 Porting Global Arrays onto the WWVM platform

This particular implementation of the GA library6 [GA 2.0] uses the TCGMSG portable

message-passing library on top of TCP/IP protocol. Except for a few, most functions of the GA

were implemented in terms of TCGMSG calls. Therefore, it would suffice to implement

6 Version 2.0.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 143

TCGMSG routines in MPI in order to support the GA programming model on top of the

WWVM.

TCGMSG [Harr 91] (Theoretical Chemistry Group MeSsaGe-passing libraries) is a

message-passing library widely used in the computational chemistry community.7 Its

programming model and interface is directly modeled after Argonne National Lab’s PARMACS

libraries [BBD+ 87]. TCGMSG primitives have slightly restricted semantics, but are highly

efficient on both high-performance parallel computers and workstation clusters. According to one

7 It was begun at Argonne National Laboratory and completed at Pacific Northwest Laboratory.

TCGMSG MPI

SND(tag, buf, buflen, dest, 1)
MPI_SSEND(buf, buflen, MPI_BYTE,

dest, tag, comm, ierror)

RCV(tag, buf, buflen, lenmes, nodesel,

src, 1)

MPI_RECV(buf, buflen, MPI_BYTE, src,

tag, comm, status, ierror)

SND(tag, buf, buflen, dest, sync)
MPI_ISEND(buf, buflen, MPI_BYTE,

src, tag, comm, request, ierror)

RCV(tag, buf, buflen, nodesel, src,0)
MPI_IRECV(buf, buflen, MPI_BYTE,

src, tag, comm, request, ierror)

SND(tag | type, buf, buflen, dest, sync)
MPI_SEND(buf, buflen, MPI_BYTE,

dest, tag, comm, ierror)

RCV(tag | type, buf, buflen, nodesel, src,

sync)

MPI_RECV(buf, buflen, datatype, src,

tag, comm, status, ierror)

Table 4�11. One-to-one mapping of TCGMSG point-to-point functions to MPI functions.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 144

study presented by Douglas, et al. [DMS 93], TCGMSG is much more efficient than C-Linda, p4,

and PVM.

Processes are connected with ordered, synchronous channels. On message-passing

architectures, channels are set up using TCP sockets; shared-memory mechanisms are used on

shared-memory machines. On a true message-passing machine, TCGMSG is just a thin layer over

the system interface.

4.4.2.1 Point-to-Point Operations

TCGMSG supports both blocking and nonblocking send and receive operations. The last

argument of send and receive primitives determines whether the primitive is blocking or not. The

source and destination of sends and receives can be wildcarded, while tags must be explicitly

specified. Mapping of TCGMSG point-to-point primitives to corresponding MPI primitives is

given in Table 4-11.

TCGMSG MPI

DGOP(tag, buf, buflen, size, func,

datatype)

MPI_REDUCE(sendbuf, recvbuf, buflen,

MPI_DOUBLE_PRECISION, func, root, comm, ierr)

IGOP(tag, –buf, buflen, size, func,

datatype)

MPI_REDUCE(sendbuf, recvbuf, buflen,

MPI_INTEGER, func, root, comm, ierr)

BRDCAST(tag, data, buflen, root) MPI_BCAST(buf, buflen, datatype, root, comm, ierr)

SYNCH(tag) MPI_BARRIER(comm)

Table 4�12. One-to-one mapping of TCGMSG collective operation functions to MPI
functions.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 145

When two machines with different byte orderings or data representations need to

communicate. TCGMSG routines take care of the required data translations using XDR. The data

type is indicated by oring the message tag field with MSGDBL, MSGINT, or MSGCHR,

corresponding to double, integer, and character data.

4.4.2.2 Collective Communication Operations

TCGMSG includes collective computation for +, *, max, min, absmax, and absmin integer

and double-precision operations. Except for absmin and absmax, MPI has counterparts of these

operations (Table 4-12) and of others (Table 4-13).

TCGMSG MPI

PBEGINF() MPI_INIT(argc, argv)

PEND() MPI_FINALIZE()

me = NODEID() MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

np = NNODES() MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

WAITCOM(src) MPI_WAIT(request, status, ierror)

PROBE(tag, src) MPI_IPROBE(src, tag, comm, flag, status)

PARERR(code, str) MPI_ERROR_STRING(code, str, reslength, ierror)

TCGTIME() MPI_WTIME()

MTIME() MPI_WTIME()

EVON(), EVOFF() MPI_PCONTROL(level)

Table 4-13. One-to-one mapping of remaining TCGMSG functions to MPI functions.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 146

4.4.2.3 GA Data Server

The WWVM architecture is very similar to the cluster of workstations on a network. On each

computation node of the WWVM a data server controls the local memory and responds to all

requests coming from remote sites by sending requested data items, as shown Figure 4-8. Control

of the local memory is achieved by using the dynamic memory allocator (DMA) [DMA], which

is a portable library developed at Pacific Northwest Laboratory. It includes functions for heap and

stack memory management, memory location debugging and verification support, memory usage

statistics, and quantitative memory availability information. DMA is especially important for

Fortran applications that do not support dynamic memory allocation as C does. Data server helps

A Distributed Global Array

4 x 4 Processor Grid

Get()

Data Server
Process

Computation
Process

Node Memory

Data Server
Process

Computation
Process

Node Memory

Data request

 Requested
Data Section

Cooperating Node Requesting Node

MPI Connection

Figure 4�8. Order of operations during the interpretation of a remote get() operation
on the WWVM architecture.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 147

to emulate the one-sided communication and shared counter operation that are not supported by

MPI.

4.4.2.4 One-Sided Communication

GA libraries provide several operations for one-sided access to distributed arrays, such as put,

get, gather, scatter, atomic accumulate, and atomic read-and-increment. In the one-sided

communication model, processes can access remote data asynchronously without the explicit

cooperation of processes that own the data [NLR 95]. One-sided communication is crucial for

programs with unpredictable remote data access patterns that cannot be detected by compiler

analysis and that can be implemented by using active messages, hardware get and put, interrupt

receive, shared memory, or threads on different computing platforms. It can be alternatively

implemented using a polling mechanism, but this is not preferred because of the negative effects

on the communication and computation performance.

MPI-2 is expected to support one-sided communication. A data server also helps in emulating

the one-sided communication routines of the GA. A reference to a global array section is

decomposed into local references on specific processors. Asynchronous one-sided operations like

get, put, store, or accumulate cause the requesting process to send a single message containing

the operation type, data size, and the data itself.

4.4.2.5 Emulating the TCGMSG NXTVAL() Routine

TCGMSG includes a function called NXTVAL() that simulates a built-in, shared-memory

counter and returns the next value of this counter when it is called. This counter can be

implemented using an interrupt handler on machines with interrupt-driven receives. On other

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 148

machines a specific process numbered higher than any other application process is designated to

provide this service.

The data server also helps in simulating a simple shared counter used for the dynamic

distribution of loop iterations to processors. Although this approach is quite portable, it suffers

from slower access to local data than the approach where the data resides directly in the

application process. Furthermore, an additional layer is required on top of the message-passing

libraries to hide the server processes from the application.

The implementation is as follows: Once all processes are registered, they synchronously call

a counter initialization routine that separates the MPI_COMM_WORLD into two distinct groups.

One of the groups keeps the single-server process, while the other group keeps the rest of the

processes that will be used throughout the program. The server process receives waits for requests

from ot6her processes and sends the current value of the counter by the MPI_SEND() operation.

Alternatively, all processes may be responsible for the counter service. In this case, each process

periodically probes the system to see if there is any pending request to the counter service and, if

so, sends the new value of the counter to that process. The service requests are determined by

using a a special tag, but wildcarded destination process, in the send operation.

4.5 Summary: The Big Picture

This chapter has provided the details of the implementation of a generic application

programming layer on top of the WWVM that directly supports PVM but also provides high-level

interfaces to other message-passing libraries such as MPI, Express, and TCGMSG. Other shared-

memory programming models using HPF or Global Arrays libraries are supported on top of the

message-passing communication layer.

CHAPTER 4 – PORTING HPCC APPLICATIONS ONTO THE WWVM PLATFORM 149

Since there is a strong trend nowadays toward porting every type of HPCC application onto

the MPI platform, making the MPI to PVM interface as flexible and dependable as possible has

remained the main focus. The same interface could be used to port other applications that may

become available in the future. Another concern has been to separate the actual message-passing

implementation of the WWVM from its application-programming interface. If any MPI

implementation with more focus on process management and dynamic process capabilities

becomes available in the future, the message-passing communication layer of the WWVM can be

replaced without affecting the application layer, by an MPI-based one by following the guidelines

presented in this work.

WWVM / PVMWWVM / PVM

MPIMPI

WWVM Message-Passing Mode
Application Programming Interface
WWVM Message-Passing Mode

Application Programming Interface

ExpressExpressTCGMSGTCGMSG

HPFHPFGAGA

Figure 4�9. Shared-Memory models and message-passing libraries supported by
WWVM.

