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Simple matrix-multiply loop

for (int i=0; i<m; i++)
   for (int j=0; j<p; j++)
      for (int k=0; k<n; k++)
         C[i][j] += A[i][k]*B[k][j];

How is Java doing?
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MATMUL results on RS/6000 590
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Both Java and Fortran are compiled code; most of the difference is in 
compiler optimization
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Fortran optimizations for Java?

Not done because
Has not been a priority of Java compiler developers
(main reason!)
Java language design prevents it
(see Java Grande proposals)
New compiler techniques are needed
The possibility of exceptions in Java prevent applying 
Fortran-style optimizations:
blocking, for better memory behavior,
multiple loop unrolling,
loop interchange,
scalar replacement.
Safe regions allow aggressive optimization within Java semantics.
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Safe regions through versioning

if ((m <= Crows) && (p <= Ccols) &&
    (m <= Arows) && (n <= Acols) &&
    (n <= Brows) && (p <= Bcols)) 
  for (int i=0; i<m; i++) 
    for (int j=0; j<p; j++)
      for (int k=0; k<n; k++)
        C[i][j] += A[i][k]*B[k][j];
else
  for (int i=0; i<m; i++) 
    for (int j=0; j<p; j++)
      for (int k=0; k<n; k++)
        C[i][j] += A[i][k]*B[k][j];

safe region
index checks disabled
ops can be reordered

unsafe region
index checks enabled
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500x500 MATMUL Optimized
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Benefits of fused multiply-add

A fused multiply-add (fma) operation computes a*b+c with a 
single rounding
Java cannot use fma today

changes outcome (even if more precise)
In the POWER/PowerPC families, this cuts the peak performance 
in half!

fma will be legal in Java if Java Grande proposals are adopted
also legal according to alternative proposals being discussed
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Impact of allowing fma in Java
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Other benchmarks

MICROSTRIP: electrostatic potential computation (1000x1000 
grid).
TOMCATV: mesh generation, solver (513x513 mesh).
BSOM: data mining neural-network training (16 nodes).
CHOLESKY: Cholesky factorization (1000x1000 dense matrix).
SHALLOW : shallow water simulation (256x256 grid).
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Results on RS/6000 590

MICROSTRIP
TOMCATV

BSOM
CHOLESKY

SHALLOW
0

50

100

150

M
flo

ps

Java, plain
Java, optimized
Java+fma
Fortran



(C) Copyright 1997 IBM Corp.    Marc Snir

Array layouts
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Benefits of rectangular arrays

Location of element A(i,j) can be computed with index 
arithmetic. Access to A[i][j] requires pointer chasing.
Easier to disambiguate two rectangular arrays A and B than 
two rows A[i] and B[j].

disambiguation required to enable the previously listed 
optimizations!

Out of bound index and null pointer checks can be eliminated 
more easily
Privatization for thread safety is trivial for rectangular arrays, 
but requires copying vector of pointers for array of arrays.
The array package:

Collection of classes that implement arithmetic operations on 
multidimensional rectangular arrays.
Approach allows classical optimizations developed for Fortran to 
be applied.
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Data mining code on one F50 node
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Sparse matrix operations.
Computations performed through array arithmetic and BLAS class for 
multidimensional arrays.



(C) Copyright 1997 IBM Corp.    Marc Snir

Parallel data mining
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Explicit:   code uses Java threads
Implicit:  parallelism inside array package
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Complex numbers & semantic inlining

Example: dot product
Complex[] a,b;

Complex s;
for (int i=0; i<n; i++)
   s.assign(s.plus(a[i].times(b[i])));

generates 2n Complex objects that only hold intermediate results!
Semantic inlining:

Compiler recognizes ops on standard classes as primitives.
Compiler generates code that implements semantics of classes, 
disregards bytecodes for methods.
Mechanism to extend Java and the JVM "under the covers". No 
need to add bytecodes.
Can implement "value objects" without any language or JVM 
changes.
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Results on RS/6000 590
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