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1 Grande Applications and the Java
Grande Forum

This document describes the Java Grande Forum and includes its initial deliverables. These
are reports that convey a succinct set of recommendations from this forum to Sun
Microsystems and other purveyors of Java™ technology that will enable Grande Applications
to be developed with the Java programming language.

The notion of a Grande Application (GA) is familiar to many researchers in academia and
industry but the term is new. In short, a GA is any application, scientific or industrial, that
requires a large number of computing resources, such as those found on the Internet, to solve
one or more problems. Examples of Grande Applications are presented in this report as well
as a discussion of why we believe Java™ technology has the greatest potential to support the
development of Grande Applications.

The forum is motivated by the notion that Java could be the best possible Grande application
development environment and the extensive use of Java could greatly help the large scale
computing and communication fields. However this opportunity can only be realized if
important changes are made to Java™ in its libraries, language and perhaps Virtual Machine.
The major goal of the forum is to clearly articulate the current problems with Java™ for Grande
Applications and detail the requirements, analysis and suggestions for specific changes. It will
also promote and energize widespread community activities investigating the use of Java for
Grande Applications.

The forum is open and operates with a mix of small working groups and public dissemination
and request for comments on its recommendations

The recommendations of the forum are intended primarily for those developing Java Grande
base resources such as libraries and those directly influencing the direction of the Java™
language proper. (Presently, this implies Sun Microsystems or any standards body that may
be formed.)

Mission and Goals

Java has potential to be a better environment for Grande application development than any
previous languages such as Fortran and C++. The goal of the Java Grande Forum (hereatfter,
JGF) is to develop community consensus and recommendations for either changes to Java or
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establishment of standards (frameworks) for Grande libraries and services. These language
changes or frameworks are designed to realize the best ever Grande programming
environment.

The Java Grande Forum does not intend to be a standards body for the Java™ language per
se. Rather, JGF intends to act in an advisory capacity to ensure those working on Grande
applications have a unified voice to address Java language design and implementation issues
and communicate this input directly to Sun or a prospective Java standards group.

The remainder of this section is dedicated to addressing the following questions.

» Whatis a Grande Application? What is an example of a Grande Application?

* What makes a Grande Application different from other applications?

*  Why do we insist on Java? Are we saying there is no room for other languages?
* What is the Java Grande Forum? How can my organization or | participate?

» When is the next meeting? How can | participate? What is expected?

* What are the planned deliverables?

Following the discussion of these general questions, we present the preliminary reports of the
two JGF working groups: the Numerics group and the Applications/Frameworks group.

Grande Applications

This section addresses the questions of immediate interest: What is a Grande Application?
What is an example of a Grande Application? Why are Grande Applications important? After
this, we will discuss the relevance of Java.

Grande Applications are suddenly everybody’s interest. The explosive growth of the number
of computers connected to the Internet has led many researchers and practitioners alike to
consider the possibility of harnessing the combined power of these computers and the
network connecting them to solve more interesting problems. In the past, only a handful of
computational scientists were interested in such an idea, working on the so-called grand
challenge problems, which required much more computational and 1/0 power than found on
the typical personal computer. Specialized computing resources, called parallel computers,
seemingly were the only computers capable of solving such problems in a cost-effective
manner.

The advent of the more powerful personal computers, faster networks, widespread
connectivity, etc. has made it possible to solve such problems even more economically, simply
by using one’s own computer, the Internet, and other computers.

With this background, a Grande Application is therefore defined as an application of large-
scale nature, potentially requiring any combination of computers, networks, I/O, and memory.
Examples are:

e Commercial: Datamining, Financial Modeling, Oil Reservoir Simulation, Seismic Data Pro-
cessing, Vehicle and Aircraft Simulation

» Government: Nuclear Stockpile Stewardship, Climate and Weather, Satellite Image Pro-
cessing, Forces Modeling,

» Academic: Fundamental Physics (particles, relativity, cosmology), Biochemistry, Environ-
mental Engineering, Earthquake Prediction

You can also note several categorizations, which can be used to describe Grande Applications

» High Performance Network Computing

» Scientific and Engineering Computations
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» Distributed Modeling and Simulation (as in DoD DMSO activities)

» Parallel and Distributed Computing

» Data Intensive Computing

» Communication and Computing Intensive Commercial and Academic Applications
« HPCC

» Computational Grids (e.g., Globus and Legion)

Java for Grande Applications

A guestion that naturally arises is:
Why should one use Java in Grande applications?

The Java Grande Forum believes that, more than any other language technology introduced
thus far, Java has the greatest potential to deliver an attractive productive programming
environment spanning the very broad range of tasks needed by the Grande programmer. Java
offers from a combination of its design features and the ready availability of excellent Java
instructional material and development tools. The Java language is not perfect; however, it
promises a nhumber of breakthroughs that have eluded most technologies thus far.
Specifically, Java has the potential to be written once and run anywhere. This means, from a
consumer standpoint, that a Java program can be run on virtually any conceivable computer
available on the market. While this could be argued for C, C++, and FORTRAN, true
portability has not been achieved in these languages, save by expert-level programmers.

While JGF is specifically focused on the use of Java to develop Grande Applications, the forum
is not concerned with the elimination of other useful frameworks and languages. On the
contrary, JGF intends to promote the establishment of standards and frameworks to allow Java
to use other industry and research services, such as Globus and Legion. These services
already provide many facilities for taking advantage of heterogeneous resources for high-
performance computing applications, despite having been implemented in languages other
than Java.

Java Grande Forum Process and Membership

The forum intends a set of working meetings with a core group of active participants. These
will produce reports, which are reviewed in public forums and transmitted appropriately within
the cognizant bodies within the Java and computational fields. The forum is open to any
qualified member of academia, industry or government who is willing to play an active role.
The summary of our last meeting in section 1.4 illustrates our approach. Our first major public
meeting will be held on November 13,98 as a 3 hour panel session at SC98 in Orlando.

For more information on the forum itself and to provide comments, please direct e-mail to
George K. Thiruvathukal, Forum Secretary, at george.k.thiruvathukal@acm.org. Other key
contacts are academic coordinator (Geoffrey Fox, gcf@npac.syr.edu); liaison with Sun
Microsystems (Siamak Hassanzadeh, siamak.hassanzadeh@sun.com); Numerics working
group leads (Ron Boisvert, boisvert@nist.gov and Roldan Pozo, pozo@nist.gov); and
Applications/Concurrency working group lead (Dennis Gannon, gannon@indiana.edu)

You may also wish to visit our web site, located at http://www.jhpc.org/grande, which provides
information about the Java Grande Forum activities, products, and upcoming events. See also
http://www.npac.syr.edu/javagrande/ and http:/math.nist.gov/javanumerics/.
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Two relevant mailing lists are javagrandeforum@npac.syr.edu for current forum members and
java-for-cse@npac.syr.edu for a more general open group of individuals interested in this area.

Summary of the 9-10 May Java Grande Forum Meeting

The Second Java Grande Forum meeting was held May 9-10, 1998 in Palo Alto. It was
sponsored by Sun Microsystems (Siamak Hassanzadeh), and coordinated by Geoffrey Fox
with George Thiruvathukal as secretary.

The first meeting of the Forum was March 1,98 and we expect that the next two meetings to be
in August and November. Current plans call for an August 6-7 meeting in Palo Alto and a
November 13 SC98 3-hour panel to solicit public comment. Both of the initial meetings had
over 30 participants from academia, industry and government.

The meeting started with technology updates from Sun (their Hotspot optimizing compiler and
the Java Native code Interface JNI) and IBM (Marc Snir on the performance of Java in
scientific computing). Then we pursued the classic mix of parallel and plenary sessions using
two working groups.

* Numerics and Libraries led by Roldan Pozo and Ron Boisvert of NIST.
» Applications and Concurrency led by Dennis Gannon from Indiana.

Both groups made good progress and we their reports were made available by early June.
These are used here to build the Charter document defining the Forum. After appropriate
review of our suggestions by key scientific computing communities, we expect to submit a set
of near term action items to JavaSoft. These will contain our proposals in the areas described
in section 1.5 and will relate our numerics proposals to the presentations by James Gosling at
SC97 and "Java Grande 98" (Feb28-Mar 1). Our proposal to JavaSoft will also discuss the
Java VM and RMI enhancements summarized in section 1.6, needed for scaling Java to large-
scale concurrent applications.

We divided our action items into three categories

1. Proposals to JavaSoft as discussed above. These were further divided into either essential
or desirable.

2. Community activities to produce infrastructure and standards
3. Community research which will clarify the value of new activities of type 1) and 2)

Action items of type 2) include standard interfaces and reference implementations for Java
libraries of Math functions, matrix algebra, signal processing etc. We also proposed a Java
Grande application benchmark suite with kernels and more substantial applications. There
was significant discussion of the importance of a "Java Framework for computing"” -- a set of
interfaces to support seamless computing or the ability to run a given job on any one of many
different computers with a single client interface. A typical community research activity is the
study of the scaling of the Java Virtual Machine to large applications or understanding the
tradeoffs between Java thread and distributed VM forms of parallelism.

Summary of the 6-7 August Java Grande Forum Meeting

The Third Java Grande Forum meeting was held Aug 6-7, 1998 in Palo Alto. It was sponsored
by Sun Microsystems (Siamak Hassanzadeh) and coordinated by Geoffrey Fox with George
Thiruvathukal as secretary. This meeting had over 30 participants from academia, industry
and government. This was intended to be our last meeting prior to Supercomputing 98, where

4 Java Grande Forum



Grande Applications and the Java Grande Forum

the Java Grande Forum has a scheduled 3-hour panel session to include public presentations
and debate as well as presentation of this report..

The meeting had interesting plenary presentations on a variety of topics. Jini(http://
java.sun.com/products/jini/index.html ) offers a general approach to distributed resource
registration and discovery and seemed applicable to both hardware and software Grande
components. Note that this base technology has a Linda-like distributed computing
environment Java Spaces (http://java.sun.com/products/javaspaces/index.html) built
(conceptually if not in practice) on top of it. Henry Sowizral described the extensive (but
focussed) Java matrix capability in Java3D graphics framework. This was contrasted to the
scientific matrix package Jama (http://math.nist.gov/javanumerics/jama/ ) developed by NIST
and MathWorks, which was announced at our meeting in Cleve Moler's presentation. There
was a lively presentation from Professor William Kahan (UC Berkeley) and Joseph D. Darcy on
"How Java's Floating-Point Hurts Everyone Everywhere" (http://www.npac.syr.edu/javagrande/
JAVAhurt.pdf ) and why Sun's proposed floating point changes were flawed (http:/
www.npac.syr.edu/javagrande/jgrandefromucb.pdf ).

Tim Wilkinson described his company (http://www.transvirtual.com/) with its open Java VM
Kaffe available freely. He also discussed optimization issues and noted that obviously he was
not content to meet C++ performance but aimed at raw C and Fortran levels. Marvin Solomon
from the Wisconsin Condor group described their distributed computing system and how it can
both use Java as a development tool and support Java Grande applications.

We continued to have two major working groups with a crosscutting interest in benchmarks. In
this respect note the new Java benchmark collection from NIST at http://math.nist.gov/
scimark/ .

The numerics working group (http://www.npac.syr.edu/javagrande/jg3numsumm.html)
reviewed the interim report and affirmed their basic positions on the issues of complex,
efficient classes, operator overloading, and multidimensional arrays.

The second working group carefully reviewed issues and decided that their request to Sun
should only address the issue of RMI performance where capabilities to add fast transport
layers are needed. Areas such as the scaling and performance of the JavaVM needed further
study. We also discussed "Seamless computing” and started a working group to study
systems such as UNICORE, WebSubmit, Condor, Globus and Legion to extract the features of
a "Java framework for Grande Computing". We also agreed to discuss the MPI Java binding
while the collection of a set of "application"” benchmarks was agreed.

Summary of 8-9 October Desktop Access (Seamless
Computing) Meeting at Argonne

GKT: To be provided by Gregor von Laszewski.

Numerics Working Group Summary

Section 2 contains full details. This working group is currently studying

Core Java Language and Virtual Machine Issues
» Complex Arithmetic

» Lightweight classes

» Operator Overloading

e Optimal Use of Hardware
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+ Rectangular arrays

Development of Core Classes and Interfaces for Numerical Computing
» Complex

e Multidimensional Arrays

* Linear Algebra

» Basic Linear Algebra Subroutines (BLAS)

» Higher Mathematical Functions

» Fourier transforms

* Interval Arithmetic

* Multiprecision Arithmetic

Other Issues including

» Alternative definition of Transcendental Functions in Java.math library
* Improved Native Interfaces between Java and Fortran

» Extensions to Support Multiple NaN values

Applications and Concurrency Working Group Summary

Section 3 contains full details. The working group is currently studying:

Java VM

e Scaling for Large Number of Threads

» Support for Native Threads and Lightweight Processes
* Memory and Synchronization Performance

» Java RMI and Serialization

* A new Java Grande Application Benchmark Set

» Parallel Computing API’s

» Seamless Grande Computing

2 Java Numerics Recommendations

Preface

If Java™ is to become the environment of choice for high-performance scientific applications,
then, for large scale floating-point computations, it must provide performance comparable to
what is achieved in currently used programming languages (C or Fortran). In addition, it must
have language features and core libraries that enable the convenient expression of
mathematical algorithms. The goal of the Numerics Working Group (JGNWG) of the Java
Grande Forum is to assess the suitability of Java for numerical computation, and to work
towards community consensus on actions which can be taken to overcome deficiencies of the
language and its run-time environment.

The proposals we put forth operate under a number of constraints.
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» Relatively small, but visible, changes to Java and JVM can be made. Upwards compatibility
should be maintained, as well as a worthwhile amount of backwards compatibility.

e The proposals should support good execution speed on widely available microprocessors.
However, while improved performance is important, predictability of results should be main-
tained. JGNWG proposals provide different levels of performance/predictability tradeoff.

In this report, we present initial findings of the working group. We welcome a continuing
discussion of these issues. Please send questions or comments to
javagrandeforum@npac.syr.edu. Further information on the activities of the Java Grande
Forum can be found at http://www.javagrande.org. Information developed by the Numerics
Working Group can be found at http://math.nist.gov/javanumerics/.

Critical Java Language and Java Virtual Machine Issues

We begin by outlining critical requirements for numerical computing that are not currently
served well by Java's design and implementation. Unless these requirements are met it is
unlikely that Java will have much impact on the numerical computation community. This would
be detrimental to the entire Java enterprise by slowing the dissemination of high quality
components for solving commonly occurring mathematical and statistical problems.

Issue Requirement

1 Complex arithmetic Complex numbers are essential in the analysis and solution
of mathematical problems in many areas of science and
engineering. Thus, it is essential that the use of complex
numbers be as convenient and efficient as the use of floats
and doubles.

2 Lightweight classes Implementation of alternative arithmetic systems, such as
complex, interval, and multiple precision requires the
support of new objects with value semantics. Compilers
should be able to inline methods that operate on such
objects and avoid the overheads of additional dereferencing.
In particular, lightweight classes are critical for the
implementation of complex arithmetic as described in issue
1.

3 Operator overloading Usable implementation of complex arithmetic, as well as
other alternative arithmetics such as interval and
multiprecision, requires that code be as readable as those
based only on float and double .
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4  Use of floating-point The high efficiency necessary for large-scale numerical

hardware applications requires aggressive exploitation of the unique
facilities of floating-point hardware. At the other extreme,
some computations require very high predictability, even at
the expense of performance. The majority of users lie
somewhere in between: they want reasonably fast floating-
point performance, and don't want to be surprised when
computed results misbehave unpredictably. Each of these
constituencies must be addressed.

5 Multidimensional arrays  Multidimensional arrays are the most common data
structure in scientific computing. Thus, operations on
multidimensional arrays of elementary numerical types must
be easily optimized. In addition, the memory layout of such
arrays must be known to the algorithm developer in order to
process array data in the most efficient way.

An elaboration of each underlying issue, along with proposed solutions are presented in the
following section. In suggesting solutions, the working group has been careful to balance the
needs of the numerical community with those of Java's wider audience. Although the proposed
solutions require some additions to the current Java and JVM design, we have tried to avoid
them, relying on compiler technology, whenever feasible. This minimizes the changes that
affect all Java platforms, and enable implementors to optimize for high numerical performance
only in those environments where such an effort is warranted.

Discussion of Critical Issues

Complex arithmetic

Using complex numbers conveniently means that expressions on complex numbers must look
and behave like expressions on float or double values. This is critical for code
understanding and reuse. Efficient complex arithmetic operations are only a few times slower
than their real counterparts; ideally, the speed of a complex computation should be limited by
the speed of the underlying floating point arithmetic and not the speed of memory allocation or
object copying.

Providing a straightforward complex class using existing Java object mechanisms fails to
provide an acceptable solution.

e The object overhead of complex methods makes them unacceptably inefficient.

» The semantics of complex objects are different than those of float and double . For
example, the = and == operators manipulate references rather than values. Such differ-
ences lead to many errors.

» Use of method calls for elementary arithmetic operations leads to inscrutable code which is
very tedious to write and debug. Users would simply stay away.

The second and third items also mean that code reuse is severely limited. In the LAPACK
project, much of complex code is identical to its real counterparts and this greatly eased the
generation and maintenance of the library. Such economies are much more difficult to obtain if
the syntax and semantics of complex is significantly different than than of the base types.

An alternative which solves both the convenience and speed issues would be to add complex
as a new primitive type in Java. However, this approach also has a number of drawbacks.
While complex could be added naturally to the language, adding support for a complex type
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in the JVM is more problematic. Either the JVM would have to directly support complex , or
complex expressions and variables in a Java program would have to be mapped into existing
JVM instructions in a predetermined way. FUndamental changes to the JVM should be
avoided if the existing functionality is sufficient to implement a given feature. However,
translating the complex type into a pair of double values (a real and an imaginary
component) in the JVM presents a number of difficulties.

* How are complex numbers passed into a method?
Since the desired behavior of complex is analogous to a primitive type, complex numbers
should be passed by value. One way to accomplish that is to represent each complex
parameter as a pair of double parameters. Unfortunately, this approach circumvents Java
method type checking at the JVM level; it would not be possible in the bytecode to distin-
guish between a method that took a complex argument and a method with the same name
that took a pair of double arguments. (It would be possible to mangle the names of meth-
ods with complex parameters, but then the mangled name might conflict with a different
Java method.)

* How are complex numbers returned from a method?
The JVM cannot directly return a pair of double s from a method. The method could return
a two-element array of double s or an object with two double fields. However, these
approaches could introduce additional memory allocation and copying overhead.

Even if complex numbers can be accommodated with some variation of the above approach,
this would only solve the problem for complex . Many other numeric types such as decimal,
interval, and arbitrary precision have similar requirements. Thus, instead of merely providing a
specialized solution for complex , a better approach is to make Java extensible enough to add
new numeric types that can be operated on conveniently and efficiently. To meet this goal,
Java needs two capabilities: operator overloading and lightweight classes.

Lightweight classes

Lightweight classes allow the creation of a new kind of Java object. The goal of lightweight
classes is to allow the runtime use of what appears to be a C struct , thatiis:

» Lightweight objects have "value" semantics; the = operator performs a deep copy (instead
of changing a pointer) and the == operator performs a deep comparison (instead of com-
paring pointer values).

» Avariable of a lightweight class is never null ; such variables always have a value.

* No dynamic dispatch overhead is needed for the methods of a lightweight class; these
classes are always final . (This also removes the necessity to store a dispatch pointer for
lightweight objects.)

At the Java level, a new class modifier can be introduced to indicate a class is a lightweight
class. At the JVM level there are several implementation options:

1. Introduce what amounts to an explicit struct  at the JVM level (a very large change), or

2. translate lightweight classes in Java classes to normal JVM classes with the Java to JVM
compiler enforcing restrictions that hide the fact that lightweight classes are implemented
as regular Java classes. The back-end compiler should heavily optimize lightweight classes
for speed and space (e.g. using escape analysis to allow stack allocation instead of heap
allocation, see the Storage issues).

Since requiring large JVM changes reduces the likelihood of acceptance, and due to its
greater backwards compatibility, Java Grande recommends the second approach to
implementing lightweight classes.
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Implementation implications.  Complex numbers can be implemented as a lightweight class.
By implementing complex as a lightweight class, type checking is preserved at both the Java
and JVM level. Lightweight classes reuse Java's existing facility to create new types; the
compiler is responsible for the tedious job of disguising what appears (to extant JVMs) to be a
normal Java object as a lightweight object. To the programmer, lightweight classes appear to
be outside of the Java class hierarchy rooted at Object . However, lightweight classes can be
implemented in a way backwards compatible with existing virtual machines. Additional class
attributes could be included in a class file to indicate to new VMs that optimizations tailored
to lightweight classes can be used. When compiling programs using lightweight classes, the
Java compiler is responsible for enforcing the following of restrictions.

» A lightweight object cannot be observed to have a null value. This implies the following.

» A lightweight object cannot be assigned null or compared to null . All such expressions
are caught as compile-time errors.

» A compiler-generated non-overridable default constructor is used to initialize lightweight
objects. The default constructor initializes the fields of the lightweight object to the default
value for that type (zero of numeric types, null for reference types). The compiler inserts
calls to the default constructor before any code that can access the object. These default
constructors are not dependent on any external program state. For local variables, each
call of the default constructor for a lightweight class is wrapped with a catch block that
catches OutOfMemoryError  and rethrows the exception as StackOverflowError
Although user code may try to recover from an OutOfMemoryError  an attempt to recover
from a StackOverflowError is unlikely. Failure to allocate memory for a lightweight
object local variable corresponds to running out of stack space.

» Alightweight class cannot define a finalizer method. In Java, finalizer methods are
run when an object is garbage collected. Lightweight objects are intended to have seman-
tics similar to the semantics of primitive types. Therefore, lightweight classes do not need
finalizer methods.

» A user-defined lightweight class constructor must not explicitly invoke super . In a construc-
tor, calling super invokes the constructor of the superclass. Since lightweight objects are
defined to be outside of the Object class hierarchy, it is not meaningful for a lightweight
class constructor to call super .

» Lightweight objects cannot be cast to Object or any other reference type. Other types
cannot be cast to the type of a lightweight class. Casts between primitive types construct a
new value whereas casts between reference types reinterpret a pointer; no new value is
constructed. However, user-defined conversions between lightweight classes are other
types are permissible.

» Lightweight classes cannot implement interfaces.

» Itis a compile-time error to apply the instanceof = operator to an expression having the
type of a lightweight class and it is a compile-time error to use instanceof  to test for the
type of a lightweight class.

e The JVM creates Class objects to represent lightweight classes.

» Lightweight classes can overload the assignment (=) and equality (==) operators (see
Operator Overloading).

Virtual machines are encouraged to inline the methods of lightweight classes where
appropriate.

To behave like primitive types, lightweight classes should be passed by value, that is, when
given as an argument to a method or when returned from a method, a lightweight object is
copied. C++'s copy constructor performs this task. However, references were added to C++ to
avoid the overhead of copying small objects like complex [14]. Objects in Java are already

10
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passed by reference. Therefore, for performance reasons it may be acceptable (but somewhat
contradictory semantically) to pass lightweight objects by reference.

Storage issues. Since lightweight classes are final and since references to lightweight
objects are not null , there is no need to store a dispatch pointer at runtime.

Heap allocation is potentially more expensive than stack allocation. Additionally, stack-
allocated objects may be cheaper to garbage collect than heap allocated ones. Therefore, it is
preferable to allocate lightweight objects on the stack instead of the heap. Replacing heap
allocation with stack allocation is an oft-discussed optimization. An object can be allocated on
the stack if it can be determined that the object cannot be accessed outside of the lifetime of
the scope that allocated it. Escape analysis [12] makes this determination. Recent work
suggests escape analysis may be useful in Java [5].[2]. The related problem of compile-time
garbage collection is addressed by region inference [16] and its extensions [1].

Operator overloading

Operator overloading is necessary to allow user-defined numeric types, such as complex , to
be used reasonably. Without it, many numeric codes would be extremely difficult to develop,
understand and maintain. For example, codes using complex arithmetic class would look very
different than similar code using real arithmetic, burdening library developers and users alike.
A simple statement such as

a = b+c*d;

might be expressed as
a.assign(Complex.sum(b, Complex.product(c,d))

or
a.assign(b.plus(c.times(d)))

Faced with coding like this, a large portion of the scientific computing community would
choose to avoid Java as being too unfriendly.

At a minimum, a useful subset of the existing operators must be overloadable. It is useful, but
not a requirement of the working group, to allow novel operators to be overloaded as well.
(Allowing novel operators to be overloaded does not have to introduce the language
complications and programmer difficulties found in ML and Haskell, see [3].)

What operators can be overloaded. The arithmetic, comparison, assignment, and
subscripting operators can be overloaded. Neither the instanceof , new, field access, nor
method call operators can be overloaded. The &&and || operators cannot be overloaded
because they have different expression evaluation rules than all other operators.

If normal classes are also allowed to use operator overloading, it may convenient to have
Pascal's := as a supplemental assignment operator. Java's = can be used to indicate the
current semantics of moving a pointer while := can be used for a deep assignment (deep
copy, by convention the current semantics of a class' clone method). If := can be overloaded,
it can be used for a copy operator appropriate for a given class. For example, even when
performing a deep copy, an arbitrary precision arithmetic class may want to use a copy-on-
write policy for the bits of the number to avoiding copying the (possibly large) data structure
unnecessarily.

If := is introduced for classes, := should designate normal assignment on the existing
primitive types. That way code using primitive types can more easily be converted to using a
user-defined type instead. For example, if roundoff problems on double numbers are
suspected of causing loss of accuracy problems, it would be convenient to replace double
with a floating point type with more precision to see if the roundoff problems abate. With

Java Grande Forum 11



Java Numerics Recommendations

sufficiently powerful operator overloading, potentially only the variable declarations would
need to be changed.

How to name methods corresponding to overloaded operators. The strings making up
operators, "+", "+=", etc., are outside of the set of strings Java allows to form an Identifier.
Therefore, to add operator overloading to Java, some technique must be used to allow
operator methods to be declared. Either the text of the operator can be included in the method
declaration (as with C++'s operator+ syntax for an addition operator) or there can be an
implicit mapping from textual names to operators (as with Sather's [13] mapping of "plus "
+).

to

If the latter implicit mapping is used, it is important to have a separate name for each target
operator. This avoids the Sather problem where a<b is defined as !(a>=b) . Sather's
scheme is problematical for IEEE style numbers since NaN <b and NaN >=b are both
false. To overload operators such as +=, the corresponding name should be plusAssign
instead of plusEquals . This names the operator according to what it does instead of what
characters constitute the operator. In general, allowing each operator to be separately
overloaded provides the flexibility to model mathematical entities other than traditional fields.

How to resolve overloaded methods.  For normal Java classes, operator overloading can
easily be mapped into method dispatch. For example, the compiler can translatea + b into
a.plus(b)

or
a.op+(b)

depending on how operator methods are named.

However, this level of support is not sufficient for more general uses of operator overloading.
For example, this technique does not work if the type of a is a primitive type like float or
double since these types do not have corresponding classes. Clearly, from an orthogonality
and usability perspective, the programmer would like to be able to write double + complex

as well as complex + double . Therefore, in addition to letting operators be instance
methods (methods dispatched from an object), operators must also be static  methods
(methods not dispatched from an object). However, using static  operator methods for
regular Java classes present name resolution problems.

In regular Java code, if a static  method is used outside the defining class the class name
(and possibly the package name) must be prefixed to the method call. For example, instead of
writing

sin(x)

even if an import  statement is used, the Java programmer must write
Math .sin(x)

to allow the Java compiler to properly determine the location of the sin  method. Using class
name prefixes for operators would ruin the readability of operator overloading. However, since
lightweight classes are final , the problems of using static  methods can be circumvented.

Since lightweight classes are final , all method calls can be resolved at compile time; there
need not be any dynamic dispatch at runtime. Therefore, even if used outside of the defining
class, static  operators on lightweight objects do not need to be prefixed with the class
name; the compiler can use a rule of looking for operator methods defined in the lightweight
class of the left hand operand. Additionally, using static ~ operators allows for better software
engineering.

If static  operator methods can be located from either the class of the left hand operand or
the class of the right hand operand, new lightweight classes can be made to interact with
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existing lightweight classes. Otherwise, for symmetric treatment ofa + b the classes of a and
b must be written concurrently.

Use of floating-point hardware

Recently, Sun released for public comment a Proposal for Extension of Java™ Floating Point
Semantics, Revision 1 [15] (abbreviated in this document as PEJFPS). PEJFPS is primarily
targeted at improving Java's floating point performance on the x86 line of processors. (No
explicit license is granted (yet) to use the fused mac (multiply-accumulate) instruction, which
would benefit users of the PowerPC, among other architectures.)

Assiduously implementing Java's current strict floating point semantics on the x86 using
previously published techniques is very expensive, potentially more than an order of
magnitude slower than slightly different semantics [6]. A less expensive technique developed
recently [7] will be discussed later. PEJFPS grants partial access to the double extended
floating point format found on the x86 in order to overcome the speed problem. However, the
reckless license to use or not to use double extended granted by PEJFPS destroys Java's
predictability (see recent submissions to the numeric-interest mailing list, http://
www.validgh.com/java/).

Java has been billed as providing "write once, run anywhere" program development. For both
theoretical and practical reasons, Java programs are not nearly so portable nor reproducible
as programmers would naively expect. However, by exercising discipline (using single
threaded code, using default finalize methods), it is far easier to produce a Java program
whose behavior can be predicted than to produce an analogous C or C++ program with the
same property. Losing Java's predictability would be a significant loss. Therefore, the IGNWG
recommends that PEJFPS not be incorporated into Java. Instead, JGNWG presents a
counter-proposal that works within similar constraints as PEJFPS but maintains the
predictability of the language and addresses additional numeric programming needs omitted
from PEJFPS.

What is the problem on the x86? x86 processors most naturally operate on 80-bit double
extended floating point values. A precision control word can be set to make the processor
round to single or double precision. However, even when rounding to a reduced precision, the
floating point registers still use the full 15 exponent bits of the double extended format (instead
of the 11 exponent bits for true double and 8 bits for true float ). A store to memory is
required to narrow the exponent as well. Since the register is not changed by the store, for
further computation the stored value must be loaded back from memory. This memory traffic
degrades Java's floating point performance on the x86. Moreover, this technique suffers from a
small discrepancy between operating on true double values and double values with
increased exponent range. Values that would be subnormal double s are not subnormal in
double with extended exponent range. When such a number is stored to true double , it can
be rounded twice, leading to a difference in the last bit, about 10-3%4. Published techniques to
remove this remaining minor discrepancy can lead to an order of magnitude slowdown, so
Java VMs on the x86 generally set the precision control to double precision and allow double
rounding on underflow, at variance with Java's specification [6].

The 10X potential performance degradation for exact floating point conformance on the x86 is
largely a theoretical concern since VMs on the x86 in practice use the store-reload technique.
PEJFPS aims to eliminate the smaller 2X to 4X penalty from store-reload. PEJFPS would
remove this speed penalty by allowing the x86's double extended registers to be used at full
precision and range. However, PEJFPS would put too few constraints on when, where, and
whether extended precision is used, leading to unpredictability.

There are two issues for exact reproducibility stemming from the x86's wider exponent range:
maintaining the proper overflow threshold and preserving the proper gradual underflow
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behavior. The store-reload technique solves the former problem but not the latter. Since
additions and subtractions resulting in subnormal values are exact, the underflow threshold is
properly maintained. Using the store-reload technique, double rounding on underflow can only
occur for multiplication and division.

Recently, a refinement of the store-reload technique that eliminates the double rounding
problem has been developed [7]. To avoid double rounding during multiplication, the new
technique scales down one of the operands by 2(F,,, double extended - £ double ) \yhere
Enmax is the largest exponent for a given floating point format. After this scaling all operations
that would result in subnormals in true double also result in subnormals in double with
extended exponent range. This result is then rescaled back up by the same quantity; normal
results are unaffected and subnormals are properly rounded once. A store of the product after
being scaled enforces the overflow threshold.

The procedure for division is analogous; the dividend can be scaled down or the divisor can be
scaled up. In both cases, the resulting quotient is rescaled up to the proper magnitude.

This new technique has many advantages over previous approaches to making the x86 round
to true double exactly:

» The new technique is only marginally more expensive than the currently used store-reload
method. Therefore, exact emulation of true double only entails a factor of 2 to 4 slowdown
instead of a factor of 10.

» No special testing is needed to handle +0.0 , infinities, and NaN.
» Since the scalings up and down are exact, the proper IEEE sticky flags are set.
» Also due to the exact scalings, the technique works under dynamic rounding modes.

The JGNWG strongly encourages JVM writers for the x86 to adopt this new technique.

What capabilities are needed? Different numeric applications have different needs. Some,
like certain implementations of higher precision arithmetic using standard floating point
formats, depend on strict floating point semantics and could easily break if "optimized." Other
calculations, such as dot product and matrix multiply, are relatively insensitive to aggressive
optimization; meaningful answers result even when blocking and other answer-changing
optimizations are applied. The vendor-supplied BLAS are heavily optimized for a given
architecture; vendors would not spend considerable resources creating optimized BLAS,
sometimes included hand-coded assembly, if there were not demand for such faster programs.
The needs of the typical Java programmer fall somewhere between these extremes; there is a
desire for floating point computation that is not unnecessarily slow, but the programmer
doesn't want to be surprised when his computed results misbehave unpredictably.

Since Java is aimed at a wide audience, the JGNWG proposal changes Java's default floating
point semantics to allow somewhat better performance on the x86 and PowerPC. However, for
most programs on most inputs the change in numerical results will not be noticed. Like
PEJFPS, the JGNWG proposal adds a "strict floating point" declaration to indicate current
Java semantics must be used. JGNWG also includes a second declaration to allow optimizers
to rearrange certain floating point operations as if they were associative. Associativity enables
many useful optimizations, including aggressive code scheduling and blocking.

PEJFPS would mingle increased speed and increased precision; in widefp contexts code
presumably runs faster and may incidentally use increased precision and range. Although it
my have been intended only for the sake of fast register spilling, PEJFPS would allow almost
arbitrary truncation of results from extended to base formats. In any case, the programmer is
faced with an unpredictable program, leading to the resurrection of bugs from earlier systems,
like the Sun Il (see the recent comp.compilers thread "inlining + optimization = nuisance bugs"
for a contemporary example). JGNWG's proposal does not mix speed and precision, rather, as
a concession to the x86, JGNWG allows extended exponent range in some circumstances.
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Some architectures, such as the PowerPC, include a fused mac instruction that multiplies two
numbers exactly and then adds a third number, with a single rounding error at the end.
Machines with this instruction run faster when it is used. Current Java semantics prohibit fused
macs from being used.

There are three degrees of fused mac usage to support:

1. do not use fused macs at all,

2. use fused macs if they are fast (i.e. if there is hardware support), and
3. used fused mac even if it requires (slow) software simulation.

Fused mac must be forbidden in some sensitive calculations. For example, using fused mac
recklessly can also lead to inappropriately negative discriminants in quadratic formula
calculations [11]. Using a fused mac if available would give more accurate and faster dot
products and matrix multiplies. Some algorithms require a fused mac to work properly.
Mandating a fused mac is necessary to simulate a fused mac capable machine on one that
isn't. Requiring fused mac to be used is accomplished by an explicit method call to a new
method Math.fmac

Java Grande Counter Proposal. The JGNWG proposal is based upon an analysis that finds
very few of the diverse floating-point semantics allowed by PEJFPS to be both useful and
necessary. On the other hand, each of the few semantics of the JGNWG proposal are
necessary because dropping one would either

» hobble the performance of a commercially important family of computers, or

* make multiplying large matrices unnecessarily slow.

The semantic contexts proposed by the JGNWG are as follows.

1. Java's present semantics. All floating point values are true float and true double values.

2. The present Java semantics except that some subexpressions that would have over/under-
flow in option 1 remain representable; and if underflow is signaled then some underflowed
values may be rounded twice instead of once, differing from option 1 by around 107324,
These semantics are used by default on the x86 to ameliorate some of the performance
implications of exactly implementing Java's present floating point semantics on that line of
processors. (This can be accomplished by admitting the use of 15-bit exponents in the rep-
resentation of double values on the JVM operand stack.)

3. Permission to use fused mac (multiply-accumulate) where available. This can be used with
either of the above.

4. Permission to use associativity with any of the above granted by the code's author.

There are three kinds of floating point semantics in JGNWG, strict, default, and "associative."
The following table illustrates what effect these have on current processors.

Architecture |

Modifier Xx86 PowerPC SPARC
strictfp Java 1.0 Java 1.0 Java 1.0
(no double rounding on (no fused mac)
underflow)
default (no modifier) larger exponent range allowed fused maccanbe  Javal.0
used
associativefp many optimizations allowed on
all platforms
strictfp and associativefp are mutually exclusive.

Strict semantics are indicated by the new strictfp class and method modifier. Strict
semantics are the current Java floating point semantics; fused mac is not permitted in strict
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code (unless the compiler can prove the same answer results). On the x86, using stores to
restrict the exponent range can readily give exactly Java-conforming results for the float
format. Using the new technique described above, exactly Java-conforming results for the
double format can also be implemented at a tolerable cost.

Like PEJFPS, JGNWG proposes to modify the default Java floating point semantics, i.e. those
used in the absence of a strictfp or associativefp declaration. In general, default
semantics allow increased exponent range of anonymous expressions (on the x86) or use of
fused mac (on the PowerPC). In default mode on the x86, anonymous float and double
values created during expression evaluation are allowed to use the larger exponent range of
double extended . If the extended exponent range is used in code with default semantics, it
must be consistently used for all anonymous values (this implies that anonymous values
spilled to memory must be spilled as 80 bit quantities to preserve the exponent values). All
explicit stores must be respected and only true double and true float can be stored into
programmer-declared variables.

System properties indicate whether fused mac and extended exponent range are used by a
particular VM. It is always permissible to implement the default semantics as the "strict" Java
1.0 semantics. Therefore, on a SPARC there is no difference between the two kinds of floating
point semantics.

It is possible that a program intended for strict semantics will fail under the non-strict JGNWG
default semantics. To ease detection of such cases, JVMs should provide a runtime flag to
force default semantics to be implemented as strict.

Finally, JGNWG also includes an associativefp declaration to allow optimizers to
rearrange floating point operations as if they were associative if the operations would be
associative in the absence of over/underflow and roundoff. Associativity enables many useful
optimizations, including aggressive code scheduling and blocking. Optimizations may change
the numerical outcome of a computation. To give greater freedom to the optimizer,
associativefp also relaxes the precise exception model of Java; null pointer and index out
of bound exceptions will still be thrown and caught by the same handlers but the values in
variables might not be in the same state as in an unoptimized version of the code.

On machines with fused mac instructions, chained multiply and add/subtract operations in the
source code can be fused at runtime in default mode. Expressions are fused preferring fusing
a product that is the right hand argument to an addition over the left hand argument; for
example, the expression

a*b + c*d

is treated as fmac(a, b, c*d) and not fmac(c, d, a*b) . Such fusing operations must
occur if fused mac is in use; this prevents programmer surprises. Otherwise, optimizers could
potentially fuse unexpected expressions or prevent an expression from being fused (e.g.,
common subexpression elimination reusing a product that prevents a fused mac). The
arguments to fused mac must be evaluated in left to right order.

When fused mac is being used, the programmer can explicitly store each intermediate result
to locally implement strict semantics.

Unresolved issues regarding additional optimizations. There is agreement within the
working group that, at a minimum, allowing the use of associativity should be permitted as
described above. Disagreement remains as to whether compilers should be allowed to employ
additional types of optimizations which can, in some cases, cause incorrect results. Under
current Java semantics, for example, common transformations such as 0*x to 0 (wrong if x is
NaN) or x*-x"3 to x (requires distributivity) are disallowed.

Some have argued strongly in favor of allowing wide latitude for optimizations, provided that
the software developer and user concur on their use. From their point of view, as long as both
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parties have the option to disable potentially harmful optimizations, then compiler writers
should not be barred from providing them. Gosling has proposed an idealizedNumerics

[8] mode which would allow any transformation which would preserve results on the real
number field, for example. Others argue that the predictability of the Java language is its key
feature and that users are not served well if potentially harmful optimizations are admitted.

A related issue is whether the strict exception model of Java should be relaxed in
associativefp mode. Some have argued that the strict exception model should be
preserved so that programming styles which relied on exceptions would behave correctly. An
example is the following somewhat unusual code for computing the dot product of two vectors
relies on Java exceptions.

double s = 0;

try {

for (int i=0;true;i++) {

s += a[i]*b]i];

} catch (ArraylndexOutOfBounds bounds) {
}

These issues will require further discussion before they can be resolved.

Examples. The dot product loop
static double dot(double a[], double b[])
{

double s;

for(i = 0; i < a.length; i++)
s +=a[i] * bJ[i];

return s;

}

can be compiled differently under strict and default semantics. In the examples that follow, loop
tests and other integer calculations are omitted and are assumed to overlap with the floating
point calculations. Under strict Java 1.0 semantics on the x86, one compilation of the dot
product loop is:

// x86 code for strict dot product loop

// rounding precision set to double

// assume scaling factors are in the register stack
push scaling factor

load a[i] and multiply with scaling factor
load b[i] and multiply with al[i]

multiply to rescale product

store product to restrict exponent
reload back restricted product

add productto s

store s to restrict exponent

load back restricted s

increment i

loop

scaled down

As shown above, the product (a[i] * b[i] ) and the sum (s + a[i] * b[i] ) both need to
be stored to memory and loaded back in. As shown below, under default semantics, only the
sum needs to be written out to memory, halving the excess memory traffic and removing two
multiplications.
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// x86 code for default dot product loop

// rounding precision set to double

load ai]

load b[i] and multiply with al[i]

// product does not need to be stored/reloaded and scaled
add productto s

store s to restrict exponent

reload s

increment i

loop

A larger number of anonymous values in an expression results in a greater reduction in the
number of excess stores. A VM might also be able to use trap handlers to achieve faster
average execution. For example, trapping on overflow could remove a load from the loop
above, yielding

// x86 code for default dot product loop

// rounding precision set to double

// VM is using an overflow trap handler to remove a load

load ai]

load b[i] and multiply with al[i]

add productto s

store s to restrict exponent // dummy store, reload if store overflows
// reload of s elided

increment i

loop

This trap handler is used by the compiler and not visible to the applications programmer. The
functionality of this trap handler is simple; the trap handler just has to reload the stored value.

On the x86, if an expression (and all its subexpressions) neither overflows nor underflows for a
given input, executing the default compilation of the expression will give the same result as the
executing the strict compilation. As when using fused mac, explicitly storing each intermediate
result can be used to implement strict semantics in a limited area. In default mode, both

float and double expressions can use the extended exponent range. Method arguments
and return values from methods must be strict double or float values to prevent
programmers from being ambushed by greater exponent range they neither intended nor
anticipated.

Cost of strictness  Using the new scaling technique, a matrix multiply with strict semantics
can be a little more than twice as slow as a matrix multiply with default semantics. In both the
loops below, an overflow trap handler is used to remove excess loads in the common case.
The sum variables are already in the stack. For better instruction scheduling, two elements of
the matrix product are calculated simultaneously:

// x86 code for fast matrix multiply using default semantics
// rounding precision set to double

// VM is using an overflow trap handler

// the loop has approximately an 8 or 9 cycle latency on a Pentium
load bli]

dup bli]

load a [i] and multiply with bl[i]

swap top two stack elements

load a 41[i] and multiply with bl[i]

swap top two stack elements

add with pop a «[i] * b[i] to sum K
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add with popa  g4+1[i] * b[i] to sum Kl
loop

The strict code is similar:

// x86 code for fast matrix multiply using strict semantics

// rounding precision set to double

// VM is using an overflow trap handler

// the loop has approximately a 19 cycle latency on a Pentium
// assume scaling constants are already in the register stack
put scaling constant on the top of the stack

load b[i] and multiply with scaling factor

dup bi] scaled down

load a [i] and multiply with bfi] scaled down
swap top two stack elements

load a 141 [i] and multiply with bli] scaled down
swap top two stack elements

rescale a [i] * b[i] scaled down

swap

rescale a yyq[i] * bli] scaled down

dummy store of a k+1 L] * b[i]

swap

dummy store of a k] * b[i]

add with pop a «[i] * b[i] to sum K

add with pop a k+1 [1] * b[i] to sum Kl

store sum

swap

store sum 41

swap

loop

Scoping. Whatever new floating point semantics are expressible in Java need to be
expressible in the JVM too. PEJFPS uses spare bits in a method descriptor to indicate which
kind of floating point semantics a methods has; JGNWG can use the same approach. This
provides method-level control of floating point semantics. This would be the coarsest level
acceptable to the IGNWG.

It may also be convenient to have a finer granularity block-level control. While this is not critical
to the JGNWG proposal, it should be considered. Such a declaration is easily added to Java,
but it is not immediate apparent how to encode such information in the JVM. Java compilers
can include extra attributes in a class file ([10] § 4.7.1). These attributes can be used to
support things such as improved debugging facilities. JVMs are required to ignore unknown
attributes. Therefore, JGNWG could represent the different floating point semantics of different
portions of code using a table emitted as an extra class file attribute. Strict semantics is
always a permissible policy under the JGNWG proposal; so, in this respect a JGNWG-style
class file would be backwards compatible with existing VMs.

Discussion. The JGNWG proposal allows improved hardware utilization over standard Java
while preserving program predictability. Programmers can test system properties to determine
the VM's behavior.

A reasonable question is that if Java Grande is opposed to PEJFPS due to its unpredictability,
why does Java Grande's proposal also allow some unpredictability by default? JIGNWG
permits much less unpredictability than PEJFPS and JGNWG has fewer differences between
strict and default semantics. For example, in JGNWG a floating point feature must be used
consistently; fused mac or extended exponent range cannot be used on one call to a method
and not used on the next (something allowed by PEJFPS). On the x86, between allowing

Java Grande Forum 19



Java Numerics Recommendations

extended exponent range and allowing extra precision, allowing extended exponent range
results in many fewer visible differences between strict code and default code.

The differences arising from extended exponent range on the x86 are visible only if the
calculation would over/underflow on a machine like the SPARC. Over/underflow is
comparatively rare in practice; therefore the Java Grande differences would be observed at
most rarely. PEJFPS allows extended precision for intermediate results. Extended precision
would almost always be visible. For example,

// implicit widefp under PEJFPS

// default semantics under Java Grande
static foo(){

double one = 1.0;

double three = 3.0;

double a;
double b[] = new double[1];

a = onelthree;

b[0] = a;
}
// Results under
different proposals
// IGNWG PEJFPS
if(@a == b[O]){...} // always true true or false?
if(a == (one/three)){...} // always true true or false?

If one/three s calculated to extended precision and a is treated as an extended precision
value, thena ==b[0]  will be false under PEJFPS since arrays are always stored in the base
format (32 bit float  or 64 bit double ). If a is stored as double precision, a == (one/

three) will be false if (one/three) s calculated to double extended precision. The Java
Grande proposal would always return true for these cases. In short, on the x86 the cases
where the JGNWG proposal allows differences between default and strict semantics are
where overflow or underflow would occur; the cases where PEJFPS allows differences
between default and strict semantics are (approximately) where an operation is inexact, as
most are.

Additional Floating-point Types.  The JGNWG proposal thus far does not provide any
access to the double extended format found on the x86. Consistent access to this format is
important to allow good hardware utilization and to ease writing numerical programs; having
access to several more bits of precision than the input data often allows simpler (and
sometimes faster) algorithms to be used. To access double extended, JGNWG proposes that
Java include a third primitive floating point type called "indigenous ." The indigenous
floating point type corresponds to the widest IEEE 743 floating point format that directly
executes on the underlying processor. On the x86, indigenous  corresponds to the double
extended format; on most other processors, indigenous  corresponds to the double format.
(The indigenous  type must be at least as wide as double .) For a particular VM, class
variables indicate whether indigenous is implemented as double or double extended.

The float and double floating point types have hardware support. Adding a double
extended type would require costly simulation on most architectures other than the x86.
Having an indigenous  type preserves the performance predictability of a program and
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keeps a close correspondence between floating point types in a language and floating point
formats on a processor.

Implementing indigenous  at the JVM level can be done either by adding new JVM
instructions or (as an interim measure) using the operator overloading and lightweight classes
described earlier.

Additional Floating-point Expression Evaluation Policies. To better utilize certain
processors and to lessen the impact of rounding errors, it is useful for the programmer to
conveniently be able to evaluate a floating point expression in a wider format. For example, a
programmer may want to evaluate an expression consisting of float variables in double
precision. Pre-ANSI C used this floating point expression evaluation policy exclusively.

JGNWG adds a new declaration, anonymous FloatingPointType, to control the expression
evaluation policy:

» anonymous double gives the original C expression evaluation; all float  values are pro-
moted to double .

» anonymous indigenous promotes float and double values to indigenous . Using
anonymous indigenous makes best use of the x86's double extended registers.

» anonymous float specifies to use the existing Java expression evaluation policy.

No JVM changes are required to support anonymous double

Multidimensional arrays

The performance of Java code can suffer from a deterioration because of the lack of true
rectangular arrays. For native Java arrays, code generated for column traversal is less efficient
because of pointer chasing. Compiler elimination of run time tests for null pointers and out of
bound indices is harder if arrays can be jagged, or can change shape at run time. More
significantly, disambiguation is hard: even if two 2D arrays are not identical they may still share
a row. This forces compilers to generate superfluous stores because of potential aliasing.
Finally, a clearly defined memory layout with guaranteed locality of data will allow developers
to devise algorithms which can be processed more efficiently.

We propose that standard Java classes be developed which implement multidimensional
rectangular arrays, and that these be included as subpackage in java.lang.Math . These
classes would store multidimensional arrays internally so as to provide access that is as
efficient as if the arrays were stored in a canonical order (e.g., row-major). The classes would
support 0D (scalar), 1D, 2D, 3D, and possibly 4D to 7D arrays with boolean , byte , char ,
short ,int ,long ,float , double , complex entries, and Object . (A different class is
needed for each dimensionality and each element type since Java does not support
templates).

The classes provide the following methods.
1. Get and set to access and update an array entry.
2. Operations that correspond to Fortran 90 array intrinsics. In particular:

» Operations to access the number of dimensions (rank) and the bounds on each dimension
(extends) of an array.

» Operations to reshape and transpose an array.

» Elemental conversion functions (e.g., the equivalent of Fortran REALand AIMAG that con-
vert complex arrays into double arrays).

» Elemental transcendental functions.
* Elemental boolean functions.
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» Array reduction functions (sum, minval, etc.).

» Array construction functions (merge, pack, spread, unpack).
» Array reshape function.

» Array manipulation functions (shift, transpose).

* Array location functions (maxloc, minloc).

» Array scatter-gather and array scan operations (Fortran 95).

Not all Fortran 90 and Fortran 95 operations are needed, up front. One can likely do without
elemental transcendental functions, for example.

» Operations that correspond to array expressions (sum, scaling, etc.)

» Operations that create copies of or references to array sections. These operations allow
one to copy subarrays (defined by subscript triplets or by vector subscripts) or to create ref-
erences to such subarrays, thus supporting in place update of subarrays. (As in Fortran 90,
references to subarrays may be restricted to subarrays described by subscript triplets, so
as to have succinct subarray descriptors.) A possible mechanism is to support the definition
of index sets (or array shapes) and the extraction of a subarray defined by such an index
set.

» Operations to cast Java arrays into rectangular arrays, and vice-versa.

The array classes can be implemented with no changes in Java or JVM. However, It is
essential that the get and set methods be implemented as efficiently as array indexing
operations are in Fortran or in C. We expect that inlining will be used for this purpose, and that
garbage collectors will recognize rectangular arrays. Multidimensional arrays are extremely
common in numerical computing, and hence we expect that efficient multidimensional arrays
classes will be heavily used.

The inclusion of standard array classes in java.lang.Math does not require any change to

the Java language, although the use of explicit method invocation to effect all array operations

will significantly decrease the readability of Java code, and incur the wrath of users. The

introduction of a simple notation for multidimensional arrays which maps to the standard array

classes would make the use of such arrays much more natural. A multi-index notation, like

ali,jl to refer to such array elements would be ideal. This would allow statements like
a.set(i,j,b.get(i,j)+s*c.get(k,l));

to be more naturally expressed as
ali,j] = b[i,j] + s*c[k,l;
The front-end compiler could disambiguate the expression according to the type of a. This

requires changes in the Java language or (with the second alternative) fancier operator
overloading mechanisms.

Additional facilities which would be very helpful, but are not strictly necessary are the following.

» Operator overloading applied to array arithmetic; e.g. A = B+C.

» Facilitating indexing operations by explicitly triplet notation, e.g. a[i:j:k] referring to the
elements of the one-dimensional array a from element i to elementj in steps of k. This
requires new syntax, or fancy overloading of the indexing.

The storage order of multidimensional arrays should be known to the programmer in order to
be able to select the most efficient order of processing. One can follow two approaches can be
followed.

e There is a unique storage order, e.g., row major.

» Arrays can be stored in distinct orders, with a preferred storage order when the array is
instantiated. Possible choices would be (i) row major (C order), for better performance
when native C methods are invoked; (ii) column major (Fortran order), for better perfor-
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mance when native Fortran methods are invoked; (iii) block major, for block oriented, recur-
sive algorithms. A default, row-major layout would be the preferred layout when one is not
specified.

We did not impose a strict requirement that rectangular arrays be stored in contiguous
memory. This for two reasons. (i) This requirement would not have any semantic effect, since
one cannot access a 2D or 3D array as if it was one-dimensional (we do not propose the
equivalent of Fortran 90 assumed-size arrays). The requirement has only performance
implications; e.g., in place reshaping of a 2D array into a 1D array is expected to be very fast,
as no data copying is required. In any case, contiguity is a significant requirement only within
page boundaries: contiguous pages are not necessarily contiguous in real memory. (ii) A strict
requirement that arrays be stored contiguously would require changes in the JVM. Therefore
the weaker requirement that access be as efficient as if the arrays are stored in canonical
order.

Additional Concerns

The following additional problems were addressed by the Working Group.

1. Alternative definition of the java.lang.Math library of transcendental functions.
The current operational definition is imprecise and suboptimal. (The functions are defined
in terms of compatibility with a particular implementation, C's fdlibm source, interpreted
using Java's strict semantics). Alternative definitions are (i) precise rounding -- result is as if
computed in infinite precision arithmetic, next rounded; (ii) within fixed bound of precise
result; or (iii) improved operation definition. The first definition is very desirable if it can be
achieved with acceptable performance overhead. The second weakens bitwise reproduc-
ibility. Note that current Java implementations are not in strict adherence to this aspect of
the Java standard: most JVMs use their native C math library.

As a compromise, we propose that fdlibm be translated to Java and that this particular
implementation be mandated when Java's strict semantics are being enforced. Otherwise,
a looser, implementation-dependent alternative which conform to the requirements of C9X
(as fdlibm does) should be allowed.

2. Access to additional IEEE floating-point features. The high reliability required in certain
sensitive floating-point computations requires the ability to manipulate IEEE floating-point
flags. The Working Group proposes that standard methods to sense, save, clear and raise
all IEEE floating-point flags be included in Java.

Similarly, reliability concerns, as well as the ability to efficiently implement interval arith-
metic, requires the ability to set rounding modes for floating-point operations. It is sufficient
to provide methods to set (and get) the global rounding mode to accomplish these goals.

In order for such features to be used reliably, compilers and JVMs must respect the seman-
tics of the special methods used to implement these operations. In particular, the floating-
point state must be saved and restored across thread context switches, and compiler and
JVM optimizations must be limited.

3. Implementation of additional elementary functions and predicates. The functions and
predicates recommended in the IEEE 754 standards document, as well as others com-
monly available in C, should be provided in java.lang.Math . Four of the ten IEEE 754
recommended functions are already available in the Java API (IsInfinite , isNaN , dou-
bleToLongBits , and longBitsToDouble ). The remaining six, given in the following list,
should also be added.

copySign(x,y) returns x with the sign of y.
scalb(y,n) returnsy * 2°n  for integers n without explicitly computing 2”n .
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nextAfter(x,y) returns the next representable neighbor of x in the direction towards vy.

unordered(x,y) Returns true is one of its arguments is unordered with respect to the
other. This occurs when at least one is a NaN.

fpClass(x) Returns an integer that indicates which of the nine "kinds" of IEEE
floating-point numbers x is.

logb(x) Returns the unbiased exponent of x.

The description of the functions given above is quite terse and ignores some subtleties for
extreme arguments. (The same is true of the IEEE 754 document itself.) For a detailed
discussion of how these functions can be implemented in Java, see [4].

In addition, several elementary functions which are provided in C should also be included in
the Java API, the following, for example.

hypot(x,y) returns sqrt(x"\2 + y"2) without overflow whenever the result does
not overflow.

4. Extensions to support multiple NaN values.  This seems to be already in the making.

Development of Core Classes and Interfaces for
Numerical Computing

The numerics working group has agreed to begin the development of a variety of core
numerical classes and interfaces to support the development of substantial Java applications
in the sciences and engineering. The main purpose of this work is to standardize the
interfaces to common mathematical operations. A reference implementation will be developed
in each case. The purpose of the implementation will be to clearly document the class and its
methods. Although we expect these to be reasonably efficient, we expect that highly tuned
implementations or those relying on native methods will be developed by others. Also, the
simple methods, such as get or set, will not provide reasonable performance unless they are
inlined, because the method invocation overhead will be amortized over very few machine
instructions. Unless otherwise specified, we will initially only define classes based on

double s, since computations with Java float s are less useful in numerical computing.

The classes identified for first consideration are the following. We expect to have the first three
fully developed this year, with the others to follow soon after.

TABLE 1. Complex

Synopsis This implements a complex data type for Java. It includes
methods for complex arithmetic, assignment, as well as the
elementary functions. A strawman proposal has already
been developed and released for comment

Current Working Proposal http://www.vni.com/corner/garage/grande/index.htmi
Contacts John Brophy, Visual Numerics
Marc Snir, IBM
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TABLE 2. Multidimensional Arrays

Synopsis

Current Working Proposal

Contacts

TABLE 3. Linear Algebra
Synopsis

Current Working Proposal

Contacts

This implements one, two and three-dimensional arrays for
Java as described above. A strawman proposal has already
been developed and released for comment.

http://math.nist.gov/javanumerics/#proposals

Jose Moreira, IBM
Marc Snir, IBM

Roldan Pozo, NIST

This implements matrices (in the linear algebraic sense) and
operations on matrices such as the computation of norms,
standard decompositions, the solution of linear systems, and
eigenvalue problems. A strawman proposal has already
been developed and released for comment.

http://math.nist.gov/javanumerics/jama

Cleve Moler, The MathWorks
Roldan Pozo, NIST
Ron Boisvert, NIST

TABLE 4. Basic Linear Algebra Subroutines (BLAS)

Synopsis

Current Working Proposal

Contacts

These implement elementary operations on vectors and
matrices of use to developers of linear algebra software
(rather than to average users). This work will be done in
conjunction with the BLAS Technical Forum.

Some working notes on this effort can be found at http://
math.nist.gov/javanumerics/blas.html
Roldan Pozo, NIST

Steve Hague, NAG
Keith Seymour, University of Tennessee

TABLE 5. Higher Mathematical Functions

Synopsis

Current Working Proposal

Contacts

This includes functions such as the hyperbolics, erf, gamma,
Bessel functions, etc. A strawman proposal has already
been developed and released for comment.

http://www.vni.com/corner/garage/grande/index.html

John Brophy, Visual Numerics
Ron Boisvert, NIST
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TABLE 6. Fourier Transforms

Synopsis This includes not only a general complex transform, but
specialized real, sine and cosine transforms.

Current Working Proposal

Contacts Lennart Johnsson, University of Houston

TABLE 7. Interval Arithmetic

Synopsis This implements an interval real data type for Java. It
includes methods for interval arithmetic, assignment, as well
as elementary functions. An APl is actively under develop-
ment.

Current Working Proposal

Contacts Dmitri Chiriaev, Sun

TABLE 8. Multiprecision Arithmetic

Synopsis This implements a multiprecision real data type for Java. It
includes methods for arithmetic, assignment, as well as ele-
mentary functions.

Current Working Proposal

Contacts Sid Chatterjee, University of North Carolina

The working group will review these proposals and open them up for public comment. It will
also set standards for testing and documentation for numeric classes. It will work with Sun and
others to have such classes widely distributed.

3 Concurrency and Applications Working
Group Report

Preface

By Dennis Gannon and George Thiruvathukal

The primary concern of the Java Grande Forum (hereafter JGF) is to ensure that the Java
language, libraries and virtual machine can become the implementation vehicle of choice for
future scientific and engineering applications. The first step in meeting this goal is to
implement the complex and numerics proposals described in the report of the Numerics
Working Group. Accomplishing this task provides the essential language semantics needed to
write high quality scientific software. However, more will be required of the Java class libraries
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and runtime environment if we wish to capitalize on these language changes. The Java
Grande Forum Applications & Concurrency Working Group (hereafter ACG) focuses on these
issues.

It is possible that many of the needed improvements will be driven by commercial sector
efforts to build server side enterprise applications. Indeed, the requirements of technical
computing overlap with those of large enterprise applications in many ways. For example, both
technical and enterprise computing applications can be very large and they will stress the
memory management of the VM. The demand for very high throughput on network and 1/0
services is similar for both. Many of the features of the Enterprise Bean model will be of great
importance to technical computing.

But there are also areas where technical computing is significantly different from Enterprise
applications. For example, the performance of fine-grained concurrency (or parallelism) is
substantially more critical in technical computing where a single computation may require
10,000 threads that synchronize in frequent, regular patterns. These computations would
need to run on desktops as well as very large, shared memory multiprocessors. In technical
applications, the same data may be accessed again and again, while in enterprise computing
there is a great emphasis on transactions involving different data each time. Consequently,
memory locality optimization may be more important for Grande applications than it is
elsewhere in the Java world. Some technical applications will require the ability to link together
multiple VMs concurrently executing on a dedicated cluster of processors which communicate
through special high performance switches. On such a system, specialized, ultra low latency
versions of the RMI protocol would be necessary. (In such an environment, an interface to
shared memory, via RMI or the VM, would also be desirable.)

It is important to observe that there are problems which can be described as technical
computing today which will become part of the enterprise applications of the future. For
example, image analysis and computer vision are closely tied to application of data mining.
The processing and control of data from arrays of sensors has important applications in
manufacturing and medicine. The large scale simulation of non-linear mathematical systems is
already finding its way into financial and marketing models. It is also the case that many
technical computing applications do impact our day-to-day lives, such as aircraft simulation
(the recent design of the Boeing 777) and weather forecasting. At least in the case of aircraft
design, the industry has a valuation in the billions of dollars, which means it is far from being
merely niche area being of limited interest.

This document is part of a larger report being written by the Java Grande Forum members.
There are two major sections of this report: Numerics and Concurrency/Applications. For all
practical purposes, each of these documents is self-contained and thus can be read
separately.

Organization

This section of the Java Grande Report pertains to Concurrency/Applications. It is organized
as follows:

 critical JDK issues
highest priority issues, mostly related to Remote Method Invocation

* benchmarks
* seamless computing
» other parallel and distributed computing issues

Java Grande Forum 27



Concurrency and Applications Working Group Report

In this report, we present preliminary findings of the working group. We welcome a continuing
discussion of these issues. Please send questions or comments to
javagrandeforum@npac.syr.edu.

Critical JDK Issues

By Michael Philippsen and George Thiruvathukal

Sequential VM performance is of utmost importance to develop Grande applications. Since
there are many groups working on this issue, the ACG simply provides some additional kernel
benchmarks illustrating performance aspects in areas that are particularly important for
Grande applications.

In addition to sequential VM performance, Grande applications require high performance for
parallel and distributed computing. Although some more research is needed on other
paradigms that might be better suited for parallelism in Java, this report will focus on RMI
(Java's remote method invocation mechanism), since there is wide-spread agreement on both
the general usefulness and the deficiencies of RMI.

In general, RMI provides the capability of allowing objects running in different JVMs to
communicate (more specific: invoke methods on each other). Current RMI is specifically
designed for peer-to-peer client/server-applications that communicate over TCP based
networks. For high performance scientific applications, however, some of RMI's design goals
and implementation decisions are inappropriate and cause serious performance limitations.
This is especially troublesome on platforms targeted by the Java Grande community, i.e.,
closely connected environments, e.g. clusters of workstations and Distributed Memory
Processors (DMPs) that are based on user-space interconnects like Myrinet, ParaStation, or
SP2. On these platforms, a remote method invocation may not take longer than a few tens
microseconds.

The choice of a client/server model may prove too limited for many applications in scientific
computing, which usually take advantage of collective communication as found in the
Message Passing Interface (MPI); however, the goal of this document is not to propose such
sweeping changes to RMI. We rather choose to focus on how to make RMI, a client/server
design, suitable for Grande applications with no changes to the core model itself. It is our hope
that a better RMI design and implementation will stimulate community activities to support
better communication models that are well-suited to solving community problems.

Performance of Object Serialization

Requirement. Fast remote method invocations with low latency and high bandwidth are
essential, especially in areas of science and engineering, where fine-grained parallelism is
exploited. Since object serialization and parameter marshaling are the mechanisms used for
passing parameters to remote calls and the associated cost(s) amount to a significant portion
of the cost of remote method invocation, serialization should be as fast as possible.

In an ideal solution, the exact byte representation of an object would be sent over the network
and turned back into an object at the recipient's side without any unnecessary buffering and

copying.
The ACG understands that the JDK's object serialization is used for several purposes, e.g. for

long term storage of persistent objects and for dynamic class loading on remote hosts via http-
servers. It is obvious that some of these special purpose uses require properties that are
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either costly to compute at runtime (latency) or that are verbose in their wire representation
(bandwidth).

However, since some of these features are not used in Grande applications, there is room for
improvement. The following subsections identify particular aspects of the current
implementation of serialization that result in bad performance. The problems are described,
and some solutions are suggested. Where possible, some benchmark results demonstrate the
quantitative effects of the proposed solution.

Experiment. Experiments at Amsterdam [20] indicate that easily up to 30% of the run time of

a remote method invocation are spent in the serialization, most of which can be avoided by
compile time serialization.

Slim Encoding of Type Information

Problem. For every type of object that is serialized, the current implementation prepends a
complete description of the type, i.e., all fields of the type are described verbosely. For a single
serialization connection, every type is marshaled only once. Subsequent objects of the same
type use a reference number to refer to that type description. Type description is not only
useful when objects are stored persistently and when the recipient does not have access to
the byte code representation of the type, but it also guarantees the correct handling of
inheritance.

When RMI uses the serialization for marshaling of method parameters, a new serialization
connection is opened for every single method invocation. (More specifically, the reset method
is called on the serialization stream.) Hence, type information is marshaled over and over
again, thus consuming both latency and bandwidth. The current implementation cannot keep
the connection open, because the serialization would otherwise refrain from re-sending
arguments with modified instance variables. (Note, that the whole structure of objects
reachable from argument objects is serialized; one of the objects deeply burried in that graph
might have changed.)

Approach. For Grande applications it can be assumed that all JVMs that collaborate on a
parallel application use the same file system, i.e., can load all classes from a common
CLASSPATH. Furthermore, it is safe to assume that the life time of an object is within the
boundaries of the overall runtime of the application. Hence, there is no need to completely
encode and decode the type information in the byte stream and to transmit that information
over the network, unless the type information is needed to resolve inheritance issues. Many
scientific applications are pretty straightforward and do not exploit deep class hierarchies, so
that type information often need not be present in the bytestream.

Experiment. At Karlsruhe University, a slim type encoding has been implemented
prototypically [17]. It has improved the performance of serialization significantly by avoiding the
latency of complicated type encoding and decoding mechanisms. Moreover, some bandwidth
can be saved due to the slimmer format. Figure AC-1 shows the runtime of standard
serialization in the first/blue row and the runtime of the improved serialization with slim type
encoding in the second/red row. The effect is much more prominent on the side of the reader
(right two bars, 2) than on the side of the writer (left two bars, 1).
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FIGURE 1. Serialization with Slim Type Encoding
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Solution. The ACG sees three options to avoid costly encoding of type information.

» Some performance improvements would be reached if the object serialization would offer
two types of reset methods. Similar to the curremgtset method, one method would reset the
cached information on both types and objects. The other method would reset only the information on
objects that have already been sent.

» An additionalProtocolVersion is added to the implementation of serialization. Both the
rmiregistry and the RMI user programs must select the new protocol version. For this purpose,
the RMISocketFactory  will need a new methosketProtocolVersion(int) that RMI
user programs must call. In addition, tingiregistry may need a new command line option
(protocol number), although this is not so important, since the registry is not likely to become a bot-
tleneck.

e The more general solution is similar to the socket factory approach where the user can provide the
name of the class that implements his own implementation of object serialization. Both the
rmiregistry and the RMI user programs must select the new protocol version. For that purpose,
the rmiregistry will need a new command line option (class name). SimilRMdSocket-

Factory , anRMlISerializationFactory is added to the API that RMI user programs must
initialize. Experiments conducted at the Indiana University have shown that this approach is indeed
feasible and can lead to speedup.

The ACG favors one of the latter two approaches. The first approach would help a little, but the
complete type information would still be sent, although less frequently. The other approaches
allow more control over the process, thus allowing for more optimizations.

Handling of Floats and Doubles

Problem. Since in scientific applications, floats and arrays of floats are used frequently (the
same holds for doubles), it is absolutely essential, that these data types are packed and
unpacked efficiently. Nevertheless, the current serialization does not handle these primitive
types efficiently.

The conversion of these primitive data types into their equivalent byte representation is (on
most machines) a matter of a type cast. However, in the current implementation, the type cast
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is implemented in the JNI and hence requires various time consuming operations for check
pointing and state recovery upon JNI entry and JNI exit. Moreover, the serialization of float
arrays (and double arrays) currently invokes the above mentioned JNI routine for every single

array element.

Approach.

e The costly JNI-entry/exit can be avoided by teaching the JITs to recognize and inline the
conversion of single floats or doubles into byte arrays. The conversion routine could even
be included into the JVM.

» For arrays, it is much faster to enter the JNI only once for the whole array (or at least for the
section that still fits in the available communication packet).

» If the JNI code must be retained, at a minimum we believe a single JNI call should be made
to convert multiple scalars. See section on Reflection Enhancements.

Experiment. A prototype at Karlsruhe University (see Figure AC-2, [17]) stresses the effect of
this approach.

FIGURE 2. Serialization of Float Arrays

Read objects with float arrays

10000

8000
B
= 6000
g float[] read
g float[]+native read
S 4000
E

0 T T T T

0 200 400 600 800 1000

#floats/array

Java Grande Forum 31



Concurrency and Applications Working Group Report

Write objects with float arrays
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Solution. It is absolutely essential that

» floats and doubles are turned into their corresponding wire representation as efficiently as
possible and that

» arrays of floats and doubles are serialized efficiently.

And since there are easy ways to do it that do not require any change of an API, this should be
done in the next release of the JDK.

Reflection Enhancements

Problem. A byte array is used as communication packet. During serialization, every single
instance variable is copied into/from that byte array individually. Most of this copying is done at
the Java level using reflection. (As mentioned above, only for floats and doubles the JNI is
asked to return the appropriate byte representation.)

Part of the reflection overhead can be relieved by means of special compiler support. The RMI
implementation developed at Indiana University uses a compiler to traverse over all fields of a
serializable object, writing all appropriate fields to the buffer. This compiler adds public
traversal methods to the Java source code. In principle this task could be performed by any
standard Java compiler.

In contrast to zero-copy protocols that are used (or attempted to be used) in other messaging
protocols, where data is copied directly from user data structures to the network interface
board, at least two complete copy operations (one at the sender side and one at the recipient
side) are needed in every pure Java implementation. (Unfortunately, current implementations
do much more copying that this.) Although the ACG regrets it, it seems very unlikely that future
JVM implementations will closely interact with the communication mechanisms to allow for
zero-copy protocols. This seems to be one of the price tags caused by Java's portability that
can only be avoided by compile time serialization, see[20].

Approach. Obviously, there should be as few copy operations as possible. Those that remain
should be performed as fast as possible.

Solution. Better performance can be achieved in two ways
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* The object stream opens up its communication buffer for public access so that the object itself can
use awriteExternal routine to write into that buffer imnmediately, i.e., without reflection.

Since the ACG does not believe that the communication buffer will ever be made public, the
following proposal seems to be more promising.

» The reflection mechanism should be enhanced so that it can copy all instance variables into a buffer
at once with a single method call. For example, diass could be extended to return an object
of a new clas€lassinfo

ClassInfo getClassinfo(Field[] fields);

The object of type ClassIinfo  then provides two routines that do the copying to/from the
communication buffer.

int toByteArray(Object obj, int objectoffset,

byte[] buffer, int bufferoffset);

int fromByteArray(Object obj, int objectoffset,

byte[] buffer, int bufferoffset);

The first routine copies the bytes that represent all the instance variables into the

communication buffer (ideally the network interface board), starting at the given buffer offset.

The first objectoffset bytes are left out. The routine returns the number of bytes that have actually
been copied. Hence, if the communication buffer is too small to hold all bytes, the routine must be
called again, with appropriately modified offsets.

Experiment. A serialization with better buffering and less copying has been implemented at
Karlsruhe University [17]. The prototype is based on an enhanced reflection mechanism, that
can deal with all instance variables of an object at once. (This has been hacked into native
code that is called through the JNI.) The performance numbers are shown in figure AC-3. In
the figures, "std" refers to the standard serialization, "ext" indicates the fact that the object
provides a writeExternal routine, "buf" incorporates more efficient internal buffering, and
"native" uses the hack that is supposed to be replaced by an enhance reflection.
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FIGURE 3. Serialization of Several Instance Variables
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The ACG strongly recommends to allow for more efficient handling of the communication
buffer, since performance of serialization can be increased by a factor of more than 10.

Implementation Improvements

Problem. In addition to the suggestions for improved implementation of object serialization,
object serialization should take about the same time for writing and reading. Otherwise, the
pipeline between sender and receiver shows an imbalance resulting in wasted time.

Experiment. In the current implementation, it is much faster to produce the byte array
representation of an object than it is to recreate the object. The severity of this problem, that is
probably caused by the overhead of object creation in Java, can be seen in Figures AC-1 to
AC-3 above.

34 Java Grande Forum



Concurrency and Applications Working Group Report

Approach. The ACG cannot provide any specific suggestions here.

Performance of RMI

Requirement. Fast remote method invocations with low latency and high bandwidth are
essential, especially in areas of science and engineering, where fine-grained parallelism is
exploited. Apart from object serialization, there are other aspects of RMI that should be
improved.

Experiment. Experiments at Amsterdam [20] indicate that easily up to 30% of the run time of
a remote method invocation is spent in the RMI implementation. The other 30% is spent in the
network. By compiling Java code to native, a latency of a few tens microseconds for a remote
method invocation can be achieved on Myrinet. About the same performance is needed for jit
compiled pure RMI code on custom interconnection hardware.

Improved Connection Management

Problem. The current RMI implementation closes and re-opens connections to other hosts too
frequently. For object serialization streams, that causes the re-transmission of type
information, as has been discussed above. Re-creation of socket connections is a costly
operating system job.

Approach. Whereas RMI's approach seems to be useful in case of unstable wide area
networks, for closely connected JVMs this approach is far too pessimistic. Socket connections
should be left open for the duration of the user program. At least, it might make more sense to
keep a working set and use a least recently used algorithm to kick connections out of the
working set.

Solution. To achieve this, the user should have an option to switch RMI into that mode. Again,

this requires a command line option for the rmiregistry and another method in the
RMISocketFactory  class.

Careful Resource Consumption

Problem. In the current RMI implementation, every single remote object uses a port of its
own. In addition, a thread is started monitoring that port. Every remote method invocation
causes the creation of a new socket and a new thread. In addition, a watch dog thread
monitors the state of a connection. Since object creation is known to be quite slow in current
JVMs and since thread creation is even slower, this approach is not amenable for high
performance comptuing, especially for problems where fine-grained parallelism is used.

Approach. Instead of creating new objects and threads almost on every RMI activity, the
internal layers of RMI should reuse sockets. Moreover, worker threads from a thread pool
should repeatedly service incoming requests. The underlying asumption is that the network is
quite stable and communication failure will cause failure of the whole application.

Problem. Operating systems typically allow one thread to monitor several socket connections by
means of &elect statement. There is currently no way for a Java thread to do the same. Instead, one
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Java thread is needed for every single open socket connection. This is not only a significant overhead

for the JVM's thread scheduler but it prevents efficient implementations of socket based custom
transports layers for RMI.

nee

Solution. The JPACWG strongly recommends that JDK's sockets should provide a select
statement. The RMI transport implementation should then make use of it.

Custom Transport

Requirement. Fast remote method invocations with low latency and high bandwidth are
essential, especially in areas of science and engineering, where fine-grained parallelism is
exploited. It is absolutely essential that non-Ethernet special purpose high-end communication
hardware can be used.

Problem. It is almost impossible to use specialized, high performance network protocols
through RMI. Although SCI, ATM AALS5, Myrinet, ParaStation, and Active Messages are all
used in technical applications, there is no straightforward way for Java applications to make
use of them.

* RMlis tied to TCP. The current RMI implementation is tightly connected to TCP sockets.
Whenever UnicastRemoteObject and UnicastServerRef are used, a TCP transport is
selected implicitly.

The transport cannot be replaced individually, since the implementation does not properly
isolate the transport layer. More specifically, the UnicastRemoteObject source code has

lots of type casts that explicity use TCP sockets and their methods. Hence, to get rid of the
TCP transport, a completely new type of server needs to be implemented by hand as well.

Based on the current implementation and documentation of RMI, this work is comparable
to re-inventing most of RMI's functionality. Although deeply burried in the internal layers of
the RMI implementation, the transport seems to be plugged in very flexibly, there is no way
that flexibility can be exploited without proper documentation.

In [18], experiments are described with an RMI implementation built on top of Nexus.
Because of the close integration of the individual parts in RMI the implementation
described here contains compilers and a runtime system that were built from scratch, which
shows that it is difficult to make each part separately customizable.

» Non-Socket-Services. Most available high speed protocols do not operate on the socket
level, e.g. FM and Nexus. Although RMI offers a socket factory where user defined socket
classes can be plugged in, this is unsufficient because it would require a costly socket pro-
tocol to be implemented on top of the high speed base functionality.

There should be a way to make use of hon-socket protocols in RMI. The following aspects
need to be considered:

1. For sockets (and TCP/IP) most of the necessary protocol initialization is done by the oper-
ating system. This explains that the current implementation does not offer appropriate inter-
faces to plug in specific protocol initialization code as needed by other protocols, especially
by Nexus. It might be possible to use the static class initializer of a abstract transport proto-
col class for that purpose but that has to be determined.

2. Another related problem that is caused by the fact that the current approach is based on
sockets is the lack of an interface to provide addressing information to interact with other
transport protocols. IP and DNS names are not the only meaningful forms. For example, on
the SP2 or a Cray T3E, a combination of IP# and node number. (e.g., quad.mcs.anl.gov/25,
for node 25 at quad.mcs.anl.gov) is used.
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e User-Level-Services. Some high speed protocols offer socket like functionality in the user
level, i.e., the operating system is left out for performance reasons.

Since these protocols offer socket functionality, it seems to be easy to wrap them in a Java
socket class that is then plugged into the RMI socket factory. Unfortunately, that approach
does not work properly.

The problem is that Socketimpl  returns file descriptors that are later on used by the JVM's

thread scheduler. It issues calls on read/write/select methods which are only useful on the level of
the operating system. For example, a select might be executed that waits for the arrival of a commu-
nication packet in the kernel although that packet has already arrived at the user level.

Hack around. The only reasonable way to go seems to be to load a dynamic library that
replaces the standard operating system calls with those that can handle the high end com-
munication hardware. This replacement is done unnoticed by the JVM. Such an approach
has been successfully tested at the University of Karlsruhe on ParaStation hardware, it
required an undesirable source code modification of the rmiregistry implementation (to
load the dynamic library beforeain ).

The JPACWG strongly recommends that RMI will be extended to allow for high-speed
communication hardware to be used. Since the source code of the lower layers of the RMI
implementation are not public, no specific suggestions can be made in this report. The minimal
requirement is that the RMI group provides documentation on how to plug in alternative
transport implementations.

Other Suggestions

Source Code Availability

Problem. The RMI implementation needs class files from several packages. A lot of the code
is contained in sun.rmi.* . For this code, the Java source is not released. In particular, there is no
source code for the various versions of JDK 1.2.

There are people who are willing to work on that code to improve it's runtime efficiency.
Because of the missing source code (and the fact that de-compilers do not recreate the
comments) the missing source code these people are prevented from doing work the ACG is
interested in.

Solution. The ACG suggests that Sun will include the source code of current RMI

implementations either in the standard JDK distribution or will create a process so that
interested research groups can get access to it before a release gets final.

Class Compatibility

Problem. The class compatibility test is too stringent. In the case where one is not using NFS
(more common than the case where one is using it), it appears one can take the same code
(unmodified), compile it with the same version of JDK (resulting in the same class files), and
cause an exception, because the classes are deemed incompatible.

Solution. There may be no easy fix for this. Compatibility should probably be defined in terms
of the version of Java being used as it is now; however, two classes with the same class and
instance variables should be compatible, provided they are compiled with the same Java
compiler.
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Experiment. None known. Related to this problem is section 4.3 for which an experimental
prototype has been constructed.

Dynamic Class Loading from Remote Hosts

Problem. The RMI implementation includes a network class loader (for which very little
documentation exists on its purpose or usage). The basic idea and purpose of a network class
loader is to load classes from the network instead of a local file system. The essence of how to
build a network class loader is shown in the Class Libraries Reference by Lee and Chan
(accomplished by extending the ClassLoader class in Java).

The notion of loading classes from the network is already known to be useful in the case of
applets, where the code lives on the server in a code directory (often called the code "base")
and can be downloaded to a web browser and loaded, subject to being verified by the class
verifier. This is well known not to be without problems, because different browsers may not
support the same Java (see Class Compatibility above); however, in principle it makes the life
of a client easy.

In the case where a browser is not being used, it is still useful to consider the notion of a
network class loader. In scientific and technical computing involving a large number of nodes
(as found in massively parallel machines and clusters), the use of a network class loader can
facilitate the deployment of code on a large number of nodes where there is not a shared file
system (e.g., NFS or AFS). As it currently stands, when file systems are not shared, the
programmer is forced to copy the class files to all nodes in a network where file systems are
not shared. This can be quite cumbersome, although systems such as Unix provide remote
commands to make the task easier. For Windows users, there is presently inadequate support
for remote copying of files and remote execution, meaning that Windows file sharing must be
used (still leaving one without adequate remote execution facilities). When heterogeneous
systems are involved, the problem of deployment is even more complex, where everyone
involved needs to know system administration.

Experiment. Thiruvathukal, Thomas, and Korczynski of Loyola University and jhpc.org have
shown how to extend the class loader for a version of RMI called RRMI [19], where the client
can start very thin and most, if not all, classes are loaded from the network. The Globus
project has shown the importance of having facilities for remote execution and job control.

Benchmarks

By Martin Westhead

The purpose of developing a suite of benchmark tests is to provide ways of measuring and
comparing alternative Java execution environments. In constructing this benchmark the aim is
to provide a series of tests which challenge the execution environments in ways which are
important to Grande applications. The benchmark has been divided into three sections:

* Low level operations - measuring the performance of low level operations such as serializa-
tion, RMI, garbage collection.

» Kernels - short codes which carry out specific operations frequently used in grande applica-
tions.

» Large scale applications - real grande codes, less useful for comparative performance stud-
ies but worthwhile to demonstrate the potential of Java for tackling real problems.
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ACG feels that it is important wherever possible that the benchmarks should be open source to
allow users to understand exactly what the benchmark is testing.

EPCC in the University of Edinburgh is coordinating this effort, at time of writing, and are in the
process of collecting existing benchmark tests to form a coherent suite. The aim of this
collation is to have a package that can be downloaded and run as a whole, with consistent
output format and a consistent definition of terms. This suite can then be added to over time as
more and better tests are developed. The work being done at Edinburgh is ongoing and details
can be found at:

http://www.epcc.ed.ac.uk/research/javagrande/

Comments suggestions and contributions from the forum and the community at large are
invited and any contributions would be warmly welcomed (please email: epcc-
javagrande@epcc.ed.ac.uk).

The following sections elaborate on the proposed structure for the benchmark including
examples of the tests that could be included. In most cases these tests are either available or
have been promised.

It is anticipated that up to three different sizes of dataset should be available for section 2 (and
maybe even two for section 3).

The user also should be able to run:

» any benchmark individually, no matter what section

» all of section 1

» all of section 2 with a specific application size

» all of section 3 with a specific application size

It seems unlikely that users would wish to run the entire benchmark suite in one go, but this
facility could be added for completeness.

For timed benchmarks, the benchmarks will report a raw time (in seconds) and a performance
measure in X/second, where the operation X is specific to the given benchmark (e.g. flops,
method calls, iterations, etc.). Non-timing benchmarks will typically report a single figure (e.g.
maximum size of object), but units should be consistent (all memory sizes in bytes, for
example).

Low Level Operations

* loop overhead

e access variables and arrays

* method invocation

» execution of arithmetic operations

e casting

» object and array creation/instantiation

» exception handling

 memory management and garbage collection (Piyush Mehrorta)
» thread creating / switching

» threads - synchronization, scalability (Dennis Gannon)

* 1/O scalability (Dan Reed?)

* RMl/serialization (Michael Philippsen/Bernhard Haumacher)
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Kernels

« FFT

* Numerical integration

* SOR

* LU Factorisation

* Sparse Matrix multiply

» Video/audio (de)compression
» Searching

» Sorting(George Thiruvathukal)

Large Scale Applications

» Parallel Geophysics Operations in Java(University of Karlsruhe)
» Monte Carlo simulation (NCSA/EPCC)

» Discrete Event Simulation (INRIA/JEPCC)

» Image Analysis, Radio Astronomy (NCSA)

» Gravitational N-Body simulations (Indiana)

e Computational Fluid Dynamics (Syracuse)

Seamless Computing

GKT: Awaiting a summary from Gregor von Laszewski or Geoffrey C. Fox

For the average scientist and engineer one of the greatest difficulties in doing large scale
computation is the constant struggle requires to port applications to a new environment. This
involves the following tasks:

» Dealing with authentication and authorization at a remote site.

» Finding the required libraries to be able to link the application.

» Understanding the batch scheduler.

* Moving files from one site to the new one and then moving results back.

» Comprehending the local parallel file system.

» Cataloging and recording application changes and experimental results.

A seamless technical computing environment would allow a Java based programming
environment that could provide a uniform interface to all these remote resources. Java based
agents can be installed at each site which cooperate with the user and guide him through the

resource discovery and authorization process and provide an integrated development
environment for using these remote resources.

It is possible that such a system can be built on top of some of the existing and emerging
meta-computing infrastructures. Many of these provide the tool kit and components to build
on, and a few have partial solutions to the problems listed above.

Related projects are:

* Unicore

* Globus

* Legion
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Condor
Sweb
Websubmit
Abatros

With a collective effort of the ACG it should be possible to do much more. The ACG envisions
an interface that is widely supported by the hardware vendors, much like the JDBC interface
for database access.

Such an interface should deal with the following issues:

Authentication

Resource discovery (metadata)

Resource allocation (Grande cache)
Accounting

Resource and job Scheduling

Job monitoring

Code/Data-filesystem

Connected to resource discovery service (JINI)

To define such an interface, a close examination of the various technologies is in order.

Other Parallel Issues

The role parallel computation plays in high performance technical computing cannot be under
estimated. There are several ways to building a Java parallel computing environment. The
following approaches are controversial and require community research.

Grande parallelism design patterns. One approach is to take the experience of the last ten
years of parallel programming and build a set of Grande parallelism design patterns that
can be cast as a set of interfaces and base classes that simplify the task of writing parallel
Grande applications. This API can then be hosted on either a set of concurrently executing
JVMs or in an environment where large numbers of native threads are well supported.
Such an APl may be as simple as defining a truly object oriented version of MPI (see
below), or it may define a new category of distributed object aggregates and collective
operations.

Grande Beans. A second approach that may be more consistent with current Java direc-
tions would be to design a Grande Bean specification that extends the basic Bean model to
one appropriate for technical applications. This would follow what has been done with
Enterprise Beans for transaction oriented business applications. The Enterprise Beans
model has allowed CORBA based resources to be woven into a unified component model.
Grande beans can build upon this to incorporate high end, parallel computational modules
and visualization and VR tools into a grid of resources controlled by the JVM on the users
desktop system.

MPI. The ACG agrees that MPI is necessary in the Java environment. However, it is contro-
versial how to make MPI available. The two leading alternatives appear to be pure bindings
(which presents the challenge of interface generation, feasibility and necessity of doing all

of MPI, and issues of heterogeneous language interaction) and doing an extended version
of MPI that is truly object oriented (MPI Software Technologies and JHPC Research Group
are doing JMPI and ActiveJava, respectively).

The ACG currently considers to release a Request for Proposals for an MPI in Java.
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Supplemental Material

» Object model: value semantic in procedure calls, remote reference management, problems
for large objects [API]

e Threads issues?

Supplemental Material

GKT: Awaiting Jini/JavaSpaces summary from Mary Pietrowicz, NCSA
GKT: Awaiting CORBA summary from George K. Thiruvathukal and Dennis Gannon

These sections will be added after the review process is completed. | will coordinate a quick
and independent review.
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