Bandwidth, Latency, and other Problems of RMI and Serialization

Michael Philippsen and Bernhard Haumacher
University of Karlsruhe, Germany
phlipp@ira.uka.de and hauma@ira.uka.de

Ideally, computational scientists would love to see the
write-once-run-anywhere principle to be applicable to
parallel and distributed Java programs as well. Un-
fortunately, it is not.

Although Java’s threads are appropriate for pro-
gramming SMPs, Java’s support of DMPs, e.g. clus-
ters of workstations, is insufficient. In a perfect world
there would be a single JVM that transparently hides
the DMP’s distributed nature and provides the illu-
sion of a single address space.

But since there is no such JVM — except for a quite
incomplete research prototype [9] and too much Linda-
inspired JavaSpaces [4] — existing features of Java have
to be used instead. Programmers feel that explicit
socket communication is similar to writing assembler
code today: It might result in better performance but
it is much too error-prone and time consuming to be
done. Hence, Java’s remote method invocation (RMTI)
which internally uses object serialization is the only
option. However, both object serialization and RMI
suffer from severe performance problems that hinder
their adoption in scientific applications on DMPs and
workstation clusters.

This section is the result of a careful analysis of
Java’s object serialization and RMI (JDK version
1.2beta3) that has recently been undertaken at the
University of Karlsruhe, Germany. More information
and some benchmark codes can be found at [7].

The section is structured as follows. Since object
serialization is used inside of RMI, we first have an
isolated look at it. The view is then broadened to
RMI. Repeatedly, the text is organized along a sim-
ple pattern: We identify certain design decisions that
have guided the development of serialization and RMI,
we show that these decisions are grounded on assump-
tions that in general do not apply to high performance
computing in Java, and suggest modifications. Some-
times, benchmark results are provided to illustrate the
significance of the individual problems discussed. The
remaining text focuses on those performance problems
that are most likely to seriously affect scientific pro-
gramming but are probably acceptable by commercial
applications.

1 Performance problems of Object Se-
rialization

Object serialization has mainly been designed to im-
plement persistent objects and to send and receive ob-
jects in typical client-server applications.

Unnecessary Type Information. Persistent ob-
jects that have been stored to disk must be readable
even if the ByteCode that was originally used to in-
stantiate the object is no longer available. For exam-
ple, a new version of the class might have a different
layout of its instance variables. To cope with these
situations, the complete type description is included
in the stream of bytes that represents the state of an
object being serialized.

For parallel Java programs on clusters of worksta-
tions and DMPs the underlying assumption is wrong.
In contrast to commercial applications, object persis-
tence is not terribly relevant for computational sci-
ence. The life time of an object is within the bound-
aries of the overall runtime of the job. When objects
are being communicated it is safe to assume, that all
nodes have access to the same ByteCode, that might
for example be provided by a common file system like
NFS. Hence, there is no need to completely encode
and decode the type information in the byte stream
and to transmit that information over the network.

To alleviate this problem, a minimal encoding of
type information must be defined. Although it is sig-
nificantly shorter to textually send the name of the
class (including package prefix), an even shorter rep-
resentation seems possible.

At Karlsruhe, we have prototypically implemented
the textual encoding. It has improved the performance
of serialization significantly.

Figure 1 has four bars. The first two bars give the
time needed for the serialization’s write operation for
an object with two ints, two floats and two null point-
ers. The time is in ps per object on a 167 Mhz Sun
Ultra Sparc. The last two columns show the read time.
The light grey bases of the bars correspond to the time

E type information
Oraw data
1400+
1200+
1000
5
S 800
o
g 600
g
400
200+
0,
Q () 'g ()
= o o
s >0 o 2T
5 ° g 5 o8
s EF °ET
%] %]

Figure 1: Serialization with slim Type Encoding

needed for the raw data information, the dark parts of
the bars indicate the crucial time taken by the type in-
formation. It can be seen that it is significantly more
expensive to read the type information than to write
it. The second and fourth column reflect measure-
ments with an modified serialization that uses a type
encoding by class name. In addition, for the read op-
eration, type descriptor objects have been cached in-
stead of being recreated for every single object.

Therefore, we suggest that there will be another
protocol version for the serialization to be used by
RMI in cluster settings. This extension is completely
under the hood and does not affect any API.

Currently the only way to experiment with specif-
ically tuned implementations of object serialization is
to make sure that the new implementation precedes
the default one in the CLASSPATH variable. In com-
bination with RMI, this approach faces several obsta-
cles. Since it is unclear/undocumented, which features
of the object serialization are actually used by RMI, it
requires quite an amount of re-engineering to develop
a serialization that works in RMI. Moreover, there is
no straightforward way to force the registry to use the
modified CLASSPATH.!

We therefore suggest that RMI is designed and doc-
umented so that it can easily work with specific im-
plementations of object serialization.

It is undocumented that the main routine of the class
sun.rmi.registry.RegistryImpl is to be invoked in a JVM.

Implementation Deficiencies. If object serializa-
tion is used to write persistent state information
to disk or to send that state over a slow net-
work connection, the overall performance is dom-
inated by the I/O-bottleneck. Hence, the im-
plementation of java.io.ObjectInputStream and
java.io.0ObjectOutputStream is not thoroughly op-
timized.

When high speed communication networks are
used, the time spent in generating the byte stream
representation for a given object (or the other way
round) becomes an issue with respect to bandwidth
and latency.

At Karlsruhe, we identified the following implemen-
tation deficiencies in JDK 1.2beta3.

e It must be avoided that the byte representation is
copied from buffer to buffer. As in other commu-
nication protocols, a zero-copy implementation
must be the ultimate goal.

e The handling of floats and doubles must be im-
proved. The conversion of these primitive data
types into their equivalent byte representation is
(on most machines) a matter of a type cast. How-
ever, in the current implementation, the type cast
is implemented in the JNT and hence requires vari-
ous time-consuming operations for check-pointing
and state recovery.

e Finally, the serialization of float arrays (and dou-
ble arrays) currently invokes the above mentioned
JNTI routine for every single array element. We
found that it is much faster to enter the JNI only
once for the whole array (or at least for the sec-
tion that still fits in the available buffer size) and
return a byte array.

e As other benchmarks have shown, e.g. [1] object
creation takes too long. Since object output and
object input should be overlapped to reduce la-
tency, object input is not supposed to take much
longer than object output.

Here are the results of our performance measurements
that demonstrate that a drop-in replacement of seri-
alization can improve performance significantly.

Figure 2 demonstrates two ways to improve the se-
rialization. First of all, one can use or generate ex-
plicit writeExternal routines. If these routines are
coupled with improved buffering, performance can be
improved significantly. In addition, it is visible that
it is significantly more expensive to write float values
into the stream than to write ints. This is caused by
the overhead of the JNI entries.

600 6000
500 2 5000
—e—original stream, write,
standard serialization — -
400 4000 —e—original stream, write,
o - ° standard serialization
Q —e—externalization plus Q
3 300 i 3 3000
° better buffering ° —e— buffered stream, write,
q / o q native handling of float
200 ——externalization plus 2000 arrays
better buffering, int
/ instead of float
100 - = 1000 r‘{:—’_‘—/_.
0 T T T 0 - T T T T
0 20 40 60 80 0 100 200 300 400 500
float instance variables number of floats in array
600 4000
500 » —e—original stream, read, 3500 /"
o standard serialization 3000
4 —e— origil
- - original stream, read,
‘i / +extemal|zat|qn plus 3] 2500 standard serialization
8 300 better buffering 8
2 5 2000
4 / —+— externalization plus > / —*—buffered stream, read,
> - -
200 better buffering, int 24 1500 gztel‘ves handling of float
100 / instead of float 1000 Y
P =y
I
o ‘ 500 S
0 20 40 60 80 0 T T T T
float instance variables 0 100 200 300 400 500
number of floats in array

Figure 2: Serialization of floats

In case the object that is to be serialized contains an
array of floats, the performance penalty for repeated
JNI entries is outrageous, see Figure 3. Our measure-
ments show that by doing the conversion once for the
whole array, both write and read performance can be
increased.

2 Performance problems or RMI

RMI has been designed for client-server applications
over instable and slow networks.

High performance parallel programs are different
since they are symmetric and are executed on systems
that have fast and reliable networks. If there will be
no such thing as a JVM that hides the architectural
details of a DMP (ultimate goal), a symmetric and
transparent RMI is on the wish-list (second best). In
a symmetric and transparent RMI, there would be no
need for a registry, moreover all network exceptions
would be reduced to RuntimeException so that one
must not distort otherwise clear programs with excep-
tion handling. The JavaParty system [6, 3] proves that
this approach is feasible.

Since even this second best solution is unlikely to
be implemented in the standard JDK, it is absolutely
essential, that at least the existing RMI is tuned for

Figure 3: Serialization of float arrays

performance. Recent work [2, 8] demonstrates that
it is possible to implement RMI-like functionality in
Java with better performance. But instead of rely-
ing on non-standard packages it is more reasonable to
improve RMIL.

Connection Management. In typical client-server
applications, a server does not know whether a client
will continue to use the object it serves. Hence, RMI
monitors existing socket connections and closes them
after they have not been used for a while. The con-
nections are re-opened on demand.

Although this approach seems reasonable for client-
server-situations it is too costly for high performance
use of RMI, where the participating nodes are known
beforehand.

e RMI implements a caching mechanism to check
whether there already exists a connection to a
particular host. If one is found, it is used. Oth-
erwise, a new connection is opened. Every sin-
gle network access travels through this hash-table
lookup.

e Moreover, to monitor existing connections and to
re-use ones that haven’t been used for a while,

RMI creates special monitor threads. Thread cre-
ation is costly.

e Finally, for every remote method invocation, RMI
re-transmits class type information, although
standard serialization has a mechanism to abbre-
viate the type information to hash values in case
of existing connections. See the discussion of Fig-
ure 1 in section 1 to understand the severness of
that problem.

We therefore suggest that RMI is extended to allow
the user to register a set of participating JVMs (or
nodes) upon initialization. These connections will be
kept open for the duration of the program. Hence,
repeated hash-table lookups, costly monitor threads,
and repetition of type information can be avoided.

Implementation Deficiencies. It is difficult to un-
derstand the bad performance of RMI, when most of
the necessary source code is not available. Therefore,
the performance problems we have identified must be
a small subset of the whole picture.

Similar to object serialization, RMI has been de-
signed with the assumption that network I/0 is slow
and the central bottleneck. Since this is not necessar-
ily true in the presence of high-performance networks,
certain areas of RMI must be improved.

e RMI creates too many threads. For incom-
ing remote method invocations there are listener
threads. A new listener takes over if the fist serves
an incoming call. Watchdog threads monitor the
state of connections. Additional threads are used
for unreferenced objects and for the distributed
garbage collection.

Although the run method of class Thread can
only be executed once, a pool of worker threads
can be implemented that execute certain jobs in
endless loops. Performance measurements have
shown that recycling of threads is faster than
recreation.

e Java’s object serialization is capable of handling
“replacement objects”. Instead of itself being rep-
resented in a stream of bytes, an object can tell
the serialization process that a different object
has to be serialized instead. With object replace-
ment switched on, it is more difficult for the se-
rialization to encode graphs of objects. Cycles in
the original graph may or may not be present in a
graph that has some replacement objects. Hence,
an additional layer of lookup is required to avoid

endless loops.2 Replacement objects hence signif-
icantly slow down object serialization in general.

Unfortunately, RMI uses replacement objects. In-
stead of transmitting a stub object, this object
calls for the serialization of a replacement object
that implements a system-wide remote reference.
Although this is a neat use of “replacement ob-
jects”, it is overkill.

There are two options to improve performance.
First, RMI should refrain from using replacement
objects and instead encode the remote reference
directly, e.g. by writing the fields into the stream.
Second, object serialization should be extended to
offer a slim replacement facility for objects that
can be guaranteed not to participate in cycles.
This would avoid secondary lookup.

Custom Transport. RMI is designed to be used
with standard TCP/IP sockets. In Java 1.1.x there
are two general approaches to make RMI use a dif-
ferent network. The first approach uses a different
native socket implementation without Java noticing
it. This requires two steps. First, a native implemen-
tation of the underlying sockets must be created and
loaded as a dynamic library at the start of the pro-
gram. Second, the RMI registry must be patched to
use that special purpose library as well. The other al-
ternative is to create a subclass of java.lang.socket
and simulate socket functionality based for example
on a UDP-transport. However, as Krishnaswamy et
al. show in [5] this requires source code modifications.

This clearly demonstrates a design flaw in RMI.
RMI needs to be able to work smoothly with custom
socket implementations, in particular, neither native
code and patches should be required. We suggest that
RMI supports a pluggable serialization that can be
selected at runtime.

In Java 1.2beta3 the situation seems to be differ-
ent, although we did not have a chance to test that.
The new socket library offers a way to provide a cus-
tom implementation of socket, that no longer needs
to be a subclass of java.lang.socket. By means of
a socket factory, this specific socket class is supposed
to be usable in RMI. However, it needs to be studied
how well that concept works in practice.

Even with the newly introduced way to use cus-
tom socket implementations, RMI is still tied to sock-
ets. Many existing high speed communication net-
works however, offer much more efficient packet based

2Whereas the primary hash-table lookup is implemented
efficiently, the current lookup for replacement objects needs
improvement.

protocols. Some even offer broadcast, pre-fetch and
post-store mechanisms. Currently, there is no way to
make RMI use these features. Instead, it is required
that a conforming socket layer is implemented on top
of the low lever network features. Since RMI’s proto-
col itself is packet-based, this additional socket layer
is too costly.

We suggest that RMI is modified so that it can
make use of packet based networks and of other net-
work features. At least it should be documented how
that might be achieved in the current implementation.

3 General Suggestions

Source Code Availability. Several of the sugges-
tions made above are incomplete and need to be
thought about in more detail. This can only be done
in cooperation with JavaSoft’s RMI architecture group
since a significant part of the RMI source code is not
available. We therefore suggest that the remaining
source code of RMI is provided — a step that will in-
crease the number of people working on an improve-
ment of RMI.

Synchronization Problems. RMI’s implementa-
tion of synchronized remote methods is useless. There
are two problems. First, concurrent threads that in-
voke a synchronized remote method are sequentialized
at the stub level, i.e., on the client side. Second and
more important, thread ids change whenever a call
leaves a JVM. Whereas Java does allow a thread to
lock a particular lock repeatedly, for example by call-
ing another synchronized method of an object from
within a method that is already synchronized, there
are scenarios in RMI, where this does no longer work.
Consider for example a situation, where from within
a synchronized method, a remote method is invoked,
that in turn calls back another synchronized method
of the first object. RMI guarantees a deadlock in this
case, whereas the same code would work smoothly in
standard Java. The problem is that a new thread will
execute the call-back. And since this new thread does
not have the lock, it cannot acquire it.

We suggest that the notion of thread id is intro-
duced in RMI. For an incoming call, the service thread
must be able to indicate in a transparent way it’s orig-
inal id to the locking mechanism.

References

[1] Fabian Breg, Shridhar Diwan, Juan Villacis,
Jayashree Balasubramanian, Esra Akman, and

[7]

8]

Dennis Gannon. Java RMI performance and
object model interoperability: Experiments with
Java/HPC++. Concurrency: Practice and Expe-
rience, 10(to appear), 1998.

S. Hirano. Horb — the magic carpet for network
computing. http://ring.etl.go.jp/openlab/horb/,
1996.

JavaParty. wwwipd.ira.uka.de/JavaParty.

JavaSpaces. Sun Microsystems, Mountain View,
1997. java.sun.com/products/javaspaces.

V. Krishnaswamy, D. Walther, S. Bhola, E. Bom-
maiah, G. Riley, B. Topol, and M. Ahamad. Ef-
ficient implementations of Java Remote Method
Invocation (RMI). In Proc. of the 4th USENIX
Conf. on Object-Oriented Technologies and Sys-
tems (COOTS’98), 1998.

M. Philippsen and M. Zenger. JavaParty: Trans-
parent remote objects in Java. Concurrency: Prac-
tice and Experience, 9(11):1225-1242, November
1997.

JavaParty Team. Benchmarking RMI and serial-
ization. wwwipd.ira.uka.de/JavaParty/rmibench.

G.K. Thiruvathukal, L.S. Thomas, and A.T. Ko-
rczynski. Reflective remote method invocation.
Concurrency: Practice and Ezperience, 10(to ap-
pear), 1998.

W. Yu and A. Cox. Java/DSM: A platform for
heterogeneous computing. Concurrency: Practice
and Experience, 9(11), November 1997.

