Java Performance
and Compiler
Optimizations

Ninja project: M Gupta, S Midkiff,
J Moreira

Marc Snir

Thomas J. Watson Research
Center

PO Box 218
Yorktown Heights, NY 10598

Simple matrix-multiply loop

for (int 1I=0; I<m; 1++)
for (int |=0; |<p; |++)
for (int k=0; k<n; k++)
Cli]b] += ADJk]*BIK]D]

How Is Java doing?

MATMUL results on RS/6000 590

300

NEVVE]
B Fortran
ESSL

2.2

64x64 500x500

e Both Java and Fortran are compiled code; most of the difference is in
compiler optimization

Fortran optimizations for Java?

e Not done because
— Has not been a priority of Java compiler developers
WEMREER)
—Java language design prevents it
(see Java Grande proposals)
— New compiler technigues are needed

- blocking, for better memory behavior,
— multiple loop unrolling,

—loop interchange,

— scalar replacement.

Safe regions through versioning

If ((Im <= Crows) && (p <= Ccols) &&
(m <= Arows) && (n <= Acols) &&

(n <= Brows)

for (int I=0; I<m; I++)

for (int]=0; |<
for (int k=0;
Cll[j] += A

else

for (int I=0; I<m; I++)

for (int]=0; |<
for (int k=0;

&& (p <= Bcols))

_ safe region
0; J++) A index checks disabled
K<N; k++) ops can be reordered

IK[*BIK]DI;

unsafe region

_ Index checks enablec
0; |++)
K<n; k++)

Clil[j] += AlIIK]*BIK][j];
(©) Copyright 19 Marc Sir 1232 o

500x500 MATMUL Optimized

plain no checks blocking unrolling scalar

Benefits of fused multiply-add

e A fused multiply-add (fma) operation computes a*b+c with a
single rounding

e Java cannot use fma today
— changes outcome (even if more precise)

e fma will be legal in Java if Java Grande proposals are adopted
— also legal according to alternative proposals being discussed

Impact of allowing fma in Java

MATMUL on RS/6000 590

Java, nofma Java + fma Fortran

Other benchmarks

e MICROSTRIP: electrostatic potential computation (1000x1000
grid).

e TOMCATV: mesh generation, solver (513x513 mesh).

e BSOM: data mining neural-network training (16 nodes).

e CHOLESKY : Cholesky factorization (1000x1000 dense matrix).

e SHALLOW : shallow water simulation (256x256 grid).

Results on RS/6000 590

Java, plain

B Java, optimized
B Java+fma
|| | || B Fortran
O | L L L L ||

MICROSTRIP BSOM SHALLOW
TOMCATV CHOLESKY

Array layouts

AO][0] | A[OII1] | A[Ol2] | AlOl3]
ALLJ[O] | Al1][1]
A2J[0] | A2I1] | Al212] | Al2l3]

ABJIO] | ARl | A2

Fortran, C-

Benefits of rectangular arrays

e Location of element A(i,j) can be computed with index
arithmetic. Access to AJi][j] requires pointer chasing.

e Easier to disambiguate two rectangular arrays A and B than
two rows AJi] and BJj].

e Out of bound index and null pointer checks can be eliminated
more easily

e Privatization for thread safety is trivial for rectangular arrays,
but requires copying vector of pointers for array of arrays.

e The array package:

— Collection of classes that implement arithmetic operations on
multidimensional rectangular arrays.

Data mining code on one F50 node

140

119.6

120

100

80

G10)

40

20

0
plain Java array package Fortran

e Sparse matrix operations.

e Computations performed through array arithmetic and BLAS class for
multidimensional arrays.

Parallel data mining

3.5

1 2
Number of threads

e Explicit: code uses Java threads
e Implicit: parallelism inside array package

344
B 292
247 280 .
186 202 . L
i i
3 4

B Implicit
B Explicit

Complex numbers & semantic inlining

e Example: dot product

Complex]] a,b;
Complex s;
for (int I=0; I<n; i++)
s.assign(s.plus(a[i].times(b[i])));

e Semantic inlining:
— Compiler recognizes ops on standard classes as primitives.

— Compiler generates code that implements semantics of classes,
disregards bytecodes for methods.

— Mechanism to extend Java and the JVM "under the covers". No
need to add bytecodes.

— Can implement "value objects" without any language or JVM
changes.

Results on RS/6000 590

150

0

MICROSTRIP
MATMUL FFT

M plain Java

M inlining of complex method
B complex arrays, with inlini
B Fortran

n

