
 Marc Snir

Thomas J. Watson Research
Center
PO Box 218
Yorktown Heights, NY 10598

Java Performance
and Compiler
Optimizations

Ninja project: M Gupta, S Midkiff,
J Moreira

Nov 98

(C) Copyright 1997 IBM Corp. Marc Snir

Simple matrix-multiply loop

for (int i=0; i<m; i++)
 for (int j=0; j<p; j++)
 for (int k=0; k<n; k++)
 C[i][j] += A[i][k]*B[k][j];

How is Java doing?

(C) Copyright 1997 IBM Corp. Marc Snir

MATMUL results on RS/6000 590

64x64 500x500
0

50

100

150

200

250

300

M
flo

ps Java
Fortran
ESSL

2.2

205.4

253.2

1.6

193.3

248.3

Both Java and Fortran are compiled code; most of the difference is in
compiler optimization

(C) Copyright 1997 IBM Corp. Marc Snir

Fortran optimizations for Java?

Not done because
Has not been a priority of Java compiler developers
(main reason!)
Java language design prevents it
(see Java Grande proposals)
New compiler techniques are needed
The possibility of exceptions in Java prevent applying
Fortran-style optimizations:
blocking, for better memory behavior,
multiple loop unrolling,
loop interchange,
scalar replacement.
Safe regions allow aggressive optimization within Java semantics.

(C) Copyright 1997 IBM Corp. Marc Snir

Safe regions through versioning

if ((m <= Crows) && (p <= Ccols) &&
 (m <= Arows) && (n <= Acols) &&
 (n <= Brows) && (p <= Bcols))
 for (int i=0; i<m; i++)
 for (int j=0; j<p; j++)
 for (int k=0; k<n; k++)
 C[i][j] += A[i][k]*B[k][j];
else
 for (int i=0; i<m; i++)
 for (int j=0; j<p; j++)
 for (int k=0; k<n; k++)
 C[i][j] += A[i][k]*B[k][j];

safe region
index checks disabled
ops can be reordered

unsafe region
index checks enabled

(C) Copyright 1997 IBM Corp. Marc Snir

500x500 MATMUL Optimized

plain no checks blocking unrolling scalar
0

20

40

60

80

100

120

M
flo

ps

1.6 5.6

30.4

51.6

100.9

(C) Copyright 1997 IBM Corp. Marc Snir

Benefits of fused multiply-add

A fused multiply-add (fma) operation computes a*b+c with a
single rounding
Java cannot use fma today

changes outcome (even if more precise)
In the POWER/PowerPC families, this cuts the peak performance
in half!

fma will be legal in Java if Java Grande proposals are adopted
also legal according to alternative proposals being discussed

(C) Copyright 1997 IBM Corp. Marc Snir

Impact of allowing fma in Java

Java, no fma Java + fma Fortran ESSL
0

50

100

150

200

250

300

M
flo

ps

MATMUL on RS/6000 590

100.9

209.8 219.1
248.3

(C) Copyright 1997 IBM Corp. Marc Snir

Other benchmarks

MICROSTRIP: electrostatic potential computation (1000x1000
grid).
TOMCATV: mesh generation, solver (513x513 mesh).
BSOM: data mining neural-network training (16 nodes).
CHOLESKY: Cholesky factorization (1000x1000 dense matrix).
SHALLOW : shallow water simulation (256x256 grid).

(C) Copyright 1997 IBM Corp. Marc Snir

Results on RS/6000 590

MICROSTRIP
TOMCATV

BSOM
CHOLESKY

SHALLOW
0

50

100

150

M
flo

ps

Java, plain
Java, optimized
Java+fma
Fortran

(C) Copyright 1997 IBM Corp. Marc Snir

Array layouts

A[0]

A[3]

A[2]

A[1] A[1][0] A[1][1]

A[0][0] A[0][3]A[0][2]A[0][1]

A[2][0] A[2][3]A[2][2]A[2][1]

A[3][0] A[3][2]A[3][1]

A(0,2)

A(1,1)

A(0,3)A(0,0)

A(1,2)

A(0,1)

A(1,3)A(1,0)

A(2,2)

A(3,1)

A(2,3)A(2,0)

A(3,2)

A(2,1)

A(3,3)A(3,0)

Java

Fortran, C

(C) Copyright 1997 IBM Corp. Marc Snir

Benefits of rectangular arrays

Location of element A(i,j) can be computed with index
arithmetic. Access to A[i][j] requires pointer chasing.
Easier to disambiguate two rectangular arrays A and B than
two rows A[i] and B[j].

disambiguation required to enable the previously listed
optimizations!

Out of bound index and null pointer checks can be eliminated
more easily
Privatization for thread safety is trivial for rectangular arrays,
but requires copying vector of pointers for array of arrays.
The array package:

Collection of classes that implement arithmetic operations on
multidimensional rectangular arrays.
Approach allows classical optimizations developed for Fortran to
be applied.

(C) Copyright 1997 IBM Corp. Marc Snir

Data mining code on one F50 node

plain Java array package Fortran
0

20

40

60

80

100

120

140

M
flo

ps

21.4

109.2 119.6

Sparse matrix operations.
Computations performed through array arithmetic and BLAS class for
multidimensional arrays.

(C) Copyright 1997 IBM Corp. Marc Snir

Parallel data mining

1 2 3 4

Number of threads

0

0.5

1

1.5

2

2.5

3

3.5

M
flo

ps Implicit
Explicit

109 109

186
202

247
280

292

344

Explicit: code uses Java threads
Implicit: parallelism inside array package

(C) Copyright 1997 IBM Corp. Marc Snir

Complex numbers & semantic inlining

Example: dot product
Complex[] a,b;

Complex s;
for (int i=0; i<n; i++)
 s.assign(s.plus(a[i].times(b[i])));

generates 2n Complex objects that only hold intermediate results!
Semantic inlining:

Compiler recognizes ops on standard classes as primitives.
Compiler generates code that implements semantics of classes,
disregards bytecodes for methods.
Mechanism to extend Java and the JVM "under the covers". No
need to add bytecodes.
Can implement "value objects" without any language or JVM
changes.

(C) Copyright 1997 IBM Corp. Marc Snir

Results on RS/6000 590

MICROSTRIP
MATMUL

LU
FFT

CFD
0

50

100

150

M
flo

ps

plain Java
inlining of complex method s
complex arrays, with inlini n
Fortran

