
Interim Java Grande
Forum Report

ACM Java Grande Conference 1999
June 12-14, 1999

JavaOne Conference
June 14-17, 1999

San Francisco, California

Java Grande Forum Technical Report JGF-TR-4
(Original Report JGF-TR-1)

http://www.javagrande.org/reports.htm

Java Grande Forum

Overview of Document
This document represents an update to the Java Grande Report, which was
presented to Sun Microsystems at a special panel session held at SC 98 in
Orlando during November 1998. The purpose of the Java Grande Report was to
convey a succinct set of recommendations from this forum to Sun Microsystems
and other purveyors of Java™ technology that will enable Grande Applications
to be developed with the Java programming language. The Java Grande Forum
is pleased to report in this update that significant progress has been made in
discussions with Sun, particularly in addressing the numerics issues.

Section 1: Recent Activity of the Java Grande Forum

The highly successful Java Grande panel at SC 99 has resulted in a number of
activities being coordinated throughout the world. JGF participants have
organized workshops and tutorials at several international conferences, and a
new European funded initiative is under way. This section will present the list of
known events and a discussion of the details of this initiative.

Section 2: About the Java Grande Forum and Grande
Applications

This section re-introduces the need for Grande Applications and provides a
general overview of the Java Grande Forum, its activities, and the process.
Grande Applications are of interest to an ever-growing community with
applications to science, design, finance, and numerous applications where
performance counts. This section intended for anyone who wants an overview
of the Java Grande Forum and the remainder of the document but is not
technical in nature.

http://www.javagrande.org

Recent Activity of the Java Grande Forum
Section 3: Concurrency and Applications Working Group Status

The Concurrency/Applications Working Group of the Java Grande Forum addresses the
suitability of Java for concurrent (parallel and distributed) applications. In its initial assessment
of Java, the working group has focused on several areas where improvements and further
investigation are both needed: (a) Remote Method Invocation, (b) Object Serialization, and (c)
Benchmarking JVM Performance. The working group also identified several areas for
continued investigation: (a) seamless (desktop) access to high-performance computers and
(b) the availability of MPI-like message passing facilities for programming networks of
computers or parallel machines more naturally.

Section 4: Numerics Working Group Update

The Numerics Working Group addresses the suitability of Java for numerical computing. In its
initial assessment of Java, the working group has focused on five critical areas where
improvements to the Java language are needed: (a) floating-point arithmetic, (b) complex
arithmetic, (c) multidimensional arrays, (d) lightweight classes, and (e) operator overloading.

1 Recent Activity of the Java Grande
Forum
The highly successful Java Grande panel at SC 99 has resulted in a number of activities being
coordinated throughout the world. JGF participants have organized workshops and tutorials at
several international conferences, and a new European funded initiative is under way.

Recent Conferences
JGF participants have organized successful workshops and the first ACM conference on Java
in both the United States and Europe. These conference have been widely attended and have
featured cutting-edge technical papers and tutorials on how to apply Java to computational
science.

International Conference on Supercomputing, Workshop on Java, Rhodes, Greece, 20 June
1999

• http://pylos.csrd.uiuc.edu/ics99/

ACM Java Grande 1999, 12-14 June 1999, San Francisco, California

• http://www.cs.ucsb.edu/conferences/java99/

JavaOne, 14-17 June 1999, San Francisco, California

• http://www.javasoft.com/javaone/

HPCN-Europe, Workshop on Java in High-Performance Computing, 12-14 April 1999,
Amsterdam, Netherlands

• http://perun.hscs.wmin.ac.uk/JHPC/

First UK Workshop on Java for High-Performance Network Computing, Euro-Par 98, 2-3
September, Southampton, UK
Java Grande Forum 1

About the Java Grande Forum and Grande Applications
• http://www.cs.cf.ac.uk/hpjworkshop/

Mannheim Supercomputing Conference, 14 June 1999

• http://sc.rz.uni-mannheim.de/suparcup99/

IPPS/SPDP 1999 International Workshop on Java for Parallel and Distributed Computing, 12-
14 April 1999.

• http://www.ippsxx.org

European Java Grande Forum
The objective of the forum is to bring together an interdisciplinary group of researchers from
academia and industry to promote the use of Java as the preferred language for high
performance computing. The forum will complement and collaborate with the highly successful
US JavaGrande and ensure that Europe plays a significant part in advancing Java for HPC.
This European forum has two main working groups: Metacomputing and Interoperability, and
HPC Applications and Tools.

The European JavaGrande Forum is currently sponsored by the European funded networking
project EuroTools. A separate funding proposal is in preparation and will be submitted to the
latest European funding proposal.

EU JavaGrande -- http://www.irisa.fr/EuroTools/Sigs/JavaGrande.top.html

EuroTools -- http://www.irisa.fr/EuroTools/

2 About the Java Grande Forum and
Grande Applications
The notion of a Grande Application is familiar to many researchers in academia and industry
but the term itself is new. In short, a GA is any application, scientific or industrial, that requires
a large number of computing resources, such as those found on the Internet, to solve one or
more problems. Examples of Grande Applications are presented in this report as well as a
discussion of why we believe Java technology has the greatest potential to support the
development of Grande Applications.

The forum is motivated by the notion that Java could be the best possible Grande Application
development environment and the extensive use of Java could greatly help the large scale
computing and communication fields. However this opportunity can only be realized if
important changes are made to Java in its libraries, language and perhaps Virtual Machine.
The major goal of the forum is to clearly articulate the current problems with Java for Grande
Applications and detail the requirements, analysis and suggestions for specific changes. It will
also promote and energize widespread community activities investigating the use of Java for
Grande Applications.

The forum is open and operates with a mix of small working groups and public dissemination
and request for comments on its recommendations

The recommendations of the forum are intended primarily for those developing Java Grande
base resources such as libraries and those directly influencing the direction of the Java
2 Java Grande Forum

About the Java Grande Forum and Grande Applications
language proper. (Presently, this implies Sun Microsystems or any standards body that may be
formed.)

Mission and Goals
Java has potential to be a better environment for Grande Application Development than any
previous languages such as Fortran and C++. The goal of the Java Grande Forum (hereafter,
JGF) is to develop community consensus and recommendations for either changes to Java or
establishment of standards (frameworks) for Grande libraries and services. These language
changes or frameworks are designed to realize the best ever Grande programming
environment.

The Java Grande Forum does not intend to be a standards body for the Java language per se.
Rather, JGF intends to act in an advisory capacity to ensure those working on Grande
Applications have a unified voice to address Java language design and implementation issues
and communicate this input directly to Sun or a prospective Java standards group.

Grande Applications
This section addresses the questions of immediate interest: What is a Grande Application?
What is an example of a Grande Application? Why are Grande Applications important? After
this, we will discuss the relevance of Java.

Grande Applications are suddenly everybody’s interest. The explosive growth of the number of
computers connected to the Internet has led many researchers and practitioners alike to
consider the possibility of harnessing the combined power of these computers and the
network connecting them to solve more interesting problems. In the past, only a handful of
computational scientists were interested in such an idea, working on the so-called grand
challenge problems, which required much more computational and I/O power than found on
the typical personal computer. Specialized computing resources, called parallel computers,
seemingly were the only computers capable of solving such problems in a cost-effective
manner.

The advent of the more powerful personal computers, faster networks, widespread
connectivity, etc. has made it possible to solve such problems even more economically, simply
by using one’s own computer, the Internet, and other computers.

With this background, a Grande Application is therefore defined as an application of large-
scale nature, potentially requiring any combination of computers, networks, I/O, and memory.
Examples are:

• Commercial: Data mining, Financial Modeling, Oil Reservoir Simulation, Seismic Data
Processing, Vehicle and Aircraft Simulation

• Government: Nuclear Stockpile Stewardship, Climate and Weather, Satellite Image Pro-
cessing, Forces Modeling,

• Academic: Fundamental Physics (particles, relativity, cosmology), Biochemistry, Environ-
mental Engineering, Earthquake Prediction

• Cryptography: The recent DES-56 challenge presents an interesting Grande Application.
See http://www.rsa.com.

You can also note several categorizations, which can be used to describe Grande Applications

• High Performance Network Computing

• Scientific and Engineering Computations
Java Grande Forum 3

http://www.rsa.com

About the Java Grande Forum and Grande Applications
• Distributed Modeling and Simulation (as in DoD DMSO activities)

• Parallel and Distributed Computing

• Data Intensive Computing

• Communication and Computing Intensive Commercial and Academic Applications

• Computational Grids (e.g., Globus and Legion)

Java for Grande Applications
A question that naturally arises is:

Why should one use Java in Grande Applications?

The Java Grande Forum believes that, more than any other language technology introduced
thus far, Java has the greatest potential to deliver an attractive productive programming
environment spanning the very broad range of tasks needed by the Grande programmer. Java
offers from a combination of its design features and the ready availability of excellent Java
instructional material and development tools. The Java language is not perfect; however, it
promises a number of breakthroughs that have eluded most technologies thus far. Specifically,
Java has the potential to be written once and run anywhere. This means, from a consumer
standpoint, that a Java program can be run on virtually any conceivable computer available on
the market. While this could be argued for C, C++, and FORTRAN, true portability has not
been achieved in these languages, save by expert-level programmers.

While JGF is specifically focused on the use of Java to develop Grande Applications, the forum
is not concerned with the elimination of other useful frameworks and languages. On the
contrary, JGF intends to promote the establishment of standards and frameworks to allow Java
to use other industry and research services, such as Globus and Legion. These services
already provide many facilities for taking advantage of heterogeneous resources for high-
performance computing applications, despite having been implemented in languages other
than Java.

Java Grande Forum Process and Membership
The forum has convened for a total of three working meetings with a core group of active
participants. The output of these meetings will be a series of reports (this being the first in a
series), which are reviewed in public forums and transmitted appropriately within the cognizant
bodies within the Java and computational fields. The forum is open to any qualified member of
academia, industry or government who is willing to play an active role in support of our
mission.

For more information on the forum itself and to provide comments, please visit
http://www.javagrande.org or direct e-mail to George K. Thiruvathukal, Forum Secretary, at
gkt@cs.depaul.edu or Geoffrey C. Fox, Academic Coordinator, at gcf@npac.syr.edu

There are two relevant mailing lists to which one may subscribe by sending one of us e-mail
indicating an interest in joining either or both of the lists:

• javagrandeforum@npac.syr.edu is a mailing list for coordinating communications and
meetings among active members of the Java Grande Forum. This list is used to coordinate
actual work and is not intended for those who are generally interested in the JGF.

• java-for-cse@npac.syr.edu is an open-ended interest for those keeping informed of Java
Grande activities and the use of Java in computer/computational science and engineering
4 Java Grande Forum

http://www.javagrande.org
mailto:javagrandeforum@npac.syr.edu
mailto:java-for-cse@npac.syr.edu

About the Java Grande Forum and Grande Applications
applications. This list is intended primarily for those who will not participate actively in the
Java Grande Forum but wish to keep informed.
Java Grande Forum 5

Concurrency and Applications Working Group Status/Update
3 Concurrency and Applications Working
Group Status/Update
The Concurrency and Applications Working Group (hereafter ACG) has focused on the
following issues:

• Critical JDK issues

• Benchmarks

• Message passing

• Desktop Access to Remote Resources (now called the Computing Portal Working Group)

• Other parallel and distributed computing issues

After the public dissemination of the Java Grande report at Supercomputing in Orlando,
progress has been made in most of these areas.

Critical JDK issues

Performance of Object Serialization

In the Orlando report, the performance problems of object serialization have been discussed
thoroughly. Object serialization is the basic mechanisms that is used by Java’s RMI (Remote
Method Invocation) to convert Java objects into a byte stream representation and vice versa.
Hence, the performance of object serialization is crucial for Grande applications that need
distributed parallel machines.

The JavaParty group of the University of Karlsruhe, Germany, has designed and implemented
a drop-in replacement for the JDK-serialization, called UKA-serialization, that can be used in
situations where persistence is not an issue. The UKA-serialization is written in Java and
reduces the serialization overhead by 81% to 97%.

Most of the individual show-stoppers mentioned in the Orlando report have been solved in that
implementation. For example, the UKA-serialization uses explicit marshaling instead of
reflection, it uses a slim type encoding, it adds an additional type of reset-operation that avoids
costly retransmission of type information, and it implements a more efficient buffer handling.

More information on the UKA-serialization can be found at http://wwwipd.ira.uka.de/JavaParty/
and in Bernhard Haumacher and Michael Philippsen. More Efficient Object Serialization. In
Parallel and Distributed Processing, LNCS 1586, pp. 718-732, International Workshop on Java
for Parallel and Distributed Computing, San Juan, Puerto Rico, April 12, 1999.

The JavaGrande forum has discussed the central ideas of the UKA-serialization with Sun’s
RMI group in Burlington. It seems likely that some of the ideas will be incorporated in future
releases of the JDK. In particular, it is likely that there will be a way to switch to a slim type
encoding.

Performance of RMI

In the Orlando report the performance problems and other difficulties of RMI have been
discussed in depth. Although Grande applications that require parallel computers need an
efficient use of non-TCP/IP communication hardware, the current RMI does not provide any
6 Java Grande Forum

Concurrency and Applications Working Group Status/Update
support. Moreover, since the current RMI has been designed and implemented with rather
slow internet-connections in mind, the design includes many mechanisms that deal with
instable or slow networks.

For Grande applications, access of high-performance networks is essential. Moreover, in
closely connected cluster settings, a lot of RMI’s overhead can be traded for speed.

The JavaParty group of the University of Karlsruhe, Germany, has designed and implemented
a drop-in replacement for the RMI, called KaRMI, that can be used in situations where
persistence and TCP/IP-addressing mechanisms are not an issue. KaRMI is completely
written in Java. In combination with the UKA-serialization, KaRMI saves up to 71% of the time
needed for a remote method invocation between two PCs connected by Ethernet. Between
two Dec Alphas connected by a Myrinet-based ParaStation network, a remote method
invocation can be executed within 80 mirco seconds.

In addition to being as compatible as allowed by the requirement of support for non-TCP/IP
networks, KaRMI comes with simple and documented interfaces. Several transport
technologies can be mixed, an optimized distributed garbage collector can be plugged in
which handles combinations of different communication technologies.

More information on the KaRMI can be found at http://wwwipd.ira.uka.de/JavaParty/ and in
Christian Nester, Michael Philippsen, and Bernhard Haumacher A More Efficient RMI. In Proc.
ACM 1999 Java Grande Conference, San Francisco, June 12-13, 1999.

The JavaGrande forum has discussed the central ideas of KaRMI with Sun’s RMI group in
Burlington. It is unclear whether any improvements will make it into the official RMI
implementation.

The following issues are still open:

• Still needed are mechanisms for a closer interaction with Java’s thread scheduler, espe-
cially if the communication hardware operates in user level.

• The RMI source code is still unavailable.

• The internal layers of RMI are still undocumented.

• It would be interesting to see, whether the improved RMI could used by IBM’s San Fran-
cisco project. This project, unfortunately, uses internal and undocumented classes of the
RMI implementation.

• Class Compatibility Problem, see Orlando report

• Dynamic Class Loading from Remote Hosts, see Orlando report

Other papers that contain information relevant to Java Grande are:

Ronald Veldema, Rob van Nieuwport, Jason Maassen, Henri E. Bal, and Aske Plaat. Efficient
Remote Method Invocation, Technical Report IR-450, Vrije Universiteit, Amsterdam, The
Netherlands, September 1998.

Chi-Chao Chang and Thorsten von Eicken. Interfacing Java with the Virtual Interface
Architecture. In Proc. ACM 1999 Java Grande Conference, San Francisco, June 12-13, 1999.

G. K. Thiruvathukal, L.S. Thomas, A.T. Korczynski, Reflective Remote Method Invocation. In
Proc. ACM 1999 Java Grande Conference, San Francisco, June 12-13, 1999.

Benchmarks
EPCC at the University of Edinburgh has been coordinating the construction of a Java Grande
Forum Benchmarking suite. The purpose of the suite is to provide ways of measuring and
comparing alternative Java execution environments in ways which are important to Grande
Java Grande Forum 7

Concurrency and Applications Working Group Status/Update
applications. In order to provide standard measurements and reporting we wrote an
instrumentation class which is used throughout the suite and we plan to propose this class for
registration as a Java standard.

The serial suite is now on version 2.0 and almost complete and we have added code to
calculate a normalized score for each section and to present the results in a Web page.

The contents of the suite are as follows:

Section 1: Low level operations - measuring the performance of low level operations such as
arithmetic and math library operations, garbage collection, method calls and casting.

Section 2: Kernels - short codes which carry out specific operations frequently used in grande
applications.

Section 3: Large scale applications - real grande codes, possibly less useful for comparative
performance studies but worthwhile to demonstrate the potential of Java for tackling real
problems.

Section 1: Low Level Operations Arith: execution of arithmetic operations Assign: variable
assignment Cast: casting Create: creating objects and arrays Loop: Loop overheads Math:
execution of maths library operations Method: method invocation Serial: Serialisation
Exception Exception handling

Section 2: Kernels Series: Fourier coefficient analysis LUFact: LU Factorisation SOR:
Successive over-relaxation HeapSort: Integer sorting Crypt: IDEA encryption FFT: FFT
Sparse: Sparse Matrix multiplication

Section 3: Large Scale Applications Search: Alpha-beta pruned search Euler: Computational
Fluid Dynamics MD: Molecular Dynamics simulation MC: Monte Carlo simulation Ray Tracer:
3D Ray Tracer

The next phase of the Benchmarking work will be to develop complementary parallel
benchmarks. Initially we aim to concentrate on Threads and MPI tests and we have a series of
benchmarks planned which are based around the NAS codes and parallelisations of the
existing applications. Serial versions of these codes will be available for comparison purposes.

The new release of the benchmark suite along with results is available from:

http://www.epcc.ed.ac.uk/javagrande/

These pages contain detailed results for a number of systems and a league table of scores.
We would like to invite members of the community to download and run the benchmarks on
their platforms and contribute the results to this growing database. Anyone with results, codes
or comments to contribute can contact us at epcc-javagrande@epcc.ed.ac.uk.

The JavaParty group at the University of Karlsruhe, Germany, has put together an RMI
benchmark. The collection is available from http://wwwipd.ira.uka.de/JavaParty

The Numerics Working Group has put together the Scimark 2 benchmark. See Section 4.2 for
details.

We would like to thank the following people for their contributions to the benchmark suite:
Jesudas Mathew, Paul Coddington, Roldan Pozo, Gabriel Zachmann, David Oh, Reed Wade,
John Tromp, Florian Doyon, Wilfried Klauser, Hon Yau.
8 Java Grande Forum

Concurrency and Applications Working Group Status/Update
Message Passing Interface

Introduction

The Message-Passing group is a community effort within the frame of the JavaGrande Forum
activities. The aim of the group is to provide an environment for discussion and collaboration in
the research and development of portable message-passing frameworks and corresponding
APIs for the Java programming language with focus on JavaGrande applications. The group
intends to forward any draft standard proposals (e.g. Java-MPI) whenever they are ready to
the MPI forum for the official standardization procedure. Important current objectives of the
group are

• the development of an MPI-like API for Java;

• reserach into O-O Java-centric message-passing environments;

• performance evaluation and comparisons between different frameworks and implementa-
tions.

MPI-like API for Java

A mailing list has been created for discussions in this area with around 50 subscribers at
present. java-mpi@npac.syr.edu is an open e-mail reflector for people interested in developing
or using Java bindings to the Message Passing Interface standard MPI. Subscribing to the e-
mail list is as simple as sending the command

 “subscribe java-mpi”

in the body of an email addressed to Majordomo@npac.syr.edu.

The topics for discussion include:

• Issues relating to agreement on a common Java API for MPI (a draft proposal can be found
in the appendix of the “MPI for Java” position document at “www.java-
grande.org/reports.htm”).

• Issues about implementing MPI functionality in Java. Implementations can be 100% Java,
or Java wrappers to native MPI implementations.

• User’s experiences developing parallel application codes in Java, using an MPI binding.
Experiences using Java-MPI in Grande applications as well as a vehicle for teaching mes-
sage-passing parallel programming are very relevant.

• Parallel benchmark codes written in Java, using an MPI binding and results of running such
benchmarks.

Object-oriented Java-centric message-passing environments

The present effort’s purpose is to offer a first principles study of how to present MPI-like
services to Java programs, in an upward compatible fashion. The purposes are twofold:
performance and portability. For performance, we seek to take advantage of what has been
learned since MPI-1 and MPI-2 were finalized, or which were ignored in MPI standardization
for various reasons. The study will, for instance, draw on the body of knowledge just recently
completed within the MPI/RT Forum, which strives to enhance both real-time and performance
of message passing programs. From MPI/RT, we will at least glean design hints concerning
channel abstractions, and the more direct use of object-oriented design for message passing
than was done in MPI-1 or MPI-2 (despite existence of C++ bindings). Additionally, a
fundamental look at data marshalling and unmarshalling in the Java context will be
Java Grande Forum 9

Concurrency and Applications Working Group Status/Update
undertaken, and preference for Java-natural mechanisms and policies will be attempted.
Along the lines of portability, a detachment from legacy implementations of Java over existing
native methods will be emphasized, while also considering the possibility of layering the
messaging middleware over standard transports and other Java-compliant middleware (such
as CORBA). In a sense, the middleware developed at this level should offer a choice of a
performance or generality emphasis, while always supporting portability. A policy/opportunity
to support aspects of real-time and fault detection/fault-aware programs will be studied and
standardized insofar as possible, drawing on experience from distributed computing real-time
activities.

Performance evaluation and comparisons

There is a growing number of parallel benchmark codes written in Java, using an MPI-like
binding. This effort involves using and further developing these benchmarks for validation,
evaluation, and comparison of MPI-like environments for Java. We also focus on both
methodology and evaluation guidelines in order to ensure reproducibility, sound interpretation,
and comparative analysis of performance results. The codes currently available include:

• A test suite for MPI-like bindings for Java which covers all 128 MPI-1 functions. This task
was completed at NPAC.

• Low-level message-passing benchmarks, which we have used to evaluate our existing pro-
totype bindings on different platforms. Some of the participating organizations in this work
are Brigham Young University, Emory University, NPAC, University of Portsmouth, Univer-
sity of Westminster, and others.

• Draft Java and MPI-like versions of the NAS Parallel Benchmarks IS, EP, and FT have been
developed as a result of collaboration between San Diego Supercomputer Center and Uni-
versity of Westminster. NASA-Ames have recently allocated resources to join and lead the
completion of a full set of NPB kernels in Java-MPI.

All message passing benchmarks in Java are publicly available from the web-site of the
Message Passing Group.

Computing Portal Working Group (formerly Datorr)
This Computing Portal Working Group (http://www-fp.mcs.anl.gov/~gregor/datorr) is a joint
activity of the JavaGrande Forum and the newly formed Gridforum (http://www.gridforum.org/)
project, which links the major high performance computing activities building the infrastructure
for computational grids. This working group was originally called Datorr with this acronym
denoting Desktop Access to Remote Resources. The new terminology more clearly describes
the mission of this group and relates it to the exploding field of enterprise information portals
(as described by Merrill Lynch in http://www.sagemaker.com/company/lynch.htm). Further
computing portal research activities have been launched by both NASA’s Information Power
Grid (http://science.nas.nasa.gov/IPG) and the NSF partnership in computational
infrastructure centered at Illinois (The NCSA Alliance http://www.ncsa.uiuc.edu/alliance/). We
will leverage these and other projects in our further work. We also hope that the more
descriptive name will encourage broad involvement in our activities and welcome new
participants.

The previous mission and activities of the Datorr working group will continue unchanged with
the new name. Since our last report at the end of 1998, we held a good meeting on February
15th and 16th, 1999 at Sandia National Laboratory. Judy Beringer of Sandia National, and
Gregor von Laszewski of Argonne National Laboratory organized the meeting. The technical
preparation for the meeting was steered by Geoffrey C. Fox, Dennis Gannon, Piyush Mehotra,
10 Java Grande Forum

Concurrency and Applications Working Group Status/Update
and Gregor von Laszewski. The meeting had over 25 participants with in particular
contributions from the Gateway, Hotpage, Legion, NetSolve, Ninf, Ninja, and Unicore groups.
The meeting broke up into two working groups discussing roughly the user/service and service
backend resource interfaces respectively. In the latter case we identified the importance of the
use of XML in describing computing related resources. We targeted a demonstration of the
use of this technology with a simple web based interface to computing resources by SC99 in
November 99. The first group continued the definition of the user view and task object started
at our first meeting. As a follow-up, the Globus team has been very active in the investigation
of the use of XML as one of the core technologies for interchanging information between
different components of the Globus and the portal architecture. They have demonstrated that
XML can be used as a language to describe components, jobs and tasks. Furthermore, they
showed that the information expressed through the Grid Metacomputing Directory Service can
be exposed as objects defined in XML.

In defining the proper institutional implementation of the Computing Portal working group, we
are pleased that the voluntary contributions by the Globus project allowing Gregor von
Laszewski, Argonne National Laboratory, to work partially in this effort will be continued and
enhanced with other NCSA Alliance resources. We discussed the architecture defined by the
Datorr group at the Alliance meeting in Chicago in May and found widespread approval.
Current Alliance plans for developing application specific computing portals was substantially
built on the work of Datorr and we expect continued close collaboration. We are in the process
of forming subgroups to work on selected common portal architecture requirements and
implementations.

Gregor von Laszewski will continue to serve as secretary for the working group and will
organize future workshops. These Computing Portal workshops will be coordinated with the
Gridforum and the JavaGrande Forum in order to leverage one another’s efforts. The working
group will register the domain name www.computingportal.org. During the month of July, the
current Datorr web pages (http://www-fp.mcs.anl.gov/~gregor/datorr) will be transferred to the
new web site, which will be hosted at Argonne National Laboratory. The mailing list
datorr@mcs.anl.gov will temporarily continue to exist until the move to the new domain name
is completed. Once completed, a new set of mailing lists will be created. We intend to
schedule the next Workshop alongside Grid forum and JavaGrande meetings.
Java Grande Forum 11

Numerics Working Group Update
4 Numerics Working Group Update

Contents

1. Introduction
2. Recent Accomplishments
2.1 Floating-point Semantics in Java 2
2.2 Endorsement by IFIP Working Group 2.5
2.3 Working Group Meetings
2.4 Other Events
3. Status of Proposals
3.1 Use of Floating Multiply-Accumulate (FMA)
3.2 Math Library Specification
3.3 Operator Overloading and Lightweight Objects
4. Related Activities
4.1 Relationship with vecmath

4.2 SciMark 2 Benchmark
4.3 Java Preprocessor Admitting Complex Type

Appendix 1: Message from Tim Lindholm
Appendix 2: Proposal for Use of FMAs in Java (M. Snir)
Appendix 3: The Java Elementary Functions (C. Moler)

1 Introduction

If JavaTM is to become the environment of choice for high-performance scientific applications,
then it must provide performance comparable to what is achieved in currently used program-
ming languages (C or Fortran). In addition, it must have language features and core libraries
that enable the convenient expression of mathematical algorithms. The goal of the Numerics
Working Group (JGNWG) of the Java Grande Forum (JGF) is to assess the suitability of Java
for numerical computation, and to work towards community consensus on actions which can
be taken to overcome deficiencies of the language and its run-time environment.

For detailed information about the work of the Java Grande Forum, see its Web pages at
http://www.javagrande.org/ . The work of the JGNWG is described in the Java Numer-
ics Web pages maintained at NIST, http://math.nist.gov/javanumerics/.

This report constitutes an update on JGNWG activities since the JGF's first detailed report,
Making Java Work for High-End Computing, was issued in November 1998. This report is
available in PDF form at http://www.javagrande.org/sc98/sc98grande.pdf . The
sections relating to the JGNWG can also be viewed in HTML form at
http://math.nist.gov/javanumerics/jgfnwg-01.html. We assume that the
reader is familiar with the contents of these reports.

2 Recent Accom plishments
12 Java Grande Forum

Numerics Working Group Update
2.1 Floating-point Semantics in Java 2

The report of the Java Grande Forum was influential in preventing the adoption of the Pro-
posal for Extension of Java Floating-Point Semantics (Revision 1) released by Sun in May
1998. Instead, for Java 1.2 Sun adopted the key ideas of the Java Grande counterproposal.
The principal intent of these proposals was to improve the performance of Java floating-point
on processors like the Intel Pentium (i.e. those with the x86 architecture), whose registers
operate using IEEE 754's 80-bit double-extended format. The original Java floating-point
semantics lead to a 2- to 10-fold performance slowdown when implemented on such proces-
sors.

The JGNWG counterproposal suggested the adoption of two floating-point modes (strictfp

and default). (The widefp keyword of the original Sun proposal is eliminated.) strictfp

mode, which applies to classes or methods with the strictfp keyword, corresponds to the
original (Java 1) floating-point semantics. The goal in this case is to provide bit-for-bit repro-
ducibility of Java class files across JVMs. Default mode relaxes these requirements slightly. In
default mode, anonymous doubles may be represented using 15-bit exponents (rather than
standard 11-bit exponents). The x86 has a control bit which causes the fractional part of float-
ing-point results to be truncated to 52 bits (double precision) after each operation without any
performance degradation. However, the floating-point exponent remains at 15 bits. By admit-
ting 15-bit exponents, artificial store/load to memory to adjust the exponent can be avoided.
This minor change also leads to floating-point results that differ only rarely among processors.
Difference in observed results between the x86 and SPARC processors, for example, would
occur only in cases where the SPARC would overflow and the x86 would not. A similar design
is used for floats.

The JGNWG requirement that the use of extended exponents be used consistently (i.e. either
for all anonymous variables or for none) was not adopted for Java 2. While Sun believes that
the improved predictability of such a requirement would be beneficial, it would require adding
new typed pop/swap/dup JVM instructions to manipulate such numbers on the stack. As
such, it was deemed too significant a change to be considered at this time.

Similarly, JGNWG proposals to admit use of floating-multiply-accumulate (FMA) instructions
and the associative law in optimizing expressions were not adopted. It was felt that more
study to understand their effects more clearly before they are considered. The JGNWG has
been considering how to frame a proposal for use of FMAs (see Section 3.1).

2.2 Endorsement by IFIP Working Group 2.5

The work of the JGNWG has been endorsed by the International Federation for Information
Processing Working Group 2.5 (WG2.5). WG2.5, whose charter is to improve the quality of
numerical computation by promoting the development and availability of sound numerical soft-
ware, reports to the IFIP Technical Committee on Programming Languages (TC2). At its May
1999 meeting at Purdue University, WG2.5 passed the following resolution:

WG2.5 supports the efforts of the Numerics Working Group
(NWG) of the Java Grande Forum to represent the interests
Java Grande Forum 13

Numerics Working Group Update
of the numerical software community in the evolution of the
Java language and its environment. WG2.5 intends to trace
NWG activities and continue to provide input to the recom-
mendations of the NWG.

2.3 Workin g Grou p Meetin gs

The last open working meeting of the JGNWG was held in August 1998 in Palo Alto, CA. In
March 1999 a group of JGNWG members visited Sun in Menlo Park, CA to present the report
of the JGNWG to key Java developers. Representing the working group were Ron Boisvert
(NIST), John Brophy (Visual Numerics), Shah Datardina (NAG), Jack Dongarra (University of
Tennessee at Knoxville and Oak Ridge National Labs), Geoffrey Fox (Syracuse University),
Siamak Hassanzadeh (Sun), Cleve Moler (The Mathworks), Jose Moreira (IBM), and Roldan
Pozo (NIST). Representing Sun were James Gosling, Tim Lindholm, Joshua Bloch, Henry
Sowizral, Thomas Arkwright, David Hough, and Greg Tarsey.

At the March meeting, the JGNWG expressed its appreciation to Sun for taking the time to
exchange information on progress and plans for improving Java's usability for numerical com-
putations common to most Grande applications. Tim Lindholm said that the JGNWG was pro-
viding valuable input to Sun and that its work had already had a significant effect on Java. Sun
realizes that although scientific and engineering computation is not Java's primary market, it
represents an important constituency that they would like to accommodate. Sun is happy to
cooperate with the Java Grande Forum and will seek their advice on matters relating to Java
Numerics. They appreciate the Forum's willingness to find compromise solutions that preserve
Java's overall design and philosophy. (See the note from Tim Lindholm in the Appendix to this
document.) At this meeting, Sun indicated that it would reassign a staff member to spend full
time working on Java Numerics issues with the Java inner circle.

A half-day open meeting of the JGNWG is scheduled in conjunction with the ACM 1999 Java
Grande Conference to be held in San Francisco on June 12-14.

2.4 Other Events

The work of the JGNWG was described at the following events.

² Java Grande Panel, SC'98, Orlando, FL, November 13, 1998 (R. Boisvert, C. Moler, M.
Snir)

² International Workshop on Java for Parallel and Distributed Computing, IPPS/SPDP 1999,
San Juan, Puerto Rico (G. Fox)

² IEEE Frontier's 1999 Conference, Annapolis, MD, February 25, 1999 (G. Fox, M. Snir, R.
Pozo)

² SIAM National Meeting, Atlanta, GA, May 14, 1999 (R. Pozo, C. Moler, T. Bryan, J. Bro-
phy)

² IFIP Working Group 2.5 Meeting, Purdue University, May 20, 1999 (R. Boisvert)

3 Status of Pro posals
14 Java Grande Forum

Numerics Working Group Update
3.1 Use of Floating Multiply-Accumulate (FMA)

Sun appears willing to consider allowing use of the hardware fused-multiply-accumulate
(FMA), instruction under carefully controlled circumstances. The FMA operation, y ß y + a*x,
often appears in the inner loops of dense matrix computations. As a result, significant speed-
ups can occur when hardware FMAs are used. Processors with FMAs include the Power PC
and the Merced. IBM has analyzed the impact of using the FMA operation in several Java
benchmarks. For matrix-multiply (real numbers), performance can be improved from 100.9
Mflops to 209.8 Mflops through the use of FMAs. For BSOM (a neural-network data mining
kernel) the improvement is from 94.5 Mflops to 120.5 Mflops. For Cholesky factorization, the
improvement is from 83.4 to 129.9 Mflops. These FMAs were all obtained from explicit a*b+c

operations. The Fortran numbers for MATMUL (matrix multiply), BSOM, and Cholesky are
244.6, 28.0, and 134.0, respectively. (All experiments were performed on an RS/6000 model
590.)

This topic was discussed extensively at the March meeting in Menlo Park. Marc Snir of IBM
has developed a proposal to modify the semantics of Java floating-point in order to admit
FMAs. It is included as Appendix 2.

Another way to provide access to FMAs is to provide explicit methods that represent them.
Two separate FMA methods could be added to Java: java.lang.Math.fma() and
java.lang.StrictMath.fma() . fma(y,a,x) would return a*x+y in each case. Its
behavior would be different depending on the package.

These methods should not be incorporated in place of the proposed extensions above, how-
ever. Rather, they should be included to provide an additional method of fine control of FMA
operations.

3.2 Math Library Specification

The original specification for java.lang.Math says, roughly, to use the algorithms of fdlibm
(Sun's freely distributable libm, available on netlib) translated straightforwardly to Java. It is not
clear whom, if anyone, does this. In practice, Java programs that reference elementary func-
tions are not producing the same results on all Java platforms. For the Java 2 platform, Sun is
distributing Java wrappers for fdlibm in C for java.lang.Math . This should encourage more
uniform results from the Java elementary functions.

StrictMath Forced FMA. Requires use of extended precision FMA, even if it
requires simulation in software. That is: y, a, x are each converted to
IEEE extended format (double or float as appropriate), the computation
occurs in extended format, with the result rounded to double or float as
appropriate.

Math Opportunistic FMA. The FMA should be used if it can be done fast, e.g.
as a single hardware instruction, otherwise the expression a*x+y should
be computed using the usual Java floating-point semantics.
Java Grande Forum 15

Numerics Working Group Update
The JGNWG has had extensive discussions regarding the proper specification of the elemen-
tary functions in Java. Cleve Moler has studied the various the issues; his report is included
as Appendix 3.

Two recent contributions point to new possibilities. John Brophy of Visual Numerics
announced the release of Jmath, a complete translation of Sun's fdlibm in Java. This is
posted at http://www.vni.com/corner/garage/grande/. The use of such a library
would insure reproducible results.

Abraham Ziv and colleagues at the IBM Haifa Labs recently released a suite of correctly

rounded math functions for IEEE arithmetic in C1. (Only binaries are released,

for Solaris, NT and AIX. See

http://www.alphaWorks.ibm.com/tech/mathlibrary4java/ .) They have recom-
mended its use for Java. Providing correctly rounded results in all cases is, of course, the
ideal specification for the elementary functions. Of high concern to Sun is the speed of the
library and its footprint (size of the distributable binary). Users will not tolerate a significant
degradation of speed, and Sun does not want to significantly increase the size of the Java
core. Ziv claims that the Haifa codes are usually significantly faster than fdlibm. The size of
the binaries that would be included with Java are hard to judge. The compressed AIX binary is
185Kb. The codes include large tables, but their sizes can be adjusted. (The source form of
the atan table is 250Kb, for example, although it is shared with atan2.) Further analysis is
needed to assess the size in a Java distribution. In addition, versions for other platforms
would have to be developed. An alternative would be to provide a version of the Haifa library
coded in Java.

The JGNWG also sees merit in relaxing the strict specification for the elementary functions in
default mode to admit use of hardware functions such as FSIN and FSQRT on the Pentium.

The following are possible specifications for the Java elementary functions.

1. See A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded
last bit, ACM Transactions on Mathematical Software 17 (1991), pp. 410-423.
http://www.acm.org/pubs/citations/journals/toms/1991-17-3/p410-ziv/

strictfp mode: produce the correctl y rounded result.
Pros This is the ideal definition.
Cons Pure Java code for this does not yet exist. Existing algorithms may be too

large for inclusion in the Java core.

strictfp mode: mandate use of VNI's native Java fdlibm.
Pros This code is available now. It is reasonably fast and has a small footprint. It

produces results that are usually within one unit in the last place of the cor-
rectly rounded result.

Cons An operational definition like this would mandate incorrect results. Incorporat-
ing future improvements in the algorithms yielding better results would change
the behavior of existing Java class files.
16 Java Grande Forum

Numerics Working Group Update
3.3 Operator Overloading and Lightweight Objects

Sun clearly sees the need for these extensions for the numerics community. The performance
and usability of core math capabilities such as complex arithmetic, interval arithmetic, multidi-
mensional arrays, and others hinge on these capabilities. IBM has done experiments on sup-
porting lightweight objects. Representing complex numbers as full-fledged objects results in a
performance of 1.1 Mflops for matrix-multiply and 1.7 Mflops for a CFD kernel (two-dimen-
sional convolution). Using lightweight objects and extensive compiler optimization raises
those numbers to 89.5 Mflops (MATMUL) and 60.5 Mflops (CFD). Fortran numbers are 136.4
and 66.5 Mflops, respectively. (All experiments performed on an RS/6000 model 590.)

Sun has little experience in the community process for making changes to the Java language
itself. As a result, Gosling suggested that Sun should take the lead in developing proposals
for operator overloading and lightweight classes. Sun agreed to reassign a staff member to
work with Gosling and colleagues to develop such a proposal. The JGF would help in the pro-
posal process, providing justification of the need, providing comments, etc. It was suggested
that finding allies in other user communities might help.

Some worries were expressed about the reaction of "purists" to a proposal for operator over-
loading. Ideally, one would like to see mechanisms that led to only reasonable usage. (Exam-
ples: use descriptive names for overloaded methods; require implementation of an arithmetic
interface.) It does not seem possible to stop the truly perverse, however.

Lightweight objects are more problematical. There are many ways to provide such a facility,
and these would have to be fleshed out. Lightweight objects can be first introduced in the
Java language with little or no change to the VM. However, extensive changes to the VM may
be necessary to actually deliver performance benefits. (A major problem is how to return light-
weight objects from a method.)

The timing for such proposals was discussed. It is unlikely that major language changes will
be on the table for the next few releases, so this is viewed as a longer-term project. It was
also agreed that the proposals for operator overloading and lightweight classes should be
unbundled in order to maximize the chances for success with "the process".

4 Related Activities

4.1 Relationship with vecmath

default mode: s pecif y largest acce ptable relative error in result for each function
Pros This allows flexibility of implementation. It allows (guarded) use of specialized

hardware instructions for square root, sine, cosine, etc., yielding greatly
improved performance. It allows improvements in algorithms producing more
accurate results to be trivially accommodated

Cons Verifying conformance to a tight bound (e.g., 1 ulp) is quite difficult.
Java Grande Forum 17

Numerics Working Group Update
javax.vecmath is a package that provides a variety of low level mathematical utilities of use
in computer graphics. Examples include multiplication of 2x2, 3x3 and 4x4 matrices. Also
included in a class Gmatrix that implements operations on general nxn matrices. Methods for
computing LU, Cholesky and singular value decompositions are included.

Some preliminary testing by JGNWG members indicates that vecmath may not be completely
debugged. On computing the singular value decomposition (SVD) of a 3x3 matrix of zeros
vecmath returned left and right singular vectors of all NaNs. The matrix of singular values
was unchanged from its value on input. In another test, the SVD of the rank 2 matrix with rows
(1 2 3), (4 5 6), (7 8 9) was computed. The computed singular vectors were correct, but the
matrix of singular values was unchanged from its input state, and the rank was reported incor-
rectly as 3.

In discussions with Henry Sowizral of Sun it was agreed that the numerical analysis commu-
nity should participate more actively in the development of APIs for linear algebra. One option
would be for Gmatrix to be deprecated in vecmath and such matrix operations be provided
instead in a separate class for numerical linear algebra which could be shepherded by the
JGNWG. There will be a "call for experts" soon to consider extensions to vecmath . The
JGNWG agreed to provide representatives to this team to help work out details for future
development of this package.

4.2 SciMark 2 Benchmark

NIST recently released Version 2 of its SciMark benchmark for Java. SciMark is a composite
Java benchmark measuring the performance of numerical kernels occurring in scientific and
engineering applications. It consists of five kernels that typify computations commonly found
in numeric codes: FFT, Gauss-Seidel relaxation, sparse matrix-multiply, Monte Carlo integra-
tion, and dense LU factorization.

These kernels are chosen to provide an indication of how well the underlying JVM/JITs per-
form on applications utilizing these types of algorithms. The problem sizes are purposely cho-
sen to be small in order to isolate the effects of memory hierarchy and focus on internal
JVM/JIT and CPU issues. Results in SciMark 2 are recorded in megaflops for ease of interpre-
tation (although this makes them incompatible with SciMark 1.) A larger version of the bench-
mark (SciMark 2.0 LARGE) addresses performance of the memory subsystem with out-of-
cache problem sizes. The source of the SciMark benchmark is available, and implementa-
tions in C and Fortran will be made available to admit comparisons with these language pro-
cessors.

The benchmark may be downloaded as an applet and run in any Java environment. A table of
submitted benchmark data is maintained on the SciMark Web page at
http://math.nist.gov/scimark .

4.3 Java Pre processor Admittin g Complex Type
18 Java Grande Forum

Numerics Working Group Update
The JavaParty group at the University of Karlsruhe, Germany, has developed a preprocessor
that adds a new basic type complex to Java and maps the resulting code back to pure Java.

Compared to code that uses complex objects and method invocations to express arithmetic
operations the new basic type increases readability and it is also executed faster. On aver-
age, the versions of our benchmark programs that use the basic type outperform the class-
based versions by a factor of 2 up to 21 (depending on the JVM used).

More information can be found at http://wwwipd.ira.uka.de/JavaParty/ .
Java Grande Forum 19

Numerics Working Group Update
Appendix 1

Subject: Feedback for the Numerics Working Group

Date: Fri, 12 Mar 1999 15:59:40 -0800 (PST)

From: Tim Lindholm <Timothy.Lindholm@Eng.Sun.COM>

To: boisvert@cam.nist.gov

Hi Ron,

The following gives my perspective on the Java Grande Numerics Working

Group and its relationship and relevance to Sun in Sun's role as the

steward of Java development.

As you know, I'm a Distinguished Engineer at Sun, one of the members

of the original Java project, the author of The Java Virtual Machine

Specification, and currently one of the architects of the Java 2 plat-

form. I work closely with the other architects of the Java technolo-

gies, such as James Gosling, and while I can't speak for them in

detail I can say that the opinions I express below are not out of line

with theirs.

During the development of the Java 2 platform version 1.2 (formerly

known as JDK 1.2), I was handed responsiblity for creating licensee

and industry consensus around changes to Java's primitive floating-

point arithmetic targeted at improving performance on Intel CPUs.

This was an extremely difficult task because it required careful

attention to the balance between many factors, and was being done in

an extremely charged political environment. We who were responsible

did not have a broad background in numerics, and had not been success-

ful finding help within Sun. We understood that there was high risk:

Java had taken a rather different approach to floating point than many

other languages, and the wrong decision in 1.2 could throw away many

of the advantages of that approach.

Our best attempts led to a public proposal that we considered a bad

compromise and were not happy with, but were resigned to. At this

point the Numerics Working Group wrote a counterproposal to Sun's pub-

lic proposal that gave new technical insight on how to balance the

demands of performance on Intel without throwing away the important

part of reproducibility. The counterproposal was both very sensitive

to the spirit of Java and satisfactory as a solution for the perfor-

mance problem. When we saw the new proposal we revived efforts to

reach a better answer.

We were subsequently aided by email and phone calls with a number of

members on the Numerics Working Group (you, Roldan, and Cleve). Joe

Darcy, one of the authors of the counterproposal, helped us to under-

stand the proposal generally, and specifically to evaluate the
20 Java Grande Forum

Numerics Working Group Update
effects of modifications we required of the counterproposal. All of

you helped us understand how the Numerics Working Group represented a

number of rather different fields with different perspectives on

numerics. This helped us gain confidence that the new solution

reflected a consensus that would satisfy a broad range of Java users.

We are sure that we ended up with a better answer for 1.2, and arrived

at it through more complete consideration of real issues, because of

the efforts of the Numerics Working Group. We have internally

resolved to consult with the Group on future numeric issues, and to do

so earlier in the process. Our attendance at the 3/11 Numerics Work-

ing Group meeting at Sun and all the work we accomplished there is

evidence of this resolution. We think that the Group continues to

show great sensitivity to the needs of the Java platform and the dif-

ficulty of introducing change while preserving compatibility and

robustness. We look forward to continuing this relationship into the

future.

-- Tim
Java Grande Forum 21

Numerics Working Group Update
Appendix 2: Pro posal for Use of FMAs in Java (Draft)

Marc Snir
IBM T.J. Watson Research Center
snir@us.ibm.com

The current JVM 1.2 spec supports two double formats: IEEE format with 53 bit mantissa, 12
bit exponent; and a default format, that has exactly the same mantissa, but may have a larger
exponent. Internal values (not visible to the user) can be held in the default format, and con-
verted to the IEEE format when assigned to program variables. If a method is declared strictfp,
then the use of large exponents is disallowed. A similar design is used for floats. This design
enables Intel to take (partial) advantage of its 80 bit floating point registers, using the mode
where only 53 bit mantissas are used in floating point operations. It does not allow Power PC
to take advantage of the fused multiply add, and does not allow the use of full sized mantissas
in the 80 bit Intel floating point registers.

The JGNWG has discussed several proposals to remediate this problem. To be adopted, a
proposal should

a) require limited implementation effort, and negligible implementation effort on platforms
that are not affected by current Java floating point restrictions. ,

b) introduce only limited platform dependence (similar to the platform dependence due to the
default/strictfp design),

c) not worsen accuracy, and

d) improve performance of codes without required significant, platform-dependent, code
rewrite.

The proposal outlined below seems to achieve these four goals. An "extended" floating point
mode is added, where larger mantissas are allowed, in the same circumstances where larger
exponents are allowed in JVM 1.2: internal values can be stored with more digits of precision
than required by IEEE format, but need be converted back to IEEE format when assigned to
program variables. This solution would allow (i) the use of fused multiply adds, where the
intermediary output from the multiplication is not rounded, (ii) the promotion of floats to dou-
bles, on machines where double arithmetic is faster, and (iii) the use of full 80 bit precision on
Intel machines – at least for internal values.

We can have two versions of this design. V1: The use of the "extended" format would be
allowed only for methods (and classes) that were explicitly tagged with the keyword extend-

edfp in the source. The byte file will contain an extendedfp flag. Otherwise, the rules of
JVM 1.2 apply. We then have two floating-point modes: strictfp and extendedfp (in addi-
tion to the default mode). V2: "extended" format can be used in default mode – no new key-
word.

Note that the user can always prohibit the use of extended format by explicitly naming each
internal value (replace x=a*b+c with x1=a*b; x=x1+c), by using strictfp , or, if V1 is
22 Java Grande Forum

Numerics Working Group Update
adopted, just by avoiding the use of the extendedfp attribute. Note, too, that the implementa-
tion effort is minimal, for implementations that do not take advantage of the extended format:
the Java compilers need generate a new flag, but this flag may be ignored by Java interpreters
and JITs.

A downside of this design is that it is unlikely that Sun will add new keywords and new floating-
point modes. Thus, either (i) we agree upfront what extendedfp entails (does it allow usage
of associativity, as proposed with associativefp ?), or (ii) we agree that extendedfp may
add new relaxations, over time, or (iii) we agree that none will be added. (i) is unlikely, due to
short time.

APPENDIX 3: The Java Elementar y Functions

Cleve Moler
The MathWorks
moler@mathworks.com

An important design goal of Java has been machine independence. A single program should
run on a wide range of computers, and get the same result everywhere. But, as Java matures
and becomes widely used for a broad range of applications, the difficulty of achieving this goal
in practice is becoming apparent.

The machine independence goal conflicts with execution speed. Keeping intermediate quanti-
ties in extended precision floating point registers increases speed, but may produce different
results and lead to different exceptions on different machines.

Tradeoffs between machine independence and speed become particularly important in the
design of a library for the elementary math functions, square root, exponential, logarithm,
power, and a half dozen trig functions.

These fundamental tradeoff considerations are confounded in at least one currently available
Java math library by serious design flaws. The exponential, sine and cosine functions in
Microsoft's math library are so inaccurate for large arguments that the library is unsuitable for
general-purpose use.

FDLIBM

The documentation of Java.lang.Math in the Java platform 1.2 Beta 4 API specification
says:

To help ensure portability of Java programs, the definitions of
many of the numeric functions in this package require that
they produce the same results as certain published algo-
rithms. These algorithms are available from the well-known
network library netlib as the package "Freely Distributable
Math Library" (FDLIBM). These algorithms, which are written
in the C programming language, are then to be understood
as executed with all floating-point operations following the
rules of Java floating-point arithmetic.
Java Grande Forum 23

Numerics Working Group Update
However, very few people are paying any attention to this specification. There are two widely
used Java environments for Microsoft operating systems on Intel PCs, one from Microsoft and
one from Sun. Neither one of them uses currently FDLIM; both use the "libm" from Visual
C++. As a consequence, Java numerical results on the PC may not be the same as those
obtained on a Sun SPARC, and, worse yet, may be inaccurate or completely wrong.

FDLIBM deserves to be better known and more widely used. It is a very valuable asset.
Authored by K. C. Ng, David Hough and possibly others at Sun, it is essentially a publicly
available version of Sun's elementary function library. See
http://www.netlib.org/fdlibm .

(At the MathWorks, we use FDLIBM as the underlying library for MATLAB on all platforms. We
did this primarily because we got tired of working around the bugs, poor algorithms and incon-
sistent handling of exceptional cases that we found in the libm's provided by other hardware
and operating systems vendors.)

FDLIBM has been translated to Java by John Brophy of Visual Numerics in Houston. This is
useful in situations where the native code generated by the C version of FDLIBM is inappropri-
ate. Brophy's source code is publicly available, http://www.vni.com/cor-

ner/garage/grande/index.html .

An Idealized Model

Let F(x) be any of the elementary math functions under consideration. How can we assess
the accuracy of a routine that computes F(x)? One possibility is to regard any floating point
input argument, x, as a precisely known real number, call upon some oracle to evaluate F(x)
exactly, and then round the result to the nearest floating point number. There is only one
rounding error in this entire theoretical computation. This is what we mean by "the correctly
rounded result" or "getting the right answer".

This ultimate accuracy may not be justified by itself, but the implied consequences are very
important. If a particular routine is known to fit this model, then it will always get the same
results on different machines. If a particular function F(x) has monotonicity properties, such as
x <= y implies exp(x) <= exp(y), or range properties, such as -1 <= cos(x) <= 1, then the com-
puted function will inherit these properties.

Several years ago, a widely used Unix math library had cos(0) > 1. The value was an accu-
rate approximation to the exact value; it differed from 1 by only one bit in the last place. But it
violated a fundamental property of the cosine function. This kind of violation is not possible
when computations produce correctly rounded results.

It is often argued that the input x is not known exactly, so there is no reason to evaluate F(x)
exactly. This same argument could be (and actually has been) used to justify sloppy rounding
with basic arithmetic operations like additional and multiplication. Again, the goal is not the
accuracy itself, but the desirable mathematical consequences that correct rounding brings.

Whether or not this idealized model is justified in any particular context can be discussed in
that context. Whether or not such a model can be achieved with reasonable cost in time and
24 Java Grande Forum

Numerics Working Group Update
program size is a key question in the current discussion.

Ulps

Ulps stands for "units in the last place". This is a strong measure of error in which the error in
y is expressed relative to the spacing of the floating-point numbers near y. For all double pre-

cision numbers between 1 and 2, an ulp is 2-52. For numbers between 2k and 2k+1, an ulp is

2k-52.

The distance from any real number to the nearest floating-point number is less than or equal to
the half the spacing between the nearby numbers. So the correctly rounded results in our ide-
alized model have errors <= 0.5 ulps. Documentation for various elementary function libraries,
including FDLIBM, often says that the error is less than one ulp. That's good, but not perfect.
Half an ulp is the ultimate goal.

Square Root

The documentation for FDLIBM itself says:

 * --

 * | Use the hardware sqrt if you have one |

 * --

It may be true that the FDLIM software square root and various hardware square roots all pro-
duce the same results. But, if that's not the case, what should Java use? For square root, the
choice is clear: the hardware square root should be producing the correctly rounded answer,
so use it. But, for other functions, the resolution is not so clear.

What is pi?

Let pi be the transcendental mathematical quantity usually denoted by a Greek letter and let PI
be Java.lang.Math.PI , the floating point number closest to pi. What is the correct value
for Java.lang.Math.sin(PI) ? The answer is not zero, because PI is not equal to pi.
Here are two answers, one obtained from the FSIN instruction on an Intel Pentium and the
other obtained from FDLIBM:

 1.224606353822377e-16

1.224646799147353e-16

These two values agree to only five significant figures. If the FDLIBM result is regarded as the
correct answer, then the error in the FSIN result is 1.64e+11 ulps, or 164 gigaulps. It can be
argued that both values are so small that either one is an acceptable result, but the mere fact
that more than one answer is possible violates both the machine independence objective and
the idealized model.

The first stage in the computation of sin(x) is argument reduction. If abs(x) is greater than pi/2,
then an integer multiple of some approximation to pi is subtracted from x to bring it into the
desired range. Different hardware and software manufacturers use different approximations
Java Grande Forum 25

Numerics Working Group Update
to pi in this argument reduction. The FSIN instruction on Intel's Pentium has a 66-bit approxi-
mation to pi available in silicon for this purpose. Before the Pentium, earlier Intel 80x87 chips
used less accurate approximations to pi. Documentation for new Cyrix and AMD chips indi-
cate they may use more than 66 bits.

FDLIBM has a 1144-bit approximation to pi. This allows argument reduction equivalent to an

infinitely precise pi for any input value less than 21024, the largest possible double precision
floating point number. (See the papers by K. C. Ng available from
http://www.validgh.com/ .)

So, for sin(PI), the FDLIBM sin function gives the "correct" result required by our idealized
model, while the hardware instructions on various chips give different, less correct, results.
On the Pentium, the Java Development Kits from both Microsoft and Sun appear to use the
less accurate FSIN instruction.

Using these different values for pi for the argument reduction in sin(), cos() and tan() is the
most serious deterrent to machine independent results. When measured if terms of relative
error, or ulps, the discrepancies can be huge.

Moreover, it is going to be difficult to get everyone to agree on one particular value for pi. The
infinitely precise scheme in FDLIBM has the best overall mathematical properties, but its
advantages may not be strong enough to convince PC uses to abandon their builtin functions.

Computin g sin (x) for lar ge x

Because the Pentium FSIN instruction only "knows" 66 bits of pi, it can not do accurate reduc-

tion of large arguments. When invoked with an argument larger than 263, the instruction sets
an error bit in the floating-point status word and returns the argument unchanged. Systems,
like Java, that use the FSIN instruction without checking the error bit, find that for large x,
sin(x) is computed really fast, but is equal to x. This is unacceptable for general purpose tech-
nical computing.
26 Java Grande Forum

Numerics Working Group Update
Serious flaw in ex p(x)

Like sin(x), computation of exp(x) begins with an argument reduction. The role of pi is played
by ln2, the natural logarithm of 2. For any x, let n = round(x/ln2). Then

exp(x) = 2n * exp(x - n*ln2).

The reduced argument is in a range where exp() can be approximated quickly and accurately

by a modest number of terms in a power series. The final scaling by 2n is accomplished by
simply adding n to the floating-point exponent.

The integer n has been chosen so that severe subtractive cancellation occurs in the computa-
tion of the reduced argument, x - n*ln2. If the reduced argument is to have full relative preci-
sion, then ln2 must be represented to, and the computation must be carried out in, higher
precision. It appears that the exp function in Microsoft's libm, which is used by Visual C and by
both Microsoft's and Sun's JDKs, fails to do this. For example,

java.lang.Math.exp(100) = 2.688117141816161e+043

 ^^
whereas the exact answer is

exp(100) = 2.688117141816135448... * 10^43

 ^^^^^

The error is more than 52 ulps.

More extensive experiments show that as x increases, the maximum error in exp(x) doubles
whenever x/ln2 cross a power of 2. This is strong evidence that the argument reduction is not
being done carefully.

Table Maker's Dilemma

Is a perfectly rounded elementary math library possible and practical? The difficulty is that
nobody knows how much computation is required to achieve perfect rounding in all cases. If
F(x) is a transcendental function, then, except for special arguments like x = 0 and x = 1, the
value of F(x) is irrational. So, it can't be a floating-point number, and it can't fall exactly half-
way between two floating-point numbers. But it can fall arbitrarily close to halfway between
two numbers. A potentially very large number of extra digits is required to decide which way to
round. This is the Table Maker's Dilemma.

A good example involving the exponential function has been found by Vincent Lefevre and
Jean-Michel Muller of the Ecole Normale Superieure de Lyon (http://www.ens-

lyon.fr/~jmmuller/Intro-to-TMD.htm .) Let x be the floating point number obtained
by entering

x = 0.8375224553405740

The exact value of x is 7543731635572464 x 2-53, or, in hexadecimal, x = 1.ACCFBE46B4EF0

x 2-1. The decimal representation of exp(x) begins with
Java Grande Forum 27

Numerics Working Group Update
exp(x) = 2.3106351774748008...

The reason why we are interested in this number is revealed by the hexadecimal expansion of
exp(x)

exp(x) = 1.27C2E4BC1EE70 7FFFFFFFFFFFF EB0C2DA33BA8F ... x 21

The first blank is at the point where we have to decide how to round. Should we round down
to a floating-point number that ends in EE70, or up to EE71? The binary expansion after the
rounding point has a zero, followed by 54 ones, then another zero. We need to go into the
third double precision number before we can make the correct decision. If we decide to
accept

exp(x) = 1.27C2E4BC1EE70 x 21

the error is 0.4999999999999999818 ulps. If, instead, we were to round up to EE71 the error
would be 0.5000000000000000182 ulps. We have found our correctly rounded result, but it
wasn't easy to get it.

Lefevre and Muller have done an exhaustive search to establish that this is the worst case for
the exponential function with arguments between 1/2 and 1. But no one knows how much
extra precision is needed to do perfect rounding for all elementary functions and all double
precision floating point arguments.

Librar y Develo pment

Two research groups, one at Sun in Menlo Park and one at IBM in Haifa, are currently working
on elementary function libraries that deliver correctly rounded results. As far as we know, their
efforts have not yet been reviewed by others. We do not know how the execution time com-
pares with machine instructions or FDLIBM. And, the libraries may use fairly large tables, so
their memory requirements may be significant.

Proving that such a library is perfect by exhaustive search is out of the question. A rigorous
proof will have to involve careful mathematical analysis of the underlying algorithms and code.

Conclusions

Here are my recommendations for the vendors of Java libraries and the maintainers of the
Java specifications.

Immediately:

Fix the libraries on the PC so that exp(x) uses accurate argument reduction and sin(x),
cos(x) and tan(x) can be computed for large x. Check to see if there are any other
serious flaws.

The Java Spec:
28 Java Grande Forum

Numerics Working Group Update
Augment the reference to NETLIB with a link to Brophy's work. In strict mode, con-
tinue to require the FDLIBM results. In nonstrict mode, allow different values of pi and
any results with less than one ulp error.

A Future Java Spec:

Monitor the development of the perfectly rounded libraries. If they become viable,
independently reviewed, have publicly available source code and live up to their
claims, then change the spec to require perfectly rounded results in strict mode.
Java Grande Forum 29

Participants
5 Participants

Chairs
The following individuals have acted as coordinators of the Java Grande Forum and its
working groups.

• Ronald Boisvert, NIST, Numerics Working Group Co-chair

• Denis Caromel, INRIA Nice Sophia Antipolis, Concurrency Working Group Co-chair

• Geoffrey C. Fox, Syracuse University and NPAC, Academic Coordinator

• Dennis Gannon, Indiana University, Concurrency Working Group Co-chair

• Siamak Hassanzadeh, Sun Microsystems, Industry Coordinator

• Roldan Pozo, NIST, Numerics Working Group Co-Chair

• George K. Thiruvathukal, DePaul University, JHPC Laboratory, Secretary General

• Martin Westhead, EPCC, University of Edinburgh, UK, Benchmarking Group

Numerics Working Group
The following individuals contributed to the development of this document at the Java Grande
Forum meetings on May 9-10 and August 6-7 in Palo Alto, California.

• Ronald Boisvert, NIST, Co-chair

• John Brophy, Visual Numerics

• Sid Chatterjee, University of North Carolina

• Dmitri Chiriaev, Sun

• Jerome Coonen

• Joseph D. Darcy

• David S. Dixon, Mantos Consulting

• Geoffrey Fox, University of Syracuse

• Steve Hague, NAG

• Siamak Hassanzadeh, Sun

• Lennart Johnsson, University of Houston

• William Kahan, University of California, Berkeley

• Cleve Moler, The MathWorks

• Jose Moreira, IBM

• Roldan Pozo, NIST, Co-chair

• Kees van Reevwijk, Technical University, Delft

• Keith Seymour, University of Tennessee

• Nik Shaylor, Sun

• Marc Snir, IBM

• George K. Thiruvathukal, DePaul University, JHPC Laboratory, Chicago

• Anne Trefethen, NAG
30 Java Grande Forum

Participants
The working group also acknowledges helpful discussions with and input from the following
individuals.

• Cliff Click, Sun

• Susan Flynn-Hummel, IBM

• Roger Golliver, Intel

• James Gosling, Sun

• Eric Grosse, Bell Labs

• Bill Joy, Sun

• Tim Lindholm, Sun

• Sam Midkiff, IBM

• Bruce Miller, NIST

• Karin Remington, NIST

• Henry Sowizral, Sun

• Pete Stewart, University of Maryland and NIST

Participants in the Applications & Concurrency Working
Group
The following individuals contributed to the development of this document at the Java Grande
Forum meetings on May 9-10 and August 6-7 in Palo Alto, California.

• Fabian Breg, Indiana University

• Denis Caromel, INRIA, France, Co-chair

• George Crawford, MPI Software Technology

• Geoffrey Fox, NPAC, Syracuse University

• Dennis Gannon, Indiana, Co-chair

• Vladimir Getov, University of Westminster, UK

• Gregor von Laszewski, Argonne National Laboratory

• Piyush Mehrotra, ICASE

• Michael Philippsen, University of Karlsruhe, Germany

• Omer Rana, University of Wales, Cardiff, UK

• Tony Skjellum. MPI Software Technology

• Henry Sowizral, Sun

• George K. Thiruvathukal, DePaul University, JHPC Laboratory, Chicago

• Julien J. P. Vayssiere, INRIA Nice Sophia Antipolis

• Martin Westhead, EPCC, University of Edinburgh, UK

The following additional individuals also contributed comments which helped in the
development of this document.

• Henri Bal, Vrjie Universiteit Amsterdam, The Netherlands

• Bernhard Haumacher, University of Karlsruhe, Germany

• Mary Pietrowicz, NCSA
Java Grande Forum 31

Participants
Editor in Chief
• George K. Thiruvathukal, Java Grande Forum, Secretary General

Associate Editors
• Fabian Breg, Indiana University

• Ronald Boisvert, NIST, Numerics Working Group Co-chair

• Joseph Darcy

• Geoffrey C. Fox, NPAC, Syracuse University, JGF Academic Coordinator

• Dennis Gannon, Indiana University, Concurrency Working Group Co-chair

• Siamak Hassanzadeh, Sun Microsystems, Industry Coordinator

• Jose Moreira, IBM Thomas J. Watson Research Center

• Michael Philippsen, University of Karlsruhe, Germany

• Roldan Pozo, NIST, Numerics Working Group Co-chair

• Marc Snir, IBM Thomas J. Watson Research Center
32 Java Grande Forum

	Overview of Document
	Section 1: Recent Activity of the Java Grande Forum
	Section 2: About the Java Grande Forum and Grande Applications
	Section 3: Concurrency and Applications Working Group Status
	Section 4: Numerics Working Group Update

	1 Recent Activity of the Java Grande Forum
	Recent Conferences
	European Java Grande Forum

	2 About the Java Grande Forum and Grande Applications
	Mission and Goals
	Grande Applications
	Java for Grande Applications
	Java Grande Forum Process and Membership

	3 Concurrency and Applications Working Group Status/Update
	Critical JDK issues
	Performance of Object Serialization
	Performance of RMI

	Benchmarks
	Message Passing Interface
	Introduction
	MPI-like API for Java
	Object-oriented Java-centric message-passing environments
	Performance evaluation and comparisons

	Computing Portal Working Group (formerly Datorr)

	4 Numerics Working Group Update
	5 Participants
	Chairs
	Numerics Working Group
	Participants in the Applications & Concurrency Working Group
	Editor in Chief
	Associate Editors

