
ORBASEC SL2
User Guide

Adiron, LLC
2-212 CST

CASE Center
Syracuse University

Syracuse, NY 13244-4100

Version 2.0
April 1999

Copyright © 1999 Adiron, LLC. All Rights Reserved.

“Adiron”, “ORBASEC”, “ORBASEC SL2”, “ORBASEC SL2-GSSKRB”,
“ORBASEC SL2-SSL” are trademarks of Adiron, LLC.

“Object-Oriented Concepts”, “ORBACUS”, are trademarks or registered
trademarks of Object-Oriented Concepts, Inc.

“OMG”, “CORBA” are trademarks of the Object Management Group, Inc.

“Java” is a trademark of Sun Microsystems, Inc.

“IAIK”, “iSaSiLk” are trademarks of the Institute of Applied Information and
Communication, Graz, Austria

CHAPTER 1 ORBASEC SL2
Introduction 13
What is ORBASEC SL2? 13
Developments Since ORBASEC SL2 Beta 3 14
What is ORBACUS? 14
What is CORBA Security Level 2? 15
What is SECIOP? 15
What is Security Replaceability? 15
What is Kerberos? 16
What is SSL? 16
How is ORBASEC SL2 Licensed? 17
About this Document 18
The Future of ORBASEC SL2 18
Requirements for ORBASEC SL2-GSSKRB 19
Requirements for ORBASEC SL2-SSL 19
Getting Help 20

CHAPTER 2 Getting Started 21
Getting Started 21

Adiron’s Test Kerberos Key Distribution Center
(KDC) 22

Overview 22
The IDL code 23
Implementing the Example in Java 23

Implementing the Server 23
Implementing the Client 28

Compiling the Demo 31
Running the Demo 32

Running the Server 32
Running the Client 33

Modifying the Server 35
Server Accepting Options 35

Modifying the Client 38

Invocation Policies 38
Changing Policies on Current 40
Changing Policies on Object References 42

Where to Go From Here 44

CHAPTER 3 SL2 Initialization 45
Initializing SL2 45
ORBASEC SL2 Configuration 47

Standard ORBASEC SL2 Properties 47
orbasec.seciop 47
orbasec.seciop.host 48
orbasec.seciop.port 48
orbasec.ssliop 49
orbasec.ssliop.host 49
orbasec.ssliop.port 49
orbasec.ssliop.exportable_only 50
orbasec.iiop 50
orbasec.iiop.host 51
orbasec.iiop.port 51
orbasec.kerberos_session 51
orbasec.anonymous_ssl 52
orbasec.allow_iiop 52
ORBASEC SL2 Command-line Options 53

Secure ORB Services 54
Getting SecurityCurrent 54
Adding your own Security Mechanisms 55
SL2 Version 57

CHAPTER 4 Security Current 59
Security Current 59

Getting the Current Object 59
ORBASEC SL2 Extentions to Current 60

Standard Attributes and Operations 60
ORBASEC SL2 Extensions to Current 67

Policy Operations 69
Accepting Credentials Attributes and Operations 71

CHAPTER 5 Principal Authenticator 75
Principal Authenticator 75

authenticate 76
continue_authentication 80
get_supported_authen_methods 81

Authentication using ORBASEC SL2-
GSSKRB 81

Mechanism 82
Security Name 82
Authentication Data 82
Session Credentials Example 88

Authentication using ORBASEC SL2-SSL 89
Mechanism 89
Security Name 92
Authentication Data 92
Example of a creation of an Anonymous SSL
Credentials Object 94

Authentication of IIOP Credentials 95
Mechanism 95
Security Name 95
Authentication Data 95
Example of a creation of an Anonymous SSL
Credentials Object 95

CHAPTER 6 Credentials 97
What are Credentials? 97
Credentials 98

copy 100
destroy 100
credentials_type 101
authentication_state 101
mechanism 102

accepting_options_supported 102
accepting_options_required 104
invocation_options_supported 105
invocation_options_required 107
get_security_feature 108
set_attributes 108
get_attributes 109
is_valid 109
refresh 110

Received Credentials 111
accepting_credentials 111
association_options_used 111
delegation_state 112
delegation_mode 112

Target Credentials 113
initiating_credentials 113
association_options_used 114

Security Attributes of Credentials 114
CORBA Family of Security Attributes 115

How are the Credentials Related to the IOR? 119
Important Temporal Considerations 122

Extensions for ORBASEC SL2-SSL
Credentials 123

CHAPTER 7 Policies 125
Policies 125

Temporal Considerations 126
MechanismPolicy 126

Default Mechanism Policy 127
Invocation Credentials Policy 128

Default Invocation Credentials Policy 128
QOP Policy 129

Default QOP Policy 130
Delegation Directive Policy 132

Default Delegation Directive Policy 132

Establish Trust Policy 132
Default Establish Trust Policy 133

Invocation Policy Analysis 136
Specific Policies on Object References 137
Setting Default Policies 138
ORBAsec SL2 Specific Policies 138

TrustedAuthorityPolicy 138
In the Absence of a Trusted Authority Policy 141

CHAPTER 8 Security Replaceable 143
Security Replaceable 143
The Vault 144

init_security_context 145
accept_security_context 148
acquire_credentials 150
continue_credentials_acquisition 153
get_supported_mechs 155
get_supported_authen_methods 155
supported_mech_oids 155

Credentials 156
copy 157
destroy 158
credentials_type 158
authentication_state 159
mechanism 159
accepting_options_supported 159
accepting_options_required 160
invocation_options_supported 161
invocation_options_required 162
get_security_feature 162
set_attrbiutes 163
get_attributes 164
is_valid 164
refresh 165

Received Credentials 165
accepting_credentials 166

association_options_used 166
delegation_state 166
delegation_mode 167

Target Credentials 167
initiating_credentials 168
association_options_used 168

Security Context 169
context_type 170
context_state 170
supports_refresh 172
mechanism 172
chan_binding 172
peer_credentials 172
continue_security_context 173
protect_message 173
reclaim_message 174
is_valid 174
refresh_security_context 174
process_refresh_token 175
discard_security_context 176
process_discard_token 176

ClientSecurityContext 177
association_options_used 178
delegation_mode 178
mech_data 178
client_credentials 179
server_options_supported 179
server_options_required 180
server_security_name 180

Server Security Context 180
association_options_used 181
delegation_mode 181
server_credentials 182
server_options_supported 182
server_options_required 183
server_security_name 183

CHAPTER 9 Security Opaque Encodings 185
Opaque Encodings 185
The Opaque Class 186

The Opaque Interface 187
The Opaque.encode Methods 187
The Opaque.decode Operation 189

CHAPTER 10 The SL2 Class 193
The SL2 Class 193

CHAPTER 11 Other Java Utility Classes 199
Other Java Utility Classes 199

CHAPTER 12 References 201

ORBASEC SL2 13

CHAPTER 1 ORBASEC SL2
Introduction

What is ORBASEC SL2?
THIS IS THE RELEASE 2.0 VERSION OF ORBASEC SL2

ORBASEC SL2 is a secure Object Request Broker (ORB) that is compliant with the
Common Object Request Broker Architecture (CORBA) security service specifica-
tion as defined by the Object Management Group (OMG). ORBASEC SL2 is com-
pliant with the Security Level 2 specification of the proposed 1.6 Revision of the
Security Service Specification [4].

The features ORBASEC SL2 supports:

• Full functionality of the ORB, ORBACUS 3.1.2 for Java.[6]

• CORBA Security Level 2 Functionality.

• SECIOP - SECure Inter-Operability Protocol compliant.

• Security Replaceability

• Kerberos Version 5 (GSS-API)

• Secure Sockets Layer Version 3 (SSL)

• Unprotected Communication (IIOP)

ORBASEC SL2 Introduction

14 ORBASEC SL2

ORBASEC SL2 gives the application developer the means necessary to provide
security in the form of authentication and strongly encrypted messsaging to write
develop and deploy secure distributed applications.

Developments Since ORBASEC SL2 Beta 3

During the ORBASEC SL2 Beta 1 through Beta 3 phases, work was going on at the
OMG to update the security specification. Some of the interfaces that were pre-
sented in ORBASEC SL2 in those phases were listed as extensions to the Security
Level 2 specification. We are now happy to report that most of those interfaces are
no longer extensions to the Security Level 2 specification, but are now part of it.
This document can be compared with the Beta 2 document for the differences.

In Beta 3, we have updated the GSS-API portion of the Kerberos implementation
from MIT. These modifications fixed some problems with the library, concerning
bad handling of delegated credentials. Also, ORBAsec SL2 now has the ability to
use memory based credentials caches, so that a client’s credentials do not have to
reside on a file on the local file system.

In Beta 3, we have added support for Secure Sockets Layer (SSL) protocol by inte-
grating an SSL toolkit from IAIK. Now, ORBASEC SL2 can give you Kerberos,
SSL, or both. Using a common common credentials model, such as the one in
CORBA Security Level 2, makes this an easy switch, should you need to support
both security protocols.

What is ORBACUS?

ORBASEC SL2 is implemented on top of ORBACUS 3.1.2 for Java, the Object
Request Broker from Object Oriented Concepts, Inc. The implementation of
ORBACUS allowed the introduction of ORBASEC SL2 through the ORBACUS Open
Communications Interface (OCI). This particular feature of ORBACUS is beneficial
because it provides the capability for “plug-able” transport mechanisms to be
placed underneath the ORB request protocol (GIOP). Therefore, ORBASEC SL2 is
placed on top of ORBACUS without modification to ORBACUS to give you the
capability of authentication and secure encrypted communication.

ORBASEC SL2 15

What is CORBA Security Level 2?

What is CORBA Security Level 2?

Security Level 2 is the term used by the CORBA Security Services Specification[4]
that gives a certain level of functionality to the application programmer in the form
of an API. Its basic features are:

• Security Current Object

• Credentials Object

• PrincipalAuthenticator Object

• Various Runtime Security Policy Objects

Each of these objects can be queried and manipulated to get the desired security of
communication and authentication.

What is SECIOP?

SECIOP stands for the SECure Inter-Operability Protocol. This standard protocol
is specified in the CORBA Security Services Interoperability section. It is an
Interoperable protocol that uses the GSS Token format standards for delivering
authentication data and message protection data in a communications channel.

What is Security Replaceability?
Security Replaceable is a module specified in the CORBA Security Service specifi-
cation. Its main capability is to standardize an interface so that different authentica-
tion and cryptography mechanisms can be “plugged” into the ORB security service
and the SECIOP protocol.

Due to American and Canadian export laws, it may be necessary to weaken the
cryptography module to be able to export the entire product out of the country.

Besides weakening, other encryption and authentication mechanisms may be able
to be plugged into the ORB and still use the ORBASEC SL2 functionality, provided
they conform to the CORBA Security Replaceable interfaces. Security Replaceable
defines the interfaces that must be implemented so that you, the application pro-

ORBASEC SL2 Introduction

16 ORBASEC SL2

grammer, or a third party vendor can build desired security and authentication mod-
ules and integrate them into the ORB security service in a standard fashion.

ORBASEC SL2 provides this functionality. An API is provided should the applica-
tion programmer choose to create his own Security Replaceable Modules for
SECIOP. See “Security Replaceable” on page 143.

What is Kerberos?
Kerberos is an authentication infrastructure developed at MIT and standarized at
the Internet Engineering Task Force (IETF) organization.

ORBASEC SL2-GSSKRB distribution comes with a Security Replaceable Module
supporting the GSS-Kerberos from the Massechusetts Institute of Technology
(MIT). This distribution includes a Java Archive (JAR) file, GSSKRB.jar, and
platform specific shared library files (or DLLs) that comprise the native implemen-
tation the MIT version of the GSS-API Kerberos Protocol. The ORBASEC SL2-
GSSKRB distribution gives the applications the ability to interact with standard
Internet RFC 1510[1] compliant Key Distribution Centers (KDC) for authentica-
tion services. The library also supplies the cryptography necessary for secure com-
munication between ORB clients and ORB target objects.

What is SSL?
SSL is short for Secure Socket Layer v3.0. SSL is a socket level protocol standard-
ized by Netscape, Inc. that sets up a secure connection between two network enti-
ties.

The ORBASEC SL2-SSL distribution comes with the SSL protocol utilizing an SSL
toolkit from the Institute for Applied Information and Communication in Graz,
Austria. This distribution includes a Java Archive (JAR) file, SSLIAIK.jar.

The ORBASEC SL2-SSL distribution gives the application writer the ability to
write applications that communicate securely with other applications using authen-
tication involving X.509 certificate based public key technology, such as DSA and
RSA for authentication and secure communication. However, it does not (yet)
interoperate with any established Public Key Infrastructure components, due to the

ORBASEC SL2 17

How is ORBASEC SL2 Licensed?

lack of mature standards in this area. Currently, ORBASEC SL2-SSL uses files con-
taining PEM or DER encoded ceritificate chain and private key files. Should there
be a commercial need for your organization to use a PKI please contact us at
Adiron.

How is ORBASEC SL2 Licensed?

ORBASEC SL2 requires that several third party toolkits be installed and they must
be obtained and licensed from those vendors.

• Sun JDK 1.1.x from JavaSoft, Inc.

• ORBACUS 3.1.x from Object Oriented Concepts, Inc.

ORBASEC SL2-GSSKRB requires that you have a Kerberos Version 5 compliant
Key Distribution Center running that is accessible from or at your site. If you don’t
already have one, you can get one by licensing the following:

• MIT Kerberos 1.0.5, from the Athena Project at Massechusetts Institute of
Technology

ORBASEC SL2-SSL requires a liscense from the following:

• iSaSiLk from IAIK, the Institute for Applied Information Processing and Com-
munication, Graz, Univerity of Technology, Graz, Austria

Also, if you want to use any cryptographic algorithms owned by RSA, Inc. with the
ORBASEC SL2-SSL distribution, you need:

1. A user or development license from RSA, Inc.
2. An on-site consulting agreement with Adiron, LLC to enable use of RSA with

ORBAsec SL2.

ORBASEC SL2 is an open source distribution which requires developer licenses
and runtime licenses in some cases. Please contact Adiron
(sales@adiron.com) for your ORBASEC SL2 licensing needs.

ORBASEC SL2 Introduction

18 ORBASEC SL2

About this Document
This document is layed out in such a way to give the application programmer a feel
for installing and using ORBASEC SL2. This manual is also no replacement for a
good book on CORBA or CORBA Security. Also, this manual is no substitute for a
good book on security, authetication, encryption, or the Kerberos protocol in gen-
eral.

Unfortunately, the only book out on CORBA security at the moment is the CORBA
Security Specification itself.[4] This specification outlines a framework and gives a
good background on how one might build a secure ORB, but it is by no means
intended to be a users guide.

The Future of ORBASEC SL2
ORBASEC SL2 is not a fully functional Security Level 2 implementation, but it is
fully compliant. A fully functional Security Level 2 implementation is not imple-
mentable as a single ORB library. It involves other components that provide man-
agement services, such as policy management, and access control based on those
policies. The pieces that ORBASEC SL2 does not automatically use are:

• Required Rights Object

• Access Decision Object

• Auditing Decision Object

• Domain Access Policy Object

How and when the above objects are used is not exactly specified in Security Level
2. However, that does not preclude the application developer from implementing
the interfaces and using them in their applications at appropriate times.

Using these components in an automatic fashion, i.e. unbeknownst to the applica-
tion implementation, requires the notion of Request Level Interception. ORBACUS
does not currently have support for Request Level Interception, nor has the OMG
completed a fully operational specification for Request Level or Message Level
Interceptors. However, a Request for Proposal (RFP) has been issued by the OMG
to standarize interceptors. This RFP is known as the “RFP for Portable Intercep-
tors.”

ORBASEC SL2 19

Requirements for ORBASEC SL2-GSSKRB

Note – Other ORBs have support for request level interception, but provide
insufficient or no support for message level interception. ORBacus gives us a
form of message level interception based on their OCI interfaces which allow us
to place the SECIOP and SSLIOP transport protocol into the ORB. This ability
is crucial, as secure communication is handled at the transport layer.

There are other objects that ORBASEC SL2 does not use, or cannot use, because
they are specified as part of the CORBA CORE, and ORBACUS does not implement
them. These interfaces pertain to domain management, which is security related.

• Construction Policy Object

• Domain Manager Object

Adiron, LLC is creating several products built on top of ORBASEC SL2 that will
provide centralized policy management. This capability will include, user and priv-
ilege management and centralized description of security policy including access
control. However, this capability will invent, create, and make use of a higher para-
digm for security than just CORBA security. Please visit our web site for updates
on research and developments.

Requirements for ORBASEC SL2-GSSKRB
The following external software packages must be installed in order to run CORBA
applications which use ORBASEC SL2-GSSKRB:

• Sun Java Development Kit (JDK), version 1.1.6 or later

• Object Oriented Concepts ORBACUS 3.1.2 for Java

• An Operational MIT Kerberos 5, version 1.0.5 compliant KDC

Requirements for ORBASEC SL2-SSL
The following external software packages must be installed in order to run CORBA
applications which use ORBASEC SL2:

• Sun Microsystem’s Java Development Kit (JDK), version 1.1.6 or later

• Object Oriented Concepts ORBACUS 3.1.2 for Java

ORBASEC SL2 Introduction

20 ORBASEC SL2

• IAIK’s iSaSiLk 2.0 toolkit and cryptographic libraries

Getting Help
There is help in the form of email to support@adiron.com. Also, we have set
up a mailing list. To subscribe to the mailing list, send a message to major-
domo@adiron.com (not sl2@adiron.com) with

subscribe sl2

in the body (e.g. not the Subject: field) of your message. To unsubscribe, use

unsubscribe sl2

in the body of the message. To send a message to the list, mail to
sl2@adiron.com (not majordomo@adiron.com). You must subscribe to
the list before you may publish to it.

ORBASEC SL2 21

CHAPTER 2 Getting Started

Getting Started

The ORBASEC SL2 distribution contains a modification of the ORBACUS “Hello
World” application, which is a simple distributed application based on an introduc-
tory programming example. This application is identical to the ORBACUS “Hello
World” application, except for the classes Server and Client, which have been
modified to use ORBASEC SL2 security features. The source files Server.java
and Client.java have been modified, accordingly.

In this chapter, we will walk through the provided source code for the Server and
Client classes, discussing the security features in the ORBASEC SL2 implementa-
tion. Readers should be familiar with the ORBACUS implementation as described in
the “Getting Started” chapter of the ORBACUS user manual [6].

To run the ORBASEC SL2 application in this chapter, you should have

1. The files SL2.jar and GSSKRB.jar in your CLASSPATH along with OB.jar;
2. A running Kerberos V5 KDC;
3. A valid user principal for the Client, such as “user@REALM”;
4. A password for the user principal, known to the KDC;

Getting Started

22 ORBASEC SL2

5. Either i) a valid Kerberos service principal for the Server, such as
“host/machine.address.com@REALM”, together with permission to
read a keytab file in which the service principal resides, or ii) valid user princi-
pla for the Server, together with that principal’s password. The demo supplied
with the distribution uses the latter user-principal/password to demonstrate the
use of memory keytabs in ORBASEC SL2.

Note – If you use the service-principla/keytab technique for authenticating a
Server, your Kerberos Administrator may have to create a user and service
principal for you, in addition to the keytab file which holds the service principal.
Contact your Kerberos Administrator for assistance, if necessary.

Adiron’s Test Kerberos Key Distribution Center (KDC)

If you use the supplied Kerberos configuration file, orbasec_krb5.config, this
directs your Kerberos configuration to the KDC on line at Adiron. Using given
principals, passwords, and keytab files, the demonstration programs should run out-
of-box. This KDC is for your use in evaluation of ORBASEC SL2-GSSKRB. It will
remain on-line; however, Adiron can make no guarantees that it will remain on-line
indefinitely, that it will remain in the same location, or that the principal’s stored in
it will last forever. Adiron will make notices on its SL2 mailing list
(sl2@adiron.com) if the configuration of the KDC should change.

Overview
Implementing an ORBASEC SL2 Server and Client is done in Java in much the
same way as in ORBACUS, except:

• ORBASEC SL2 must be initialized in both the Client and Server; and

• The Client and Server must authenticate themselves to the Kerberos V5 KDC
through the PrincipalAuthenticator, an object implemented by ORBASEC
SL2.

Once the Server and Client have been authenticated, the resulting Credentials
object may be modified to reflect security features supported and required by the
underlying security mechanisms. In addition, security policies may be established
on the Client to reflect application-specific policies that will be enforced by the
Security Level 2 implementation.

ORBASEC SL2 23

The IDL code

This chapter provides an example demonstrating ORBASEC SL2 initialization and
authentication through the PrincipalAuthenticator, together with a tutorial
explaining how to modify credentials and create application-specific policies.

The IDL code
The IDL code is the same as that in the ORBACUS example.

// IDL
interface Hello
{
 void hello();
}

Implementing the Example in Java

Just as in the ORBACUS example, we must translate the IDL code to Java using the
ORBACUS IDL-to-Java compiler:

jidl --package hello Hello.idl

See the ORBACUS documentation for details about the jidl command.

Implementing the Server

The Java implementation of the Hello servant is not exactly the same as that in the
ORBACUS example. We have modified it to print out the credentials of the client
that is making the invocation on the hello operation.

// Java
package hello;
import org.omg.CORBA.*;
import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

public class Hello_impl extends _HelloImplBase
{

Getting Started

24 ORBASEC SL2

 public ORB orb;
 public void hello()
 {
 try {
 Current current = CurrentHelper.narrow(
 orb.resolve_initial_references(
 “SecurityCurrent”));
 ReceivedCredentials c = current.received_credentials();
 orbasec.corba.CredUtil.dumpCredentials(System.out,c);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 }
}

The utility class orbasec.corba.CredUtil uses the standard CORBA Security Level
2 interfaces to display the Credentials object in a human readable form.

As in the ORBACUS implementation, we write a class containing a main method
which starts up the Hello servant. Unlike ordinary CORBA applications, however,
we must initialize ORBAsec SL2 via the init_with_boa static initializer on the
orbasec.SL2 class. Calling this method automatically initializes the ORB and
BOA using the commnad-line options in the args parameters, together with any
user-supplies java.util.Properties. Once SL2 is initialized, we may retrieve the
ORB and BOA via the orb and boa accessors, respectively.

// Java
import org.omg.CORBA.*;
import java.util.Properties;

public void main(String[] args)
{
 // ORB, BOA, and SL2 initialization
 java.util.Properties properties =
 new java.util.Properties();
 orbasec.SL2.init_with_boa(args, properties);
 ORB orb = orbasec.SL2.orb();
 BOA boa = orbasec.SL2.boa();
 ...
}

ORBASEC SL2 25

Implementing the Example in Java

Once ORBASEC SL2 is initialized, we may then ask the ORB for a reference to the
SecurityLevel2::Current object, from which we will obtain most of the security-
related functionality for the Server:

// Get SecurityLevel2::Current from ORB
org.omg.CORBA.Object obj =
 orb.resolve_initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current current =
 org.omg.SecurityLevel2.CurrentHelper.narrow(obj);
...

Note – The SecurityLevel2::Current object is only available on the ORB after
ORBASEC SL2 has been initialized.

With a reference to the SecurityLevel2::Current, we can obtain the PrincipalAu-
thenticator, the SecurityLevel2 object we use to initialize the Server’s creden-
tials. We initialize the credentials via the PrincipalAuthenticator’s authenticate
method:

// Authenticate using PrincipalAuthenticator
org.omg.SecurityLevel2.PrincipalAuthenticator pa;
pa = current.principal_authenticator();

int method = 0;
String mechanism = “Kerberos”;
byte security_name[] =
 orbasec.corba.Opaque.encodeKerberosName(
 “homer@MYREALM.COM”
).getEncoding();
byte auth_data[] =
 (“config=FILE:orbasec_krb5.config\n” +
 “delegation=false\n” +
 “cache_name=MEMORY:0\n” +
 “enable_server=true\n” +
 “password=\”mypassword\”\n” +
 “keytab=MEMORY:0\n”
).getBytes();
org.omg.Security.SecAttribute privileges[] =
 new org.omg.Security.SecAttribute[0];
org.omg.SecurityLevel2.CredentialsHolder creds_holder =
 new org.omg.SecurityLevel2.CredentialsHolder();
org.omg.Security.OpaqueHolder
 continuation_data =

Getting Started

26 ORBASEC SL2

 new org.omg.Security.OpaqueHolder(),
 auth_specific_data =
 new org.omg.Security.OpaqueHolder();

pa.authenticate(
 method,
 mechanism,
 security_name,
 auth_data,
 privileges,
 creds_holder,
 continuation_data,
 auth_specific_data
);

The method parameter specifies the authentication method with which to authenti-
cate the principal. The OMG has not specified values for this parameter, so we sup-
ply 0 (the default) as a value.

The mechanism parameter specifies the mechanism with which to authenticate the
principal (in this case, we use the Kerberos mechanism).

The security_name parameter indicates the principal name to be recognized by the
specified security mechanism. In this case, we provide a valid Kerberos 5 principal
name (“homer@MYREALM.COM”). For ORBASEC SL2, the name must be
encoded into a proper Opaque value that ORBASEC SL2 will understand. A special
utility class for these encodings is orbasec.corba.Opaque. Please see the chapter
on “Security Opaque Encodings” on page 185 for details.

Note – You may need to ask your Kerberos Administrator to create a valid
principal for you.

The auth_data parameter in the authenticate method is a string converted to a
byte array containing properties that are used for the GSS-Kerberos Security Mech-
anism. It is essential that each property be separated with the newline (‘\n’)
delimiter.

The above properties specify that:

• orbasec_krb5.conf is the configuration file that states where the KDC
resides;

• This principal should have no capacity for delegation;

ORBASEC SL2 27

Implementing the Example in Java

• The principal’s credentials should be stored in a memory credentials cache indi-
cated by MEMORY:0;

• That the authenticated principal is a server.

• The principal is authenticated with the password “mypassword”.

• The principal’s key is stored in a memory type keytab, MEMORY:0.

Note – All of the definable GSS-Kerberos properties and their meanings are
given in [“Authentication Data” on page 82], and the exact values of these
properties will vary according to your Kerberos 5 configuration.

The ORBASEC SL2 implementation of GSS-Kerberos imposes the restriction that
all server applications must have the enable_server property in the auth_data
parameter set to true. Furthermore, if the auth_data parameter contains a keytab
property, then the principal’s key is assumed to be stored in this file, and no pass-
word property is needed. If the keytab specifies a file (i.e. prefixed by FILE:),
then the named file, which contains the designated principal’s key, must be read-
able by the owner of the process running the Server. The default keytab file (usu-
ally /etc/krb5.keytab) is read-only by the super-user, since it holds the keys
to the principal names of standard kerberized services, such as FTP, TELNET, and
LOGIN. If you need the keys in a file, you should ask your Kerberos administrator
to create a special keytab file containing the principals you may use for the example
Server. A keytab file is needed if the principal has a “randomized” key, which
means that it does not have a password. If the principal has a password, then a
memory keytab can be specified which does not expose the principal’s encryption
key to a file system.

The privileges parameter specifies privileges that must be authenticated through
the security mechanism. The GSS-Kerberos security mechanism provides no sup-
port for such privileges, so we pass an empty Security::SecAttribute list.

Once the server is authenticated, the Credentials object is returned in the Creden-
tialsHolder structure; they are also stored on the SecurityLevel2::Current
object’s own_credentials list attributefor easy access from other parts of the pro-
gram.

The continuation_data and auth_specific_data output parameters are used with
security mechanisms that support multi-step authentication protocols. The GSS-
Kerberos security mechanism only supports single-step authentication, so the out-
put parameter values are ignored.

Getting Started

28 ORBASEC SL2

The remainder of the program is the same as it is in ORBACUS. An instance of the
Hello_impl class is created, the IOR for that servant is written to a file, and the
BOA starts servicing requests from clients via the impl_is_ready method. (See the
ORBACUS documentation for sample code).

Note – The Server must authenticate a principal and obtain a credentials object
before the IOR is advertised to clients. This procedure is necessary because the
IOR contains mechanism-specific data that a client will need to use in order to
communicate securely with the server. If the Server has not authenticated a
principal, no security information will get advertised in the Hello object’s IOR,
and an exception will be raised upon making a request.

Implementing the Client

The Client implementation is much the same as it is in ORBACUS, except that, like
the Server implementation, the Client must be authenticated through the Principa-
lAuthenticator’s authenticate method. As before, a reference to the PrincipalAu-
thenticator is obtained through the SecurityLevel2::Current

// Java
import org.omg.CORBA.*;
import java.util.Properties;

public void main(String[] args)
{
 // ORB, BOA, and SL2 initialization
 Properties properties = new Properties();
 orbasec.SL2.init(args, new Properties());
 ORB orb = orbasec.SL2.orb();

 // Get SecurityLevel2::Current from ORB
 org.omg.CORBA.Object obj =
 orb.resolve_initial_references(“SecurityCurrent”);
 org.omg.SecurityLevel2.Current current =
 org.omg.SecurityLevel2.CurrentHelper.narrow(obj);

Note – In general, there need not be a BOA to accept requests for client
applications, since client applications are not typically CORBA objects.

Client authentication is similar to that of the Server:

ORBASEC SL2 29

Implementing the Example in Java

current = // get reference to Current

// Authenticate using PrincipalAuthenticator
org.omg.SecurityLevel2.PrincipalAuthenticator pa;
pa = current.principal_authenticator();

int method = 0;
String mechanism = “Kerberos”;
byte security_name[] =
 orbasec.corba.Opaque.encodeKerberosName(
 “bart@MYREALM.COM”
).getEncoding();
byte auth_data[] =
 (“config=FILE:orbasec_krb5.config\n” +
 “delegation=false\n” +
 “cache_name=MEMORY:0\n” +
 “password=\”mypassword\”\n”
).getBytes();
org.omg.Security.SecAttribute privileges[] =
 new org.omg.Security.SecAttribute[0];
org.omg.SecurityLevel2.CredentialsHolder creds_holder =
 new org.omg.SecurityLevel2.CredentialsHolder();
org.omg.Security.OpaqueHolder
 continuation_data =
 new org.omg.Security.OpaqueHolder(),
 auth_specific_data =
 new org.omg.Security.OpaqueHolder();

pa.authenticate(
 method,
 mechanism,
 security_name,
 auth_data,
 privileges,
 creds_holder,
 continuation_data,
 auth_specific_data
);

The method parameter specifies the authentication method with which to authenti-
cate the principal. The OMG has not specified values for this parameter, so we sup-
ply 0 (the default) as a value.

Getting Started

30 ORBASEC SL2

The mechanism parameter specifies the mechanism with which to authenticate the
principal (in this case, we use the Kerberos mechanism).

The security_name parameter indicates the principal name to be recognized by the
specified security mechanism. In this case, we provide a valid Kerberos 5 principal
name (“bart@MYREALM.COM”). Like the server, this must be in the special
Opaque encoding of a Kerberos Name. Please see chapter on “Opaque Encodings”
on page 185 for further details.

Note – You may need to ask your Kerberos Administrator to create a valid
principal for you. You will need a valid password for this principal, as well.

The auth_data parameter in the authenticate method is a byte array containing
properties that are used in the GSS-Kerberos Security Mechanism. Please note that
it is essential that each property be separated with the newline (‘\n’) delimiter.

The above properties specify that:

• orbasec_krb5.conf is the configuration file that states where the KDC
resides;

• This principal should have no capacity for delegation;

• The principal’s credentials should be stored in a memory credentials cache indi-
cated by MEMORY:0;

• The principal is authenticated with the password “mypassword”.

Note – All of the definable GSS-Kerberos properties and their meanings are
given in [“Authentication Data” on page 82], and the exact values of these
properties will vary according to your Kerberos 5 configuration.

The ORBASEC SL2 implementation of GSS-Kerberos imposes the convention that
if the auth_data parameter does not contain a keytab property (or if it is empty),
then the principal’s credentials must be obtained in one of two ways: if the
auth_data parameter contains a password property, then the principal should be
authenticated using the designated password; if, on the other hand, the auth_data
parameter does not contain a password property (or if it is empty), then the Ker-
beros client should already have been authenticated externally (e.g., via the Ker-
beros kinit program). In this case, a designated cache file should already contain the
principal’s Kerberos credentials. To designate a cache file, the cache_name prop-
erty should have the form “FILE:<filename>”. If the cache_name property is
empty, then the default cache is used. This cache will be a file named by “/tmp/

ORBASEC SL2 31

Compiling the Demo

krb5cc_<uid>” on Unix systems where uid is the user number of the user that is
logged on. See the ORBASEC property “orbasec.kerberos_session” on page 51 for
how to automatically initialize Kerberos session credentials during SL2 initializa-
tion.

If you attempt to use the default credentials cache file without a password, the Ker-
beros name supplied in the security_name parameter must match those in the cre-
dentials cache file or a GSS Exception will be thrown. Alternatively, you may set
the security_name parameter to null or new byte[0] to automatically use the
name in the credentials cache file.

The privileges parameter specifies privileges that must be authenticated through
the security mechanism. The GSS-Kerberos security mechanism provides no sup-
port for such privileges, so we pass an empty Security::SecAttribute list.

Once the server principal is authenticated, a Credentials object is returned in the
CredentialsHolder structure; the Credentials object is also stored on the
SecurityLevel2::Current::own_credentials attribute for easy access from other
parts of the program.

The continuation_data and auth_specific_data output parameters are used with
security mechanisms that support multi-step authentication protocols. The GSS-
Kerberos security mechanism only supports single-step authentication, so the out-
put parameter values are ignored.

The remainder of the program is the same as it is in ORBACUS. A reference to the
Hello object is obtained from the published IOR, and the program enters a loop
calling the hello method of the referenced object. (See the ORBACUS documenta-
tion for sample code).

The Client should be authenticated via the PrincipalAuthenticator after the ORB
and ORBASEC SL2 have been initialized and before making any requests on the
Hello object.

Compiling the Demo
The procedure for compiling the demo is fairly straight forward, should you be
familiar with make files. From within the sl2/demo/krb-hello directory, run
the command:

Getting Started

32 ORBASEC SL2

make

You need to make sure that you have the ORBACUS jidl command in your execu-
tion path, and you must have OB.jar, SL2.jar, GSSKRB.jar in your Java CLASS-
PATH.

You should see the following output:

mkdir classes
mkdir generated
jidl --tie --package hello --output-dir generated Hello.idl
CLASSPATH=.:./classes:$CLASSPATH \
javac -deprecation -d classes \
generated/hello/*.java

Running the Demo
Running the demo involves starting the Server and then starting the Client. The
Server must be started first, because it writes out the IOR of the Hello object to a
file called Hello.ref.

Running the Server

To run the Server, type:

java hello.Server

You should see the following output:

Own Credentials:
Credentials:

credential_type = SecOwnCredentials
mechanism = Kerberos_MIT
accepting_options_supported =

[NoProtection,Integrity,Confidentiality,DetectReplay,EstablishTrustInTarget,Est
ablishTrustInClient,NoDelegation,SimpleDelegation]

accepting_options_required = [EstablishTrustInClient]
invocation_options_supported =

[NoProtection,Integrity,Confidentiality,DetectReplay,EstablishTrustInTarget,Est
ablishTrustInClient,NoDelgation]

invocation_options_required = [EstablishTrustInClient]
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,2,”Adiron”,”30514”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)

ORBASEC SL2 33

Running the Demo

 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”,”bart@MYREALM.COM”)

Hello Server is Ready.

The Server authenticates its principal and then displays its credentials. You may
want observe the accepting_options_supported and accepting_options_required
attributes as these will change if you modify the demo according to the following
sections.

The security attributes listed at the bottom of the listing contain the attributes of the
Credentials that have been dumped to the screen. Attributes are typed by 3 num-
bers, the Family Definer, and Family, and then the type. The last one listed is the
AccessId attribute, which belongs to the CORBA (0) Family (1) and is Type (2).

Adiron has its own families of security attributes, Family Definer of (41244, i.e.
0xA11C).

Family 0 Type 1 is the security mechanism.

Family 1 pertains to network addresses. Family 1 Type 1 names the local IP host
address. Family 1 Type 2 names the local IP port number. Family 1 Type 3 names
the remote IP host address, and Family 1 Type 4 names the remote IP port number.

Note – These Adiron IP attributes will have different values than printed here
when you run the programs.

Running the Client

To run the Client, type:

java hello.Client

You should see the following output:

Own Credentials:
Credentials:

credential_type = SecOwnCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported =

[NoProtection,Integrity,Confidentiality,DetectReplay,EstablishTrustInTarget,Est
ablishTrustInClient,NoDelgation]

invocation_options_required = [EstablishTrustInClient]
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,2,”Adiron”,”30515”)

Getting Started

34 ORBASEC SL2

 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”, ”marge@MYREALM.COM”)

Getting Hello Reference.

Hello’s Credentials:
Credentials:

credential_type = SecOwnCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported = []
invocation_options_required = []

 invocation_options_used =
[NoProtection,Integrity,Confidentiality,DetectReplay,EstablishTrustInTarget,Est
ablishTrustInClient,NoDelgation]

delegation_mode = SecDelModeNoDelegation
delegation_state = SecInitiator
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,4,”Adiron”,”30514”)
 SecAttribute(41244,1,3,”Adiron”,”128.230.99.3”)
 SecAttribute(41244,1,2,”Adiron”,”30515”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”, ”bart@MYREALM.COM”)

Enter ‘h’ for hello or ‘x’ for exit:
>

You will notice in contrast to the Server principal’s credentials that since the Cli-
ent’s principal was authenticated without naming a keytab. It is a pure client. The
accepting_options_supported field is empty, as these credentials cannot be used
to accept secure associations.

To continue with the demo, type ‘h’ as requested and you should see the following
output on the Server’s side:

Credentials:
credential_type = SecReceivedCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported = []
invocation_options_required = []
association_options_used =

[Integrity,Confidentiality,DetectReplay,EstablishTrustInClient,NoDelgation]
delegation_mode = SecDelModeNoDelegation
delegation_state = SecInitiator
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,4,”Adiron”,”30515”)
 SecAttribute(41244,1,3,”Adiron”,”128.230.99.3”)
 SecAttribute(41244,1,2,”Adiron”,”30514”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”, ”marge@MYREALM.COM”)

ORBASEC SL2 35

Modifying the Server

You will notice that these are “received” credentials printed out by the Hello object
implementation, Hello_impl. Since this invocation was made without delegation,
all accepting and invocation options are empty, as these credentials may not be
used to accept secure associations or to initiate them (used to make invocations).
Since these are ReceivedCredentials, there are extra attributes, such as
association_options_used, delegation_mode, delegation_state. The
delegation_mode indicates the delegation ability of these credentials. Here, it is no
delegation. The delegation_state attribute indicates that the client is the principal
that made the invocation. The association_options_used are the association
options that were used in the negotiated secure association with the client. You will
notice that Integrity and Confidentiality were both used, and EstablishTrustIn-
Client. However, you will notice that EstablishTrustInTarget is absent, indicat-
ing that the Server did not authenticate itself to the Client, i.e. there was no mutual
authentication. This absence of mutual authentication is the result of the Server
and/or Client not requiring trust in the target to be established.

Modifying the Server

The above example demonstrates minimal and default capabilities of the ORBASEC
SL2-GSSKRB implementation of Security Level 2. However, ORBASEC SL2 pro-
vides functionality through the Security Level 2 interfaces for using most of the
security features provided. In this section, we provide a few modifications to the
“Hello World” application to illustrate this functionality.

Server Accepting Options

After the Server is authenticated through the PrincipalAuthenticator, the Cre-
dentials for the Hello servant includes information about the servant’s “accepting
options”, security features it will support or require when a Client makes an invo-
cation. These features are published in the object’s IOR so that clients making
requests can communicate securely with servants without having to go through a
complicated and costly protocol to establish secure communication.

Each Credentials object represents a security mechanism component that is adver-
tised in a object’s IOR.

The accepting options are defined in the CORBA Security Specification to be:
NoProtection, Integrity, Confidentiality, DetectReplay, DetectMisordering, Estab-

Getting Started

36 ORBASEC SL2

lishTrustInTarget, and EstablishTrustInClient. Each option is specified to be sup-
ported or required, with the restriction that no feature can be required if it is not
supported. Table 1 on page 36 shows the default values for these options in the
ORBASEC SL2 implementation of GSS-Kerberos.

Accepting options are stored in the Server’s own Credentials object, which is
obtained after authentication using the PrincipalAuthenticator. We can change
the accepting options by using the accepting_options_required and
accepting_options_supported attribute accessor methods of the Credentials
object to manipulate the options that are required and the options that are sup-
ported, respectively.

In the example below we require that a client must use mutual authentication by
turning on the EstablishTrustInTarget bit. (We say “mutual authentication,”
because EstablishTrustInClient is always required and is already set.) Setting this
option has the effect of telling the client not to send any messages to the target until
it has verified the server’s identity.

Accepting Options are represented by constants of the Security::AssociationOp-
tions type, which are bit positions. Therefore, changing them requires the use of
bitwise operators, “&”, “|”, “~”.

// Authenticate using PrincipalAuthenticator
...

Feature Supported Required

NoProtection yes no

Integrity yes no

Confidentiality yes no

DetectReplay yes no

DetectMisordering no no

EstablishTrustInTarget yes no

EstablishTrustInClient yes yes

NoDelegation yes no

SimpleDelegation yes no

CompositeDelegation no no

TABLE 1. GSS-Kerberos Default Server Accepting Options

ORBASEC SL2 37

Modifying the Server

// Modify Accepting Options
org.omg.SecurityLevel2.Credentials[] credlist =
 current.own_credentials();
// Get our Kerberos credentials from the own credentials list
org.omg.SecurityLevel2.Credentials creds = credlist[0];
creds.accepting_options_required((short)
 (creds.accepting_options_required() |
 org.omg.Security.EstablishTrustInTarget.value));

We can turn support of NoProtection off as follows:

creds.accepting_options_supported((short)
 (creds.accepting_options_supported() &
 ~org.omg.Security.NoProtection.value));

Any client that gets the published IOR for this Server will know that the Server
requires that the client establish trust in the server in order to make a connection,
and furthermore that the Server does not support unprotected messages.

The Server accepting options should be modified before publishing the IOR to pro-
spective clients (i.e. by using the object_to_string method or returning an
object reference) since the accepting options information is recorded in the IOR.
Clients use the IOR to make decisions about the security features to use based on
the Server’s accepting options, together with the client’s invocation policies (see
below).

If you recompile and rerun the demo, then you will notice two things. First the
“own” credentials will print out as follows:

Own Credentials:
Credentials:

credential_type = SecOwnCredentials
mechanism = Kerberos_MIT
accepting_options_supported =

[NoProtection,Integrity,Confidentiality,DetectReplay,EstablishTrustInTarget,Est
ablishTrustInClient,NoDelegation,SimpleDelegation]

accepting_options_required =
[EstablishTrustInTarget,EstablishTrustInClient]

invocation_options_supported =
[NoProtection,Integrity,Confidentiality,DetectReplay,EstablishTrustInTarget,Est
ablishTrustInClient,NoDelgation]

invocation_options_required = [EstablishTrustInClient]
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,2,”Adiron”,”30514”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”,”bart@MYREALM.COM”)

Hello Server is Ready.

Getting Started

38 ORBASEC SL2

You will notice that EstablishTrustInTarget is now in the
accepting_options_required attribute. After typing ‘h’ on the Client the following
will be printed out:

Credentials:
credential_type = SecReceivedCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported = []
invocation_options_required = []
association_options_used =

[Integrity,Confidentiality,DetectReplay,EstablishTrustInTargett,EstablishTrustI
nClient,NoDelgation]

delegation_mode = SecDelModeNoDelegation
delegation_state = SecInitiator
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,4,”Adiron”,”30514”)
 SecAttribute(41244,1,3,”Adiron”,”128.230.99.3”)
 SecAttribute(41244,1,2,”Adiron”,”30515”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”, ”marge@MYREALM.COM”)

You will notice that mutual authentication was established with the client, indicated
by the EstablishTrustInTarget in the association_options_used attribute.

Modifying the Client
The Client can be modified as well to use policies to direct the characteristics of
invocations.

Invocation Policies

From the security point of view, when a client makes an invocation on a method of
a remote object, several decisions need to be made about the communication that is
to take place between client and server. These decisions include, but by no means
are limited to:

• What credentials will be used by the client to make a secure association (i.e.,
whether to use the client's "own" credentials or credentials it might have
obtained as a result of an invocation on it, its "received" credentials);

• What security mechanisms (e.g., GSS-Kerberos, SSL, etc.) will be used to form
a secure association;

ORBASEC SL2 39

Modifying the Client

• Whether messages sent between the client and server will be encrypted, have a
facility for integrity, neither, or both;

• Whether the client will authenticate itself to the server, whether the server will
authenticate itself to the client, neither, or both; and

• Whether the client may delegate the server to make remote invocations on other
objects on the client's behalf.

The server has some say in these decisions; it publishes (through its IOR) what
security features it requires or supports, and we have seen above how to modify
these options. In addition, however, the Client has some say in these decisions
through the use of CORBA::Policy objects. These "invocation policies" specify
how the client should make attempt to a secure association with a server, in the
absence of knowing anything about what the server supports or requires. Given a
collection of invocation policies, together with information 1) about what a server
supports and requires (through the publicized IOR), and 2) and what the client's
credentials are, ORBASEC SL2 can then make decsions about whether a secure
association is possible, and if so, what security features will be used to make the
association.

The Security Level 2 interfaces define five kinds of CORBA::Policy objects that
clients can adopt. They are Invocation Credentials Policy, Mechanism Policy,
QOP Policy, Delegation Directive Policy, and Establish Trust Policy. The precise
definitions of these CORBA::Policy objects is beyond the scope of this tutorial
(see “Policies” on page 125 for a more complete description), but a few remarks
can be made at this preliminary stage. First, ORBASEC SL2 includes default
behaviors for these policies, so that if none are explicity set in the client, predictable
behavior can be expected. These defaults are summarized in Table “Initial Default
Policies on the Current” on page 40.

Another important point is that in the CORBA object model, there are effectively
two ways to set the invocation policies from a client to a server. The first is to use
the orbasec.SecLev2::Current::set_overrides method, with a list of Policy
objects as the argument. This has the effect of setting the "default" or "environ-
ment" policies, so that any request inititiated after that point will use those policies
(or the defaults, if a policy of one of the above 5 types was not specified).

Since clients may have many references to remove objects, however, this method
for setting policies can be cumbersome. So in addition CORBA supplies the
_set_policy_overrides psuedo operation, which is a operation supplied on a
CORBA::Object. The intention here is to designate specific invocation policies

Getting Started

40 ORBASEC SL2

on an object reference, so that the defaults do not have to be changed every time a
new reference is obtained..

For more information about policies in general, see the CORBA Specification [2].
For more details on these specific policies see Chapter “Policies” on page 125.

Changing Policies on Current

Both default and object specific policies are configurable in ORBASEC SL2. We
modify the default policies on the orbasec.SecLev2.Current by creating an array
of Policy objects using orbasec.SL2 factory methods and creating the new poli-
cies:

// Modify Invocation Policies
org.omg.CORBA.Policy[] policies =
 new org.omg.CORBA.Policy[2];
current = // get the orbasec.SecLev2.Current object ...
policies[0] = orbasec.SL2.create_qop_policy(
 org.omg.Security.QOP.SecQOPIntegrity);

// Set overrides on Current PolicyManager
current.set_overrides(policies,
 org.omg.CORBA.ADD_OVERRIDE.value);

TABLE 2. Initial Default Policies on the Current

Policy Default

Invocation Credentials Use the Received and Own Credentials that sup-
port invocation.

Mechanism Use mechanisms of the Credentials in the Invo-
cation Credentials policy.

QOP QOP required by the first credentials in the Invo-
cation Credentials Policy

Delegation Directive No Delegation

Establish Trust Trust in Client, if required or supported by the
first credentials in the Invocation Credentials
Policy.

Trust in Target, if required or supported by the
first credentials in the Invocation Credentials
Policy.

ORBASEC SL2 41

Modifying the Client

Note – The orbasec.SecLeve2.Current object is an ORBAsec SL2 extension of
org.omg.SecurityLevel2.Current that has support for setting policies on the
current thread. Standardization of this feature is pending at the OMG.

These policies specify to use “integrity” only (not confidentiality and integrity
together). After placement on the Current, they will now be used by any remote
object reference which does not specifically override these policies (see below).

Recompile and run the Client. After hitting ‘h’ you will see the following output
from the Server:

Credentials:
credential_type = SecReceivedCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported = []
invocation_options_required = []
association_options_used =

[Integrity,DetectReplay,EstablishTrustInTargett,EstablishTrustInClient,NoDelgat
ion]

delegation_mode = SecDelModeNoDelegation
delegation_state = SecInitiator
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,4,”Adiron”,”30515”)
 SecAttribute(41244,1,3,”Adiron”,”128.230.99.3”)
 SecAttribute(41244,1,2,”Adiron”,”30514”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”,

”hello_demo_client@MYREALM.COM”)

You will notice that Confidentiality is not in the association_options_used, but
Integrity is.

Policies should be chosen that are consistent with the security features advertised in
a target objects’s IOR. One cannot, for example, use a policy which states to use no
protection if it is not supported by the Server. By the same token, policies should
be specified if they are advertised to be required in the IOR; if the Server requires
trust in a client, for example, the policy should reflect this requirement. Otherwise,
a CORBA::NO_RESOURCES exception may be raised with the reason of “No
matching credentials available”.

Since our new Server has shut off support for NoProtection, change the Sec-
QOPIntegrity policy to one of SecQOPNoProtection and recompile and rerun the
client. You will get the following output from the Client.

Getting Started

42 ORBASEC SL2

Getting Hello Reference
No Matching credentials available
 Policy mechanisms: Kerberos_MIT
 IOR mechanisms: Kerberos
 Credential: Kerberos_MIT[<some address>
 Target does not support selected options 0x41 target
supports 0x1ee
 <stack trace>

You will not even get to the Client’s prompt because in creating the hello reference,
a valid security context had to have the ability to be created. In this case, due to the
lack of commonality between the supported features of the target, the client side
policies, and the client side credentials, no secure association could be established.

Change the QOP Policy set on Current back to one of SecQOPIntegrity and pro-
ceed to the next section.

Changing Policies on Object References

The second way to override policies is to associate a set of policies with a specific
object reference. This is done by creating an array of Policy objects and registering
them with the object using the _set_policy_overrides operation on the object refer-
ence:

hello = // Obtain Object reference somehow...
policies = new org.omg.CORBA.Policy[1];

// QOP Policy: use Integ and Conf!
policies[0] =
orbasec.SL2.create_qop_policy(
 org.omg.Security.QOP.SecQOPIntegrityAndConfidentiality);

// Set the policy on the hello_2 Object reference
hello_2 = HelloHelper.narrow(
 hello._set_policy_overrides(
 policies,
 org.omg.CORBA.ADD_OVERRIDE.value));

The above code turns on integrity and confidentiality when an invocation is made
through the new hello_2 reference.

ORBASEC SL2 43

Modifying the Client

The above overrides do not effect policies associated with the reference on which
_set_policy_overrides was called (viz., hello); invocations through the hello refer-
ence, for example, will still use the default QOPPolicy on Current, i.e. integrity
and confidentiality. Our demonstration program is set up to make two invocations
when the ‘h’ is hit, one with the hello object reference and the next one is with the
hello_2 object reference. The output from the Server is as follows:

Credentials:
credential_type = SecReceivedCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported = []
invocation_options_required = []
association_options_used =

[Integrity,DetectReplay,EstablishTrustInTargett,EstablishTrustInClient,NoDelgat
ion]

delegation_mode = SecDelModeNoDelegation
delegation_state = SecInitiator
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,4,”Adiron”,”30515”)
 SecAttribute(41244,1,3,”Adiron”,”128.230.99.3”)
 SecAttribute(41244,1,2,”Adiron”,”30514”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”, ”marge@MYREALM.COM”)

Credentials:
credential_type = SecReceivedCredentials
mechanism = Kerberos_MIT
accepting_options_supported = []
accepting_options_required = []
invocation_options_supported = []
invocation_options_required = []
association_options_used =

[Integrity,Confidentiality,DetectReplay,EstablishTrustInTargett,EstablishTrustI
nClient,NoDelgation]

delegation_mode = SecDelModeNoDelegation
delegation_state = SecInitiator
2 Security Attributes: (definer,family,type,def_auth,value)
 SecAttribute(41244,1,4,”Adiron”,”30515”)
 SecAttribute(41244,1,3,”Adiron”,”128.230.99.3”)
 SecAttribute(41244,1,2,”Adiron”,”30514”)
 SecAttribute(41244,1,1,”Adiron”,”128.230.99.3”)
 SecAttribute(0,0,0,””,”Kerberos_MIT”)
 SecAttribute(0,1,2,”krbtgt/MYREALM.COM@MYREALM.COM”, ”marge@MYREALM.COM”)

You will notice the difference in the second Credentials object that is printed out.
Confidentiality is on, indicating that successful encrypted communication of the
second request was in effect.

Getting Started

44 ORBASEC SL2

Where to Go From Here

The remaining chapters provide a thorough description of the application program-
mer’s interface to ORBASEC SL2. You should have a basic understanding of
CORBA Security as detailed in [4] before proceeding. We also encourage you to
work with the ORBASEC SL2 implementation and experiment with various accept-
ing option and invocation policy combinations. Doing so will provide a hands-on
familiarity with a small part of CORBA Security, particularly if you have the
CORBA Security Specification within arm’s reach.

There are number of source code demonstration tests in the form of directories
under the sl2/demo directory. These tests exercise both the ORBASEC SL2-
GSSKRB and ORBASEC SL2-SSL distributions, and can be used by you to experi-
ment with CORBA Security Level 2 functionality.

ORBASEC SL2 45

CHAPTER 3 SL2 Initialization

Initializing SL2
The orbasec.SL2 class provides a collection of static initialization methods for ini-
tializing a secure ORB. Each of these methods initializes the ORB automatically,
so you should not initialize the ORB or BOA before calling any of these methods.
The following sections describe the conditions under which you should use these
intializers.

Standalone Server Initialization

If you are initializing a standalone server and require a BOA to dispatch requests to
servants, use the init_with_boa method

static void init_with_boa(
 String argv[],
 java.util.Properties properties);

This method will initialize the ORB and BOA, and then initialize the ORBAsec
security infrastructure. The argv and properties arguments behave just as they do
in the ORB.init method. (Note. We feel the properties passed to the boa_init
method of the ORB are typically superfluous, so we have combined them into a sin-
gle collection of properties.) See See “ORBAsec SL2 Configuration” on page 47.
for rules governing the precedence of ORBAsec properties.

SL2 Initialization

46 ORBASEC SL2

Stanalone “Pure” Client Initialization

If you are initializing a standalone “pure” client, i.e, you do not require a BOA to
dispatch requests to servants, use the init method

static void init(
 String argv[],
 java.util.Properties properties);

This method will initialize the ORB, and then initialize the ORBASEC security
infrastructure. The argv and properties arguments behave just as they do in the
ORB.init method with the same signature. See See “ORBAsec SL2 Configuration”
on page 47. for rules governing the precedence of ORBAsec properties.

Applet Initialization

If you are initializing a Java Applet, use the init method

static void init(
 java.applet.Applet applet,
 java.util.Properties properties);

This method will initialize the ORB, and then initialize the ORBASEC security
infrastructure. The applet and properties arguments behave just as they do in the
ORB.init method with the same signature. See See “ORBAsec SL2 Configuration”
on page 47. for rules governing the precedence of ORBAsec properties.

Accessors

Once one of the above initializers is called, you may use the orb and boa accessors

static org.omg.CORBA.ORB orb();
static org.omg.CORBA.BOA boa();

to obtain a reference to the ORB (and BOA, if initialized) that was initialized in
ORBASEC.

ORBASEC SL2 47

ORBASEC SL2 Configuration

ORBASEC SL2 Configuration
ORBASEC SL2 defines a set of Java Properties that can be used to configure secu-
rity protocols, mechanisms, and other features at ORBASEC SL2 initialization.
These properties can be specified in one of the following ways:

• via an ORBACUS configuration file;

• via the java.util.Properties arguments to one of the orbasec.SL2 initializers;

• via System Property definitions (within a Java program or from the command
line, -D on most systems); or

• via command-line options

To define an ORBASEC SL2 property via a configuration file, use the ORBACUS -
ORBconfig command-line option. See the ORBACUS manual for how to use this
option and for the syntax of the ORBACUS configuration file.

Command-line options override Java System Property definitions, which in turn
override properties defined in the java.util.Properties argument passed to an ini-
tializer, which in turn override properties defined in an ORBACUS configuration
file. If no property is defined, an appropriate default is used. This behavior mirrors
that of property definitions in ORBACUS.

Standard ORBASEC SL2 Properties

This section enumerates the standard ORBASEC SL2 properties likely to be used by
the Application Programmer, together with their meanings and default values. See
“Adding your own Security Mechanisms” on page 55 for more ORBASEC SL2
properties.

orbasec.seciop

This property determines whether the ORBASEC SECIOP protocol should be
enabled in client or server mode, or whether SECIOP should be disabled all
together. If SECIOP is not enabled in server mode, any CORBA servants will not
be allowed to accept SECIOP connections.

Legal Values
client enable SECIOP in client mode

SL2 Initialization

48 ORBASEC SL2

server enable SECIOP in (client and) server mode
disable disable SECIOP

Default Value
server

orbasec.seciop.host

Use this property to specify a host for SECIOP connections. If this property is not
defined, ORBASEC will use the ooc.boa.hostname property value, or the local
canonical hostname, if that property is not defined.

Legal Values
any legal host name or IP address

Default Value
none

Note – The orbasec.seciop property must equal server in order for this property
to have any effect.

orbasec.seciop.port

Use this property to specify a port for SECIOP connections. If this property is not
defined, ORBASEC will use the orb.boa.port property value, or the port chosen by
the ORB, if that value is not defined or defined to be zero.

Legal Values
any port number you are permitted to open

Default Value
none

Note – The orbasec.seciop property must equal server in order for this property
to have any effect. Ports under 1024 need "root" privilege.

ORBASEC SL2 49

ORBASEC SL2 Configuration

orbasec.ssliop

This property determines whether the ORBASEC SSLIOP protocol should be
enabled in client or server mode, or whether SSLIOP should be disabled all
together. If SSLIOP is not enabled in server mode, any CORBA servants will not
be allowed to accept SSLIOP connections.

Legal Values
client enable SSLIOP in client mode
server enable SSLIOP in (client and) server mode
disable disable SSLIOP

Default Value
server

orbasec.ssliop.host

Use this property to specify a host for SSLIOP connections. If this property is not
defined, ORBASEC will use the ooc.boa.hostname property value, or the local
canonical hostname, if that property is not defined.

Legal Values
any legal host name or IP address

Default Value
none

Note – The orbasec.ssliop property must equal server in order for this property
to have any effect.

orbasec.ssliop.port

Use this property to specify a port for SSLIOP connections. If this property is not
defined, ORBASEC will use the orb.boa.port property value, or the port chosen by
the ORB, if that value is not defined or defined to be zero.

Legal Values
any port number you are permitted to open

SL2 Initialization

50 ORBASEC SL2

Default Value
none

Note – The orbasec.ssliop property must equal server in order for this property to
have any effect. Ports under 1024 need "root" privilege.

orbasec.ssliop.exportable_only

This property states whether only exportable ecncryption cipher suites are available
for selection.

U.S. Export laws stipulate the cryptographic strength used for encryption. Setting
this property to true will limit the cipher suites to only "exportable" cipher suites.

Legal Values
true Limit exportable only
false No limit on cipher suites.

Default Value
true

orbasec.iiop

This property determines whether the ORBASEC IIOP protocol should be enabled
in client or server mode, or whether IIOP should be disabled all together. If IIOP is
not enabled in server mode, any CORBA servants will not be allowed to accept
IIOP connections.

IIOP is the protocol used for general CORBA standard (insecure) communication.

Legal Values
client enable IIOP in client mode
server enable IIOP in (client and) server mode
disable disable IIOP

Default Value
disable

ORBASEC SL2 51

ORBASEC SL2 Configuration

orbasec.iiop.host

Use this property to specify a host for IIOP connections. If this property is not
defined, ORBASEC will use the ooc.boa.hostname property value, or the local
canonical hostname, if that property is not defined.

Legal Values
any legal host name or IP address

Default Value
none

Note – The orbasec.iliop property must equal server in order for this property
to have any effect.

orbasec.iiop.port

Use this property to specify a port for IIOP connections. If this property is not
defined, ORBASEC will use the orb.boa.port property value, or the port chosen by
the ORB, if that value is not defined or defined to be zero.

Legal Values
any port number you are permitted to open

Default Value
none

The orbasec.iiop property must equal server in order for this property to have any
effect. Ports under 1024 need "root" privilege.

orbasec.kerberos_session

Setting this property to true automatically creates a Kerberos Credentials object
that is initialized with the current user's Kerberos session credentials cache (as
obtained from a program such as kinit). On most Unix systems, (some systems
have different system defaults) the credentials cache file /tmp/krb5cc_<uid>,
where <uid> is the current users uid, or it is the value of the KRB5CCACHE environ-
ment variable. It also takes the kerberos configuration file to be /etc/krb5.conf
or the value of the KRB5_CONFIG environment variable.

SL2 Initialization

52 ORBASEC SL2

Note – When running with a Credentials object initialized from the Kerberos
session cache, the process can only use this Credentials object in a client
fashion. That is, the process does not associate these credentials with object
references produced by the ORB.

If you need for the server publish object references with SECIOP-Kerberos creden-
tials information, the Kerberos Credentials objects must be explictly created in
application code.

Legal Values
true use Kerberos session credentials cache
false require explicit Kerberos authentication

Default Value
false

orbasec.anonymous_ssl

Setting this property to true automatically creates an anonymous SSL Credentials
object during ORBASEC initialization. No certificate file is required for anony-
mous SSL credential initialization. It uses the Diffe-Hillman cipher suites.

Legal Values
true use anonymous SSL credentials
false require explicit SSL authentication

Default Value
false

Note – The orbasec.ssliop property must not be set to disable in order for this
property to have any effect.

orbasec.allow_iiop

Setting this property to true automatically creates an IIOP Credentials object dur-
ing ORBASEC initialization.

This credentials object must be created to enable IIOP (insecure) communication
over the CORBA standard protocol.

ORBASEC SL2 53

ORBASEC SL2 Configuration

Legal Values
true use ORBAsec IIOP credentials
false require explicit IIOP authentication

Default Value
false

Note – The orbasec.iiop property must not be set to disable in order for this
property to have any effect.

ORBASEC SL2 Command-line Options

ORBASEC SL2 provides command-line options for specifying the values of
ORBASEC SL2 properties at initialization. You may use these command-line argu-
ments in conjunction with ORBACUS command-line options.

The ORBASEC SL2 command-line options provide the ability to override
ORBAsec properties defined in a configuration file or via the System Property def-
inition flag to the Java Virtual Machine (-D on most systems). Command-line
usage is summarized in table 3, and the meanings of each flag is the same as that of

corresponding ORBAsec property.

ORBASEC SL2 Command-line Option ORBASEC SL2 Property

-SL2SECIOP mode orbasec.seciop=mode

-SL2SECIOPHost host orbasec.seciop.host=host

-SL2SECIOPPort port orbasec.seciop.port=port

-SL2SSLIOP mode orbasec.ssliop=mode

-SL2SSLIOPHost host orbasec.ssliop.host=host

-SL2SSLIOPPort port orbasec.ssliop.port=port

-SL2IIOP mode orbasec.iiop=mode

-SL2IIOPHost host orbasec.iiop.host=host

-SL2IIOPPort port orbasec.iiop.port=port

-SL2KerberosSession orbasec.kerberos_session=true

-SL2AnonymousSSL orbasec.anonymous_ssl=true

-SL2AllowIIOP orbasec.allow_iiop=true

TABLE 3. ORBASEC command-line options

SL2 Initialization

54 ORBASEC SL2

Secure ORB Services

You may specify ORB services using the ORBACUS ooc.service properties or the
ORBACUS -ORBservice command-line option. However, references to secure
ORB services must be established after credential acquisition via the PrincipalAu-
thenticator. Unfortunately, The PrincipalAuthenticator is only accessible after
SL2 initialization, so ORBASEC SL2 requires a two-phase initialization in order to
create secure references to ORB services. For this purpose the ORBASEC SL2 class
provides a static method add_initial_services, which creates secure references to
designated ORB services.

import org.omg.CORBA.*;
import java.util.Properties;
import orbasec.SL2;
public void main(String[] args)
{
 SL2.init_with_boa(args, new java.util.Properties());
 ORB orb = SL2.orb();
 BOA boa = SL2.boa();

 // authenticate
 ...

 // create references to secure ORB services
 SL2.add_initial_services();
 ...
}

Getting SecurityCurrent
During the initialization process a service is created called SecurityCurrent, and it
installed on the ORB. You get the reference to the SecurityCurrent object by
using the resolve_inital_references call, which is illustrated by the fol-
lowing code fragment:

// Java
public void main(String[] args)
{
 ...
 // ORB and possibly BOA initialization

ORBASEC SL2 55

Adding your own Security Mechanisms

 // SL2 initialization

 org.omg.CORBA.Object obj =
 orb.resolve_initial_references(“SecurityCurrent”);

 org.omg.SecurityLevel2Current current =
 org.omg.SecurityLevel2.CurrentHelper.narrow(obj);

 ...
}

Note – A reference to the Security Current object cannot be obtained before
ORBASEC SL2 is initialized.

Adding your own Security Mechanisms
The CORBA::SecurityReplaceable module was designed with the intention of
allowing vendors to replace security components suitable for distribution in accor-
dance with export restrictions specific to a country or locality. Beginning with
ORBASEC SL2 Beta 3, Application Programmers can provide their own Security-
Replaceable security components and use them with ORBASEC SL2, allowing
pluggable security mechanism components within ORBASEC SL2.

Assuming you have written your own implementation of the SecurityReplaceable
module, you can use your implementation of these interfaces with ORBASEC SL2
by providing an implementation of the orbasec.corba.SECIOPMechanismIni-
tializer interface, defined as follows:

package orbasec.corba;
public interface SECIOPMechanismInitializer
{
 public void
 init(
 org.omg.CORBA.ORB orb,
 org.omg.CORBA.BOA boa,
 java.util.Properties properties);

 public org.omg.SecurityReplaceable.Vault
 get_vault();
}

SL2 Initialization

56 ORBASEC SL2

This interface defines the following methods:

init

This method will be called during ORBASEC SL2 initialization with the ORB and
BOA that were created in one of the orbasec.SL2 initializers. The properties
parameter will be derived from properties established during initialization. See See
“ORBAsec SL2 Configuration” on page 47. for a description about the precedence
tules governing the definition of these properties.

get_vault

This method must return the org.omg.SecurityReplaceable.Vault, from which the
rest of the SecurityReplaceable relevant components (Credentials, SecurityCon-
text, etc.) are obtained. You should return a reference to the Vault you have imple-
mented.

To notify ORBASEC SL2 of the SECIOPMechanismInitializer you have defined,
you must then specify the fully qualified class name of the initializer in an
ORBASEC SL2 property of the form:

orbasec.seciop.mechanism_initializer.<mechanism_name>

where <mechanism_name> is a name you may choose to distinguish different
SECIOPMechanismInitializers you might install. The value of this property
should be the fully qualified class name of the SECIOPMechanismInitializer you
have defined.

Note – You may choose any mechanism name for this property, as long as it
does not conflict with any other mechanism name you have defined for the same
session. There are no ORBASEC “reserved” names, and any name you choose
has no significance to ORBASEC SL2.

For example, if you have written a SECIOPMechanismInitializer called
com.acme.MechanismInitializer, then you would write the following
property into the configuration file:

orbasec.seciop.mechanism_initializer.my_initializer=\
 com.acme.MechanismInitializer

ORBASEC SL2 57

SL2 Version

During ORBASEC SL2 initialization, the specified SECIOPMechanismInitializer
will be loaded and an instance of it will be created with its default constructor. Then
the init and get_vault methods of this class will be called. The Vault will be regis-
tered with ORBASEC SL2, and subsequent calls to the PrincipalAuthenticator’s
authenticate method will acquire credentials using the specified Vault.

Note – Calls to authenticate should use the fully qualified mechanism name
(i.e., with the provider) in the mechanism parameter in order for ORBASEC SL2
to select your Vault.

You should define a orbasec.seciop.<mechanism_name>. mechanism_initializer
property for each <mechanism_name> defined in the orbasec.seciop.mechanisms
property. This way, you can use any number of security mechanisms with
ORBASEC SL2.

There is no need to specify security mechanisms and SECIOPMechanismInitial-
izers for the default SL2-GSSKRB SECIOP security mechanism. ORBASEC SL2
will attempt to load this module by default during initialization.

SL2 Version
The orbasec.SL2 class provides a static String attribute called Version, which can
be used to obtain a String representation of the current version of ORBASEC SL2.

public static final String Version;

You can print this String to the screen by running an ORBASEC SL2 enabled appli-
cation with the -SL2Version flag at the command line. With this flag set, the appli-
cation will print the version to the screen and exit.

prompt% java <my_app_name> -SL2Version
ORBAsec SL2 2.0.0

Equivalently, you may simply run the main method of the orbasec.SL2 class.

prompt% java orbasec.SL2
ORBAsec SL2 2.0.0

SL2 Initialization

58 ORBASEC SL2

ORBAsec 59

CHAPTER 4 Security Current

Security Current
The Security Level 2 Current object is a locality constrained CORBA object that
maintains state information associated with the current execution context, such as
in a multi-threaded execution model. This information is specific to the current
thread of execution and the process/capsule to which the thread belongs.

Getting the Current Object

The SecurityLevel2::Current object is returned from a call to the ORB’s
resolve_initial_references operation using the name “SecurityCurrent”.

// Java
org.omg.CORBA.ORB orb = // The SL2 initialized ORB;
org.omg.SecurityLevel2.Current current =
 org.omg.SecurityLevel2.CurrentHelper.narrow(
 orb.resolve_initial_references(“SecurityCurrent”)
);

Security Current

60 ORBASEC SL2

ORBASEC SL2 Extentions to Current

ORBASEC SL2 makes several extensions to SecurityLevel2::Current. The opera-
tions and attributes that are beyond the standard SecurityLevel2::Current inter-
face are defined in an ORBASEC SL2 definition of the SecLev2::Current
interface. This interface is explained at the end of this chapter under “ORBAsec
SL2 Extensions to Current” on page 67.

Standard Attributes and Operations

The attributes and options on the SecurityLevel2::Current object are described
below along with their values, semantics, and possible restrictions as pertaining to
the ORBASEC SL2 implementation.

The following operations and attributes are standard on SecurityLevel2::Current.

supported_mechanisms

This attribute returns a list of Security::MechandOptions structures. Each ele-
ment in the list gives the mechanism available and the Security::AssociationOp-
tions the mechanism supports.

//IDL
readonly attribute Security::MechandOptionsList
 supported_mechanisms;

// Java
public org.omg.Security.MechandOptions[]
 supported_mechanisms();

This attribute may be examined to select the security mechanism available.

// IDL
module Security {
struct MechandOptions {
 MechanismType mechanism_type;
 AssociationOptions options_supported;
};
};

ORBASEC SL2 61

Standard Attributes and Operations

// Java
package org.omg.Security;
final public class MechandOptions {
 String mechanism_type;
 short options_supported;
}

In ORBASEC SL2, Mechanism strings have a particular structure. The structure is:

<mechanism_type> :: <mechanism_identifier> [‘,’ <ciphersuite>]
<mechanism_identifier> :: <mechanism>’_’<provider>

The first component of the mechanism type identifier is the name of the security
mechanism. The further components, separated by commas, are the cipher suites.
All cipher suites have symbolic names.

Examples of some mechanism strings supported by ORBASEC SL2 are:

“Kerberos”
“Kerberos_MIT”
“SSL,DH_DSS_3DES_CBC_MD5,DHE_DSS_DES_CBC_SHA”
“SSL_IAIK,DH_anon_DES_CBC_MD5”

The string “Kerberos” can be used to authenticate a Kerberos principal, which cre-
ates a credentials object using the Kerberos infrastructure using an implementation
from the default provider. The string “Kerberos_MIT” can be used to further stipu-
late that a certain provider be used, namely ORBASEC SL2-GSSKRB “plug-in”.
(MIT means the Kerberos implementation from M.I.T.) The string
“SSL,DH_DSS_3DES_CBC_MD5,DHE_DSS_DES_CBC_SHA” can be used to
authenticate principal using a Public Key Infrastructure (PKI), which creates a cre-
dentials object with the ability to use SSL with the listed cipher suites. The string
starting with “SSL_IAIK” means to use the ORBASEC SL2-SSL “plug-in”, which
uses the SSL toolkit from IAIK.

Note – It may not be possible to have two different providers for one mechanism
in the same ORB, although we have not yet experimented with this capability.

received_credentials

This read-only attribute is valid only in the context of an object servicing a request
on the target side. Its value is thread specific. It is meant to represent the security
context that has been established between the target’s own credentials and the cli-

Security Current

62 ORBASEC SL2

ent’s own credentials. Therefore, it represents the identity of the client and any
other security attributes the client may have delivered to the target.

// IDL
readonly attribute ReceivedCredentials received_credentials;

// Java
public org.omg.SecurityLevel2.ReceivedCredentials
 received_credentials();

Accessing this attribute while not in the context of servicing an object request, such
as in a pure client application will result in the raising of a
CORBA::BAD_OPERATION exception.

own_credentials

This attribute is the list of credentials that have been created and initialized by the
application using the PrincipalAuthenticator object. Its value is capsule specific,
meaning the “own” credentials are owned by the capsule that authenticated them. A
facility called remove_own_credentials can remove certain credentials from the
list.

// IDL
readonly attribute CredentialsList own_credentials;

// Java
public org.omg.SecurityLevel2.Credentials[]
 own_credentials();

The capsule may own or initialize any number of credentials using the Principal-
Authenticator object. In fact, the only way a Credentials object makes it on the
“own” credentials list, is by way of the PrincipalAuthenticator object. This object
is described in “Principal Authenticator” on page 75.

Once a Credentials object is created by the PrincipalAuthenticator object, it is
placed on the “own” credentials list only after the Credentials object becomes fully
initialized (depending on the mechanism and authentication method, principal
authentication may be a multistep process). The Credentials object remains on the
“own” credentials list until it is removed by application using the
remove_own_credentials operation. It is the responsibility of the application to
remove Credentials objects from the “own” credentials list when they expire, or
when they have become invalid. Removal from the “own” credentials list does not
happen automatically.

ORBASEC SL2 63

Standard Attributes and Operations

remove_own_credentials

This operation removes a given Credentials object from the own credentials list.

// IDL
void remove_own_credntials(
 in Credentials creds;
);

// Java
public void remove_own_credentials(
 org.omg.SecurityLevel2.Credentials creds
);

This operation gives the programmer some management over the “own” credentials
list, should the application authenticate many principals. The application is respon-
sible for removing Credentials objects from the “own” credentials list when they
have become invalid or expired. Removal does not happen automatically.

principal_authenticator

This attribute’s value is the PrincipalAuthenticator object that is available in the
environment. This attribute is capsule specific and is a read-only attribute. It is used
by the application to authenticate principals, which create “own” type Credentials
objects that represent that principal. This object is described in [“Principal Authen-
ticator” on page 75].

// IDL
readonly attribute PrincipalAuthenticator
 principal_authenticator;

// Java
public org.omg.SecurityLevel2.PrincipalAuthenticator
 principal_authenticator();

get_security_mechanisms

This operation for clients wishing to determine which security mechanisms that are
associated with a target object reference. It returns a list of all the security mecha-
nisms, which are structures containing security names and required/supported
option pairs that are contained in the object’s IOR.

Security Current

64 ORBASEC SL2

//IDL
Security::SecurityMechanismDataList get_security_mechanisms(
 in Object obj_ref
);

//Java
public org.omg.Security.SecurityMechanismData[]
get_security_mechanisms(org.omg.CORBA.Object obj_ref);

This operation returns a structure containing the security mechanism, security
name, association options that the target object requires and supports. The list con-
tains security mechanism and names contained in the objects IOR. These names
may be different than the authenticated name, which is in the AccessId attribute of
the received credentials. Duplicates are not removed from this list.

// IDL
module Security {
struct SecurityMechanismData {
 MechanismType mechanism;
 Opaque security_name;
 AssocationOptions options_supported;
 AssociationOptions options_required;
};
};

//Java
package org.omg.Security;
final public class SecurityMechanismData {
 String mechanism;
 byte[] security_name;
 short options_supported;
 short options_required;
}

get_target_credentials

This operation is for clients wishing to check the authentication of the target object
reference. It returns a received credentials object containing the attributes of the
object..

//IDL
TargetCredentials get_target_credentials(
 in Object target
);

ORBASEC SL2 65

Standard Attributes and Operations

//Java
public org.omg.SecurityLevel2.TargetCredentials
get_target_credentials(org.omg.CORBA.Object target);

This operation returns a TargetCredentials object with attributes of the security
context between the client and the server of this object.

get_policy

This operation is meant to return the policies placed on the Current object that are
the default policies for making invocations on objects that do not have their own
policy overrides set.

// IDL
CORBA::Policy get_policy(
 in CORBA::PolicyType policy_type
);

// Java
public org.omg.CORBA.Policy get_policy(int policy_type);

Unfortunately, this call is semantically defined in the CORBA CORE to retrieve the
policy overrides on the object itself (i.e. the Current object), not as a repository for
policies to be applied elsewhere. Therefore, we feel that this call is semantically
wrong. However, we do support the get_policy call. However, it makes a call to
get_overrides which will be the proposed CORBA::PolicyCurrent operation for
this purpose. We have placed the get_overrides operation on the
orbasec::SecLev2::Current object, which are ORBASEC SL2 extensions to the
SecurityLevel2::Current object. See “ORBAsec SL2 Extensions to Current” on
page 67.

required_rights_object

This attribute’s value is the RequiredRights object available in the environment.
This attribute is capsule specific and is a read-only attribute. This object is stated to
be used rarely by any application; it is generally used by any AccessDecision
objects to find the rights required to use a particular interface. However, it may be
used by applications if the application wants to implement its own access control.

// IDL
readonly attribute RequiredRights
 required_rights_object;

Security Current

66 ORBASEC SL2

// Java
public org.omg.SecurityLevel2.RequiredRights
 required_rights_object();

Since this version of ORBASEC SL2 does not support automatic access control,
accessing this attribute raises a CORBA::NO_IMPLEMENT exception.

access_decision

This attribute’s value is the AccessDecision object available in the environment.
This attribute is capsule specific and is a read-only attribute. It is used to make
access decisions on invocations on interfaces. It may have any implementation, but
is supposed to interact with Credentials objects, RequiredRights objects, and
DomainAccessPolicy objects.

Note – It is not well defined in the security specification on the topic of the
number of RequiredRights objects that can exist in a capsule and the number of
AccessDecision objects that can exist in a capsule. However, it would imply by
this attribute that only one access decision object may exist.

// IDL
readonly attribute AccessDecision
 access_decision;

// Java
public org.omg.SecurityLevel2.AccessDecision
 access_decision();

Since this version of ORBASEC SL2 does not support automatic access control,
accessing this attribute raises a CORBA::NO_IMPLEMENT exception.

audit_decision

The attribute’s value is the AuditDecision object available in the environment. This
attribute is capsule specific and is a read-only attribute. It is suppose to be used by
the application to obtain information about what needs to be audited for other spe-
cific object/interface in this environment.

Note – Again, it is not well defined on the topic of the number of AuditDecision
objects should exist and for what purpose, and which AuditChannel objects
should exist.

ORBASEC SL2 67

ORBASEC SL2 Extensions to Current

// IDL
readonly attribute AuditDecision audit_decision;

// Java
public org.omg.SecurityLevel2.AuditDecision
 audit_decision();

Since this version of ORBASEC SL2 does not support automatic access control,
accessing this attribute raises a CORBA::NO_IMPLEMENT exception.

ORBASEC SL2 Extensions to Current

ORBASEC SL2 makes several extensions to the SecurityLevel2::Current object.
The extensions to SecurityLevel2::Current come in the form of a and interface
called SecLev2::Current that inherits from SecurityLevel2::Current.

The IDL definition of the ORBASEC SL2 SecLev2::Current interface is below:

Security Current

68 ORBASEC SL2

//IDL
#include <SecurityLevel2.idl>
#pragma prefix “orbasec”

module SecLev2 {
 interface Current : SecurityLevel2::Current {
 // Policy Operations
 void set_overrides(
 in CORBA::PolicyList policies,
 in CORBA::SetOverrideType override_type
);

 CORBA::PolicyList get_overrides(
 in CORBA::PolicyTypeSeq policy_types
);

 void remove_overrides(
 in CORBA:PolicyTypeSeq policy_types
);

 // Accepting Credentials Operations
 attribute SecuirtyLevel2::CredentialsList
 accepting_credentials;

 void set_accepting_credentials(
 in Object servant,
 in SecurityLevel2::CredentialsList creds_list
);

 SecurityLevel2::CredentialsList get_accepting_credentials(
 in Object servant
);

 void release_accepting_credentials(
 in Object servant
);
 };
};

The SecLev2::Current object is returned from a call to the ORB’s
resolve_initial_references operation using the name “SecurityCurrent”.

ORBASEC SL2 69

ORBASEC SL2 Extensions to Current

// Java
org.omg.CORBA.ORB orb = // The SL2 initialized ORB;
orbasec.SecLev2.Current current =
 orbasec.SecLev2.CurrentHelper.narrow(
 orb.resolve_initial_references(“SecurityCurrent”)
);

The SecLev2::Current object contains two sets of operations. The first set pertain
to setting and getting security related policies with respect to the current thread of
execution. The second set pertains to assigning the proper credentials objects with
servant object references, so that the proper credentials information gets placed in
the object’s IOR when it is exported to potential clients.

Policy Operations

The following operations are the proposed (or about to be proposed) operations of
the CORBA::PolicyManager interface, which the CORBA::PolicyCurrent inter-
face inherits. It may be proposed that the SecurityLevel2::Current inherit the
CORBA::PolicyCurrent interface for handling of thread based policies. Both the
CORBA::PolicyManager and CORBA::PolicyCurrent interfaces are yet to be
adopted and are part of the CORBA Messaging RFP response.

Policies set with these interfaces apply as default policies to object references that
are introduced into the current thread of execution. Object references are intro-
duced into a current thread of execution by unmarshalling an IOR. This unmarshal-
ling is done by the ORB::object_to_string operation or automatically by getting
an object reference from an invocation, such as getting an object reference from a
naming service.

set_overrides

This operation is thread specific and adds or sets the given policies for the current
thread of execution.

Security Current

70 ORBASEC SL2

// IDL
void set_overrides(
 in CORBA::PolicyList policies,
 in CORBA::SetOverrideType override_type
);

// Java
public void set_overrides(
 org.omg.CORBA.Policy[] policies,
 int override_type
);

Policies that are set on the thread can be overridden further and more specifically
on an object by using the set_policy_overrides pseudo operation on an object ref-
erence.

get_overrides

This operation is thread specific and gets the policies named by the given policy
types for the current thread of execution.

// IDL
CORBA::PolicyList get_overrides(
 in CORBA::PolicyTypeSeq policy_types
);

//Java
public org.omg.CORBA.Policy[] get_overrides(
 int[] policy_types
);

The policy objects returned from this call applies first to the current thread of exe-
cution. If a policy of a given type has not been set on the current thread of execution
specifically, a policy set at the original initializing thread of execution is retrieved.
This allows a server application to set policies for the server at initialization time
before readying the object to start accepting requests. This procedure is most useful
in the thread-per-request execution model.

If a given policy type is not available, (i.e. set at the thread or the initializing thread)
no policy of that type is returned in the list. No exception is raised.

ORBASEC SL2 71

ORBASEC SL2 Extensions to Current

remove_overrides

This operation removes policies of the given types that have been set on the current
thread of execution.

// IDL
void remove_overrides(
 in CORBA:PolicyTypeSeq policy_types
);

// Java
public void remove_overrides(
 int[] policy_types
);

If policies of a given type are not found to be previously set on the current thread of
execution, the operation ignores it, and continues with the removal process for any
other policy types given to the operation. No exception is raised.

Accepting Credentials Attributes and Operations

The following section contains descriptions for associating a set of credentials
objects with a servant object. A servant object is an implementation of a
CORBA::Object that is local to the capsule. Associating Credentials with a ser-
vant object tells the security service which security mechanism components, which
are derived from the Credentials objects, to place in the servant object’s IOR.

accepting_credentials

This thread specific attribute sets or returns the list of Credentials objects that are
associated with new object references, (i.e. object implementations that are con-
nected to the ORB) within the current thread of execution. The credentials in the
accepting_credentials attribute are set to be the default for the current thread of
execution. To override those defaults for a particular servant object the call
set_accepting_credentials must be called on that servant object implementation.

Note – Calling set_accepting_credentials on an object connects the object to
the ORB. The object must not be previously connected to the ORB, as that is the
point at when its IOR gets generated. If an object given to
set_accepting_credentials is already connected to the ORB a
CORBA::BAD_PARAM exception is raised.

Security Current

72 ORBASEC SL2

The initial value for accepting_credentials is the entire list of own_credentials at
the time the servant is connected to the BOA.

// IDL
attribute SecurityLevel2::CredentialsList
 accepting_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
 accepting_credentials();

public void accepting_credentials(
 org.omg.SecurityLevel2.Credentials[] creds
);

If an attempt to set this attribute to a list of credentials containing a Credentials
object without the ability to accept secure associations, such as a Credentials object
with no accepting_options_supported, then a CORBA::BAD_PARAM excep-
tion is raised. An example of such a Credentials object might be the ReceivedCre-
dentials object from the received_credentials attribute, or a TargetCredentials
object retrieved from the get_target_credentials operation.

set_accepting_credentials

This operation sets the credentials to be used as the authenticating credentials for a
particular servant object.

The given object should be not yet be connected to the ORB! If the object is pre-
viously connected to the ORB the accepting credentials that were associated with
the thread at the time of the connect are the accepting credentials that are associated
with the object reference. Therefore, this operation would have no effect, and hence
a CORBA::BAD_PARAM exception will be raised. This operation will connect
the object to the ORB.

ORBASEC SL2 73

ORBASEC SL2 Extensions to Current

// IDL
void set_accepting_credentials(
 in Object servant,
 in SecurityLevel2::CredentialsList creds_list
);

// Java
public void set_accepting_credentials(
 org.omg.CORBA.Object servant,
 org.omg.SecurityLevel2.Credentials[] creds_list
);

If an attempt to use this operation with a list of credentials containing a Credentials
object without the ability to accept secure associations then a
CORBA::BAD_PARAM exception is raised. If an attempt to use this operation on
an object that is not a servant, a CORBA::BAD_PARAM exception is raised.

get_accepting_credentials

This operation is used to retrieve the accepting credentials that have been set at the
authenticating credentials for a particular servant object when the servant object
was connected to the ORB. This object must be connected to the ORB, or else a
CORBA::BAD_PARAM exception will be raised.

// IDL
SecurityLevel2::CredentialsList get_accepting_credentials(
 in Object servant
);

// Java
public org.omg.SecurityLevel2.Credentials[]
get_accepting_credentials(
 org.omg.CORBA.Object servant
);

If no credentials were set for the given servant object, an empty sequence is
returned. If an attempt to use this operation on an object that is not a servant, a
CORBA::BAD_PARAM exception is raised.

Security Current

74 ORBASEC SL2

release_accepting_credentials

This operation is used to remove the association of accepting credentials with the
given servant object. This object must be connected to the ORB, or else a
CORBA::BAD_PARAM exception will be raised.

// IDL
void release_accepting_credentials(
 in Object servant
);

// Java
public void release_accepting_credentials(
 org.omg.CORBA.Object servant
);

ORBASEC SL2 75

CHAPTER 5 Principal Authenticator

Principal Authenticator
This section describes the application programmer’s use of the
SecurityLevel2::PrincipalAuthenticator interface and its specific implementa-
tion relating to the default SecurityReplaceable module installed in ORBASEC
SL2.

The PrincipalAuthenticator interface is implemented by a sole principal authentica-
tor object. This object is a capsule specific object that resides on the Security Cur-
rent object. It is retrieved as follows:

// Java
org.omg.SecurityLevel2.Current current = // ... get current
org.omg.SecurityLevel2.PrincipalAuthenticator pa =
 current.principal_authenticator();

For details on the mechanism to get the Security Current object, see “Getting the
Current Object” on page 59.

An application programmer uses the PrincipalAuthenticator object to initialize
the application’s “own” credentials. The principal authenticator makes calls on the
vault behind the application programmer’s view. It asks the vault to authenticate a
specific principal and create the Credentials object that represents that principals

Principal Authenticator

76 ORBASEC SL2

identity. We term this notion as the “acquisition” of credentials. The PrincipalAu-
thenticator object then places these operational credentials on the Current object
for retrieval by the application programmer.

The PrincipalAuthenticator interface has three basic operations,
get_supported_authen_methods, authenticate, and continue_authentication.
The get_supported_authen_methods operation takes a security mechanism iden-
tifier and returns the list of authentication methods that are available for that mech-
anism. The authenticate operation starts an authentication sequence that may take
several steps. If additional steps are needed to complete authentication of the prin-
cipal, the continue_authentication operation is used for as many times as needed.

A Credentials object caught in a multistep authentication process contains state
information to facilitate the continuation of the authentication process. Once suc-
cessfully completed, indicated by a Security::AuthenticationStatus enum value
of SecAuthSuccess returned by the PrincipalAuthenticator object, the created
Credentials object is placed on the SecurityLevel2::Current object’s “own” cre-
dentials list.

The operations for the PrincipalAuthenticator object’s interface are defined
below:

authenticate

This operation begins the authentication of a principal. We say begin, because
authentication may take several steps to complete, such as with a challenge/
response oriented mechanism. The authenticate operation’s interface is described
below.

// IDL
Security::AuthenticationStatus authenticate (
 in Security::AuthenticationMethod method,
 in Security::MechanismType mechanism,
 in Security::Opaque security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

ORBASEC SL2 77

Principal Authenticator

// Java
public org.omg.Security.AssocationStatus
authenticate(
 int method,
 String mechanism,
 byte[] security_name,
 byte[] auth_data,
 org.omg.Security.SecAttribute[] privileges,
 org.omg.SecurityLevel2.CredentialsHolder
 creds,
 org.omg.Security.OpaqueHolder continuation_data,
 org.omg.Security.OpaqueHolder auth_specific_data
);

The parameters to the authenticate operation are described below:

method

This parameter specifies the authentication method that will be used to authenticate
the principal. Values for the authentication method are parameterized on the mech-
anism selected. These values are returned from a call to the
get_supported_authen_methods operation, which takes the mechanism as an
argument.

No values for this parameter have been specified by the OMG presently. Therefore,
we only accept the value 0, meaning “the default for the mechanism”.

mechanism

This parameter specifies the mechanism with which to authenticate the principal
with and create its associated “own” type credentials. The mechanisms that are
allowed in this call are the mechanisms that are listed as supported mechanisms
from the call to SecurityLevel2::Current object’s get_supported_mechanisms
attribute.

security_name

This parameter is a byte array stating the recognized name of the principal to be
authenticated. The contents and its encoding into bytes of this parameter is specific
to the mechanism specified. For some mechanisms, this parameter may be an
empty sequence of bytes. The name supplied here must be a

Principal Authenticator

78 ORBASEC SL2

orbasec.corba.Opaque byte encoded name. Please see Chapter on “Opaque
Encodings” on page 185 for details.

If you have the ORBASEC SL2-GSSKRB distribution and you are using a Kerberos
mechanism, a kerberos security name, such as “bart@MYREALM.COM” must be
represented as the following:

// For Kerberos
byte[] security_name =
 orbasec.corba.Opaque.encodeKerberosName(
 “bart@MYREALM.COM”).getEncoding();

If you have the ORBASEC SL2-SSL distribution and you are using an SSL mecha-
nism, the security name must be an empty sequence since the default authentication
mechanism gets the security name from the certificate file named in the auth_data
parameter.

// For SSL
byte[] security_name = new byte[0];

auth_data

This parameter specifies the extra data needed to authenticate the principal. The
format of this object is a sequence of bytes and the format of the data is dependent
on the mechanism and the method used. A value of an argument to this parameter
may contain such esoteric data as the result of a fingerprint or retinal scan.

If you have either of the ORBASEC SL2-GSSKRB or ORBASEC SL2-SSL distribu-
tions the value of the auth_data parameter be a byte encoded Java string of the
form read by the java.util.Properties class. This form mandates a “name=value”
string format separated by newline characters. The name-value pairs that are
required and their meaning are listed at the end of the section. The names of the
attributes and their associated values are explained at the end of this chapter for
both SL2-GSSKRB and SL2-SSL

privileges

This parameter states the “extra” privileges that the application programmer wants
to be authenticated along with the principal to create the credentials with those priv-
ileges authorized. Such privileges can have values stating facts such that whether
the principal is the member of a group or has the authorization for a particular role.

ORBASEC SL2 79

Principal Authenticator

Note – Currently, in both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL
distributions, this field is ignored, as neither mechanism can handle the
authentication or authorization of privileges in this manner. However, future
mechanisms may have this capability.

creds

This parameter is an output parameter returning the newly created Credentials
object of the “own” type. This operation works in concert with the Current object
and places the new credentials in the current’s own credentials list should the return
value from authenticate be SecAuthSuccess. If it is SecAuthContinue the Cre-
dentials object may not be fully enabled. The authentication mechanism created
interim credentials to be further passed to the continue_authentication operation.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The authenticate call either returns SecAuth-
Success and places the fully enabled Credentials object on the Current object’s
“own” credentials list, or it raises a system exception with an informative message.

continuation_data

This parameter is an output parameter returning data needed to continue the authen-
tication. This may hold such data labeling a continuation context.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The value of the continuation_data parameter
is unaffected.

auth_specific_data

This parameter is an output parameter returning data that may need to be exposed to
the application programmer, such as a message about what is needed to continue
the authentication. It is completely mechanism and method specific.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The value of the auth_specific_data parame-
ter is unaffected.

Principal Authenticator

80 ORBASEC SL2

return value

The value returned from this operation is one of the Security::AuthenticationSta-
tus enumeration type and states whether authentication succeeded, failed, or needs
to be continued.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The authenticate call either returns SecAuth-
Success and places the fully enabled Credentials object on the Current object’s
“own” credentials list, or it raises a system exception with an informative message.

continue_authentication

This operation is meant to continue authentication steps started by authenticate or
from previous calls to continue_authentication. Its interface is defined below:

Security::AuthenticationStatus continue_athentication(
 in Security::Opaque response_data,
 in Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specfic_data
);

In both the ORBASEC SL2-GSSKRB and SL2-SSL distributions authentication is a
one step process. The authenticate call does not return SecAuthContinue. Calls to
this operation raises a CORBA::BAD_OPERATION exception.

response_data

This parameter returns data in the format required by the mechanism and method
for continuing authentication. Its authenticate counterpart is the auth_data parame-
ter.

creds

This parameter should be credentials returned from authenticate or subsequent
calls to continue_authentication. If the operation returns SecAuthSuccess, the
credentials will be fully enabled and placed on Current’s own credentials list.

ORBASEC SL2 81

Authentication using ORBASEC SL2-GSSKRB

continuation_data

This parameter should be continuation data returned from authenticate or subse-
quent calls to continue_authentication. If the operation returns SecAuthCon-
tinue, this output value should be used in the subsequent call to
continue_authentication.

auth_specific_data

This parameter should be authentication specific data returned from authenticate
or subsequent calls to continue_authentication. If the operation returns SecAuth-
Continue, this output value should be used in the subsequent call to
continue_authentication.

get_supported_authen_methods

This operation returns a sequence of authentication methods that are valid for the
calls to authenticate. At some point there will be a standard set. The authentication
methods are parameterized on the mechanism, as some methods may only be valid
authentication methods for particular mechanisms. Its interface is defined below:

Security::AuthenticationMethodList
get_supported_authen_methods(
 in Security::MechanismType mechanism
);

Note – Currently, only one authentication method is supported for both the
ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions, indicated by the
integer 0.

Authentication using ORBASEC SL2-GSSKRB
This section explains the mechanisms, security name, and authentication data for-
mats for using the PrincipalAuthenticator with the ORBASEC SL2-GSSKRB distri-
bution. This distribution gives you the ability to use standard GSS-API version of
Kerberos as defined by MIT.

Principal Authenticator

82 ORBASEC SL2

Mechanism

If you have the ORBASEC SL2-GSSKRB distribution, you can currently only spec-
ify one mechanism for authenticate. It is:

Kerberos_MIT

or its default companion:

Kerberos

In ORBASEC SL2 mechanism naming scheme, the latter two match the above one.
For now, our SL2-GSSKRB distribution only has support for the cipher suites with
your Kerberos installation. There is currently no way to specify them.

Security Name

The security_name parameter must be in a orbasec.corba.Opaque byte encoding
of a Kerberos name. This requires taking the string of a kerberos principal such as
“bart@MYREALM.COM” and converting it to a special Opaque byte encoding.
This encoding is simply done as:

import orbasec.corba.Opaque;

byte[] security_name =
 Opaque.encodeKerberosName(“bart@MYREALM.COM”).getEncoding();

If the security_name parameter has one of the following values:

• new byte[0]

• Opaque.encodeKerberosName(“”).getEncoding()

The name stored in the named or default Kerberos credentials cache will be used.

Authentication Data

The authentication data is the value of the auth_data parameter for the authenti-
cate operation. The format for this parameter is the standard Java string to byte
encoding of a Java String containing name-value pairs in the form for the
java.util.Properties class. This format requires each entry to have the form
“name=value” separated by newline characters.

For example, a call in Java to authenticate “bart@MYREAL.COM” would be:

ORBASEC SL2 83

Authentication using ORBASEC SL2-GSSKRB

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;
import orbasec.corba.Opaque;

....
 PrincipalAuthenticator pa = // get the PA from Current

 CredentialsHolder credsh = new CredentialsHolder();
 OpaqueHolder contdata = new OpaqueHolder();
 OpaqueHolder authspecdata = new OpaqueHodler();
 AuthenticationStatus stat;

 stat = pa.authenticate(
 0,
 “Kerberos”,
 Opaque.encodeKerberosName(“bart@MYREAL.COM”)
 .getEncoding(),
 (“config=FILE:/etc/krb5.conf\n” +
 “password=\”MyPassword\”\n” +
 “cache=FILE:/tmp/krb5cc_bart\n” +
 “lifetime=360m\n” +
 “forwardable=true\n”).getBytes(),
 new SecAttribute[0],
 credsh,
 contdata,
 authspecdata
);

The names of the properties that are valid for the authentication data are described
below.

config

This property field contains the name of the Kerberos configuration file. The exist-
ence of this file is specific to the MIT implementation. This file contains informa-
tion pertaining to the configuration of the kerberos configuration. Such information
includes the network location of the KDC, and other parameters. If the config field
is not present or its value is empty, the default of the Kerberos installation is used.

The config specification has a two part format:

<type>:<config name>

Principal Authenticator

84 ORBASEC SL2

However, the only type that is currently valid, is “FILE”, where the config name
part names the location of a Kerberos Version 5 configuration file on the local sys-
tem.

On most Unix systems, the default configuration file for Unix systems is located by
the name /etc/krb5.conf, or by the contents of an environment variable
called “KRB5_CONFIG”.

On NT, the default configuration file is specified by a complex logic.

The “kerberos.ini” file must be first located wherever “ini” files are found. This
procedure may be some uniform directory search according to your system, such as
“C:\winnt;C:\windows;\C:\winnt\system”, etc.

This “kerberos.ini” file may contain an entry as follows:

[Files]
 krb5.ini =

If there is no “krb5.ini” entry, it assumes that “krb5.ini” file exists in your current
directory.

password

This property field must contain the password. Unfortunately, we have a very
minor character translator, so special characters like control characters, tabs, back-
spaces, and such are not representable. If the password field is not present or its
value is empty, and the keytab field (see below) is not present or is empty, then the
Kerberos authentication mechanism will use the credentials in the specified cre-
dentials cache file (see below). This assumes the principal has already acquired
credentials externally (for instance, via the Kerberos kinit program). If the keytab
field is present and non-empty, then the principal’s key is assumed to be stored in
the keytab file.

cache_name

This field names the location of Kerberos credentials cache that you want to use. If
the password and keytab fields are not present, the cache file should contain the
principal’s already-obtained credentials (e.g., via the Kerberos kinit program). The
credentials cache specification has a two part format:

<type>:<credentials ccache name>

ORBASEC SL2 85

Authentication using ORBASEC SL2-GSSKRB

The type can be one of “FILE” or “MEMORY”. The “FILE” type names a file on
the local system, meaning that the credentials are or will be placed externally to the
running process. If the type is “MEMORY” the credentials will be retained inside the
process for the duration of the process. Using a credentials cache of type “MEM-
ORY” is a safer way to go. However, to use the “MEMORY” type credentials cache,
you must supply a value for the password or keytab field, as it is impossible to use
already authenticated credentials.

Also, if authenticating multiple Kerberos Credentials and using “MEMORY” type
credential caches, the names must be different. When using “MEMORY” type caches
the name portion of the cache file is not that significant, so names such as MEM-
ORY:0, MEMORY:1, MEMORY:2, and so on, can be used without any difficulty.

If the cache file specification is not present, then the default “kerberos session”
cache is assumed. The Kerberos session cache is a file, and it is usually initialized
by the “kinit” program from the Kerberos distribution.

The default credentials cache file on most Unix systems, is “FILE:/tmp/
krb5cc_<uid>” where uid is the user number of the principal logged on, or
named by an environment variable “KRB5CCNAME”.

On NT, it resides in a file, which may be specified in the “kerberos.ini” file one of
two ways.

[Files]
 RegKRB55CCNAME =

or

[Files]
 krb5cc =

If the first method is used, which takes precedence over the first, the value names a
registry key that points to the file name. Such a registry key might be
“[HKEY_CURRENT_USER\Software\Gradi-
ent\DCE\Default\KRB5CCNAME]”, and its value will contain a string with the
“FILE:” prefix.

If the second method is used, the “krb5cc” variable names the cache file directory,
using the “FILE:” prefix.

Principal Authenticator

86 ORBASEC SL2

If the security_name parameter is nonempty and the cache specifies a “FILE”
type, or the default “session” cache. The security_name must match the principal
stored in the credentials cache file. If the security_name does not match the princi-
pal stored in the credentials cache file, a CORBA::BAD_PARAM exception is
raised. If the security_name parameter is empty, then the principal name in the cre-
dentials cache file is used for the Credentials object.

enable_server

This property field is important if the credentials you are authenticating will be
used to accept secure assoications. That is to say the process holding on the creden-
tials is to be a server. If this property has a value of “true”, it signifies that a keytab
will be used.

keytab

This property field is important and is especially important if the “enable_server”
property is set to “true”. If you want your application to be a CORBA server, i.e. to
service any requests on its objects from remote clients, (i.e. you initialize the BOA),
you must have the key stored in a readable keytab. If the keytab you need is a file,
which is given to you by your Kerberos administrator, giving a value to this field
forgoes the use of password, because effectively the keytab contains the password.

The keytab specification has a two part format:

<type>:<keytab name>

To use a keytab file, the principal must be contained in a keytab file that the process
has permission to read. Note, that in most Unix installations of the MIT Kerberos
implementation the default keytab file (/etc/krb5.conf) is usually only read-
able by the super user, as this file contains the keys for such services as TELNET,
FTP, etc. These services initially have super user privilege until they authenticate
the client and downgrade their privileges.

This situation may require you to have the Kerberos administrator make a keytab
file available for your particular server’s principal. For MIT Kerberos installations
only the kadmin or kadmin.local programs are allowed to create and add the
keys of the principals to a keytab file.

If you label the keytab to be of a MEMORY type keytab, such as MEMORY:0,
then you need a password. The system loads that memory keytab with the princi-

ORBASEC SL2 87

Authentication using ORBASEC SL2-GSSKRB

pal’s key after deriving it from the password. This mechanism alleviates the need to
expose a principal’s key to the file system.

If the “keytab” property is not defined, the system default file is assumed. On Unix
systems, the default is found first by the value of the “KRB5_KTNAME” environ-
ment variable, the file specified in the specified Kerberos Configuration file (e.g. /
etc/krb5.conf), in the following manner:

[libdefaults]
 default_keytab_name =

Lastly, it is defined to be “/etc/krb5.keytab” if no entry is found.

On NT, the default keytab file is found the same way through the specified Ker-
beros Configuration File. However, if no entry is found it is assumed to be
“krb5.keytab” in your current working directory.

Note – Using a MEMORY type keytab is the preferred mechanism for servers.

Note – It has been discovered that if your Kerberos Administrator adds your
principal’s name to a keytab file, at least in the MIT system, its key is
randomized and the password is effectively changed to some unknown value.

lifetime

This property field specifies the lifetime of the credentials. Its value is of the forma-
tion of an integer immediately suffixed with one of “s”, “m”, “h”, or “d”. The suf-
fixes each specify seconds, minutes, hours, or days respectively. Absence of the
lifetime field defaults to the system default.

proxiable

This property field specifies that the credentials will be proxiable. This statement
means that your credentials are able to be forwarded to the target on an invocation
for the target to create authentication tickets in your behalf.
The field’s value is of the form of true or false. Absence of the proxiable field
defaults to false. Please see the Internet RFC 1510[1] for an explanation of the
details.

Principal Authenticator

88 ORBASEC SL2

forwardable

This property field specifies that the credentials will be forwardable. This means
that your credentials are able to be forwarded to the target on an invocation for the
target to create authentication tickets in your behalf. Its value is of the form of true
or false. Absence of this field defaults to false. Please see the Internet RFC 1510[1]
for an explanation of the details.

renewablelife

This property field has the same format as the lifetime field. It specifies the amount
of time the credentials can be renewed. Absence of the renewablelife field defaults
the renewable life to the system default.

Session Credentials Example

For use as a pure client, where an application uses the ORB, but does not initialize
the BOA, or need to give up references to internal objects (callbacks), the default
Kerberos credentials can be used. A default credentials file is set up when a user
initializes his/her Kerberos credentials cache file by using the Kerberos “kinit” pro-
gram. This program initializes your credentials cache file by asking for your Ker-
beros principal name and password. The credentials cache file is known as the
user’s Kerberos “session” cache, and it is usually set up when the user is logged in,
and destroyed when the user logs out.

In ORBASEC SL2, to create a Credentials object using the Kerberos “session” cre-
dentials cache, the following example illustrates the method by which that is done.

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

....
 PrincipalAuthenticator pa = // get the PA from Current

 CredentialsHolder credsh = new CredentialsHolder();
 OpaqueHolder contdata = new OpaqueHolder();
 OpaqueHolder authspecdata = new OpaqueHodler();
 AuthenticationStatus stat;

 stat = pa.authenticate(
 0, // auth method
 “Kerberos”, // mechanism
 new byte[0], // security_name

ORBASEC SL2 89

Authentication using ORBASEC SL2-SSL

 new byte[0], // auth_data
 new SecAttribute[0], // privileges
 credsh, // out Credentials
 contdata,
 authspecdata
);

Note – Session Credentials cannot be used in a CORBA server to accept
CORBA requests with kerberos, because the principal’s key cannot be retrieved.

Authentication using ORBASEC SL2-SSL
This section explains the mechanisms, security name, and authentication data for-
mats for using the PrincipalAuthenticator with the ORBASEC SL2-SSL distribu-
tion. This distribution gives you the ability to use standard Secure Socket Layer
Version 3.0. It uses the iSaSiLk toolkit from IAIK.

Mechanism

If you have the ORBASEC SL2-SSL distribution, you can specify one or more of
many mechanisms (cipher suites) available for SSL. A mechanism is a string repre-
sentation with the security mechanism name, plus cipher suites separated by com-
mas. The IAIK toolkit has support for the following cipher suites:

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_RC4_MD5
SSL_RSA_WITH_RC4_SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_WITH_IDEA_CBC_SHA
SSL_RSA_WITH_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_DSS_WITH_DES_CBC_SHA
SSL_DH_DSS_WITH_3DES_CBC_SHA
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_RSA_WITH_DES_CBC_SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA

Principal Authenticator

90 ORBASEC SL2

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon_WITH_RC4_MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

The above names are the symbolic names for the cipher suites. An example of
mechanism name to use would be:

“SSL_IAIK,SSL_DH_DSA_WITH_DES_CBC_SHA”

The above mechanism name specifies the SSL mechanism from the IAIK provider
(currently the only one). Similarly, the string:

“SSL,SSL_DH_DSA_WITH_DES_CBC_SHA”

names the same cipher suite from the default SSL provider, which in this case is
IAIK.

Multiple cipher suites can be used with SSL. However, care should be taken when
selecting a mechanism with multiple cipher suites. Some cipher suites have differ-
ent credentials properties than others. Some only can be used with certain certifi-
cates. Say, your credentials consists of a DSA certificate, you cannot use RSA
signed cipher suites. Rather than throw an exception if one cipher suite cannot be
used, the SSL_IAIK Vault, which lies in the internals of the system, will eliminate
any cipher suites from the list that cannot be used. However, if there is no common
cipher suites that are common with the certificates given to authenticate the princi-
pal and the ones specified with the mechanism, then a CORBA::BAD_PARAM
exception is raised.

Also, some cipher suites have different secure association properties than others.
Some cipher suites only provide authentication and integrity, but not confidential-
ity. Others cannot authenticate a client. If a set of ciphers suites specified have dif-
ferent sets of association capabilities only the common association capabilities are
set in the accepting_options_supported and the invocation_options_supported
attributes of the Credentials object. Such mixing the “anon” cipher suites with and
“DSS” cipher suites will not get you the ability to authenticate the client, i.e. the

ORBASEC SL2 91

Authentication using ORBASEC SL2-SSL

EstablishTrustInClient Association Option will not be set in the created Creden-
tials object’s accepting_options_supported attribute.

If you have the ORBASEC SL2-SSL distribution, the Cur-
rent::get_supported_mechanisms operation will return an array of Secu-
rity::MechandOptions structures, each of which will list an “SSL_IAIK”
mechanism with cipher suites that have exactly the same common association
options that are supported for those cipher suites.

Also, a utility class called MechUtil in the orbasec.corba package contains static
string definitions of SSL mechanisms with cipher suites grouped in a comprehen-
sive fashion. The names are somewhat self explanatory. However, please check the
JavaDoc built documentation for the exact details. The mechanism strings defined
in orbasec.corba.MechUtil class are defined by the static constants:

• MechUtil.SSL_NON_ANON_MECH
• MechUtil.SSL_NON_ANON_EXPORT_MECH
• MechUtil.SSL_NON_ANON_NON_EXPORT_MECH
• MechUtil.SSL_DH_ANON_MECH
• MechUtil.SSL_DH_ANON_EXPORT_MECH
• MechUtil.SSL_DH_ANON_NON_EXPORT_MECH
• MechUtil.SSL_DH_DSS_MECH
• MechUtil.SSL_DH_DSS_EXPORT_MECH
• MechUtil.SSL_DH_DSS_NON_EXPORT_MECH
• MechUtil.SSL_DHE_DSS_MECH
• MechUtil.SSL_DHE_DSS_EXPORT_MECH
• MechUtil.SSL_DHE_DSS_NON_EXPORT_MECH
• MechUtil.SSL_DH_RSA_MECH
• MechUtil.SSL_DH_RSA_EXPORT_MECH
• MechUtil.SSL_DH_RSA_NON_EXPORT_MECH
• MechUtil.SSL_DHE_RSA_MECH
• MechUtil.SSL_DHE_RSA_EXPORT_MECH
• MechUtil.SSL_DHE_RSA_NON_EXPORT_MECH
• MechUtil.SSL_RSA_MECH
• MechUtil.SSL_RSA_EXPORT_MECH
• MechUtil.SSL_RSA_NON_EXPORT_MECH

Note – In order to use any cipher suites with RSA or RC4 in them, you are
required to obtain a license from RSA, Inc. The ORBASEC SL2-SSL distribution
comes with RSA disabled. In order to get ORBASEC SL2-SSL to use the RSA

Principal Authenticator

92 ORBASEC SL2

cipher suites, you need to obtain from Adiron a special on-site consulting
agreement to get RSA cipher suites enabled. Adiron can only do this after proof
that a license from RSA has been granted.

Security Name

The security_name parameter must be in a orbasec.corba.Opaque byte encoding
of a DirectoryName. This requires creating a DN. Please see your IAIK toolkit for
an example of how to construct a DN:

import orbasec.corba.Opaque;

iaik.asn1.structures.Name my_name = //..... create a DN
byte[] security_name =
 Opaque.encodeDirectoryName(my_name).getEncoding();

If the value of the security_name parameter has the following value:

• new byte[0]

the principal’s DN is retrieved from the certificate chain that is specified in the cer-
tificate file, which is specified in the authentication data. If the value of the
security_name parameter is nonempty it is compared with the name in the certifi-
cate. If they do not match, a CORBA::BAD_PARAM exception is raised.

The most common use would be to leave the security_name parameter empty and
let the principal’s DN come from the certificate.

Authentication Data

The authentication data is the value of the auth_data parameter for the authenti-
cate operation. The format for this parameter is the standard Java string to byte
encoding of a Java String containing name-value pairs in the form for the
java.util.Properties class. This format requires each entry to have the form
“name=value” separated by newline characters.

For example, a call in Java to create credentials for a principal with the DN of
“C=US, O=Adiron, CN=Bart” a call to the PrincipalAuthenticator object would
be:

ORBASEC SL2 93

Authentication using ORBASEC SL2-SSL

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;
import orbasec.corba.Opaque;
import orbasec.corba.MechUtil;

....
 PrincipalAuthenticator pa = // get the PA from Current

 CredentialsHolder credh = new CredentialsHolder();
 OpaqueHolder contdata = new OpaqueHolder();
 OpaqueHolder authspecdata = new OpaqueHodler();
 AuthenticationStatus stat;

 stat = pa.authenticate(
 0,
 MechUtil.SSL_DH_DSS_MECH, // mechanism
 new byte[0], // security_name
 (“certchain=FILE:bart.dsa\n” +
 “password=\”MyPassword\”\n”).getBytes(),
 new SecAttribute[0],
 credh,
 contdata,
 authspecdata
);

The names of the properties that are valid for the authentication data are described
below.

certchain

This field names the location of X.509 Certificate chain and private key that you
want to use. The certchain specification has a two part format:

<type>:<cert chain name>

Currently, the only available type is “FILE”. The “FILE” type names a file on the
local system. The file must contain a certificate chain and an encrypted private key,
in either DER or PEM format. Please see iaik.utils.KeyAndCertificate from your
IAIK SSL and JCE toolkits for details.

If the certchain specification is empty, the Credentials object can only be used to
set up anonymous communication.

Principal Authenticator

94 ORBASEC SL2

password

This property field must contain the password for the private key. Unfortunately,
we have a very minor character translator, so special characters like control charac-
ters, tabs, backspaces, and such are not representable.

Example of a creation of an Anonymous SSL Credentials Object

We have shown an example above for authenticating a principal using his certifi-
cate and encrypted private key file. Below, the following shows an example should
one want to create an anonymous SSL Credentials object.

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;
import orbasec.corba.MechUtil;

....
 PrincipalAuthenticator pa = // get the PA from Current

 CredentialsHolder credsh = new CredentialsHolder();
 OpaqueHolder contdata = new OpaqueHolder();
 OpaqueHolder authspecdata = new OpaqueHodler();
 AuthenticationStatus stat;

 stat = pa.authenticate(
 0, // auth method
 MechUtil.SSL_ANON_MECH, // mechanism
 new byte[0], // security_name
 new byte[0], // auth_data
 new SecAttribute[0], // privileges
 credsh, // out Credentials
 contdata,
 authspecdata
);

An anonymous SSL Credentials object can be used for private and integrity based
communication using Diffe-Hillman key exchange cipher suites, i.e. the cipher
suites that are listed in the MechUtil.SSL_ANON_MECH string definition.

ORBASEC SL2 95

Authentication of IIOP Credentials

Authentication of IIOP Credentials
This section explains the process for creating an IIOP Credentials object. IIOP Cre-
dentials are used to identify and set up communication with standard CORBA serv-
ers and clients within ORBAsec SL2. ORBAsec SL2, by default, does not allow
any insecure communication. To do so, would open up a security hole. However,
there is a need for a controlled secure application to be able to communicate with
insecure, standard IIOP clients and servers. An application may not communicate
with an insecure, standard IIOP client or server unless it has created IIOP creden-
tials, in the following maner.

Mechanism

The mechanism must be specified as “IIOP”.

Security Name

The security name must be specified as:

• new byte[0]

Authentication Data

The authenitication data can have just one optional value, “enable_server”.

enable_server

If the “enable_server” property is set to “true”, it allows insecure IIOP con-
nections to come into your application. If this property is false, the application may
only iniitate insecure IIOP connections as a client.

Example of a creation of an Anonymous SSL Credentials Object

We have shown an example above for authenticating a principal using his certifi-
cate and encrypted private key file. Below, the following shows an example should
one want to create an anonymous SSL Credentials object.

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

....

Principal Authenticator

96 ORBASEC SL2

 PrincipalAuthenticator pa = // get the PA from Current

 CredentialsHolder credsh = new CredentialsHolder();
 OpaqueHolder contdata = new OpaqueHolder();
 OpaqueHolder authspecdata = new OpaqueHodler();
 AuthenticationStatus stat;

 stat = pa.authenticate(
 0, // auth method
 “IIOP”, // mechanism
 new byte[0], // security_name
 (“enable_server=true\n”).getBytes(),
 // auth_data
 new SecAttribute[0], // privileges
 credsh, // out Credentials
 contdata,
 authspecdata
);

An “anonymous” IIOP Credentials object can be used for insecure communication
as both a client and a server. The security attributes of the IIOP Credentials object
will tell of the local hostname and the local TCP/IP port number (if
“enable_server” is set to “true”) given to the Credentials.

ORBASEC SL2 97

CHAPTER 6 Credentials

What are Credentials?
Credentials are the application programmer’s interface to querying of security
related attributes belonging to the application itself and of any clients making invo-
cations. Also, one may examine the Credentials of a server. Credentials come in
three flavors, “own” credentials, “received”, and “target” credentials.

The “own” type of credentials represent the application’s credentials from which a
special authentication procedure had to be performed. Own credentials are created
by making a request on the PrincipalAuthenticator object that resides as an
attribute on the Current object. The principal authenticator goes through the neces-
sary procedures to authenticate the intended security name under the intended secu-
rity mechanism and requested privileges to produce a Credentials object that
represents a principal. Own credentials are specific to the capsule, (i.e. they are not
thread specific).

The “received” type of credentials are only valid in the context of servicing a
request as a server object. They represent the establishment of a security context
between the client and the target. The target object can query the “received” cre-
dentials object to identify the principal making the request, and query any special
privileges that the principal may have acquired. Received credentials are specific to
the execution context in servicing a request, (i.e. they are thread specific).

Credentials

98 ORBASEC SL2

The “target” type of credentials are the credentials of an object behind the object
reference. It may be desirable to examine that an object has the right credentials
before you start making requests on it. These type of credentials are for examina-
tion only. They cannot be used to make invocations like “own” and “received” cre-
dentials can

FIGURE 1. The Credentials Interfaces.

The next two sections explain the Credentials interface, the ReceivedCredentials
interface, and the TargetCredentials interface. The Credentials interface is the
base interface and is used to represent “own” credentials. A ReceivedCredentials
object represents the security context between the client and target from the target’s
point of view. A TargetCredentials object represents the security context between
the client and target from the client’s point of view. Each of the ReceivedCreden-
tials and TargetCredentials objects hold more information than an own creden-
tials object.

Credentials
The Credentials interface is the base type for own credentials, received credentials,
and target credentials, own credentials being the Credentials interface itself.

The Credentials interface holds information pertaining to the authenticated iden-
tity of the subject of the credentials, i.e. the principal. Credentials are a Security
Level 2 module interface. However, the implementation is dependent on the under-
lying security mechanisms that are installed. The Vault, a Security Replaceable

Credentials

ReceivedCredentials TargetCredentials

ORBASEC SL2 99

Credentials

object, creates Credentials objects. A Credentials object is specific to the security
mechanisms supported by that Vault. The Credentials interface has the following
definition:

// IDL
interface Credentials { // Locality Constrained
 Credentials copy();

 void destroy():

 readonly attribute Security::CredentialsType
 credentials_type;

 readonly attribute Security::AuthenticationState
 authentication_state;

 readonly attribute Security::MechanismType mechanism;

 attribute Security::AssociationOptions
 accepting_options_supported;
 attribute Security::AssociationOptions
 accepting_options_required;
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
 invocation_options_required;
 boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

Credentials

100 ORBASEC SL2

 boolean set_attributes (
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);

 boolean is_valid (
 out Security::UtcT expiry_time
);

 boolean refresh(
 in Security::Opaque refresh_data
);
};

The attributes and operations of the Credentials object’s interface are:

copy

This operation is produces a “deep” copy of the Credentials object. There are
semantic issues with what this operation means in the context of the destroy opera-
tion. These issues have not yet been resolved. Guidelines for the implementation of
this method are presenting in the section on “The Vault” on page 144.

The copy operation’s interface is below:

// IDL
Credentials copy();

// Java
public org.omg.SecurityLevel2.Credentials copy();

destroy

This operation is destroys the copy of the Credentials object.

The destroy operation’s interface is below:

ORBASEC SL2 101

Credentials

// IDL
void destroy();

// Java
public void destroy();

credentials_type

This attribute contains the value discerning whether the credentials are of the
“own”, “received”, or “target” type.

// IDL
readonly attribute Security::CredentialsType
 credentials_type;
// Java
public org.omg.Security.CredentialsType
credentials_type();

This operation returns SecOwnCredentials if the Credentials is of the “own” cre-
dentials type. It returns SecReceivedCredentials if the Credentials object is of the
“received” credentials type and can be narrowed to a ReceivedCredentials object.
It returns SecTargetCredentials if the Credentials object is of the “target” creden-
tials type and can be narrowed to a TargetCredentials object.

authentication_state

Since Credentials objects may take several operations to fully become initialized
this read-only attributes serves as an indication of the authentication state, which is
the same as the result returned from PrincipalAuthenticator::authenticate and
PrincipalAuthenticator::continue_authentication operations.

// IDL
readonly attribute Security::AuthenticationStatus
 authentication_state;
// Java
public org.omg.Security.Authenticationstatus
authentication_state();

This attribute has the value of SecAuthSuccess if the Credentials are fully initial-
ized. It returns SecAuthContinue if subsequent calls to PrincipalAuthentica-
tor::continue_authentication are needed. It returns SecAuthFailure if the

Credentials

102 ORBASEC SL2

continuing authentication of the Credentials has failed. It returns SecAuthExpired
if the continuing authentication of the Credentials is no longer viable.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions, the
default authentication method is a one step process, and therefore the PrincipalAu-
thenticator object only creates Credentials with SecAuthSuccess for an authenti-
cation state. Should the call to PrincipalAuthenticator::authenticate fail, a
Credentials object is not created.

mechanism

This read only attribute specifies the symbolic name security mechanism and the
symbolic name of the cipher suites that the credentials support.

// IDL
readonly attribute Security::MechanismType mechanism;

// Java
public String mechanism();

Please see the section on “Mechanism” on page 89. for detail.

accepting_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is
placed in the “target_supports” field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
raises a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 accepting_options_supported;
// Java
public short accepting_options_supported();
public void accepting_options_supproted(short opts);

Accepting options supported must be non-zero to be used with SecLev2::Cur-
rent::set_accepting_credentials operation. The absolute minimum in security

ORBASEC SL2 103

Credentials

terms that any credentials object can have in supported options to establish an asso-
ciation is:

NoProtection + NoDelegation

Note – Only “own” credentials will have accepting options that are not zero.
This attribute having a value of zero simply states that this credentials object
cannot be used to establish secure associations on the server side. A “received”
credentials object will have accepting options of zero. A “target” credentials
object will have a value of zero.

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to less than the accepting_options_required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with their maximum supported options set in this
attribute.

In the ORBASEC SL2-GSSKRB distribution Kerberos credentials initially support
the following association options on the server side:

NoProtection, Integrity, Confidentiality, Detect Replay, EstablishTrustInClient,
EstablishTrustInTarget,NoDelegation,SimpleDelegation.

The user may not set them less than NoProtection, NoDelegation.

In the ORBASEC SL2-SSL distribution, the options supported for SSL Credentials
objects depend on the cipher suites that were specified in the PrincipalAuthentica-
tor::authenticate operation. Most cipher suites have the following options set:

NoProtection, Integrity, Confidentiality, Detect Replay, DetectMisordering, Estab-
lishTrustInClient, EstablishTrustInTarget,NoDelegation

However, anonymous based cipher suites leave out EstablishTrustInClient and
EstablishTrustInTarget. Some DH cipher suites do not encrypt, and therefore leave
out Confidentiality. The listed according to the SSL mechanism defined in
orbasec.corba.MechUtil are as follows:

Credentials

104 ORBASEC SL2

accepting_options_required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is
placed in the “target_requires” field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
raises a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 accepting_options_required;
// Java
public short accepting_options_required();
public void accepting_options_required(short opts);

Accepting options required may be zero.

Mechanism Association Options Supported

MechUtil.SSL_DH_ANON_MECH Integrity, DetectReplay, DetectMisordering, NoDelega-
tion

MechUtil.SSL_DH_DSS_MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustInTarget,NoDelegation

MechUtil.SSL_DH_RSA_MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustInTarget,NoDelegation

MechUtil.SSL_DHE_DSS_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_DHE_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_NON_ANON_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

TABLE 4. SSL Cipher Suite Accepting Options Supported

ORBASEC SL2 105

Credentials

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to more than the accepting_options_supported attribute. If one must augment the
options that are required, one must set the supported options first.

In the ORBASEC SL-GSSKRB distribution, Kerberos credentials initially have
required options of zero. However, certain combinations that do not make sense are
illegal to be set, such as, you cannot set NoProtection with any of Integrity, Confi-
dentiality, or Detect Replay. Likewise, you cannot set both NoDelegation and Sim-
pleDelegation to be required.

In the ORBASEC SL2-SSL distribution, the options that can be set to be required
follow the same restrictions.

invocation_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
raises a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 invocation_options_supported;
// Java
public short invocation_options_supported();
public void invocation_options_supported(short opts);

Invocation options supported must be non-zero to be used with an
SecurityLevel2::InvocationCredentialsPolicy. The absolute minimum in security
terms that any credentials object can have in supported options to establish an asso-
ciation is:

NoProtection + NoDelegation

Note – In the case of delegation, “received” credentials may have supported
invocation options. Having a value of zero simply states that this credentials
object cannot be used to establish secure associations on the client side. A
“target” credentials object will have a value of zero.

Credentials

106 ORBASEC SL2

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to less than the invocation_options_required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with their maximum supported options set in this
attribute.

In the ORBASEC SL2-GSSKRB distribution Kerberos credentials initially support
the following association options on the server side:

NoProtection, Integrity, Confidentiality, Detect Replay, EstablishTrustInClient,
EstablishTrustInTarget,NoDelegation,SimpleDelegation.

The user may not set them less than NoProtection, NoDelegation.

In the ORBASEC SL2-SSL distribution, the options supported for SSL Credentials
objects depends on the cipher suites that were specified in the PrincipalAuthenti-
cator::authenticate operation. Most cipher suites have this set:

NoProtection, Integrity, Confidentiality, Detect Replay, DetectMisordering, Estab-
lishTrustInClient, EstablishTrustInTarget,NoDelegation

However, anonymous based cipher suites leave out EstablishTrustInClient and
EstablishTrustInTarget. Some DH cipher suites do not encrypt, and therefore they
leave out Confidentiality. The list according to the SSL mechanism defined in
orbasec.corba.MechUtil class are as follows:

Mechanism Association Options Supported

MechUtil.SSL_DH_ANON_MECH Integrity, DetectReplay, DetectMisordering, NoDelega-
tion

MechUtil.SSL_DH_DSS_MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustInTarget,NoDelegation

MechUtil.SSL_DH_RSA_MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustInTarget,NoDelegation

TABLE 5. SSL Cipher Suite Invocation Options Supported

ORBASEC SL2 107

Credentials

invocation_options_required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
raises a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 invocation_options_required;
// Java
public short invocation_options_required();
public void invocation_options_required(short opts);

Invocation options required may be zero.

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to more than the invocation_options_supported attribute. If one must augment
options that are required, one must set the supported options first.

In the ORBASEC SL-GSSKRB distribution, Kerberos credentials initially have
required options of zero. However, certain combinations that do not make sense are
illegal to be set, such as, you cannot set NoProtection with any of Integrity, Confi-

MechUtil.SSL_DHE_DSS_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_DHE_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_NON_ANON_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

Mechanism Association Options Supported

TABLE 5. SSL Cipher Suite Invocation Options Supported

Credentials

108 ORBASEC SL2

dentiality, or Detect Replay. Likewise, you cannot set both NoDelegation and Sim-
pleDelegation to be required.

In the ORBASEC SL2-SSL distribution, the options that can be set to be required
follow the same restrictions.

get_security_feature

This operation returns a boolean that represent the feature state of the credentials.

// IDL
boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

// Java
public boolean get_security_features(
 int direction,
 org.omg.Security.SecurityFeature feature
);

set_attributes

This operation is intended for use in attribute management of the particular creden-
tials. Its meaning is defined to diminish attributes of the credentials in the context
of the mechanism’s ability. It may be desirable to diminish the set of attributes that
a Credentials object contains. No all mechanisms can support this operation.
Depending on the mechanism, some attributes may not be removed.

The set_attributes operation’s interface is below:

// IDL
boolean set_attributes(
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

// Java
public boolean set_attributes(
 org.omg.Security.SecAttribute[] requested_attributes,
 org.omg.Security.AttributeListHolder actual_attributes
);

ORBASEC SL2 109

Credentials

The value given to the requested_attributes parameter must be a subset of the list
of attributes returned from the get_attributes operation. If it contains an attribute
not from that the list of attributes from the get_attributes operation, a
CORBA::BAD_PARAM exception is raised. The value returned in the
actual_attributes parameter is the resultant list of all the attributes the Credentials
object now contains. The return value returns true if the operation was successful
and the actual attributes are indeed the requested attributes. If return value of the
operation is false (i.e. no exception is raised), the operation is considered success-
ful, however, some attributes in the Credentials object that were not given to the
requested_attributes parameter were not removed.

Note – This operation is not effectively supported by the ORBASEC SL2-
GSSKRB or ORBASEC SL2-SSL distributions as the implementations of the
Kerberos and SSL protocols have minimal attributes that cannot be removed.

get_attributes

This operation returns an unordered sequence of security attributes that belong to
the credentials.

// IDL
Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);

// Java
public org.omg.Security.SecAttribute[] get_attributes(
 org.omg.Security.AttributeType[] attributes
);

Security attributes come in many types and values. Please see the section on Secu-
rity Attributes for further details.

Although there is a standard for the attribute types and the values to which they
refer, no standardization effort is underway to define the format of the values of the
particular attributes.

is_valid

This operation returns a boolean value indicating whether the credentials are still
valid. The output parameter returns the time of expiration.

Credentials

110 ORBASEC SL2

// IDL
boolean is_valid(
 out Security::UtcT expiry_time
);

// Java
public boolean is_valid(
 org.omg.TimeBase.UtcTHolder expiry_time
)

refresh

This operation is intended to renew a credentials before it may expire. It returns a
boolean value indicating the success of the renewal.

// IDL
boolean refresh(
 in Security::Opaque refresh_data
);

// Java
public boolean refresh(byte[] refresh_data);

In the ORBASEC SL2-GSSKRB distribution, this operation is supported for Ker-
beros credentials of the “own” type only. If invoked on Credentials of the
“received” or “target” type it raises a CORBA::BAD_OPERATION exception. If
invoked on Credentials of the “own” type, it returns true if the operation succeeds,
however, it raises an exception with an informative error message if the operation
fails.

Note – For the current version of the GSS-Kerberos mechanism credentials, the
refresh_data is required to be octet sequence of zero length.

In the ORBASEC SL2-SSL distribution, this operation is not supported for SSL cre-
dentials. If invoked it raises a CORBA::BAD_OPERATION exception.

ORBASEC SL2 111

Received Credentials

Received Credentials

On the target side a ReceivedCredentials object represents a secure association
between the client and target. Received credentials must have more information
than “own” credentials.

The interface inherits from the Credentials interface, and in the case of using the
received credentials for invocations, the invocation features, operations, and
attributes of the Credentials object have the same meaning. Of course, the
credentials_type attribute is set to SecReceivedCredentials. Its interface is
defined below:

interface ReceivedCredentials : Credentials {
 // Locality Constrained
 readonly attribute Credentials accepting_credentials;
 readonly attribute Security::AssociationOptions
 association_options_used;
 readonly attribute Security::DelgationState
 delegation_state;
 readonly attribute Security::DelegationMode
 delegation_mode;
};

accepting_credentials

This read-only attribute is the Credentials objects used to establish the secure asso-
ciation with the client.

// IDL
readonly attribute Credentials accepting_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
accepting_credentials();

association_options_used

This read-only attribute states the association options that were used to make the
association with the client using the accepting_credentials. This value should be a
value somewhere between the accepting_options_required and the
accepting_options_supported of the accepting_credentials.

Credentials

112 ORBASEC SL2

// IDL
readonly attribute Security::AssociationOptions
 association_options_used;
// Java
public short association_options_used();

delegation_state

This read-only attribute is the value of the delegation state of the client’s own cre-
dentials. It states whether the immediate invoking principal of the operation is the
initiator or a delegate of some other principal.

// IDL
readonly attribute Security::DelegationState delegation_state;

// Java
public org.omg.Security.DelegationState
delegation_state();

Note – For some security mechanisms, this information is indeterminable. When
this information is indeterminable, impersonation is assumed; and therefore, this
attribute has the value of SecInitiator.

In the ORBASEC SL2-GSSKRB distribution, only unrestricted or simple delegation
is supported for Kerberos credentials. Therefore, Kerberos credentials that are
received have the value of this attribute set to SecInitiator, since the Kerberos pro-
tocol cannot determine the delegation state of the client.

In the ORBASEC SL2-SSL distribution, no form of delegation is supported so this
attribute always has the value of SecInitiator.

delegation_mode

This read-only attribute states the delegation mode of the received credentials. It
stipulates that the credentials are in the a delegation mode of:

• No delegation mode (SecDelModeNoDelegation), where they can not be used
for invocations.

• Simple delegation mode (SecDelModeSimpleDegation), where the credentials
can be indiscriminately used on the client’s behalf.

ORBASEC SL2 113

Target Credentials

• Composite delegation (SecDelModeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as a trace, a combination of priv-
ileges, etc.

// IDL
readonly attribute Security::DelegationMode delegation_mode;

// Java
public org.omg.Security.DelegationMode
delegation_mode();

In the ORBASEC SL2-GSSKRB distribution, Kerberos credentials support no dele-
gation and simple delegation, but not composite delegation. In the ORBASEC SL2-
SSL distribution, SSL credentials do not support any form of delegation.

Target Credentials

On the client side a TargetCredentials object represents a secure association
between the client and target. Target credentials must have more information than
“own” credentials.

The interface inherits from the Credentials interface. The TargetCredentials
object cannot be used for invocations. The credentials_type attribute is set to Sec-
TargetCredentials. Its interface is defined below:

interface TargetCredentials : Credentials {
 // Locality Constrained
 readonly attribute Credentials initiating_credentials;
 readonly attribute Security::AssociationOptions
 association_options_used;
};

initiating_credentials

This read-only attribute is the Credentials objects used to establish the secure asso-
ciation with the server.

Credentials

114 ORBASEC SL2

// IDL
readonly attribute Credentials initiating_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
initiating_credentials();

association_options_used

This read-only attribute states the association options that were used to make the
association with the target using the initiating_credentials. This value should be a
value somewhere between the accepting_options_required and the
accepting_options_supported of the initiating_credentials.

Security Attributes of Credentials
Security attributes are used to represent the characteristics of the principal behind
the Credentials object. They are defined by the following IDL.

// IDL
struct ExtensibleFamily {
 unsigned short family_definer;
 unsigned short family;
};

typedef unsigned long SecurityAttributeType;

struct AttributeType {
 ExtensibleFamily attribute_family;
 SecurityAttributeType attribute_type;
};

struct SecAttribute {
 AttributeType attribute_type;
 Opaque defining_authority;
 Opaque value;
};

Security attributes come in many types and have many different values. There is
not yet a clear standard for defining the types and values of security attributes. The

ORBASEC SL2 115

Security Attributes of Credentials

OMG has defined several attribute type values, but does not yet define there value
types. However, a standard mechanism for defining security attributes (i.e. their
families, types, and values) exists.

CORBA Family of Security Attributes

The OMG defines security attributes by the AttributeType structure. The Attribute-
Type structure is parameterized with a family type. That family type is defined by
an authority. The family_definer field of the ExtensibleFamily structure indicates
the authority that defined the attribute. This tag is registered with the OMG. The
OMG reserves a family definer value of zero for CORBA.:

CORBA currently defines two families of attributes.

CORBA also defines a number of constants for the attribute_type field of the
AttributeType structure. These constants are defined in the Security module of the
CORBA Security Specification and are not listed here. Unfortunately there are no
standards for the defining_authority and value fields for attributes of these types.

Adiron Family of Security Attributes

Adiron uses the OMG mechanism for defining its own security attributes for
ORBASEC SL2. This procedure involves creating an families of attributes. A fam-

TABLE 6. CORBA Family Definer

CORBA Family Definer

0

TABLE 7. CORBA Families

CORBA
Family Description

0 Identity

1 Privileges

Credentials

116 ORBASEC SL2

ily is defined by an authority. In this case, Adiron is the authority. Adiron registers
a family definer tag by the OMG. It is below:

AttributeType

ORBASEC SL2 uses several of its own types. These types are in families defined by
Adiron’s family definer, 0xA11C (41244 decimal). Adiron currently defines the
following attribute families:

Adiron also defines the following attribute types.

Defining Authority

TABLE 8. Adiron Family Definer

Adiron Family Definer

0xA11C

TABLE 9. Adiron Families

Family
Definer Family Description

0xA11C

0 Miscellaneous

1 Internet

2 Identity

TABLE 10. Adiron Security Attribute Types

Adiron
Family

Security
Attribute
Type Description

0 0 Security Mechanism of Credentials

1

1 Local Host Address

2 Local Port Number

3 Peer Host Address

4 Peer Port Number

2 1 Subject Identifier

2 Issuer Identifier

ORBASEC SL2 117

Security Attributes of Credentials

Adiron uses one value for the defining_authority attribute for all its attributes. It is
an Opaque encoding (See chapter on “Opaque Encodings” on page 185) of the
printable string “Adiron”.

Value

The values of the Adiron security attributes use the Opaque encoding scheme (See
chapter on “Opaque Encodings” on page 185).

TABLE 11. Adiron Defining Authority

Adiron Defining Authority Value

Opaque.encodePrintableString(“Adiron”).getEncoding()

TABLE 12. Adiron Attribute Values

Attribute Type Value Description

Security Mechanism Type This value is an Opaque encoding of a PrintableString.
The string that is encoded is the mechanism type of the
credentials.

Local Host Address This value is an Opaque encoding of an IPAddress (octet
sequence). This IP address of the local machine.

Local Port Number This value is an Opaque encoding of an IPPortNumber
(integer). This IP port number is that of the local
machine.

Peer Host Address This value is an Opaque encoding of an IPAddress (octet
sequence). This IP address is that of the remote host.
This attribute only exists in ReceivedCredentials or Tar-
getCredentials.

Peer Port Number This value is an Opaque encoding of an IPPortNumber
(integer). This IP port number is that of the remote
machine. This attribute only exists in ReceivedCreden-
tials or TargetCredentials.

Subject Identity This value is an Opaque encoding of a value specific to
the mechanism (see below). It is the identify attribute of
the principal.

Issuer Identity This value is an Opaque encoding of a value specific to
the mechanism (see below). It is the identity attribute of
the principal that vouches for the subject principal.

Credentials

118 ORBASEC SL2

If you have the ORBASEC SL2-GSSKRB distribution, the value field of the Sub-
ject Identity and the Issuer Identity attributes contain the Opaque encoding of a
KerberosName that is the principal’s name, such as “bart@MYREALM.COM”.
The defining_authority field contains the name of the ticket granting ticket service
for that realm as a name encoding of a KerberosName, such as “krbtgt/
MYREALM.COM@MYREALM.COM”.

If you have the ORBASEC SL2-SSL distribution, the value field of the Subject
Identity and the Issuer Identity attributes contain the Opaque encoding of a Directo-
ryName that is the principal’s name, which was found in the SubjectDN or Issu-
erDN fields of the prnicipal’s X.509 certificate. This value, in its raw form is a
DER encoding of an ASN.1 DN. A string representation of such a structure might
be “C=US, O=Adiron, OU=R&D, CN=Bart”. If using anonymous ciphers, the
value field will contain the name encoding of a PrintableString containing “anony-
mous”.

CORBA Family 1 AccessId

The AccessId is defined by CORBA Family 1, and its attribute type identifier is 2.
The ORBASEC SL2-GSSKRB and SL2-SSL both create this attribute in the follow-
ing manner:

If you have the ORBASEC SL2-GSSKRB distribution, the value field of the
AccessId attribute contains the Opaque encoding of a KerberosName that is the
principal’s name, such as “bart@MYREALM.COM”. The defining_authority
field contains the name of the ticket granting ticket service for that realm as a name
encoding of a KerberosName, such as “krbtgt/
MYREALM.COM@MYREALM.COM”.

If you have the ORBASEC SL2-SSL distribution, the value field contains the
Opaque encoding of a DirectoryName that is the principal’s name, which was
found in the SubjectDN field of the prnicipal’s X.509 certificate. This value, in its
raw form is a DER encoding of an ASN.1 DN. A string representation of such a
structure might be “C=US, O=Adiron, OU=R&D, CN=Bart”. The
defining_authority field contains the name of immediate issuer, which is the cer-
tificate authority that issued the principal’s X.509 certificate. It comes directly from
the IssuerDN field of the principal’s X.509 certificate. If using anonymous ciphers,
both attribute fields will contain the name encoding of a PrintableString containing
the string “anonymous”.

ORBASEC SL2 119

How are the Credentials Related to the IOR?

How are the Credentials Related to the IOR?
The list of own type credentials represents the information that is placed in the
tagged components section of the IIOP 1.1 profile of the IOR.

Each Credentials object that comes from the set of designated accepting creden-
tials [see “Accepting Credentials Attributes and Operations” on page 71] places a
security component representing its capabilities and security name in the IIOP pro-
file.

Credentials

120 ORBASEC SL2

FIGURE 2. Mapping of Own Credentials Objects to IOR

When the object_to_string operation on the ORB is called on an object, or an
object reference is given to a client via a return value or an output parameter an IOR
is created for the object. ORBASEC SL2 adds a security component for each valid
accepting Credentials object.

Credentials
mechanism

attributes
 AccessId

accepting_options_supported
accepting_options_required

IIOP 1.1 Profile Body

target_supports
target_requires

crypto_profile

security_name

Mechanism Data

TaggedComponent
tag
component_data

Credentials
mechanism

attributes
 AccessId

accepting_options_supported
accepting_options_required

target_supports
target_requires

crypto_profile

security_name

Mechanism Data

TaggedComponent
tag
component_data

Own Credentials IOR

ORBASEC SL2 121

How are the Credentials Related to the IOR?

A tagged security component in general has the following format:

//IDL
typedef unsigned long ComponentId;
typedef struct TaggedComponent {
 ComponentId tag;
 sequence<octet> component_data;
};

typedef sequence<TaggedComponent> MultiComponentProfile;

Each security component in the IOR contains a tag specifying the mechanism, and
a component_data attribute that contains the mechanism data. The structure for
most mechanism data has the same format (except for SSL), illustrated below with
the KerberosV5 structure. It is not represented by a common type, because mecha-
nisms of the future may require extended information.

//IDL
module SECIOP {
typedef sequence<octet> SecurityName;
typedef short CryptographicProfile;
typedef sequence<CryptographicProfile>
 CryptographicProfileList;

// Protocol Component for SECIOP
struct SECIOP_INET_SEC_TRANS {
 unsigned short port;
};

// component_data attribute of a TaggedComponent.
struct KerberosV5 {
 Security::AssociationOptions target_supports;
 Security::AssociationOptions target_requires;
 CryptographicProfileList crypto_profile;
 SecurityName security_name;
};
};

The Credentials object’s mechanism attribute contains a combination of the secu-
rity component tag and the cryptographic profiles that the mechanism supports in
string form. The string has the form of the integer tag of the mechanism, i.e. 17 for
KerberosV5, and separated by a comma, numbers only relevant to that mechanism,

Credentials

122 ORBASEC SL2

i.e. 11 represents the DES-CBC-MD5 cryptographic profile for the KerberosV5
mechanism. [4, Section A.11.4 Security Mechanisms]

For example, the value of the Credentials object’s mechanism attribute of “Ker-
beros,DES-CBC-MD5” will create the IOP::TaggedComponent with a tag of
17 and a component_data field containing the encapsulated value of the
KerberosV5 structure.

The numbers trailing the first number in the mechanism attribute are the crypto-
graphic profile numbers, which are also comma separated. These numbers are
directly mapped to a sequence of short values that are placed in the crypto_profile
attribute of the mechanism data. The utility class orbasec.corba.MechUtil has
these number to symbolic cryptographic profiles associations.

An application programmer controls the capabilities advertised in the IOR by
manipulating the Credentials object’s accepting_options_supported and
accepting_options_required attributes. The values of these attributes are mapped
directly to the target_supports and target_requires attributes of the security com-
ponent.

The security_name attribute is the value of the AccessId typed security attribute of
the Credentials. At the API, the security name as a value parameter of the
AccessId security attribute is a orbasec.corba.Opaque encoding. However, for the
IOR its “raw” byte encoding, is the one that is placed in this field.

In the ORBASEC SL2-GSSKRB distribution the security name is the octet
sequence directly mapped to an ASCII string containing the Kerberos principal
name fully qualified with the realm name, i.e. name@REALM, or name/
instance@REALM.

Important Temporal Considerations

One must be cautious as to the times at which Credentials object’s accepting
options are modified and the times when object references are given out or con-
verted to strings using the ORB operation object_to_string.

Once an IOR is created for an object reference it contains a snapshot of the state of
the credentials. If the application programmer modifies the credentials accepting
options after object references are given out, then those objects references may be
rendered ineffective. They no longer represent the current security state of the
object to which they are referring.

ORBASEC SL2 123

Extensions for ORBASEC SL2-SSL Credentials

Extensions for ORBASEC SL2-SSL Credentials
The CORBA security credentials model is insufficient for examining the some
aspects of X509 certificate chains. ORBASEC SL2-SSL does verify that every cer-
tificate in the chain verifies with the public key of its issuer, or is in line with the
TrustedAuthorityPolicy. See “TrustedAuthorityPolicy” on page 138. ORBASEC
SL2-SSL also verifies that the certificate is still valid with respect to the current
system time. However, for those who need to analyze the certificates with a bit
more fervor, you can get at the certificate chain on the credentials object by casting
the org.omg.SecurityLevel2.Credentials object to an orbasec.ssliop.iaik.Cre-
dentials object and use its certificate_chain method to retrieve the certificate chain
associated with the credentials object. An example follows:

// Java
org.omg.SecurityLevel2.Credentials rcreds =
 current.received_credentials();
java.security.cert.X509Certificate[] cert_chain =
 ((orbasec.ssliop.iaik.Credentials)rcreds).certificate_chain();

Since IAIK is the provider (the certificate mechanism will start with “SSL_IAIK”),
more information beyond that of a java.security.cert.X509Certificate can be
retrieved by casting to an iaik.X509.X509Certificate, such as follows:

iaik.X509.X509Certificate cert =
 (iaik.X509.X509Certficate) cert_chain[0];

Please see your IAIK documentation for details on using this class.

Credentials

124 ORBASEC SL2

ORBASEC SL2 125

CHAPTER 7 Policies

Policies
This section explains the various security related policies that the security service
understands and that can be placed on object references. These policies can also be
set as defaults for the thread by using the set_overrides operation on the Current
object. This section also explains the analysis and decision procedure taken on pol-
icies to discover the parameters of a secure association with the target. The set of
default policies out-of-the-box are presented at the end of the section.

The policies that the security service machinery understands is the following poli-
cies:

• MechanismPolicy

• InvocationCredentialsPolicy

• DelegationDirectivePolicy

• QOPPolicy

• EstablishTrustPolicy

All of the above policy interfaces are members of the SecurityLevel2 module.

Policies

126 ORBASEC SL2

One policy of each type may be placed on an object reference by using the objects
pseudo operation, set_policy_overrides.

The orbasec.SL2 static class has factory operation that create simple policies
regarding each of the above listed policies. However, that does not preclude an
application developer from creating a policy object of his own device incorporating
creatively produced results. For example, one may create a QOPPolicy that returns
different Security::QOP values depending on the time of day, location, or other
environmental considerations.

Temporal Considerations

Policy objects in ORBASEC SL2 are queried at the time a connection to a remote
operation is made. The policies in place for the connection are in place for the dura-
tion of the connection.

MechanismPolicy
An object of the SecurityLevel2::MechanismPolicy interface specifies a set of
security mechanisms from which to consider when making invocations. Its only
attribute is a list of mechanism types that should be considered in order while trying
to find compatible client credentials and mechanisms of the target. Please see the
PrincipalAuthenticator section “Mechanism” on page 82 for an explanation of
mechanism type identifiers.

// IDL
interface MechanismPolicy : CORBA::Policy {
 // Locality Constrained
 readonly attribute Security::MechanismTypeList mechanisms;
};

// Java
package org.omg.SecurityLevel2;
public interface MechanismPolicy
 extends org.omg.CORBA.Policy
{
 String[] mechanisms();
}

ORBASEC SL2 127

MechanismPolicy

Default Mechanism Policy

ORBASEC SL2 comes with a default mechanism policy that is set on the initial
thread of execution and is inherited from every descendant’s thread until it is
explicitly set. The default MechanismPolicy that is to match the mechanisms of the
received (should one exist) and own credentials objects.

This policy serves as an attempt to use the current credentials that have been cre-
ated by the application, without having the application writer to have to think about
policy objects.

The semantics of this “dynamic” mechanism policy roughly follows the implemen-
tation below:

// Java
package orbasec.seclev2;
import org.omg.Security.*;
import org.omg.SecurityLeve2.*;

public class DynMechansimPolicy
 extends orbasec.corba.LocalObject,
 implements org.omg.SecurityLevel2.MechanismPolicy
{

 public String[]
 mechanisms()
 {
 // Get the invocation credentials policy
 InvocationCredentialsPolicy invocp =
 InvocationCredentailsPolicyHelper.narrow(
 current.get_policy(
 SecInvocationCredentialsPolicy.value);
 // Create an array of strings of each credentials
 // mechanism.
 Credentials[] creds = invocp.creds();
 Vector mechs = new Vector();
 for(int i; i < invoc; i++) {
 if(creds[i].invocation_options_supported() != 0)
 mechs.addElement(creds[i].mechanism);
 String[] ms = new String[mechs.size()];
 mechs.copyInto(ms);
 return ms;
}

Policies

128 ORBASEC SL2

Invocation Credentials Policy
An object of the SecurityLevel2::InvocationCredentialsPolicy interface specifies
a set of Credentials objects from which to consider when making invocations. Its
only attribute is a list of Credentials objects that should be considered.

//IDL
interface InvocationCredentialsPolicy : CORBA::Policy {
 // Locality Constrained
 readonly attribute SecurityLevel2::CredentialsList creds;
};

// Java
package org.omg.SecurityLevel2;
public interface InvocationCredentialsPolicy
 extends org.omg.CORBA.Policy
{
 org.omg.SecurityLevel2.Credentials[] creds():
}

Default Invocation Credentials Policy

ORBASEC SL2 comes with a default invocation credentials policy. This policy
dynamically selects the received credentials (if its delegation mode is not one of
SecDelModeNoDelegation), and the own credentials list from the Current object.
This policy serves as the default to give the application writer the default behavior
of using the credentials objects he authenticates.

The semantics of this “dynamic” invocation credentials policy roughly follows the
implementation below:

ORBASEC SL2 129

QOP Policy

// Java
package orbasec.seclev2;
import Security.*;
import SecurityLevel2.*;

public class DynRecvOwnCredentialsPolicy
 implements orbasec.corba.LocalObject,
 InvocationCredentialsPolicy
{
 public Credentials[]
 creds()
 {
 Vector v = new Vector();
 try {
 ReceivedCredentials rcreds =
 current.received_credentails();
 if(rcreds.accepting_options_supported() != 0)
 v.addElement(rcreds);
 } catch (BAD_OPERATION e) {
 }
 Crededentails[] own = current.own_credentials();
 for(int i = 0; i < own.length; i++) {
 if(own[i].invocation_options_supported != 0)
 v.addElement(own[i]);
 }
 Credentials[] creds = new Credentials[v.size()];
 v.copyInto(creds);
 return creds;
 }
}

QOP Policy
An object of the SecurityLevel2::QOPPolicy interface specifies the quality of pro-
tection that should be used when making an invocation on the target.

Policies

130 ORBASEC SL2

// IDL
interface QOPPolicy : CORBA::Policy {//Locality Constrained
 readonly attribute Security::QOP qop;
};

// Java
package org.omg.SecurityLeve2;
public interface QOPPolicy
 extends org.omg.CORBA.Policy
{
 public org.omg.Security.QOP qop();
}

Default QOP Policy

ORBASEC SL2 comes with a default QOP policy that is set on the initial thread of
execution and is inherited from every descendant thread until it is explicitly set.
The default QOPPolicy returns a QOP to match the invocation options that are
required or supported by the credentials on the thread based Invocation Credentials
Policy.

This policy serves as an attempt to use the current credentials that have been cre-
ated by the application, without having the application writer to have to think about
policy objects.

The semantics of this “dynamic” QOP policy roughly follows the implementation
below:

ORBASEC SL2 131

QOP Policy

// Java
package orbasec.seclev2;
import org.omg.Security.*;
import org.omg.SecurityLeve2.*;

public class DynQOPPolicy
 extends orbasec.corba.LocalObject,
 implements org.omg.SecurityLevel2.QOPPolicy
{

 private QOP getQOP(short association_options)
 {
 // definition of function that translates the association
 // options to a QOP, with precedence to Integ and Conf,
 // Conf or Integ, then NoProtection.
 }
 // Policy Function
 public QOP
 qop()
 {
 // Get the invocation credentials policy
 InvocationCredentialsPolicy invocp =
 InvocationCredentialsPolicyHelper.narrow(
 current.get_policy(
 SecInvocationCredentialsPolicy.value);
 // Create an array of strings of each credentials
 // mechanism.
 Credentials[] creds = invocp.creds();
 QOP qop = QOP.SecQOPIntegrityAndConfientiality;
 int qopmask = NoProtection.value | Integrity.value |
 Confidentiality.value;
 for(int i =0 ; i < creds.length; i++) {
 // Can we even use the credentials?
 if(creds[i].invocation_options_supported() == 0)
 continue; // No, keep looking.
 if((creds[i].invocation_options_required() & qopmask)
 == 0) {
 // Translate invocation_options_supported() attribute
 // into a QOP.
 qop = getQOP(creds[i].invocation_options_supported());
 break;
 } else {
 // Translate invocation_options_required() attribute
 // into a QOP.
 qop = getQOP(creds[i].invocation_options_supported());

Policies

132 ORBASEC SL2

 break;
 } // forloop
 return qop;
 }
}

Delegation Directive Policy

An object of SecurityLevel2::DelegationDirectivePolicy interface specifies
whether the credentials selected may be delegated to the target or not.

// IDL
interface DelegationDirectivePolicy : CORBA::Policy {
 //Locality Constrained
 readonly attribute DelegationDirective delegation_mode;
};

// Java
package org.omg.SecurityLevel2;
public interface DelegationDirectivePolicy
 extends org.omg.CORBA.Policy
{
 public org.omg.Security.DelegationDirective
 delegation_directive();
}

Default Delegation Directive Policy

ORBASEC SL2 comes with a default DelegationDirectivePolicy that always returns
org.omg.Security.DelegationDirective.SecNoDelegate just to be on the safe side.

Establish Trust Policy

An object of SecurityLevel2::EstablishTrustPolicy interface specifies the invoca-
tion conditions on establishing client or target trust.

ORBASEC SL2 133

Establish Trust Policy

// IDL
interface EstablishTrustPolicy : CORBA::Policy {
 // Locality Constrained
 readonly attribute Security::EstablishTrust trust;
};

// Java
package org.omg.SecurityLevel2;
public interface EstablishTrustPolicy
 extends org.omg.CORBA.Policy
{
 public org.omg.Security.EstablishTrust trust();
}

If the value of the trust_in_client field of the trust attribute is true, then client
must select a mechanism that supports client side authentication. If the value is
false, it does not matter.

If the value of the trust_in_target field of the trust attribute is true, then the client
must select a mechanism that is capable of getting the target to authenticate itself
before the invocation can be made. If it is false, whether the target does authenticate
itself does not matter.

Default Establish Trust Policy

ORBASEC SL2 comes with a default Establish Trust policy that is set on the initial
thread of execution and is inherited from every descendant thread until it is explic-
itly set. The default EstablishTrustPolicy that is set dynamically sets the Estab-
lishTrust to match the invocation options that are required or supported by the
credentials on the thread based InvocationCredentialsPolicy.

This policy serves as an attempt to use the current credentials that have been cre-
ated by the application, without having the application writer to have to think about
policy objects.

The semantics of this “dynamic” Establish Trust Policy roughly follows the imple-
mentation below:

Policies

134 ORBASEC SL2

// Java
package orbasec.seclev2;
import org.omg.Security.*;
import org.omg.SecurityLeve2.*;

public class DynEstablishTrustPolicy
 extends orbasec.corba.LocalObject,
 implements org.omg.SecurityLevel2.EstablishTrustPolicy
{

 private EstablishTrust
 getEstablishTrust(short association_options)
 {
 // definition of function that translates the association
 // options to an EstablishTrust structure

 }

ORBASEC SL2 135

Establish Trust Policy

 // Policy Function
 public EstablishTrust
 trust()
 {
 // Get the invocation credentials policy
 InvocationCredentialsPolicy invocp =
 InvocationCredentialsPolicyHelper.narrow(
 current.get_policy(
 SecInvocationCredentialsPolicy.value);
 // Create an array of strings of each credentials
 // mechanism.
 Credentials[] creds = invocp.creds();
 EstablishTrust trust = new EstablishTrust(true,true);
 int etmask = EstablishTrustInClient.value |
 EstablishTrustInTarget.value;
 for(int i =0; i < creds.length; i++) {
 // Can we even use the credentials?
 if(creds[i].invocation_options_supported() == 0)
 continue; // No, keep looking.
 if((creds[i].invocation_options_required() & etpmask)
 == 0) {
 // Translate invocation_options_supported() attribute
 // into an EstablishTrust.
 trust = getEstablishTrust(
 creds[i].invocation_options_supported());
 break;
 } else {
 // Translate invocation_options_required() attribute
 // into a EstablishTrust.
 trust = getEstablishTrust(
 creds[i].invocation_options_required());
 break;
 } // forloop
 return trust;
 }
}

Policies

136 ORBASEC SL2

Invocation Policy Analysis
On every first invocation of a operation on an object the ORB sets up a secure asso-
ciation with a target via its object reference. The properties of the secure associa-
tion depend upon two things. Firstly, it depends upon the policies that are placed on
the object references using the object’s pseudo operation, set_policy_overrides
(_set_policy_overrides in the Java Mapping) Secondly, it depends upon the poli-
cies that are set as the thread’s default policies by adding them using the Current
object’s set_overrides operation. The security services does an analysis of those
policies to select a mechanism, quality of protection, trust establishment, delegation
directive, and invocation credentials that are compatible with the security compo-
nents of the target’s IOR.

In ORBASEC SL2 the Current object holds a default policy for each of the Mecha-
nism Policy, Invocation Credentials Policy, QOP Policy, Delegation Directive Pol-
icy, and Establish Trust Policy. If any of the five aforementioned policies does not
exist on the particular object reference, it is taken from the Current object’s
get_overrides operation. Therefore, a value for each of the attributes listed in the
policies will always have a value when a secure invocation needs to be established.

The following decision procedure is used in finding a mechanism, a compatible
Credentials object, and a security component from the targets IOR from the poli-
cies. This decision procedure is part of the CORBA Security Specification and is
repeated here for your benefit.

For each mechanism type in the MechanismPolicy {
Select a matching security component in the targets IOR by the mechanism
type.
If a matching component is found {
Find a credentials object in the credentials list that supports the

mechanism.
If a credentials object is found and it supports

the QOP Policy,
the Delegation Directive Policy,
and the EstablishTrust Policy {

If the association options implied by all policies are supported
by the selected security component in the IOR and all the
required association options of security component are satisfied {

Use the selected attributes to set up the secure association.
} else {

Find another credentials object and continue.

ORBASEC SL2 137

Specific Policies on Object References

}
} else {

Find another credentials object and continue.
}

} else {
Get the next mechanism type from the MechanismPolicy and continue.

}
If no mechanism can be found {

Raise a CORBA:NO_PERMISSION with an informative error message.
}

}

Specific Policies on Object References
Setting the specific policies to use on an object reference is done in Java by using
the _set_policy_overrides method on the object reference. A Java example fol-
lows:

// Java
org.omg.CORBA.Object a_object = // Some target object

org.omg.SecurityLevel2.MechanismsPolicy mechpol =
 // a mechanism policy
org.omg.SecurityLevel2.DelegationDirectivePolicy delpol =
 // a delegation directive policy
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[2];

policies[0] = mechpol;
policies[1] = delpol;

org.omg.CORBA.Object b_object =
 a_object._set_policy_overrides(
 policies,
 org.omg.CORBA.ADD_OVERRIDE.value);

The b_object variable contains a completely new object reference to the same
object to which the a_object refers. However, their invocation policies may be dif-
ferent. Depending on the policies applied to the b_object reference, invocations
made with the a_object reference and the b_object reference can have completely
different security association attributes.

Policies

138 ORBASEC SL2

Setting Default Policies
Default policies are policies are not set specifically on the object reference.
ORBASEC SL2 gets the default policies off of the Current object’s get_overrides
operation. An application programmer sets the default policies by setting them on
the Current object by using its set_overrides operation.

Since the policy override mechanism has not yet been standardized for Current at
this time, (it is awaiting agreement between the POA and the Messaging groups),
setting the default policies is an ORBASEC SL2 extension; and therefore the
get_overrides and set_overrides operations are found on the ORBASEC SL2
SecLev2::Current interface. See “ORBAsec SL2 Extentions to Current” on
page 60.

// Java
org.omg.SecurityLevel2.MechanismsPolicy mechpol =
 // a mechanism policy
org.omg.SecurityLevel2.DelegationDirectivePolicy delpol =
 // a delegation directive policy
org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[2];

policies[0] = mechpol;
policies[1] = delpol;

orbasec.SecLev2.Current current =
 // Get SecurityCurrent Object
current.set_overrides(policies,
 org.omg.CORBA.ADD_OVERRIDE.value);

ORBAsec SL2 Specific Policies
ORBAsec SL2 has the following Policies above and beyond standard
SecurityLevel2 policies:

TrustedAuthorityPolicy

The Trusted Authority Policy limits the SL2 verification of authentication to spe-
cific authorities. The CORBA credentials model allows you to see the immediate
principal, via the AccessId security attribute. However, seeing further than that,

ORBASEC SL2 139

ORBAsec SL2 Specific Policies

such as an X509Certificate chain, takes special interfaces, see “Extensions for
ORBAsec SL2-SSL Credentials” on page 123 for details.

You can use a TrustedAuthorityPolicy to have the system automatically accept
authentication from authorities that you trust. The interface for the TrustedAuthor-
ityPolicy is as follows:

#pragma prefix “orbasec”

module SecLev2
{
 struct TrustedAuthority {
 Security::MechanismType mechanism;
 Security::Opaque security_name;
 long auth_distance;
 };

 typedef sequence<TrustedAuthority> TrustedAuthorityList;

 struct TrustedAuthorityContent {
 TrustedAuthorityList own_trusted_authorities;
 TrustedAuthorityList client_peer_trusted_authorities;
 TrustedAuthroityList server_peer_trusted_authorities;
 };

 interface TrustedAuthorityPolicy : CORBA::Policy {
 readonly attribute TrustedAuthorityList
 own_trusted_authorities;
 readonly attribute TrustedAuthorityList
 client_peer_trusted_authorities;
 readonly attribute TrustedAuthorityList
 server_peer_trusted_authorities;
 };
}

TrustedAuthority

This structure holds a description of a trusted authority. It has the mechanism
name, such as “Kerberos” or “SSL” that the Opaque encoded (see “Opaque Encod-
ings” on page 185) security_name is taken as a trusted authority. The
auth_distance field is a distance in a metric specific to the mechanism of the max-
imum allowable distance between the principal and the authority.

Policies

140 ORBASEC SL2

For SSL, the mechanism field must be “SSL”. The security_name field must be
the Opaque encoding of the authority’s DER encoded Directory Name (i.e.
Opaque.DirectoryName). The auth_distance field carries the number of certifi-
cates in a certificate chain. A distance of zero means that the distance between the
principal and the trusted authority is zero. Therefore, the trusted authority must be
the principal, and since the issuer’s certificate must be in the chain as well, its cer-
tificate must be self-signed.

For Kerberos, the mechanism field must be “Kerberos”. The security_name must
be the Opaque encoding of a Kerberos name (i.e. Opaque.KerberosName). The
name must be in the form of the principal of the Ticket Granting Ticket service for
a Kerberos Realm, (e.g. “krbtgt/MYREALM.COM@MYREALM.COM”). The
auth_distance not defined, and it is ignored (for now).

TrustedAuthorityContent

This structure is used to create a Trusted Authority Policy. The structure contains
three lists of trusted authorities.

The first list, own_trusted_authorities, is used for verification of “own” creden-
tials using the PrincipalAuthenticator object.

The second list, client_peer_trusted_authorities, lists the authorities that are
trusted on the server side, should the capsule be a client during an invocation.

The third list, server_peer_trusted_authorities, lists the authorities that are
trusted on the client side, should be capsule be servicing a remote request on one of
its objects.

A class that implements the TrustedAuthorityPolicy interface is in the
orbasec.corba package. The constructor for the class takes the TrustedAuthority-
PolicyContent structure. The interface of this class in Java and its constructor is
the following:

ORBASEC SL2 141

ORBAsec SL2 Specific Policies

// Java
package orbasec.corba;
public class TrustedAuthorityPolicy
 implements LocalObject,
 orbasec.SecLev2.TrustedAuthorityPolicy
{
 // Constructor
 public TrustedAuthorityPolicy(
 orbasec.SecLev2.TrustedAuthorityPolicyContent policy
);

 public orbasec.SecLev2.TrustedAuthority[]
 own_trusted_authorities();

 public orbasec.SecLev2.TrustedAuthority[]
 client_peer_trusted_authorities();

 public orbasec.SecLev2.TrustedAuthority[]
 server_peer_trusted_authorities();
}

In the Absence of a Trusted Authority Policy

If a trusted authority policy has a trusted authority list of length zero for a particular
authentication type, own, client peer, or server peer, all authorities are considered
“trusted” for that particular type of authentication. In the absence of a trusted
authority policy, all authorities are trusted for all the authentication types.

For Kerberos, the absence of a trusted authority policy for a particular authentica-
tion type means that all principals that successfully authenticate are accepted.

For SSL, the absence of a trusted authority policy for a particular authentication
type means that all principals whose certificate chains verify are accepted. How-
ever, verification in this case requires that X509 certificates from the principal up to
and including a root certificate, which is a self-signed certificate, must be present in
the principal’s certificate chain.

Policies

142 ORBASEC SL2

ORBASEC SL2 143

CHAPTER 8 Security Replaceable

Security Replaceable
This section outlines the Security Replaceable module components, which are able
to be replaced within the SECIOP protocol. See “Adding your own Security Mech-
anisms” on page 55 for more details about how to add your own SecurityReplace-
able module to ORBASEC SL2.

If the interfaces in this document are adhered to and the semantics of the operations
and attributes specified are strictly followed, an interested party may build their
own Security Replaceable Module Component and add them into the SECIOP pro-
tocol by the new module’s vault into ORBASEC SL2.

We use the term “Vault” to refer to the Security Replaceable components, Vault,
SecurityContext, and SecurityLevel2::Credentials, since all of these components
must be heavily integrated behind the interfaces with each other. The Vault creates
objects that adhere to the SecurityLevel2::Credentials interface, and the Securi-
tyContext interface.

The Vault and SecurityContext are used by the ORBASEC SL2 SECIOP machin-
ery, but only the Credentials is exposed to the application programmer. Therefore,
care must be taken by the implementer of a SecurityLevel2::Credentials object to
ward off user mistakes and recognize bad arguments to parameters or attribute set-

Security Replaceable

144 ORBASEC SL2

tings. The following diagram, Figure 3 on page 144, illustrates the use relationships
between the application visible components, the Security Replaceable components,
and the ORBASEC SL2 internal components. The components with the thicker lines
are Security Replaceable Components.

FIGURE 3. Security Replaceable Components

The Vault
The Vault is the object that creates Credentials and SecurityContext objects. The
Vault creates Credentials on behalf of the PrincipalAuthenticator object that is a

SecurityContext

Credentials

Vault

SECIOP

PrincipalAuthenticator

Application

uses
uses

uses

creates

related

creates

usesuses

uses

ORBASEC SL2 145

The Vault

default component of the SL2 machinery. The Vault is also called upon to create a
ServerSecurityContext accepting secure association to targets and from clients,
and ClientSecurityContext objects for clients initiating secure association to tar-
gets.

The Vault’s operations are described below:

init_security_context

This operation is used by the ORBASEC SL2 SECIOP machinery when a new
secure association is needed to communicate with a client. Its outputs are required
to be a GSS compliant Initial token and a ClientSecurityContext object.

// IDL
Security::AssociationStatus init_security_context(
 in SecurityLevel2::Credentials invoc_creds,
 in Security::Opaque target_security_name,
 in Object target,
 in Security::DelegationMode delegation_mode,
 in Security::OptionsDirectionPairList
 association_options,
 in Security::MechanismType mechanism,
 in Security::Qpaque mech_data,
 in Security::ChannelBindings chan_bindings,
 out Security::OpaqueBuffer security_token,
 out ClientSecurityContext security_context
);

// Java
public org.omg.Security.AssociationStatus
init_security_context(
 org.omg.SecurityLevel2.Credentials invoc_creds,
 byte[] target_security_name,
 org.omg.CORBA.Object target,
 org.omg.Security.DelegationMode delegation_mode,
 org.omg.Security.OptionsDirectionPair[]
 assocation_options,
 String mechanism,
 byte[] mech_data,
 org.omg.Security.ChannelBindings chan_bindings,
 org.omg.Security.OpaqueBufferHolder security_token,
 ClientSecurityContextHolder security_context
);

Security Replaceable

146 ORBASEC SL2

There are a range of inputs. Not all of the parameters listed for this operation are
used by ORBASEC SL2, i.e. given meaningful values.

creds

This parameter is given the Credentials object with which to create the security
context. This parameter may be a ReceivedCredentials from a SecurityContext
object, or it may be an “own” Credentials object created by this Vault. It cannot be
a TargetCredentials object. The ORBAsec SL2 only makes sure that this Creden-
tials object is compatible with this Vault, using the mechanism attribute of the
Credentials object.

target_security_name

This parameter is the name of the target that will be used to set up the association.
This name is pulled from the selected security component from the IOR of a target.
This name is not uniquely specific to any one target object, as one target name may
service many objects. The constraints on the value of this argument that ORBASEC
SECIOP machinery will adhere with respect to the argument given to this parame-
ter are:

• The target_security_name is the security name of the target according to
mechanism selected.

• The target_security_name will be the same security name found in the
mech_data argument, as the mech_data argument is the selected security com-
ponent from the IOR.

target

This parameter is not used by ORBASEC SL2 as the internal architecture does not
yield the target object reference used to make the invocation at the transport level.
Also, security associations established with a principal that is represented by a
security name, which is not guaranteed to reference a single target object.
ORBASEC SL2 may choose, based on policy analysis at the time of an invocation,
to reuse a security context.

delegation_mode

This argument specifies a capability of no delegation, simple delegation, or com-
posite delegation that will be used. It is guaranteed by ORBASEC SL2 policy analy-
sis that the values presented to this parameter have the values of the delegation

ORBASEC SL2 147

The Vault

mode the credentials being used will support, such as from the
invocation_options_required attribute on Credentials.

association_options

ORBASEC SL2 gives this parameter an argument that is a sequence that contains
only one OptionsDirectionPair structure. ORBASEC SL2 gives an argument to
this parameter adhering to the following constraints:

• The communications_direction attribute of that structure will be SecCommu-
nicationsDirectionBoth.

• The value of the association_options attribute will be suitably selected, such
that it will adhere correctly to the mech_data containing the target_supports
and target_requires attributes.

• The value of the association_options attribute will correctly adhere to the
options that are supported from invocation_options_supported attribute and
invocation_options_required attribute of the Credentials object specified in
the invoc_creds parameter.

The ORBASEC SL2 policy analysis will guarantee that the value of the association
options will fit in with the capabilities of the target and the credentials being used to
set up the security context.

mechanism

This parameter is the selected mechanism to use to set up the secure association.
ORBASEC SL2 gives an argument to this parameter adhering to the following con-
straints:

• The mechanism is the value of the mechanism name constructed from the secu-
rity component in the IOR that was selected. The selected security component is
in the mech_data argument.

mech_data

ORBASEC SL2 gives as a value to this argument the security component of the
selected mechanism from the IOR.

Security Replaceable

148 ORBASEC SL2

chan_bindings

This argument is used by the SECIOP machinery, which runs over TCP/IP. The
Channel Bindings that are supported are those of the GSS_C_AF_INET address
type, which stipulate the network byte order host IP addresses of the client and the
server.

security_token

This parameter is an output parameter. Any implementation is required to make this
token a GSS compliant Initial Token, [4, Section 15.9] to guarantee interoperabil-
ity. However, if one chooses to build and install a proprietary Vault for all commu-
nicating ORBs in its enterprise, then this token just needs to adhere to a format
compatible with the in_token of the accept_security_context operation of the
Vault.

security_context

This parameter is an output parameter. The Vault must create a ClientSecurity-
Context object to represent the initialized security context.

return value

Valid return values for this operation are Security::SecAssocSuccess if the Vault
was successful in creating a security token and a ClientSecurityContext in an ini-
tialized state. It must not return Security::SecAssocContinue. It may return Secu-
rity::SecAssocFailure should it fail to create a token and a ClientSecurityContext
for some reason. However, we would prefer that a CORBA system exception be
raised with an informative message detailing the error encountered.

accept_security_context

This operation is called upon by the ORBASEC SL2 SECIOP machinery when a
SECIOP EstablishContext message is received.

ORBASEC SL2 149

The Vault

// IDL
Security::AssociationStatus accept_security_context(
 in SecurityLevel2::CredentialsList creds_list,
 in Security::ChannelBindings chan_bindings,
 in Security::OpaqueBuffer in_token,
 out Security::OpaqueBuffer out_token,
 out ServerSecurityContext security_context
);

// Java
org.omg.Security.AssociationStatus
accept_security_context(
 org.omg.SecurityLevel2.Credentials[] creds_list,
 org.omg.Security.ChannelBindings chan_bindings,
 org.omg.CORBA.Security.OpaqueBuffer in_token,
 org.omg.CORBA.Security.OpaqueBufferHolder out_token,
 ServerSecurityContext security_context
);

The arguments given to this operation are as follows:

creds_list

This parameter holds the credentials that may be needed to accept the request to
establish a secure association. ORBASEC SL2 gives this parameter the list of “own”
credentials that were created by all the Vault OBJECTS. According to a discrimina-
tor on the front of the GSS Initial Token [4, Section 15.10.7] the Vault should be
able to discern the mechanism used. The Vault must have the capability to search
through the list of “own” credentials and find the proper ones to support the secure
association.

chan_bindings

This argument is used by the SECIOP machinery, which runs over TCP/IP. The
Channel Bindings that are supported are those of the GSS_C_AF_INET address
type, which stipulate the network byte order host IP addresses of the client and the
server.

in_token

This parameter is given the token verbatim that is extracted from the SECIOP
EstablishContext message that is received from the client.

Security Replaceable

150 ORBASEC SL2

out_token

This token must be a buffer containing a sequence of bytes that is of the format of a
GSS compliant ContinueEstablish or a TargetResult token.

security_context

This parameter must contain a newly created ServerSecurityContext in the appro-
priate state as a result of processing the in_token.

return value

This operation should return Security::SecAssocSuccess if processing the initial
token results in an established secure association with the client. A SECIOP Com-
pleteEstablishment message will be sent back to the client with the value of the
out_token parameter. The out_token should contain a GSS compliant TargetRe-
sult token.

This operation should return Security::SecAssocContinue if processing the initial
token results in creating a ServerSecurityContext that is not quite established (i.e.
the target is requesting more authentication). A SECIOP ContinueEstablishment
message will be sent back to the client with the value of the out_token parameter.
The out_token parameter should contain a GSS compliant ContinueEstablish
token.

This operation may return Security::SecAssocFailure if processing the initial
token yields an error. However, we prefer that a CORBA system exception be
raised with an informative message as to the error encountered. In either case a
SECIOP DiscardContext message will be sent back to the client.

acquire_credentials

This operation is used by the PrincipalAuthenticator to create “own” credentials.
In ORBASEC SL2 the PrincipalAuthenticator::authenticate operation makes the
call to the Vault::acquire_credentials operation almost as a pass through opera-
tion. The PrincipalAuthenticator acts as the application’s delegate to the Vault,
but places the created “own” credentials on the Current object’s own credentials
list.

ORBASEC SL2 151

The Vault

Note. The current PrincipalAuthenticator in ORBASEC SL2 does not to any
parameter integrity checking.

The acquire_credentials operation’s interface is described below.

// IDL
Security::AuthenticationStatus acquire_credentials (
 in Security::AuthenticationMethod method,
 in Security::MechanismType mechanism,
 in Security::Opaque security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out SecurityLevel2::Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

// Java
org.omg.Security.AuthenticationStatus
acquire_credentials(
 int method,
 String mechanism,
 byte[] security_name,
 byte[] auth_data,
 org.omg.Security.SecAttribute[] privileges,
 org.omg.SecurityLevel2.CredentialsHolder
 creds,
 org.omg.Security.OpaqueHolder continuation_data,
 org.omg.Security.OpaqueHolder auth_specific_data
);

method

This parameter specifies method with which to authenticate the principal. The
methods that are allowed in this call are specific to the implementation of the
Vault.

mechanism

This parameter specifies mechanism with which to authenticate the principal using
the security_name and create the credentials. The mechanisms that are allowed in
this call are the mechanisms that must be supported by Vault.

Security Replaceable

152 ORBASEC SL2

security_name

This parameter is a byte array stating the recognized name of the principal for
which to acquire credentials.

auth_data

This parameter specifies the extra data needed to authenticate the principal using
the security_name. The format of this must be specified by the implementer of the
Vault.

privileges

This parameter states the “extra” privileges that the application programmer wants
to be authenticated along with the principal to create the credentials with those priv-
ileges authorized. Such privileges can be requesting or stating that the principal is
the member of a group, or has the authorization for a particular role.

creds

This parameter is an output parameter returning the newly created “own” Creden-
tials object. The PrincipalAuthenticator works in concert with the Current
object and places the new credentials in the current’s own credentials list reposi-
tory. These may not be fully enabled credentials as the authentication mechanism
may have created interim credentials to be further passed to the
continue_credentials_acquistion operation. The PrincipalAuthenticator will not
place these Credentials on the “own” credentials list until a value of SecAuthSuc-
ess has been returned from acquire_credentials or
continue_credentials_acquision.

continuation_data

This parameter is an output parameter returning data needed to continue the authen-
tication of the principal using the security_name. This may hold such data labeling
a continuation context. Its output will be given to the
continue_credentials_acquistion operation.

auth_specific_data

This parameter is an output parameter returning data that may need to be exposed to
the application programmer, such as a message about what is needed to continue

ORBASEC SL2 153

The Vault

the authentication. The implementer of the Vault will need to specify what the for-
mat is and how the application implementer may use it.

return value

The return value is one of the value of the Security::AuthenticationStatus enu-
meration type, and states whether authentication succeeded, failed, needs to be con-
tinued, or if continued, the further continuation has expired.

This operation must return a value of Security::SecAuthSuccess if the operation
was successful and the output credentials are valid “own” credentials. It must return
a value of Security::SecAuthContinue if the acquisition process needs to be con-
tinued. This operation should return Security::SecAuthFailure should the acquisi-
tion fail. However, we would prefer to the operation to raise a CORBA system
exception with an informative message as to the error encountered. This operation,
being the initial acquisition, must not return Security::SecAuthExpired.

continue_credentials_acquisition

This operation is meant to continue acquisition steps started by
acquire_credentials, and possibly still continued by subsequent calls to
continue_credentials_acquistion. Its interface is defined below:

// IDL
Security::AuthenticationStatus
 continue_credentials_acquisition(
 in Security::Opaque response_data,
 in SecurityLevel2::Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specfic_data
);

// Java
public org.omg.Security.AutenticationStatus
continue_credentials_aquision(
 byte[] response_data,
 org.omg.SecurityLevel2.Credentials creds,
 org.omg.Security.OpaqueHolder continuation_data,
 org.omg.Security.OpaqueHolder auth_specific_data
);

Security Replaceable

154 ORBASEC SL2

response_data

The argument given to this parameter is data in the format specified by the imple-
menter of the Vault that pertains to the mechanism of credentials being used to
continue the acquisition of the credentials.

creds

The argument given to this parameter will be credentials returned from
acquire_credentials or subsequent calls to continue_credentials_acquisition. If
the operation returns a value of Security::SecAuthSuccess, the credentials will be
fully enabled and placed on Current’s own credentials list by the PrincipalAu-
thenticator.

continuation_data

If the operation returns Security::SecAuthContinue, this output value should be
used in the subsequent call to continue_credentials_acquisition.

auth_specific_data

If the operation returns Security::SecAuthContinue, this output value should be
used in the subsequent call to continue_credentials_acquisition.

return value

This operation must return a value of Security::SecAuthSuccess if valid “own”
credentials are created. The PrincipalAuthenticator will place these credentials in
the Current object’s own credentials list.

This operation must return a value of Secuirty::SecAuthContinue if subsequent
calls to continue_credentials_acquistion are still needed.

This operation must return a value of Security::SecAuthExpired if the continua-
tion has gone on too long and for some reason can no longer be continued.

This operation must return a value of Security::SecAuthFailure if the credentials
cannot be created. However, we prefer that a CORBA system exception be raised
with an informative message as to the error encountered.

ORBASEC SL2 155

The Vault

get_supported_mechs

This operation should return the mechanisms and supported options for which the
Vault is capable of creating credentials and security contexts.

// IDL
Security::MechandOptionsList get_supported_mechs();

// Java
org.omg.Security.MechandOptions[]
get_supported_mechs();

get_supported_authen_methods

This operation should return the authentication method tags that are supported by
this vault for a particular mechanism that this Vault supports. If the Vault has
advertised that it supports a mechanism type, from its get_supported_mechs oper-
ation, this call must return a list of valid tags for the mechanism that it supports for
the call to acquire_credentials. We suggest that the tag value of zero be used to
mean “default”.

// IDL
Security::AuthenticationMethod get_supported_authen_methods(
 in Security::MechanismType mechanism
);

// Java
pubilc int[]
get_supported_authen_methods(String mechanism);

supported_mech_oids

This operation should return the ISO standard OIDs for the supported mechanisms
for which the Vault is capable of creating credentials and security contexts. An
OID of a specific mechanism is always contained in the header of a GSS Initial
Token which is given to the accept_security_context operation. The OIDs are
advertised here by the Vault so that the SECIOP machinery can determine the
whether the Vault can handle a specific GSS Initial Token, or direct it to a Vault
that can.

// IDL
Security::OIDList supported_mech_oids();

Security Replaceable

156 ORBASEC SL2

// Java
byte[][]
supported_mech_oids();

Credentials
The SecurityLevel2::Credentials interface is the base type for own credentials
and received credentials. The “own” type credentials is the SecurityLevel2::Cre-
dentials interface itself, while SecurityLevel2::ReceivedCredentials and
SecurityLevel2::TargetCredentials extends it.

A Credentials object holds information pertaining to the authenticated identity of
the subject of the credentials, i.e. the principal, via the security name, by either
acquire_credentials or accept_security_context operation of the Vault.

// IDL
interface Credentials { // Locality Constrained
 Credentials copy();

 void destroy():

 readonly attribute Security::CredentialsType
 credentials_type;

 readonly attribute Security::AuthenticationState
 authentication_state;

 readonly attribute Security::MechanismType mechanism;

 attribute Security::AssociationOptions
 accepting_options_supported;
 attribute Security::AssociationOptions
 accepting_options_required;
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
 invocation_options_required;
 boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

ORBASEC SL2 157

Credentials

 boolean set_attributes (
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);

 boolean is_valid (
 out Security::UtcT expiry_time
);

 boolean refresh(
 in Security::Opaque refresh_data
);
};

The attributes and operations of the Credentials interface are:

copy

This operation may be called on by the user to copy credentials. The credentials
may be modified by the user, so care should be taken to create a new Credentials
object preserving information in any context it may be place in for which a copy of
the Credentials is deemed warranted.

ORBASEC SL2 SECIOP machinery makes no calls to the copy operation of Cre-
dentials.

The implementer should take care to make copies of credentials in the various
places they are produced and housed in the context of the replaceable module. For
example, the Credentials stored in the client_credentials attribute on the Client-
SecurityContext should be a copy of the Credentials used to create the context,
which are may be one of the user accessible “own” Credentials on the Current
object. The application may change the option attributes of user accessible Creden-
tials object and then alter the credentials hanging off the ClientSecurityContext
object.

The implementer should detail how the general copies of Credentials objects are
affected by the destroy operation on one of the copies.

Security Replaceable

158 ORBASEC SL2

// IDL
Credentials copy();

// Java
public org.omg.SecurityLevel2.Credentials copy();

destroy

This operation is called upon destroy the credentials object so that applications can
do their own credentials management. This also gives the Credentials operation
the ability to do some memory management and take care of loose ends.

ORBASEC SL2 SECIOP machinery makes no calls on the destroy operation.

// IDL
void destroy();

// Java
public void destroy();

credentials_type

This attribute contains the value discerning whether the credentials are of the
“own” or “received” type.

// IDL
readonly attribute Security::CredentialsType
 credentials_type;
// Java
public org.omg.Security.CredentialsType
credentials_type();

This operation must return Security::SecCredentialsType::SecOwnCredentials
if the Credentials is of the “own” credentials type, Security::SecCredential-
sType::SecReceivedCredentials if the Credentials object is of the “received” cre-
dentials type and can be narrowed to a ReceivedCredentials object, and
Security::SecCredentialsType::SecTargetCredentials if the Credentials object
is of the “target” credentials type and can be narrowed to a TargetCredentials
object.

ORBASEC SL2 159

Credentials

authentication_state

Since Credentials objects may take several operations to fully become initialized
this read-only attribute serves as an indication of the authentication state, which is
the same as the result returned from PrincipalAuthenticator::authenticate and
PrincipalAuthenticator::continue_authentication operations.

// IDL
readonly attribute Security::AuthenticationStatus
 authentication_state;
// Java
public org.omg.Security.Authenticationstatus
authentication_state();

This attribute must have the value of Security::AuthenticationStatus::SecAuth-
Success if the Credentials are fully initialized. It must have the value of Secu-
rity::AuthenticationStatus::SecAuthContinue if subsequent calls to
PrincipalAuthenticator::continue_authentication are needed. It must have the
value Security::AuthenticationStatus::SecAuthFailure if the continuing authen-
tication of the Credentials has failed. It must have the value of Security::Authen-
ticationStatus::SecAuthExpired if the continuing authentication of the
Credentials is no longer viable.

mechanism

This read only attribute specifies the symbolic name security mechanism and the
symbolic name of the cipher suites that the credentials support.

// IDL
readonly attribute Security::MechanismType mechanism;

// Java
public String mechanism();

Please see the section on “Mechanism” on page 89. for detail. Also, please see the
JavaDoc built documentation on orbasec.corba.MechUtil to see how you may reg-
ister symbolic names for your mechanisms and ciphers into that facility.

accepting_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is

Security Replaceable

160 ORBASEC SL2

placed in the “target_supports” field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 accepting_options_supported;
// Java
public short accepting_options_supported();
public void accepting_options_supported(short opts);

Accepting options supported must be non-zero to be used with SecLev2::Cur-
rent::set_accepting_credentials operation. The absolute minimum in security
terms that any credentials object can have in supported options to establish an asso-
ciation is:

NoProtection + NoDelegation

For most security mechanisms, “received” credentials object must have accepting
options of zero. This attribute having a value of zero simply states that this creden-
tials object cannot be used to establish secure associations on the server side.

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to less than the accepting_options_required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with their maximum supported options set in this
attribute. The implementer should take care to enforce these rules.

accepting_options_required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is
placed in the “target_requires” field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

ORBASEC SL2 161

Credentials

// IDL
attribute Security::AssociationOptions
 accepting_options_required;
// Java
public short accepting_options_required();
public void accepting_options_required(short opts);

Accepting options required may be zero.

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to more than the accepting_options_supported attribute. If one must augment the
options that are required, one must set the supported options first. The implementer
should take care to enforce these rules.

invocation_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 invocation_options_supported;
// Java
public short invocation_options_supported();
public void invocation_options_supported(short opts);

Invocation options supported must be non-zero to be used with an
SecurityLevel2::InvocationCredentialsPolicy. The absolute minimum in security
terms that any credentials object can have in supported options to establish an asso-
ciation is:

NoProtection + NoDelegation

In the case of delegation, “received” credentials may have supported invocation
options. This attribute having a value of zero simply states that this credentials
object cannot be used to establish secure associations on the client side.

Security Replaceable

162 ORBASEC SL2

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to less than the invocation_options_required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with there maximum supported options set in this
attribute. The implementer should take care to enforce these rules.

invocation_options_required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

// IDL
attribute Security::AssociationOptions
 invocation_options_required;
// Java
public short invocation_options_required();
public void invocation_options_required(short opts);

Invocation options required may be zero.

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to more than the invocation_options_supported attribute. If one must augment
options that are required, one must set the supported options first. The implementer
should take care to enforce these rules.

get_security_feature

This operation returns a boolean that represent a security feature’s state of the cre-
dentials. It is not used by any ORBAsec SL2 SECIOP machinery. It is a user level
interface.

ORBASEC SL2 163

Credentials

// IDL
boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

// Java
public boolean get_security_features(
 int direction,
 org.omg.Security.SecurityFeature feature
);

If the communication direction is Security::CommunicationDirection::SecDi-
rectionRequest, the feature returned should be for invocation, i.e. as a client. If the
communication direction is Security::CommunicationDirection::SecDirection-
Reply, the feature return should be for the accepting requests, i.e. as a server.

We suggest that the values returned for a given feature mirror the option state in the
invocation_options_supported attribute in the SecDirectionRequest case, and
the accepting_options_supported attribute in the SecDirectionReply case. How-
ever, your mechanism may specify otherwise.

set_attrbiutes

This operation is intended for use in attribute management of the particular creden-
tials. Its meaning is defined to diminish the attributes of the credentials in the con-
text of the mechanism’s ability. The implementer should take care to notice that the
requested attributes is a subset of the exact attributes that would be returned from
the get_attributes operation.

The set_attributes operation’s interface is below:

// IDL
boolean set_attributes(
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

// Java
public boolean set_attributes(
 org.omg.Security.SecAttribute[] requested_attributes,
 org.omg.Security.AttributeListHolder actual_attributes
);

Security Replaceable

164 ORBASEC SL2

Users may call this operation if they want to subsequently remove security
attributes from the Credentials. The implementer should take care to make sure that
the value given to the requested_attributes is a subset of the exact attributes that
would be returned from the get_attributes operation. It is realized that some
attributes that are not supplied may not be able to be removed from the credentials.
Yet, the operation may be successful enough not to warrant the raising of an excep-
tion. This operation should return true if the operation is successful and all the
attributes of the credentials now match the requested attributes. This operation
should return false if the operation is successful, but some of the requested
attributes did not include attributes that cannot be removed. The actual_attributes
parameter always returns all the attributes of the credentials. If the operation is not
successful a system exception of CORBA::BAD_PARAM should be raised.

get_attributes

This operation returns an unordered sequence of security attributes that belong to
the credentials. Although there is a standard for the attribute types and the values to
which they refer, no standardization effort is underway to define the format of the
values of the particular attributes.

// IDL
Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);

// Java
public org.omg.Security.SecAttribute[] get_attributes(
 org.omg.Security.AttributeType[] attributes
);

We strongly suggest that you use the orbasec.corba.Opaque class for Opaque
encodings of the defining_authority and value fields of the SecAttribute. See
“Opaque Encodings” on page 185.

is_valid

This operation returns a boolean value indicating whether the credentials are still
valid. The output parameter returns the time of expiration.

ORBASEC SL2 165

Received Credentials

// IDL
boolean is_valid(
 out Security::UtcT expiry_time
);

// Java
public boolean is_valid(
 org.omg.TimeBase.UtcTHolder expiry_time
)

refresh

This operation is intended to renew a credentials before it may expire. It returns a
boolean value indicating the success of the renewal.

// IDL
boolean refresh(
 in Security::Opaque refresh_data
);

// Java
public boolean refresh(byte[] refresh_data);

We suggest that if your mechanism cannot refresh either own credentials or
received credentials, that this operation raise a CORBA::BAD_OPERATION
exception.

Received Credentials

On the target side a ReceivedCredentials object represents a secure association
between the client and target. Received credentials must have more information
than “own” credentials. An object implementing this interface should be returned
from the call to accept_security_context on the Vault.

The interface inherits from the Credentials interface, and in the case of using the
received credentials for invocations, the invocation features, operations, and
attributes of the Credentials object have the same meaning. Of course, the
credentials_type attribute is set to SecReceivedCredentials. Its interface is
defined below:

Security Replaceable

166 ORBASEC SL2

interface ReceivedCredentials : Credentials {
 // Locality Constrained
 readonly attribute Credentials accepting_credentials;
 readonly attribute Security::AssociationOptions
 association_options_used;
 readonly attribute Security::DelgationState
 delegation_state;
 readonly attribute Security::DelegationMode
 delegation_mode;
};

accepting_credentials

This read-only attribute is the Credentials objects that was used to establish the
secure association with the client. It should be one of the credentials objects that
was given to accept_security_context of the Vault.

// IDL
readonly attribute Credentials accepting_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
accepting_credentials();

association_options_used

This read-only attribute states the association options that were used to make the
association with the accepting_credentials. This value should be a value some-
where between the accepting_options_required and the
accepting_options_supported of the accepting_credentials.

// IDL
readonly attribute Security::AssociationOptions
 association_options_used;
// Java
public short accociation_options_used();

delegation_state

This read-only attribute is the value of the delegation state of the client’s own cre-
dentials. It states whether the immediate invoking principal of the operation is the
initiator or a delegate of some other principal.

ORBASEC SL2 167

Target Credentials

// IDL
readonly attribute Security::DelegationState delegation_state;

// Java
public org.omg.Security.DelegationState
delegation_state();

Note – For some security mechanisms, this information is indeterminable. When
this information is indeterminable, impersonation is assumed; and therefore, this
attribute must have the value of SecInitiator.

delegation_mode

This read-only attribute states the delegation mode of the received credentials. It
stipulates that the credentials are in the a delegation mode of:

• No delegation mode (SecDelModeNoDelegation), where they can not be used
for invocations.

• Simple delegation mode (SecDelModeSimpleDegation), where the credentials
can be indiscriminately used on the client’s behalf.

• Composite delegation (SecDelModeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as a trace, a combination of priv-
ileges, etc.

// IDL
readonly attribute Security::DelegationMode delegation_mode;

// Java
public org.omg.Security.DelegationMode
delegation_mode();

Target Credentials

On the target side a TargetCredentials object represents a secure association
between the client and target from the client’s point of view. Target credentials
must have more information than “own” credentials. An object implementing this
interface should be returned from the call to server_credentials attribute on Cli-
entSecurityContext.

Security Replaceable

168 ORBASEC SL2

The interface inherits from the Credentials interface, and in the case of using the
received credentials for invocations, the invocation features, operations, and
attributes of the Credentials object have the same meaning. The credentials_type
attribute is set to SecTargetCredentials. Its interface is defined below:

interface TargetCredentials : Credentials {
 // Locality Constrained
 readonly attribute Credentials initiating_credentials;
 readonly attribute Security::AssociationOptions
 association_options_used;
};

initiating_credentials

This read-only attribute is the Credentials objects used to establish the secure asso-
ciation with the server. This Credentials object should be the one given to the
init_security_context operation.

// IDL
readonly attribute Credentials initiating_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
initiating_credentials();

association_options_used

This read-only attribute states the association options that were used to make the
association with the initiating_credentials. This value should be a value some-
where between the invocation_options_required and the
invocation_options_supported of the initiating_credentials.

// IDL
readonly attribute Security::AssociationOptions
 association_options_used;
// Java
public short accociation_options_used();

ORBASEC SL2 169

Security Context

Security Context
The SecurityContext object is the base interface for the ClientSecurityContext
object and the TargetSecurityContext object.

interface SecurityContext {
 readonly attribute Security::ContextType context_type;
 readonly attribute Security::ContextState context_state;
 readonly attribute Securty::MechanismType mechanism;
 readonly attribute boolean supports_refresh;
 readonly attribute Security::ChannelBindings
 chan_binding;
 readonly attribute SecurityLeve2::Credentials
 peer_credentials;

 Security::AssocationStatus continue_security_context(
 in Security::OpaqueBuffer in_token,
 out Security::OpaqueBuffer out_token
);

 void protect_message(
 in Security::OpaqueBuffer message,
 in Security::QOP qop,
 out Security::OpaqueBuffer text_buffer
 out Security::QpaqueBuffer out_token
);

 void reclaim_message(
 in Security::OpaqueBuffer text_buffer,
 in Security::OpaqueBuffer token,
 out Security::QOP qop,
 out Security::OpaqueBuffer message
);

 boolean is_valid(
 out Security::UtcT expiry_time
);

 void refresh_security_context(
 in Security::Opaque refresh_data,
 out Security::OpaqueBuffer out_token
)

Security Replaceable

170 ORBASEC SL2

 boolean process_refresh_token(
 in Security::OpaqueBuffer refresh_token
)

 void discard_security_context(
 in Security::Opaque refresh_data,
 out Security::OpaqueBuffer out_token
)

 boolean process_discard_token(
 in Security::OpaqueBuffer refresh_token
);
};

context_type

This read-only attribute contains the discriminator that determines whether this
context is a ClientSecurityContext or a ServerSecurityContext.

// IDL
readonly attribute Security::SecurityContextType
 context_type;
// Java
public org.omg.Security.SecurityContextType
context_type();

context_state

This read-only attribute indicates the establishment state of the security context.

// IDL
readonly attribute Security::SecurityContextState
 context_state;
// Java
public org.omg.Security.SecurityContextState
context_state();

The ORBAsec SL2 SECIOP machinery pays attention to the following states dur-
ing its processing of secure associations:

ORBASEC SL2 171

Security Context

SecContextInitialized

A SecurityContext state of SecContextInitialized is the initial state of a security
context created by the Vault.

SecContextContinued

A SecurityContext state of SecContextContinued means the security context still
needs to do continuance processing. It will not be used protect messages.

SecContextClientEstablished

A SecurityContext state of SecContextClientEstablished means the security con-
text still needs to do continuance processing, but is able to protect messages on the
client side.

An example of this situation is when mutual authentication is not needed. Once the
client produces the initial token, it can be ready to protect messages without some
response from the target.

Note – SECIOP protocol has no provision for being able to reclaim messages
without first entering the SecContextEstablished state.

SecContextEstablished

A SecurityContext state of SecContextEstablished means the security context is
able to protect messages and reclaim messages.

SecContextEstablishExpired

A SecurityContext of SecContextEstablishExpired means that establishment
processing for the security context has expired, and it can no longer be used to
accept calls to continue establishment, protect messages, or reclaim messages.

SecContextExpired

A SecurityContext state of SecContextExpired means the security context has
expired, and it can no longer be used to accept calls to continue establishment, pro-
tect messages, or reclaim messages.

Security Replaceable

172 ORBASEC SL2

SecContextInvalid

A SecurityContext of SecContextInvalid means that the security context is no
longer usable.

supports_refresh

This read-only attribute tells the ORBASEC SL2 SECIOP machinery whether the
context may be, or has the ability to be refreshed.

// IDL
readonly attribute boolean supports_refresh;

// Java
public boolean supports_refresh();

mechanism

This read-only attribute is the mechanism used in the creation of the SecurityCon-
text. by the Vault. It usually depends upon the capabilities of the Vault and the
Credentials object(s) given to init_security_context or accept_security_context.

// IDL
readonly attribute Security::MechanismType mechanism;

// Java
public String mechanism();

chan_binding

This read-only attribute is the chan_binding parameter used in the creation of the
SecurityContext by the Vault.

// IDL
readonly attribute Security::ChannelBindings chan_binding;

// Java
public org.omg.Security.ChannelBindings chan_binding();

peer_credentials

This attribute returns the ReceivedCredentials or TargetCredentials object that rep-
resents the secure association. If the security context is a ClientSecurityContext, the

ORBASEC SL2 173

Security Context

peer credentials are that of TargetCredentials. If the security context is a ServerSe-
curityContext, the peer credentials are that of ReceivedCredentials.

continue_security_context

This operation is called on by SECIOP to continue security contexts. The input
token is either supplied by SECIOP::ContinueEstablishment or SECIOP::Com-
pleteEstablishment messages.

// IDL
 Security::AssocationStatus continue_security_context(
 in Security::OpaqueBuffer in_token,
 out Security::OpaqueBuffer out_token
);

// Java
public org.omg.Security.AssociationStatus
continue_security_context(
 org.omg.Security.OpaqueBuffer in_token,
 org.omg.Security.OpaqueBufferHolder out_token
);

protect_message

This operation is used by SECIOP to send SECIOP::MessageInContext mes-
sages.

// IDL
void protect_message(
 in Security::OpaqueBuffer message,
 in Security::QOP qop,
 out Security::OpaqueBuffer text_buffer
 out Security::QpaqueBuffer out_token
);

// Java
public void protect_message(
 org.omg.Security.OpaqueBuffer message,
 org.omg.Security.QOP qop,
 org.omg.Security.OpaqueBufferHolder text_buffer,
 org.omg.Security.OpaqueBufferHolder out_token
);

Security Replaceable

174 ORBASEC SL2

reclaim_message

This operation is used by SECIOP to decode SECIOP::MessageInContext mes-
sages.

// IDL
void reclaim_message(
 in Security::OpaqueBuffer text_buffer,
 in Security::OpaqueBuffer token,
 out Security::QOP qop,
 out Security::OpaqueBuffer message
);

// Java
public void reclaim_message(
 org.omg.Security.OpaqueBuffer text_buffer,
 org.omg.Security.OpaqueBuffer token,
 org.omg.Security.QOPHolder qop,
 org.omg.Security.OpaqueBufferHolder message
);

is_valid

This operation states the expiry time of the security context should it be known.
ORBAsec SL2 currently does not make use of this operation.

// IDL
boolean is_valid(
 out Security::UtcT expiry_time
);

// Java
public boolean is_valid(
 org.omg.TimeBase.UtcTHolder expiry_time
);

refresh_security_context

This operation attempts to refresh the security context. It has one input parameter
and one output parameter.

ORBASEC SL2 175

Security Context

// IDL
void refresh_security_context(
 in Security::Opaque refresh_data,
 out Security::OpaqueBuffer out_token
);

// Java
public void refresh_security_context(
 org.omg.Security.Opaque refresh_data,
 org.omg.Security.OpaqueBufferHolder out_token
)

refresh_data

This parameter contains the information that may be necessary to reestablish the
context.

out_token

This parameter contains the information that is to be transmitted back to the remote
side in a SECIOP EstablishContext message.

Note – There is a flaw in SECIOP in the way it is supposed to reestablish a
context should it expire on the target side.

ORBASEC SL2 currently does not make use of this operation.

process_refresh_token

This operation attempts to process a refresh token produced by the
refresh_security_context operation of the remote side of the security context. It
has one input parameter.

// IDL
boolean process_refresh_token(
 in Security::OpaqueBuffer refresh_token
);

// Java
public boolean process_refresh_token(
 org.omg.Security.OpaqueBuffer refresh_token
)

Security Replaceable

176 ORBASEC SL2

refresh_token

This parameter contains the evidence and information that may be necessary to
reestablish the context.

ORBASEC SL2 currently does not make use of this operation.

discard_security_context

This operation attempts to discard the security context. It has one input parameter
and one output parameter.

// IDL
void discard_security_context(
 in Security::Opaque refresh_data,
 out Security::OpaqueBuffer out_token
);

// Java
public void discard_security_context(
 org.omg.Security.Opaque refresh_data,
 org.omg.Security.OpaqueBufferHolder out_token
);

discard_data

This parameter contains the information that may be necessary to discard the con-
text.

out_token

This parameter contains the information that is to be transmitted back to the remote
side in a SECIOP DiscardContext message.

process_discard_token

This operation attempts to process a discard token produced by the
discard_security_context operation of the remote side of the security context. It
has one input parameter.

ORBASEC SL2 177

ClientSecurityContext

// IDL
boolean process_discard_token(
 in Security::OpaqueBuffer refresh_token
);

// Java
public boolean process_discard_token(
 org.omg.Security.OpaqueBuffer refresh_token
);

discard_token

This parameter contains the evidence and information that may be necessary to dis-
card the context.

ClientSecurityContext
The ClientSecurityContext object is created by the Vault after a successful
init_security_context operation. It is used to represent the establishment of a
secure association with a target. It has the following interface:

interface ClientSecurityContext : SecurityContext {
 readonly attribute Security::AssociationOptions
 association_options_used;
 readonly attribute Security::DelegationMode
 delegation_mode;
 readonly attribute Security::Opaque
 mech_data;
 readonly attribute SecurityLevel2::CredentialsList
 client_credentials;
 readonly attribute Security::AssociationOptions
 server_options_supported;
 readonly attribute Security::AssociationOptions
 server_options_required;
 readonly attribute Security::Opaque
 server_security_name;
};

Security Replaceable

178 ORBASEC SL2

association_options_used

This read-only attribute states the association options that were used to make the
association with the client_credentials. This value should be a value somewhere
between the accepting_options_required and the accepting_options_supported
of the client_credentials.

// IDL
readonly attribute Security::AssociationOptions
 association_options_used;
// Java
public short accociation_options_used();

delegation_mode

This read-only attribute states the delegation mode of the security context, which
must be a supported delegation mode of the client_credentials. It stipulates that the
credentials are in the a delegation mode of:

• No delegation mode (SecDelModeNoDelegation), where they can not be used
for invocations.

• Simple delegation mode (SecDelModeSimpleDegation), where the credentials
can be indiscriminately used on the client’s behalf.

• Composite delegation (SecDelModeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as a trace, a combination of priv-
ileges, etc.

// IDL
readonly attribute Security::DelegationMode delegation_mode;

// Java
public org.omg.Security.DelegationMode
delegation_mode();

mech_data

This read-only attribute is the mechanism data from the IOR that was used to set up
the secure association, in its raw form.

ORBASEC SL2 179

ClientSecurityContext

// IDL
readonly attribute Security::Qpaque mech_data;

// Java
public byte[] mech_data();

client_credentials

This read-only attribute holds the credentials object that was used to create the
secure association with the target. These credentials can be either of the “own” cre-
dentials type, or “received” credentials type.

// IDL
readonly attribute SecurityLevel2::Credentials
 client_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
client_credentials();

Note – For internal integrity, the credentials placed in this attribute while on the
ClientSecurityContext should be a non-modifiable copy of the credentials used
to create the context, because the application can manipulate various attributes
of the credentials.

server_options_supported

This read-only attribute holds the attributes that the server is said to support for the
selected mechanism, i.e. from the target_supports attribute of the selected security
component in the target’s IOR.

// IDL
readonly attribute Security::AsssociationOptions
 server_options_supported;

// Java
public short server_options_supported();

Security Replaceable

180 ORBASEC SL2

server_options_required

This read-only attribute holds the attribute that the server is said to require for the
selected mechanism, i.e. from the target_requires attribute of the selected security
component in the target’s IOR.

// IDL
readonly attribute Security::AsssociationOptions
 server_options_required;

// Java
public short server_options_required();

server_security_name

This read-only attribute holds the target’s security name that was used to set up the
secure association.

// IDL
readonly attribute Security::Qpaque
 server_security_name;

// Java
public byte[] server_security_name();

Server Security Context
The ServerSecurityContext object is created by the Vault after a successful
accept_security_context operation. It is used to represent the establishment of a
secure association with a client. It has the following interface:

ORBASEC SL2 181

Server Security Context

interface ServerSecurityContext : SecurityContext {
 readonly attribute Security::AssociationOptions
 association_options_used;
 readonly attribute Security::DelegationMode
 delegation_mode;
 readonly attribute SecurityLevel2::CredentialsList
 server_credentials;
 readonly attribute Securitye::AssociationOptions
 server_options_supported;
 readonly attribute Security::AssociationOptions
 server_options_required;
 readonly attribute Security::Opaque
 server_security_name;
};

association_options_used

This read-only attribute states the association options that were used to make the
association with the server_credentials. This value should be a value somewhere
between the accepting_options_required and the accepting_options_supported
of the server_credentials.

// IDL
readonly attribute Security::AssociationOptions
 association_options_used;
// Java
public short accociation_options_used();

delegation_mode

This read-only attribute states the delegation mode of the security context, which
must be the same as the delegation mode of the received_credentials. It stipulates
that the credentials are in the a delegation mode of:

• No delegation mode (SecDelModeNoDelegation), where they can not be used
for invocations.

• Simple delegation mode (SecDelModeSimpleDegation), where the credentials
can be indiscriminately used on the client’s behalf.

• Composite delegation (SecDelModeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as a trace, a combination of priv-
ileges, etc.

Security Replaceable

182 ORBASEC SL2

// IDL
readonly attribute Security::DelegationMode delegation_mode;

// Java
public org.omg.Security.DelegationMode
delegation_mode();

server_credentials

This read-only attribute holds the credentials object that was used to create the
secure association with the client. This Credentials object should be one of the cre-
dentials objects given to accept_security_context.

// IDL
readonly attribute SecurityLevel2::Credentials
 server_credentials;

// Java
public org.omg.SecurityLevel2.Credentials
server_credentials();

Note – For internal integrity, the credentials placed in this attribute while on the
ServerSecurityContext should be a non-modifiable copy of the credentials used
to create the context, because the application can manipulate various attributes
of the credentials.

server_options_supported

This read-only attribute holds the attributes that the server is said to support for the
selected mechanism, i.e. from the target_supports attribute of the selected security
component in the target’s IOR that was used to set up the security context.

// IDL
readonly attribute Security::AsssociationOptions
 server_options_supported;

// Java
public short server_options_supported();

ORBASEC SL2 183

Server Security Context

server_options_required

This read-only attribute holds the attribute that the server is said to require for the
selected mechanism, i.e. from the target_requires attribute of the selected security
component in the target’s IOR that was used to set up the security context.

// IDL
readonly attribute Security::AsssociationOptions
 server_options_required;

// Java
public short server_options_required();

server_security_name

This read-only attribute holds the target’s security name that was used to set up the
secure association.

// IDL
readonly attribute Security::Qpaque
 server_security_name;

// Java
public byte[] server_security_name();

Security Replaceable

184 ORBASEC SL2

ORBASEC SL2 185

Opaque Encodings

CHAPTER 9 Security Opaque
Encodings

Opaque Encodings
CORBA Security Level 2 functionality has many a data structure containing Secu-
rity::Opaque data typed elements, which is defined below as:

// IDL
module Security {
 typedef sequence<octet> Opaque;
};

The IDL to Java mapping translates this data type into a byte[] in Java.

The Security::Opaque data type is used in several places where it affects the Secu-
rity Level 2 API:

• As the security_name parameter of the authenticate operation of the Princi-
palAuthenticator object.

• As the defining_authority and value fields of the Security::SecAttribute
structure, which is returned from a get_attributes operation on the
SecurityLevel1::Current object and a SecurityLevel2::Credentials object.

Security Opaque Encodings

186 ORBASEC SL2

• The security_name field of the Security::SecurityMechanismData struc-
ture, which is returned from the get_security_mechanisms operation on the
SecurityLevel2::Current object.

The problem is that the “opaqueness” of these data fields are a hinderance to apply-
ing general security solutions unless you know the format or the byte encodings of
all particular fields ahead of time. However, this quickly falls apart if you have two
different mechanisms that can deliver different byte encodings for such things as
security attributes containing an Access Id. With one mechanism it may be a
straight byte to ASCII character string translation, in another it may be one of two
different encodings, such as a string, or a binary X.500 Directory Name, which is
used in X.509 certificates.

Unfortunately, the CORBA Security Specification is quite lacking in the respect of
making sense of the “opaqueness” of security attributes. One would hope that a bet-
ter scheme will develop over time. In the meantime, Adiron has developed a utility
for ORBASEC SL2 containing functionality for generalizing and typing the byte
encodings of such applications of the Security::Opaque data type. This utility is a
class called Opaque with staticly defined functions.

The Opaque Class

A security name may be several different types and have several different encod-
ings into bytes. In order to make sense of this “opaqueness”, ORBASEC SL2 intro-
duces a utility object class called Opaque which resides in the orbasec.corba
package.

This utility class encodes names of different types into a tag value and a byte
encoding and packages them up in a CDR encapsulation. When names, such as
security names, or the fields of the Security::SecAttribute structure, are used at
the Security Level 2 API level, they must be in this CDR encapsulation format.

A better way to say this restriction is that any time you access a Security::Opaque
field or parameter as a name of something, (e.g. a security name or a field of an
attribute) wrap it using the Opaque class before encoding or decoding it to a Secu-
rity::Opaque (i.e. byte[]).

ORBASEC SL2 187

The Opaque Class

The Opaque Interface

A brief introduction to the Opaque class specifying the most used features of it and
how it is used is given here. However, please see the JavaDoc built documentation
for the orbasec.corba.Opaque class for the more precise details.

public abstract class Opaque {
 // Static classes
 public static class KerberosName extends Opaque { }
 public static class DirectoryName extends Opaque { }
 public static class PrintableString extends Opaque {....}

 // Static Functions
 public static Opaque encodeKerberosName(String name);
 public static Opaque encodeDirectoryName(byte[] der_dn);
 public static Opaque encodePrintableString(String name);

 public static Opaque decode(byte[] opaque_encoding);

 // Instance Functions
 public String toString(); // Overrides Object
 public byte[] getEncoding();
 public byte[] getRawBytes();

}

The Opaque class has support for the encoding and decoding of different name
types to and from Security::Opaque, such as printable strings, X.500 binary
encoded Distinguished Names, Kerberos names, and more. The entire interface is
not presented here. A thorough explaination is in the JavaDoc built documentation
for the orbasec.corba.Opaque class.

The Opaque.encode Methods

The encoding functions all have the form of:

Opaque encode<subclass name>(<parameters>)

Security Opaque Encodings

188 ORBASEC SL2

They may take one or more parameters and create an object that is a subclass of the
Opaque class. The parameters represent the content of the intended name in some
form.

For example, examine the Opaque.encodeKerberosName method. This method
takes the string that represents a Kerberos name in string form, and creates a
Opaque object. The most common use of this object would be in a call the Princi-
palAuthenticator object’s authenticate operation. An example of this scenario fol-
lows:

// Java
// The Principal Authenticator comes from Security Current
org.omg.SecurityLevel2.PrincipalAuthtenticator pa =

// A few holders for out parameters of authenticate
org.omg.SecurityLevel2.CredentialsHolder credsh =
 new org.omg.SecurityLevel2.CredentialsHolder();
org.omg.Security.OpaqueHolder cont_datah =
 new org.omg.Security.OpaqueHolder();
org.omg.Security.OpaqueHolder auth_specific_datah =
 new org.omg.Security.OpaqueHolder();

// A normal Kerberos Name
String principal = “bart@MYREALM.COM”;

// The kerberos name encoded as a Opaque object
orbasec.corba.Opaque namePrincipal =
 orbasec.corba.Opaque.encodeKerberosName(principal);

// The Opaque encoded as bytes.
byte[] security_name = namePrincipal.getEncoding();

// A call to authenticate
pa.authenticate(
 0, // method
 “Kerberos”, // mechanism
 security_name, // security_name
 (“cache_name=MEMORY:0\n”+
 “password=\”mypassword\”\n”).getBytes(),// auth_data
 new org.omg.Security.SecAttribute[0], // privileges
 credsh, // creds holder
 cont_datah,
 auth_specific_datah
);

ORBASEC SL2 189

The Opaque Class

In the above example, you can see that the normal Kerberos name of
“bart@MYREALM.COM” went through two transformations before it became a
byte array suitable for use with the PrincipalAuthenticator object, namely

The Opaque.decode Operation

To get a name back from an Opaque encoding you must use the Opaque.decode
function. One might do this, in order to perform access checks, i.e. you may need to
do a comparison on the AccessId security attribute value.

For the following example, assume that we have retrieved the “received” creden-
tials, the ReceivedCredentials object representing a client’s Kerberos identity.

// Java
org.omg.SecurityLevel2.Current current = // get current

org.omg.SecurityLevel2.ReceivedCredentials creds =
 current.received_credentials();

org.omg.Security.AttributeType[] attr_types =
 new org.omg.Security.AttributeType[1];

// Generate an AttributeType for AccessId
// FAMILY DEFINER 0, FAMILY 1, AccessId = 2
attr_types[0] = new org.omg.Security.AttributeType(
 new org.omg.Security.ExtensibleFamily(
 (short) 0, (short) 1),
 2);

org.omg.Security.SecAttribute[] attrs =
 creds.get_attributes(attr_types);

try {
 Opaque kName = Opaque.decode(attrs[0].value);
 System.out.println(“Access id =” + kName.toString());
} catch (Opaque.CodingException e) {
 System.out.println(e);
}

String encodeKerberosName→ Name getEncoding→ Opaque⇒ ⇒

Security Opaque Encodings

190 ORBASEC SL2

In the above code segment beyond all the set up for retrieving an AccessId security
attribute, is the decoding of the Opaque encoding. You will notice that
Opaque.decode may throw a coding exception. This exception is thrown if the data
doesn’t unmarshal correctly.

Note – All ORBASEC SL2 internal mechanisms use this Opaque utility to
encode Opaque security names and fields of security attributes, so decoding
should be okay.

You will also notice that other classes that were not previously shown exist for the
different forms of names, such as Opaque.KerberosName. This class is a class
that extends Opaque, but it is defined within the scope of the Opaque class. Such
as:

public abstract class Opaque {
 ...
 public static class KerberosName extends Opaque {
 String name;
 public toString()
 {
 return name;
 }
 public byte[] getRawBytes()
 {
 return name.getBytes();
 }
 }
}

You might think that all of this encoding/decoding mechanisms is excessive, until
you consider using SSL. The SSL protocol uses X.509 certificates in which the sub-
ject’s identifier is in the form of an X.500 Directory Name. An X.500 Directory
Name (DN), sometimes called “Distinguished Name”, is an ASN.1 binary data
structure encoded with the Distinguished Encoding Rules (DER).

In order to parse one of these names, one must have a provider that can decode the
DER encoding of the ASN.1 structure representing the DN.

Note – If you have the ORBASEC SL2-SSL plug-in module, the IAIK toolkit has
that functionality.

ORBASEC SL2 191

The Opaque Class

For the following example, consider the case in which the AccessId attribute is
retrieved from a Credentials object using the SSL supplied protocol. This means
that value field of the AccessId security attribute is an orbasec.corba.Opaque
encoded DN.

try {
 // Get the Directory Name
 Opaque.DirectoryName dName =
 (Opaque.DirectoryName) Opaque.decode(attrs[0].value);
 byte[] name = dName.name;
 try {
 // Use IAIK to parse it and turn it into a string.
 iaik.asn1.structures.Name dn =
 iaik.asn1.structures.Name(name);
 System.out.println(“Access id =” + dn.toString());
 } catch (iaik.asn1.CodingException e) {
 System.out.prinln(e);
 }
} catch (Opaque.CodingException e) {
 System.out.println(e);
}

The class Opaque.DirectoryName contains a

byte[] name;

field. This field represents the raw binary structure of a X.500 Directory Name, not
its Opaque encoding. This “raw” binary structure is the DER encoding of a DN.
However, the Opaque class does nothing to enforce that the raw bytes are actually
a DER encoding of a DN.

Other name forms are supported, such as RFC822, which is an Email name. Again,
no structure is enforced; however, the name component for a
orbasec.corba.Opaque.RFC822Name object is a simple String.

Please check the JavaDoc built documentation that comes with the ORBASEC SL2
distribution for more details and interfaces.

Security Opaque Encodings

192 ORBASEC SL2

ORBASEC SL2 193

The SL2 Class

CHAPTER 10 The SL2
Class

The SL2 Class
ORBASEC SL2 has a Java class that contains statically defined methods that are
used to initialize SL2. It also contains statically defined methods that help with
such things like creating certain Security Level 2 policy objects. The interface for
the SL2 Class is:

// Java
package orbasec;

public class SL2
{
 // ORBAsec SL2 Version string
 public static String Version;

 public static void init(
 String argv[],
 java.util.Properties properties
);

The SL2 Class

194 ORBASEC SL2

 public static void init(
 java.applet.Applet applet,
 java.util.Properties properties
);

 public static void init_with_boa(
 String argv[],
 java.util.Properties properties
);

 public static org.omg.CORBA.ORB
 orb();

 public static org.omg.CORBA.BOA
 boa();

 public static org.omg.SecurityLevel2.QOPPolicy
 org.omg.Security.QOP qop
);

 public static org.omg.SecurityLevel2.MechanismPolicy
 create_mechanism_policy(
 String[] mechanisms
);

 public static
 org.omg.SecurityLevel2.InvocationCredentialsPolicy
 create_invoc_creds_policy(
 org.omg.SecurityLevel2.Credentials[] creds_list
);

 public static org.omg.SecurityLevel2.EstablishTrustPolicy
 create_establish_trust_policy(
 org.omg.Security.EstablishTrust trust
);

 public static
 org.omg.SecurityLevel2.DelegationDirectivePolicy
 create_delegation_directive_policy(
 org.omg.Security.DelegationDirective
 delegation_directive
)

 public static
 orbasec.SecLev2.TrustedAuthorityPolicy

ORBASEC SL2 195

The SL2 Class

 create_trusted_authority_policy(
 orbasec.SecLev2.TrustedAuthorityPolicyContent
 trusted_authorities
);
};

Version

This field contains a string describing the version of ORBASEC SL2 that you are
working with.

init (String parameter)

This initializer is used to initialize the security service of the ORB for stand-alone
“pure client” CORBA applications. The String array and Properties parameters are
passed to the ORB initialization methods. Use the orb accessor of this class to
obtain a reference to the ORB. This method is described in detail in the chapter
entitled “Initializing SL2” on page 45.

init (Applet parameter)

This initializer is used to initialize the security service of the ORB for Java Applets,
which are “pure client” applications, since they cannot accept connections. The
Applet and Properties parameters are passed to the ORB initialization methods.
Use the orb accessor of this class to obtain a reference to the ORB. This method is
described in detail in the chapter entitled “Initializing SL2” on page 45.

init_with_boa

This initializer is used to initialize the security service of the ORB for stand-alone
CORBA applications that are capable of accepting connections, i.e., act as CORBA
servers. The String array and Properties parameters are passed to the ORB and
BOA initialization methods. Use the orb and boa accessors of this class to obtain a
reference to the ORB and BOA, respectively. It is described in detail in the chapter
entitled “Initializing SL2” on page 45.

orb

This accessor returns a reference to the org.omg.CORBA.ORB initialized in one
of the above SL2 initializers.

The SL2 Class

196 ORBASEC SL2

boa

This accessor returns a reference to the org.omg.CORBA.BOA initialized in the
init_with_boa initializer. If ORBASEC SL2 was not initialized with the
init_with_boa initializer, this accessor returns null.

create_qop_policy

This operation is a convenience function that acts as a factory for creating a simple
quality of protection policy, i.e. a QOPPolicy object.

Note – This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create_mechanism_policy

This operation is a convenience function that acts as a factory for creating a simple
mechanisms policy that stipulates the mechanisms to be used during invocations on
targets, e.g. a MechanismPolicy object.

Note – This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create_invoc_creds_policy

This operation is a convenience function that acts as a factory for creating a simple
invocation credentials policy, e.g. an InvocationCredentialsPolicy object. How-
ever, the credentials list given as input to this function should be a valid credentials
list for an InvocationCredentialsPolicy object.

Note – This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

Actually, ORBASEC SL2 has two policies that can be used out of the box. They are
defined by the attributes:

• orbasec.SL2.OwnInvocationCredentialsPolicy

ORBASEC SL2 197

The SL2 Class

Always returns the own_credentials attribute of Security Current when policy
analysis is performed at binding time.

• orbasec.SL2.ReceivedInvocationCredentialsPolicy
Always returns the received_credentials attribute of Security Current in a sin-
gle element list when policy analysis is performed at binding time.

create_establish_trust_policy

This operation is a convenience function that acts as a factory for creating a policy
that stipulates whether client and/or target authentication should be established dur-
ing an invocation, e.g. an EstablishTrustPolicy object. [“Establish Trust Policy”
on page 132].

Note – This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create_delegation_directive_policy

This operation is a convenience function that acts as a factory for creating a policy
that stipulates whether the credentials being used for the invocation should be dele-
gated to the target or not, e.g. an DelegationDirectivePolicy object. [“Delegation
Directive Policy” on page 132].

Note – This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create_trusted_authorities_policy

This operation is a convenience function that acts as a factory for creating a policy
that lists the authorities that are trusted for authentication. [see “TrustedAuthority-
Policy” on page 138].

The SL2 Class

198 ORBASEC SL2

ORBASEC SL2 199

Other Java Utility Classes

CHAPTER 11 Other Java
Utility
Classes

Other Java Utility Classes
ORBASEC SL2 has a number of Java Utility Classes that contain statically defined
functions that help with certain aspects of dealing with CORBA Security Level 2
interfaces and Java in general, which the internals of ORBASEC SL2 actually use.

The utilities come in the following Java packages:

orbasec.util. This package contains classes for implementing a Linked List utility,
debugging, and some functions for printing hexadecimal buffers, etc. that are actu-
ally used by ORBASEC SL2.

orbasec.io. This package contains some Input/Output classes for manipulating
files, and other general manipulating java.io objects.

orbasec.corba. This package contains classes that help with CORBA and the Secu-
rity Interfaces.

Other Java Utility Classes

200 ORBASEC SL2

orbasec.tools. This package contains some stand-alone tools for dealing with cer-
tain external aspects of the system. For example, if you have the ORBASEC SL2-
SSL distribution, this package contains a tool for generating simple X.509 certifi-
cates. See the JavaDoc generated documentation that comes with your ORBASEC
SL2 distribution for command syntax of these tools.

The obvious classes of interest to the ORBASEC SL2 user are in the orbasec.corba
package. Some of the most important classes are listed below.

Documentation for these utilities can be found in the JavaDoc generated explana-
tions that can be found in the documentation API section of your ORBASEC SL2
distribution.

Class Purpose

Opaque This class contains classes and functions for creating Opaque encod-
ings for the content of security names and security attribute values.
See “Opaque Encodings” on page 185.

MechUtil This class contains statically defined fields and functions that deal
with the Kerberos and SSL mechanism strings. Its best use is already
defined strings that represent the available cipher suites and mecha-
nisms in ORBASEC SL2.

CredUtil This class contains statically defined functions for querying
SecurityLevel2:Credentials objects, creating security attribute types
and security attributes, printing out credentials, etc.

AttrDef This class contains statically defined constants for attribute type and
family definers used by CORBA and Adiron. It also contains convi-
ence functions for constructing SecAttribute structures.

IOPUtil This class contains statically defined functions for querying and
manipulating IORs.

CDRBuffer
CDRDecoder
CDREncoder
TypeCode

Lightweight CDR encoders and decoders that implement
org.omg.CORBA.portable.InputStream and
org.omg.CORBA.portable.OutputStream interfaces of the IDL/
Java mapping. These classes do not handle complex data types such
as “any” or recursive data types.

U A utility for doing translations between org.omg.SECIOP.ulonglong
structures and the Java long primitive type.

TABLE 13. Some Members of the orbasec.corba Package

ORBASEC SL2 201

CHAPTER 12 References

1. Kohl J, Neuman C., “The Kerberos Network Authentication Service (V5)”, Net-
work Working Group RFC 1510, September 1993.

2. The Object Management Group, “The Common Object Request Broker: Archi-
tecture and Sepcification”, Version 2.2, Feburary 1998.

3. The Object Management Group, “CORBAservices: Common Object Services
Specification”, November 1997.

4. The Object Management Group, “Security Service Specification”, Version 1.2
Draft 4.1, 5 January, 1998.

5. The Object Management Group, “Security Service Specification”, Version 1.5,
March 1999.

6. Object Oriented Concepts, Inc. “ORBACUS C++ and Java”, Version 3.1, 1999.

References

202 ORBASEC SL2

