ORBAsECd 2
User Guide

Adiron, LLC
2-212 CST
CASE Center
Syracuse University
Syracuse, NY 13244-4100

Version 2.0
April 1999

Copyright © 1999 Adiron, LLC. All Rights Reserved.

“ Adiron”, “ORBASEC”, “ORBASEC SL2", “ORBASEC SL2-GSSKRB”,
“ORBASEC SL2-SSL” are trademarks of Adiron, LLC.

“ Object-Oriented Concepts’, “ORBAcuUS’, are trademarks or registered
trademarks of Object-Oriented Concepts, Inc.

“OMG”, “ CORBA” aretrademarks of the Object Management Group, Inc.
“Java’ is atrademark of Sun Microsystems, Inc.

“lAIK", “iSaSiLk” are trademarks of the Institute of Applied Information and
Communication, Graz, Austria

CHAPTER 1 ORBAs=C 9.2
Introduction 13

What is ORBASEC SL2? 13

Developments Since ORBASEC SL2 Beta3 14
What is ORBAcus? 14

What is CORBA Security Level 2?7 15

What is SECIOP? 15

What is Security Replaceability? 15

What is Kerberos? 16

What isSSL? 16

How is ORBASEC SL2 Licensed? 17

About this Document 18

The Future of ORBASEC SL2 18
Requirements for ORBASEC SL2-GSSKRB 19
Requirements for ORBASEC SL2-SSL 19
Getting Help 20

CHAPTER 2 Getting Started 21

Getting Started 21
Adiron’s Test Kerberos Key Distribution Center
(KDC) 22
Overview 22
TheIDL code 23
Implementing the Examplein Java 23
Implementing the Server 23
Implementing the Client 28
Compiling the Demo 31
Running the Demo 32
Running the Server 32
Running the Client 33
Modifying the Server 35
Server Accepting Options 35
Modifying the Client 38

Invocation Policies 38
Changing Policieson Current 40
Changing Palicies on Object References 42

Whereto Go From Here 44

CHAPTER 3 S 2 Initialization 45

Initializing SL2 45

ORBASEC SL2 Configuration 47
Sandard ORBASEC 9.2 Properties 47
orbasec.seciop 47
orbasec.seciop.host 48
orbasec.seciop.port 48
orbasec.ssliop 49
orbasec.ssliop.host 49
orbasec.ssliop.port 49
orbasec.ssliop.exportable_only 50
orbasec.iiop 50
orbasec.iiop.host 51
orbasec.iiop.port 51
orbasec.kerberos session 51
orbasec.anonymous ssl 52
orbasec.allow_iiop 52
ORBASEC SL.2 Command-line Options 53

Secure ORB Services 54

Getting SecurityCurrent 54

Adding your own Security Mechanisms 55

SL2 Version 57

CHAPTER4 Security Current 59

Security Current 59

Getting the Current Object 59

ORBASEC SL.2 Extentionsto Current 60
Standard Attributes and Operations 60
ORBASEC SL2 Extensions to Current 67

Policy Operations 69
Accepting Credentials Attributes and Operations 71

CHAPTER 5 Principal Authenticator 75

Principal Authenticator 75
authenticate 76
continue_authentication 80
get_supported_authen_methods 81
Authentication using ORBASEC SL2-
GSSKRB 81
Mechanism 82
Security Name 82
Authentication Data 82
Session Credentials Example 88
Authentication using ORBASEC SL2-SSL 89
Mechanism 89
Security Name 92
Authentication Data 92
Example of a creation of an Anonymous SSL
Credentials Object 94
Authentication of [IOP Credentials 95
Mechanism 95
Security Name 95
Authentication Data 95
Example of a creation of an Anonymous SSL
Credentials Object 95

CHAPTER 6 Credentials 97
What are Credentials? 97
Credentials 98
copy 100
destroy 100

credentials_type 101
authentication_state 101
mechanism 102

accepting_options_supported 102
accepting_options_required 104
invocation_options_supported 105
invocation_options_required 107
get_security feature 108
set_attributes 108
get_attributes 109
is valid 109
refresh 110
Received Credentials 111
accepting_credentials 111
association_options_used 111
delegation_state 112
delegation_mode 112
Target Credentials 113
initiating_credentials 113
association_options_used 114
Security Attributes of Credentials 114
CORBA Family of Security Attributes 115
How are the Credentials Related to the IOR? 119
Important Temporal Considerations 122
Extensions for ORBASEC SL2-SSL
Credentials 123

CHAPTER 7 Policies 125

Policies 125

Temporal Considerations 126
MechanismPolicy 126

Default Mechanism Policy 127
Invocation Credentials Policy 128

Default Invocation Credentials Policy 128
QOP Policy 129

Default QOP Policy 130
Delegation Directive Policy 132

Default Delegation Directive Policy 132

CHAPTER 8

Establish Trust Policy 132
Default Establish Trust Policy 133

Invocation Policy Analysis 136
Specific Policies on Object References 137
Setting Default Policies 138

ORBAsec SL2 Specific Policies 138
TrustedAuthorityPolicy 138
In the Absence of a Trusted Authority Policy 141

Security Replaceable 143

Security Replaceable 143
TheVault 144
init_security_context 145
accept_security_context 148
acquire_credentials 150
continue_credentials_acquisition 153
get_supported_mechs 155
get_supported_authen_methods 155
supported_mech_oids 155
Credentials 156
copy 157
destroy 158
credentials_type 158
authentication_state 159
mechanism 159
accepting_options_supported 159
accepting_options_required 160
invocation_options_supported 161
invocation_options_required 162
get_security feature 162
set_attrbiutes 163
get_attributes 164
is valid 164
refresh 165
Received Credentials 165
accepting_credentials 166

association_options _used 166
delegation_state 166
delegation_mode 167
Target Credentials 167
initiating_credentials 168
association_options_used 168
Security Context 169
context_type 170
context_state 170
supports_refresh 172
mechanism 172
chan_binding 172
peer_credentials 172
continue_security _context 173
protect_message 173
reclaim _message 174
is valid 174
refresh_security_context 174
process refresh_token 175
discard_security context 176
process _discard_token 176
ClientSecurityContext 177
association_options _used 178
delegation_mode 178
mech_data 178
client_credentials 179
server_options_supported 179
server_options_required 180
server_security name 180
Server Security Context 180
association_options _used 181
delegation_mode 181
server_credentials 182
server_options_supported 182
server_options_required 183
server_security name 183

CHAPTER 9 Security Opaque Encodings 185

Opague Encodings 185

The Opague Class 186
The Opaque Interface 187
The Opaque.encode Methods 187
The Opaque.decode Operation 189

CHAPTER 10 TheS.2 Class 193
TheSL2 Class 193

CHAPTER 11 Other Java Utility Classes 199

Other Java Utility Classes 199

CHAPTER 12 References 201

CHAPTER 1

ORBAEC 9.2
|ntroduction

What is ORBAseEC 927

THIS IS THE RELEASE 2.0 VERSION OF ORBASEC SL2

ORBASEC SL 2 is asecure Object Request Broker (ORB) that is compliant with the
Common Object Request Broker Architecture (CORBA) security service specifica
tion as defined by the Object Management Group (OMG). ORBASEC SL2 is com-
pliant with the Security Level 2 specification of the proposed 1.6 Revision of the
Security Service Specification [4].

The features ORBA SeC SL2 supports:

Full functionality of the ORB, ORBAcus 3.1.2 for Java.[6]
CORBA Security Level 2 Functionality.

SECIOP - SECure Inter-Operability Protocol compliant.
Security Replaceability

Kerberos Version 5 (GSS-API)

Secure Sockets Layer Version 3 (SSL)

Unprotected Communication (110P)

ORBASEC SL.2 13

ORBASEC SL2 Introduction

ORBASEC SL 2 gives the application devel oper the means necessary to provide
security in the form of authentication and strongly encrypted messsaging to write
develop and deploy secure distributed applications.

Developments Snce ORBAs=EC 9.2 Beta 3

During the ORBASEC SL2 Beta 1 through Beta 3 phases, work was going on at the
OMG to update the security specification. Some of the interfaces that were pre-
sented in ORBASEC SL2 in those phases were listed as extensions to the Security
Level 2 specification. We are now happy to report that most of those interfaces are
no longer extensions to the Security Level 2 specification, but are now part of it.
This document can be compared with the Beta 2 document for the differences.

In Beta 3, we have updated the GSS-API portion of the Kerberos implementation
from MIT. These modifications fixed some problems with the library, concerning
bad handling of delegated credentials. Also, ORBAsec SL2 now has the ability to
use memory based credentials caches, so that a client’s credentials do not have to
reside on afile on the local file system.

In Beta 3, we have added support for Secure Sockets Layer (SSL) protocol by inte-
grating an SSL toolkit from IAIK. Now, ORBASEC SL2 can give you Kerberos,
SSL, or both. Using a common common credentials model, such as the onein
CORBA Security Level 2, makes this an easy switch, should you need to support
both security protocols.

What is ORBACUS?

ORBASEC SL 2 isimplemented on top of ORBAcus 3.1.2 for Java, the Object
Request Broker from Object Oriented Concepts, Inc. The implementation of
ORBAcus allowed the introduction of ORBASEC SL 2 through the ORBAcus Open
Communications Interface (OCI). This particular feature of ORBAcUS is beneficial
because it provides the capability for “plug-able” transport mechanisms to be
placed underneath the ORB request protocol (GIOP). Therefore, ORBASEC SL2 is
placed on top of ORBAcus without modification to ORBAcCUS to give you the
capability of authentication and secure encrypted communication.

14

ORBAsEC 9.2

What is CORBA Security Level 2?

What is CORBA Security Level 2?

Security Level 2 isthe term used by the CORBA Security Services Specification[4]
that gives a certain level of functionality to the application programmer in the form
of an API. Its basic features are:

* Security Current Object

* Credentials Object

* Principal Authenticator Object

* Various Runtime Security Policy Objects

Each of these objects can be queried and manipulated to get the desired security of
communication and authentication.

What is SECIOP?

SECIOP stands for the SECure Inter-Operability Protocol. This standard protocol
is specified in the CORBA Security Services Interoperability section. It isan
Interoperable protocol that uses the GSS Token format standards for delivering
authentication data and message protection data in a communications channel.

What is Security Replaceability?

Security Replaceable is amodule specified in the CORBA Security Service specifi-
cation. Its main capability isto standardize an interface so that different authentica-
tion and cryptography mechanisms can be “plugged” into the ORB security service
and the SECIOP protocol.

Due to American and Canadian export laws, it may be necessary to weaken the
cryptography module to be able to export the entire product out of the country.

Besides weakening, other encryption and authentication mechanisms may be able
to be plugged into the ORB and still use the ORBASEC SL2 functionality, provided
they conform to the CORBA Security Replaceable interfaces. Security Replaceable
defines the interfaces that must be implemented so that you, the application pro-

ORBASEC 9.2 15

ORBASEC SL2 Introduction

grammer, or athird party vendor can build desired security and authentication mod-
ules and integrate them into the ORB security service in a standard fashion.

ORBASEC SL2 provides this functionality. An API is provided should the applica-
tion programmer choose to create his own Security Replaceable Modules for
SECIOP. See “ Security Replaceable” on page 143.

What is Kerberos?

Kerberos is an authentication infrastructure developed at MIT and standarized at
the Internet Engineering Task Force (IETF) organization.

ORBASEC SL2-GSSKRB distribution comes with a Security Replaceable Module
supporting the GSS-Kerberos from the Massechusetts Institute of Technology
(MIT). Thisdistribution includes a Java Archive (JAR) file, GSSKRB.jar, and
platform specific shared library files (or DLL s) that comprise the native implemen-
tation the MIT version of the GSS-API Kerberos Protocol. The ORBASEC SL2-
GSSKRB distribution gives the applications the ability to interact with standard
Internet RFC 1510[1] compliant Key Distribution Centers (KDC) for authentica-
tion services. The library also supplies the cryptography necessary for secure com-
muni cation between ORB clients and ORB target objects.

What is SS_?

SSL is short for Secure Socket Layer v3.0. SSL is a socket level protocol standard-
ized by Netscape, Inc. that sets up a secure connection between two network enti-
ties.

The ORBASEC SL2-SSL distribution comes with the SSL protocol utilizing an SSL
toolkit from the Institute for Applied Information and Communication in Graz,
Austria. This distribution includes a Java Archive (JAR) file, SSLIAIK .jar.

The ORBASEC SL2-SSL distribution gives the application writer the ability to
write applications that communicate securely with other applications using authen-
tication involving X.509 certificate based public key technology, such as DSA and
RSA for authentication and secure communication. However, it does not (yet)
interoperate with any established Public Key Infrastructure components, due to the

16

ORBAsEC 9.2

How is ORBASEC SL2 Licensed?

lack of mature standards in this area. Currently, ORBASEC SL2-SSL uses files con-
taining PEM or DER encoded ceritificate chain and private key files. Should there
be acommercial need for your organization to use a PKI please contact us at
Adiron.

How is ORBAsEC 9.2 Licensed?

ORBASEC SL2 requires that several third party toolkits be installed and they must
be obtained and licensed from those vendors.

* SunJDK 1.1.x from JavaSoft, Inc.

* ORBAcus 3.1.x from Object Oriented Concepts, Inc.

ORBASEC SL2-GSSKRB requires that you have a Kerberos Version 5 compliant
Key Distribution Center running that is accessible from or at your site. If you don’t
already have one, you can get one by licensing the following:

* MIT Kerberos 1.0.5, from the Athena Project at Massechusetts I nstitute of
Technology

ORBASEC SL2-SSL requires aliscense from the following:

* iSaSiLk from IAIK, the Institute for Applied Information Processing and Com-
munication, Graz, Univerity of Technology, Graz, Austria

Also, if you want to use any cryptographic algorithms owned by RSA, Inc. with the
ORBASEC SL2-SSL distribution, you need:

1. A user or development license from RSA, Inc.

2. An on-site consulting agreement with Adiron, LLC to enable use of RSA with
ORBAsec SL2.

ORBASEC SL2 is an open source distribution which requires devel oper licenses
and runtime licenses in some cases. Please contact Adiron
(sal es@di r on. con) for your ORBASEC SL2 licensing needs.

ORBASEC 9.2 17

ORBASEC SL2 Introduction

About this Document

This document is layed out in such away to give the application programmer afeel
for installing and using ORBASEC SL.2. This manual is also no replacement for a
good book on CORBA or CORBA Security. Also, this manual is no substitute for a
good book on security, authetication, encryption, or the Kerberos protocol in gen-
eral.

Unfortunately, the only book out on CORBA security at the moment isthe CORBA
Security Specification itself.[4] This specification outlines a framework and gives a
good background on how one might build a secure ORB, but it is by no means
intended to be a users guide.

The Future of ORBAsEC 9.2

ORBASEC SL2 is not afully functional Security Level 2 implementation, but itis
fully compliant. A fully functional Security Level 2 implementation is not imple-
mentable as asingle ORB library. It involves other components that provide man-
agement services, such as policy management, and access control based on those
policies. The pieces that ORBASEC SL2 does not automatically use are:

* Required Rights Object

* Access Decision Object

* Auditing Decision Object

* Domain Access Policy Object

How and when the above objects are used is not exactly specified in Security Level
2. However, that does not preclude the application developer from implementing
the interfaces and using them in their applications at appropriate times.

Using these components in an automatic fashion, i.e. unbeknownst to the applica-
tion implementation, requires the notion of Request Level Interception. ORBACUS
does not currently have support for Request Level Interception, nor has the OMG
completed a fully operational specification for Request Level or Message Level
Interceptors. However, a Request for Proposal (RFP) has been issued by the OMG
to standarize interceptors. This RFP is known as the “ RFP for Portable Intercep-
tors.”

18

ORBAsEC 9.2

Requirements for ORBASEC SL2-GSSKRB

Note — Other ORBs have support for request level interception, but provide
insufficient or no support for message level interception. ORBacus gives us a
form of message level interception based on their OCI interfaces which allow us
to place the SECIOP and SSLIOP transport protocol into the ORB. This ability
is crucial, as secure communication is handled at the transport layer.

There are other objects that ORBASEC SL2 does not use, or cannot use, because
they are specified as part of the CORBA CORE, and ORBAcCUS does not implement
them. These interfaces pertain to domain management, which is security related.

* Construction Policy Object
* Domain Manager Object

Adiron, LLC is creating several products built on top of ORBASeC SL2 that will
provide centralized policy management. This capability will include, user and priv-
ilege management and centralized description of security policy including access
control. However, this capability will invent, create, and make use of a higher para-
digm for security than just CORBA security. Please visit our web site for updates
on research and devel opments.

Requirements for ORBAseC SL.2-GSSKRB

Thefollowing external software packages must be installed in order to run CORBA
applications which use ORBASEC SL2-GSSKRB:

* Sun Java Development Kit (JDK), version 1.1.6 or later
* Object Oriented Concepts ORBAacus 3.1.2 for Java
* An Operational MIT Kerberos 5, version 1.0.5 compliant KDC

Requirements for ORBAsSEC SL2-SS

Thefollowing external software packages must be installed in order to run CORBA
applications which use ORBASEC SL2:

* Sun Microsystem’s Java Development Kit (JDK), version 1.1.6 or later
* Object Oriented Concepts ORBAcus 3.1.2 for Java

ORBASEC SL.2 19

ORBASEC SL2 Introduction

* JAIK'siSaSiLk 2.0 toolkit and cryptographic libraries

Getting Help

Thereis help in the form of email to support @di r on. com Also, we have set
up amailing list. To subscribe to the mailing list, send amessageto maj or -
domo@di r on. com(not sl 2@di r on. con) with

subscri be sl 2

in the body (e.g. not the Subj ect : field) of your message. To unsubscribe, use
unsubscri be sl 2

in the body of the message. To send a message to the list, mail to

sl 2@di ron. com(not maj or domo@di r on. com. Y ou must subscribe to
the list before you may publish to it.

20

ORBAsEC 9.2

CHAPTER 2

Getting Sarted

Getting Started

The ORBASEC SL2 distribution contains a modification of the ORBAcuUs “Hello
World" application, which is a simple distributed application based on an introduc-
tory programming example. This application is identical to the ORBAcus “Hello
World” application, except for the classes Server and Client, which have been
modified to use ORBASEC SL 2 security features. The source filesSer ver . j ava
and Cl i ent . j ava have been modified, accordingly.

In this chapter, we will walk through the provided source code for the Server and
Client classes, discussing the security features in the ORBASEC SL2 implementa-
tion. Readers should be familiar with the ORBAcus implementation as described in
the “Getting Started” chapter of the ORBAcUS user manual [6].

To run the ORBASEC SL2 application in this chapter, you should have

1. Thefiles SL2.jar and GSSKRB.jar inyour CLASSPATH aong with OB.jar;
2. A running Kerberos V5 KDC;

3. A valid user principal for the Client, such as“user @GREALM;

4. A password for the user principal, known to the KDC;

ORBASEC SL.2 21

Getting Started

5. Either i) avalid Kerberos service principal for the Server, such as
“host/ machi ne. addr ess. com@REALM, together with permission to
read a keytab file in which the service principal resides, or ii) valid user princi-
plafor the Server, together with that principal’s password. The demo supplied
with the distribution uses the latter user-principal/password to demonstrate the
use of memory keytabs in ORBASEC SL2.

Note — If you use the service-principla/keytab technique for authenticating a
Server, your Kerberos Administrator may have to create a user and service
principal for you, in addition to the keytab file which holds the service principal.
Contact your Kerberos Administrator for assistance, if necessary.

Adiron’s Test KerberosKey Distribution Center (KDC)

If you use the supplied Kerberos configuration file, or basec_kr b5. confi g, this
directs your Kerberos configuration to the KDC on line at Adiron. Using given
principals, passwords, and keytab files, the demonstration programs should run out-
of-box. ThisKDC isfor your use in evaluation of ORBASEC SL2-GSSKRB. It will
remain on-line; however, Adiron can make no guaranteesthat it will remain on-line
indefinitely, that it will remain in the same location, or that the principal’s stored in
it will last forever. Adiron will make notices on its SL2 mailing list
(sl2@adiron.com) if the configuration of the KDC should change.

Overview

Implementing an ORBASEC SL2 Server and Client is done in Javain much the
same way as in ORBAcCUS, except:

¢ ORBASEC SL2 must beinitialized in both the Client and Server; and

* TheClient and Server must authenticate themselves to the Kerberos V5 KDC
through the Principal Authenticator, an object implemented by ORBA SeC
SL2.

Once the Server and Client have been authenticated, the resulting Credentials
object may be modified to reflect security features supported and required by the
underlying security mechanisms. In addition, security policies may be established
on the Client to reflect application-specific policies that will be enforced by the
Security Level 2 implementation.

22

ORBAsEC 9.2

The IDL code

This chapter provides an example demonstrating ORBASEC SL 2 initialization and
authentication through the Principal Authenticator, together with a tutorial
explaining how to modify credentials and create application-specific policies.

The IDL code

The IDL code is the same as that in the ORBAcuUS example.

/1 1DL
interface Hello

{
}

void hello();

I mplementing the Example in Java

Just as in the ORBAcUS example, we must translate the IDL code to Java using the
ORBAcus IDL-to-Java compiler:

jidl --package hello Hello.idl

See the ORBAcus documentation for details about thej i dl command.

Implementing the Server

The Java implementation of the Hello servant is not exactly the same as that in the
ORBAcus example. We have modified it to print out the credentials of the client
that is making the invocation on the hello operation.

/'l Java

package hel |l o;

i mport org.ong. CORBA. *;

i mport org.ong. Security.*;

i mport org.ong. SecuritylLevel 2.*;

public class Hello_inpl extends _Hell ol npl Base
{

ORBASEC SL.2 23

Getting Started

public ORB orb;
public void hello()
{

try {
Current current = CurrentHel per. narrow

orb.resolve_initial _references(
“SecurityCurrent”));

Recei vedCredentials ¢ = current.received_credential s();
or basec. corba. CredUtil . dunpCredenti al s(System out, c)

} catch (Exception e) {

e.printStackTrace(System out);
}
}
}

The utility class orbasec.corba.CredUtil usesthe standard CORBA Security Level
2 interfaces to display the Credentials object in a human readable form.

Asin the ORBAcuUs implementation, we write a class containing a main method
which starts up the Hello servant. Unlike ordinary CORBA applications, however,
we must initialize ORBAsec SL2 viathe init_with_boa static initializer on the
orbasec.SL 2 class. Calling this method automatically initializes the ORB and
BOA using the commnad-line options in the args parameters, together with any
user-supplies java.util.Properties. Once SL2 isinitialized, we may retrieve the
ORB and BOA viathe orb and boa accessors, respectively.

/'l Java
i mport org.ong. CORBA. *;
import java.util.Properties;

public void main(String[] args)
{
// ORB, BOA, and SL2 initialization
java.util.Properties properties =
new java. util.Properties();
orbasec. SL2.init _with_boa(args, properties);
ORB orb orbasec. SL2. orb();
BOA boa orbasec. SL2. boa();

24

ORBAsEC 9.2

Implementing the Example in Java

Once ORBASEC SL2 isinitialized, we may then ask the ORB for areference to the
SecurityL evel2::Current object, from which we will obtain most of the security-
related functionality for the Server:

/1 Get SecuritylLevel 2::Current from ORB
org. ong. CORBA. Cbj ect obj =

orb.resolve_initial _references(“SecurityCurrent”);
org.ong. SecuritylLevel 2. Current current =

org.ong. SecuritylLevel 2. Current Hel per. narrow(obj);

Note — The SecurityL evel2::Current object is only available on the ORB after
ORBASEC SL2 has been initialized.

With areference to the SecurityL evel2:: Current, we can obtain the Principal Au-
thenticator, the SecurityL evel2 object we use to initialize the Server’s creden-
tials. We initialize the credentials via the Principal Authenticator’ s authenticate
method:

/1 Authenticate using Principal Aut henti cator
org. ong. SecuritylLevel 2. Princi pal Aut henti cator pa;
pa = current.principal _authenticator();

int met hod = O;
String nechani sm = “Kerberos”;
byt e security_nanme[] =
or basec. cor ba. Opaque. encodeKer ber osName(
“homer GWYREALM COM
) .get Encodi ng() ;
byt e auth_data[] =
(“confi g=FI LE: or basec_krb5. config\n” +
“del egati on=fal se\n” +
“cache_nane=VEMORY: O\ n” +
“enabl e_server=true\n” +
“passwor d=\"nypassword\ "\ n” +
“keyt ab=MEMORY: O\ n”
). get Bytes();
org.ong. Security. SecAttribute privileges[] =
new org.ong. Security. SecAttribute[0];
org. ong. SecuritylLevel 2. Credenti al sHol der creds_hol der =
new org.ong. SecuritylLevel 2. Credenti al sHol der () ;
org. ong. Security. OpaqueHol der
continuation_data =

ORBASEC 9.2 25

Getting Started

new or g. ong. Security. OpaqueHol der (),
auth_specific_data =
new org. ong. Security. OpaqueHol der ();

pa. aut henti cat e(
met hod,
mechani sm
security_nane,
aut h_dat a,
privil eges,
creds_hol der,
continuation_dat a,
aut h_specific_data

)

The method parameter specifies the authentication method with which to authenti-
cate the principal. The OMG has not specified values for this parameter, so we sup-
ply O (the default) as a value.

The mechanism parameter specifies the mechanism with which to authenticate the
principal (in this case, we use the Ker ber os mechanism).

The security_name parameter indicates the principal name to be recognized by the
specified security mechanism. In this case, we provide avalid Kerberos 5 principal
name (“ homer @AWREALM COM'). For ORBASEC SL 2, the name must be
encoded into a proper Opague value that ORBASEC SL2 will understand. A special
utility class for these encodings is or basec.corba.Opaque. Please see the chapter
on “ Security Opaque Encodings’ on page 185 for details.

Note — You may need to ask your Kerberos Administrator to create a valid
principal for you.

The auth_data parameter in the authenticate method is a string converted to a
byte array containing properties that are used for the GSS-Kerberos Security Mech-
anism. It is essential that each property be separated with the newline (* \ n’)
delimiter.

The above properties specify that:

* orbasec_krb5. conf isthe configuration file that states where the KDC
resides;
* Thisprincipal should have no capacity for delegation;

26

ORBAsEC 9.2

Implementing the Example in Java

* Theprincipal’s credentials should be stored in a memory credentials cache indi-
cated by MEMORY: 0;

* That the authenticated principal is aserver.
* Theprincipal is authenticated with the password “ mypasswor d”.
* The principal’s key is stored in a memory type keytab, MEMORY: 0.

Note — All of the definable GSS-Kerberos properties and their meanings are
given in [“Authentication Data” on page 82], and the exact values of these
properties will vary according to your Kerberos 5 configuration.

The ORBASEC SL2 implementation of GSS-Kerberos imposes the restriction that
all server applications must have the enable_server property in the auth_data
parameter set to true. Furthermore, if the auth_data parameter contains a keytab
property, then the principal’ s key is assumed to be stored in thisfile, and no pass-
word property is needed. If the keytab specifies afile (i.e. prefixed by FI LE:),
then the named file, which contains the designated principal’s key, must be read-
able by the owner of the process running the Server. The default keytab file (usu-
ally/ et ¢/ kr b5. keyt ab) isread-only by the super-user, since it holds the keys
to the principal names of standard kerberized services, such as FTP, TELNET, and
LOGIN. If you need the keysin afile, you should ask your Kerberos administrator
to create aspecial keytab file containing the principals you may use for the example
Server. A keytab file is needed if the principal has a“randomized” key, which
means that it does not have a password. If the principal has a password, then a
memory keytab can be specified which does not expose the principal’s encryption
key to afile system.

The privileges parameter specifies privileges that must be authenticated through
the security mechanism. The GSS-Kerberos security mechanism provides no sup-
port for such privileges, so we pass an empty Security::SecAttributelist.

Once the server is authenticated, the Credentials object isreturned in the Creden-
tialsHolder structure; they are also stored on the SecuritylL evel2::Current
object’s own_credentialslist attributefor easy access from other parts of the pro-
gram.

The continuation_data and auth_specific_data output parameters are used with
security mechanisms that support multi-step authentication protocols. The GSS-
Kerberos security mechanism only supports single-step authentication, so the out-
put parameter values are ignored.

ORBASEC SL.2 27

Getting Started

The remainder of the program isthe same asit isin ORBAcus. An instance of the
Hello_impl classis created, the IOR for that servant is written to afile, and the
BOA starts servicing requests from clients viatheimpl_is_ready method. (See the
ORBAcus documentation for sample code).

Note — The Server must authenticate a principal and obtain a credentials object
before the IOR is advertised to clients. This procedure is necessary because the
IOR contains mechanism-specific data that a client will need to use in order to
communicate securely with the server. If the Server has not authenticated a
principal, no security information will get advertised in the Hello object’s IOR,
and an exception will be raised upon making a request.

Implementing the Client

The Client implementation is much the same as it isin ORBA cuUs, except that, like
the Server implementation, the Client must be authenticated through the Principa-
[Authenticator’ s authenticate method. As before, areference to the Principal Au-
thenticator is obtained through the SecurityL evel2::Current

/'l Java
i mport org.ong. CORBA. *;
import java.util.Properties;

public void main(String[] args)

{
// ORB, BOA, and SL2 initialization
Properties properties = new Properties();
orbasec.SL2.init(args, new Properties());
ORB orb = orbasec. SL2. orb();

/1 Get SecuritylLevel 2::Current from ORB
org. ong. CORBA. Obj ect obj =

orb.resolve_initial _references(“SecurityCurrent”);
org.ong. SecuritylLevel 2. Current current =

org.ong. SecuritylLevel 2. Current Hel per. narrow(obj);

Note — In general, there need not be a BOA to accept requests for client
applications, since client applications are not typically CORBA objects.

Client authentication is similar to that of the Server:

28

ORBAsEC 9.2

Implementing the Example in Java

current =// get reference to Current

/1 Authenticate using Principal Aut henti cator
org. ong. SecuritylLevel 2. Princi pal Aut henti cator pa;
pa = current.principal _authenticator();

int met hod = 0;
String mechani sm = “Kerberos”;
byt e security_name[] =

or basec. cor ba. Opaque. encodeKer ber osName(
“bart GWREALM COM
) .get Encodi ng() ;
byt e auth_data[] =
(“config=Fl LE: orbasec_krb5. config\n” +
“del egati on=fal se\n" +
“cache_nameaVEMORY: O\n” +
“passwor d=\"nypasswor d\ "\ n”
). getBytes();
org.ong. Security. SecAttribute privileges[] =
new org.ong. Security. SecAttribute[0];
org.ong. SecuritylLevel 2. Credenti al sHol der creds_hol der =
new org.ong. SecuritylLevel 2. Credenti al sHol der () ;
org. ong. Security. OpaqueHol der
continuation _data =
new or g. ong. Security. OpaqueHol der (),
aut h_specific_data =
new or g. ong. Security. OpaqueHol der () ;

pa. aut henti cat e(
met hod,
mechani sm
security_nane,
aut h_dat a,
privil eges,
creds_hol der,
continuation_dat a,
aut h_specific_data

)

The method parameter specifies the authentication method with which to authenti-
cate the principal. The OMG has not specified values for this parameter, so we sup-
ply O (the default) as avalue.

ORBASEC SL.2 29

Getting Started

The mechanism parameter specifies the mechanism with which to authenticate the
principal (in this case, we use the Kerberos mechanism).

The security_name parameter indicates the principal name to be recognized by the
specified security mechanism. In this case, we provide avalid Kerberos 5 principal
name (“ bar t @GWREALM COM'). Like the server, this must be in the special
Opague encoding of a Kerberos Name. Please see chapter on “ Opaque Encodings”
on page 185 for further details.

Note — You may need to ask your Kerberos Administrator to create a valid
principal for you. You will need a valid password for this principal, as well.

The auth_data parameter in the authenticate method is a byte array containing
properties that are used in the GSS-Kerberos Security Mechanism. Please note that
it is essential that each property be separated with the newline (* \ n’) delimiter.

The above properties specify that:

* orbasec_krb5. conf isthe configuration file that states where the KDC
resides;

* Thisprincipa should have no capacity for delegation;

* Theprincipal’s credentials should be stored in a memory credentials cache indi-
cated by MEMORY: 0;

* Theprincipal is authenticated with the password “ mypasswor d” .

Note — All of the definable GSS-Kerberos properties and their meanings are
given in [“Authentication Data” on page 82], and the exact values of these
properties will vary according to your Kerberos 5 configuration.

The ORBASEC SL 2 implementation of GSS-Kerberos imposes the convention that
if the auth_data parameter does not contain a keytab property (or if it is empty),
then the principal’ s credentials must be obtained in one of two ways: if the
auth_data parameter contains a password property, then the principal should be
authenticated using the designated password; if, on the other hand, the auth_data
parameter does not contain a password property (or if it is empty), then the Ker-
beros client should already have been authenticated externally (e.g., viathe Ker-
beros kinit program). In this case, adesignated cache file should already contain the
principal’s Kerberos credentials. To designate a cache file, the cache_name prop-
erty should have the form “FI LE: <filename>". If the cache_name property is
empty, then the default cache is used. This cache will be afile named by “/ t np/

30

ORBAsEC 9.2

Compiling the Demo

kr b5cc_<uid>" on Unix systems where uid is the user number of the user that is
logged on. See the ORBASEC property “ orbasec.kerberos_session” on page 51 for
how to automatically initialize Kerberos session credentials during SL2 initializa-
tion.

If you attempt to use the default credentials cache file without a password, the Ker-
beros name supplied in the security_name parameter must match those in the cre-
dentials cache file or a GSS Exception will be thrown. Alternatively, you may set
the security_name parameter tonul | or new byt e[0] to automatically use the
name in the credentials cachefile.

The privileges parameter specifies privileges that must be authenticated through
the security mechanism. The GSS-Kerberos security mechanism provides no sup-
port for such privileges, so we pass an empty Security::SecAttributelist.

Once the server principa is authenticated, a Credentials object is returned in the
CredentialsHolder structure; the Credentials object is also stored on the
SecurityL evel2:: Current::own_credentials attribute for easy access from other
parts of the program.

The continuation_data and auth_specific_data output parameters are used with
security mechanisms that support multi-step authentication protocols. The GSS-
Kerberos security mechanism only supports single-step authentication, so the out-
put parameter values are ignored.

The remainder of the program isthe same asit isin ORBAcus. A reference to the
Hello object is obtained from the published IOR, and the program enters a loop
calling the hello method of the referenced object. (See the ORBAcuUS documenta-
tion for sample code).

The Client should be authenticated via the Principal Authenticator after the ORB
and ORBASEC SL2 have been initialized and before making any requests on the
Hello abject.

Compiling the Demo

The procedure for compiling the demo is fairly straight forward, should you be
familiar with make files. Fromwithin thes| 2/ denmo/ kr b- hel | odirectory, run
the command:

ORBASEC 9.2 31

Getting Started

make

Y ou need to make sure that you have the ORBA cus jidl command in your execu-
tion path, and you must have OB.jar, SL2.jar, GSSKRB.jar in your Java CLASS-
PATH.

Y ou should see the following outpult:

nmkdir cl asses

nkdi r generated

jidl --tie --package hello --output-dir generated Hello.idl
CLASSPATH=. : ./ cl asses: $CLASSPATH \

javac -deprecation -d classes \

generated/ hel l o/ *.j ava

Running the Demo

Running the demo involves starting the Server and then starting the Client. The
Server must be started first, because it writes out the IOR of the Hello object to a
file called Hello.ref.

Running the Server

To run the Server, type:

java hell o. Server

Y ou should see the following output:

Omn Credential s:
Credenti al s:
credential _type
mechani sm
accepting_options_supported =
[NoProtection,Integrity, Confidentiality, DetectReplay, EstablishTrustlnTarget, Est
abl i shTrustlnC ient, NoDel egati on, Si npl eDel egat i on]

accepting_options_required = [EstablishTrustlnCient]

i nvocation_opti ons_supported =

[NoProtection,Integrity, Confidentiality, DetectRepl ay, EstablishTrustlnTarget, Est
abl i shTrustInCient, NoDel gati on]

invocation_options_required = [EstablishTrustlnCient]

2 Security Attributes: (definer,fanmly,type,def_auth, val ue)
SecAttribute(41244,1,2," Adiron”, "30514")
SecAttribute(41244,1,1,"Adiron”,"128.230.99. 3")
SecAttribute(0,0,0,"”,"Kerberos_MT")

SecOmCredenti al s
Kerberos_M T

32

ORBAsEC 9.2

Running the Demo

SecAttribute(0, 1, 2, ”krbt gt/ MYREALM COVM@IWYREALM COM', ” bar t @AYREALM COM')

Hell o Server is Ready.

The Server authenticates its principal and then displays its credentials. Y ou may
want observe the accepting_options_supported and accepting_options required
attributes as these will change if you modify the demo according to the following
sections.

The security attributes listed at the bottom of the listing contain the attributes of the
Credentials that have been dumped to the screen. Attributes are typed by 3 num-
bers, the Family Definer, and Family, and then the type. The last one listed is the
Accessld attribute, which belongs to the CORBA (0) Family (1) and is Type (2).

Adiron has its own families of security attributes, Family Definer of (41244, i.e.
0xA11C).

Family O Type 1 is the security mechanism.
Family 1 pertains to network addresses. Family 1 Type 1 names the local |P host

address. Family 1 Type 2 names the local |P port number. Family 1 Type 3 names
the remote |P host address, and Family 1 Type 4 names the remote | P port number.

Note — These Adiron IP attributes will have different values than printed here
when you run the programs.

Running the Client
To run the Client, type:

java hello.Cient

Y ou should see the following output:

Omn Credential s:
Credenti al s:
credential _type
mechani sm
accepting_options_supported [1
accepting_options_required [1
i nvocati on_options_supported
[NoProtection,Integrity, Confidentiality, DetectReplay, EstablishTrustlnTarget, Est
abl i shTrustInC ient, NoDel gati on]
invocation_options_required = [EstablishTrustlnCient]
2 Security Attributes: (definer,fanmly,type,def_auth, val ue)
SecAttribute(41244,1,2," Adiron”, "30515")

SecOmCredenti al s
Kerberos_M T

ORBASEC SL.2 33

Getting Started

SecAttribute(41244,1,1,"Adiron”,”128.230.99.3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, ”krbt gt/ MYREALM COV@WREALM COM', " mar ge @WWREALM COM')

Cetting Hell o Reference.

Hell o’ s Credential s:
Credenti al s:
credential _type
mechani sm
accepting_options_supported
accepting_options_required
i nvocati on_options_supported
i nvocation_options_required
invocation_options_used =
[NoProtection,Integrity, Confidentiality, DetectRepl ay, EstablishTrustlnTarget, Est
abl i shTrustInC ient, NoDel gati on]
del egati on_node SecDel MbdeNoDel egat i on
del egation_state = Seclnitiator
2 Security Attributes: (definer,fanmly,type,def_auth, val ue)
SecAttribute(41244,1,4," Adiron”, "30514")
SecAttribute(41244,1,3," Adiron”,"128.230.99. 3")
SecAttribute(41244,1,2," Adiron”, "30515")
SecAttribute(41244,1,1,"Adiron”,"128.230.99. 3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, "krbt gt/ MFREALM COM@WREALM COM', "bart @WREALM COM')
Enter ‘h’ for hello or ‘x’ for exit:
>

SecOmCredenti al s
Kerberos_M T
[]

]
]

Y ou will noticein contrast to the Server principal’s credentials that since the Cli-
ent’s principal was authenticated without naming a keytab. It isapure client. The
accepting_options_supported field is empty, as these credentials cannot be used
to accept secure associations.

To continue with the demo, type ‘h’ as requested and you should see the following
output on the Server’s side:

Credenti al s:
credential _type
mechani sm
accepting_options_supported
accepting_options_required
i nvocati on_options_supported
i nvocation_options_required
associ ati on_options_used =
[Integrity, Confidentiality, DetectRepl ay, EstablishTrustInC ient, NoDel gati on]
del egati on_node = SecDel ModeNoDel egati on
del egation_state = Seclnitiator
2 Security Attributes: (definer,fanmly,type,def_auth, val ue)
SecAttribute(41244,1,4," Adiron”, "30515")
SecAttribute(41244,1,3," Adiron”,"128.230.99. 3")
SecAttribute(41244,1,2," Adiron”, "30514")
SecAttribute(41244,1,1,"Adiron”,"128.230.99.3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, "krbt gt/ MFREALM COM@WREALM COM', " mar ge@WREALM COM')

SecRecei vedCredential s
Kerberos_M T

[]

[]

[]
[l

ORBAsEC 9.2

Modifying the Server

Y ou will notice that these are “received” credentials printed out by the Hello object
implementation, Hello_impl. Since this invocation was made without delegation,
all accepting and invocation options are empty, as these credentials may not be
used to accept secure associations or to initiate them (used to make invocations).
Since these are ReceivedCredentials, there are extra attributes, such as
association_options_used, delegation_mode, delegation_state. The
delegation_mode indicates the del egation ability of these credentials. Here, itisno
delegation. The delegation_state attribute indicates that the client is the principal
that made the invocation. The association_options_used are the association
options that were used in the negotiated secure association with the client. Y ou will
notice that I ntegrity and Confidentiality were both used, and EstablishTrustlIn-
Client. However, you will notice that EstablishTrustInTarget is absent, indicat-
ing that the Server did not authenticate itself to the Client, i.e. there was no mutual
authentication. This absence of mutual authentication is the result of the Server
and/or Client not requiring trust in the target to be established.

Modifying the Server

The above example demonstrates minimal and default capabilities of the ORBASEC
SL 2-GSSKRB implementation of Security Level 2. However, ORBASEC SL2 pro-
vides functionality through the Security Level 2 interfaces for using most of the
security features provided. In this section, we provide a few modifications to the
“Hello World” application to illustrate this functionality.

Server Accepting Options

After the Server is authenticated through the Principal Authenticator, the Cre-
dentials for the Hello servant includes information about the servant’s “ accepting
options”, security features it will support or require when a Client makes an invo-
cation. These features are published in the object’s |OR so that clients making
requests can communicate securely with servants without having to go through a

complicated and costly protocol to establish secure communication.

Each Credentials object represents a security mechanism component that is adver-
tised in a object’sIOR.

The accepting options are defined in the CORBA Security Specification to be:
NoProtection, Integrity, Confidentiality, DetectReplay, DetectMisordering, Estab-

ORBASEC SL.2 35

Getting Started

lishTrustinTarget, and EstablishTrustInClient. Each option is specified to be sup-
ported or required, with the restriction that no feature can be required if it is not
supported. Table 1 on page 36 shows the default values for these options in the
ORBASEC SL2 implementation of GSS-Kerberos.

Feature Supported Required
NoProtection yes no
Integrity yes no
Confidentiality yes no
DetectReplay yes no
DetectMisordering no no
EstablishTrustinTarget yes no
EstablishTrustInClient yes yes
NoDelegation yes no
SmpleDelegation yes no
CompositeDelegation no no

TABLE 1. GSS-K erberos Default Server Accepting Options

Accepting options are stored in the Server’s own Credentials object, which is
obtained after authentication using the Principal Authenticator. We can change
the accepting options by using the accepting_options required and
accepting_options_supported attribute accessor methods of the Credentials
object to manipulate the options that are required and the options that are sup-
ported, respectively.

In the example below we require that a client must use mutual authentication by
turning on the EstablishTrustInTarget bit. (We say “ mutual authentication,”
because EstablishTrustInClient isawaysrequired and is already set.) Setting this
option has the effect of telling the client not to send any messages to the target until
it has verified the server’s identity.

Accepting Options are represented by constants of the Security:: AssociationOp-
tionstype, which are bit positions. Therefore, changing them requires the use of
bitwise operators, “&”,“[",“~".

/1 Authenticate using Principal Aut henti cator

36

ORBAsEC 9.2

Modifying the Server

/1 Modify Accepting Options

org.ong. SecuritylLevel 2. Credential s[] credlist =
current.own_credential s()

/'l Get our Kerberos credentials fromthe own credentials |ist

org.ong. SecuritylLevel 2. Credentials creds =credlist[0];

creds. accepting_options_required((short)

(creds. accepting_options_required()
org.ong. Security. EstablishTrustlnTarget. val ue))

We can turn support of NoProtection off as follows:

creds. accepti ng_opti ons_supported((short)
(creds. accepting_options_supported() &
~org. ong. Security. NoProtection.val ue));

Any client that gets the published IOR for this Server will know that the Server
reguires that the client establish trust in the server in order to make a connection,
and furthermore that the Server does not support unprotected messages.

The Server accepting options should be modified before publishing the IOR to pro-
spective clients (i.e. by using the obj ect _t o_st ri ngmethod or returning an
object reference) since the accepting options information is recorded in the IOR.
Clients use the IOR to make decisions about the security features to use based on
the Server’s accepting options, together with the client’ s invocation policies (see
below).

If you recompile and rerun the demo, then you will notice two things. First the
“own” credentials will print out as follows:

Omn Credential s:
Credenti al s:

credential _type

mechani sm

accepting_options_supported

[NoProtection,Integrity, Confidentiality, DetectRepl ay, EstablishTrustlnTarget, Est
abl i shTrustlnC ient, NoDel egati on, Si npl eDel egat i on]
accepting_options_required =
[Establ i shTrustlnTarget, Establ i shTrustlnCient]

i nvocation_options_supported =
[NoProtection,Integrity, Confidentiality, DetectRepl ay, EstablishTrustlnTarget, Est
abl i shTrustInC ient, NoDel gati on]

invocation_options_required = [EstablishTrustlnCient]

2 Security Attributes: (definer,fanly,type,def_auth, val ue)
SecAttribute(41244,1,2," Adiron”, "30514")
SecAttribute(41244,1,1,"Adiron”,"128.230.99.3")
SecAttribute(0,0,0,"”,"Kerberos_MT")

SecAttribute(0, 1,2, "krbtgt/ MFREALM COM@NREALM COM', " bar t @GAYREALM COM')

SecOmCredenti al s
Kerberos_MT

Hell o Server is Ready.

ORBASEC 9.2 37

Getting Started

Y ou will notice that EstablishTrustinTarget is now in the
accepting_options _required attribute. After typing ‘h’ on the Client the following
will be printed out:

Credenti al s:
credential _type
mechani sm
accepting_options_supported
accepting_options_required
i nvocati on_options_supported
i nvocation_options_required
associ ati on_options_used
[Integrity, Confidentiality, DetectRepl ay, EstablishTrustlnTargett, EstablishTrustl
nCl i ent, NoDel gati on]
del egati on_node = SecDel ModeNoDel egati on
del egation_state = Seclnitiator
2 Security Attributes: (definer,fanmly,type,def_auth, val ue)
SecAttribute(41244,1,4," Adiron”, "30514")
SecAttribute(41244,1,3," Adiron”,"128.230.99.3")
SecAttribute(41244,1,2," Adiron”, "30515")
SecAttribute(41244,1,1,"Adiron”,"128.230.99.3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, "krbt gt/ MFREALM COM@WREALM COM', " mar ge@WREALM COM')

SecRecei vedCredential s
Kerberos_M T

[]

[]

[]
[1

Y ou will notice that mutual authentication was established with the client, indicated
by the EstablishTrustInTarget in the association_options_used attribute.

Modifying the Client

The Client can be modified as well to use policies to direct the characteristics of
invocations.

Invocation Policies

From the security point of view, when a client makes an invocation on a method of
aremote object, several decisions need to be made about the communication that is
to take place between client and server. These decisions include, but by no means
are limited to:

* What credentials will be used by the client to make a secure association (i.e.,
whether to use the client's "own" credentials or credentials it might have
obtained as aresult of an invocation on it, its "received” credentials);

* What security mechanisms (e.g., GSS-Kerberos, SSL, etc.) will be used to form
a secure association;

38

ORBAsEC 9.2

Modifying the Client

* Whether messages sent between the client and server will be encrypted, have a
facility for integrity, neither, or both;

¢ Whether the client will authenticate itself to the server, whether the server will
authenticate itself to the client, neither, or both; and

* Whether the client may del egate the server to make remote invocations on other
objects on the client's behalf.

The server has some say in these decisions; it publishes (through its IOR) what
security features it requires or supports, and we have seen above how to modify
these options. In addition, however, the Client has some say in these decisions
through the use of CORBA.:: Policy objects. These "invocation policies" specify
how the client should make attempt to a secure association with a server, in the
absence of knowing anything about what the server supports or requires. Given a
collection of invocation policies, together with information 1) about what a server
supports and requires (through the publicized IOR), and 2) and what the client's
credentials are, ORBASEC SL2 can then make decsions about whether a secure
association is possible, and if so, what security features will be used to make the
association.

The Security Level 2 interfaces define five kinds of CORBA.:: Policy objects that
clients can adopt. They are Invocation Credentials Policy, Mechanism Policy,
QOP Policy, Delegation Directive Policy, and Establish Trust Policy. The precise
definitions of these CORBA:: Policy objects is beyond the scope of this tutorial
(see “Palicies’ on page 125 for a more compl ete description), but a few remarks
can be made at this preliminary stage. First, ORBASEC SL 2 includes default
behaviors for these policies, so that if none are explicity set in the client, predictable
behavior can be expected. These defaults are summarized in Table “Initial Default
Policies on the Current” on page 40.

Another important point is that in the CORBA object model, there are effectively
two ways to set the invocation policies from aclient to aserver. Thefirst isto use
the orbasec.SecL ev2::Current::set_overrides method, with alist of Policy
objects as the argument. This has the effect of setting the "default”" or "environ-
ment" policies, so that any request inititiated after that point will use those policies
(or the defaults, if a policy of one of the above 5 types was not specified).

Since clients may have many references to remove objects, however, this method
for setting policies can be cumbersome. So in addition CORBA supplies the
_set_policy_overrides psuedo operation, which is a operation supplied on a
CORBA::Object. Theintention hereisto designate specific invocation policies

ORBASEC SL.2 39

Getting Started

on an object reference, so that the defaults do not have to be changed every time a
new reference is obtained..

TABLE 2. Initial Default Policieson the Current

Policy Default

Invocation Credentials Use the Received and Own Credential s that sup-
port invocation.

Mechanism Use mechanisms of the Credentials in the Invo-
cation Credentials policy.

QOP QOP required by thefirst credentials in the Invo-
cation Credentials Policy

Delegation Directive No Delegation

Establish Trust Trust in Client, if required or supported by the
first credentials in the Invocation Credentials
Policy.

Trust in Target, if required or supported by the
first credentials in the Invocation Credentials
Policy.

For more information about policies in general, see the CORBA Specification [2].
For more details on these specific policies see Chapter “ Policies’ on page 125.

Changing Policieson Current

Both default and object specific policies are configurablein ORBASEC SL2. We
modify the default policies on the orbasec.SecL ev2.Current by creating an array
of Poalicy objects using orbasec.SL 2 factory methods and creating the new poli-
cies:

/1 Modify I nvocation Policies
org. ong. CORBA. Policy[] policies =
new or g. ong. CORBA. Pol i cy[2] ;
current = // get the orbasec. SecLev2. Current object
policies[0] = orbasec.SL2.create_qop_policy(
org.ong. Security. QOP. SecQOPntegrity);

/1 Set overrides on Current PolicyManage
current.set_overrides(policies,
or g. ong. CORBA. ADD_OVERRI DE. val ue)

40

ORBAsEC 9.2

Modifying the Client

Note — The orbasec.SecL eve2.Current object is an ORBAsec SL2 extension of
org.omg.SecuritylL evel2.Current that has support for setting policies on the
current thread. Standardization of this feature is pending at the OMG.

These policies specify to use “integrity” only (not confidentiality and integrity
together). After placement on the Current, they will now be used by any remote
object reference which does not specifically override these policies (see below).

Recompile and run the Client. After hitting ‘h’ you will see the following output
from the Server:

Credenti al s:
credential _type
mechani sm
accepting_options_supported
accepting_options_required
i nvocati on_options_supported [1
i nvocation_options_required [1
associ ati on_options_used
[Integrity, Detect Repl ay, Establ i shTrustlnTargett, EstablishTrustlnC ient, NoDel gat
i on]
del egati on_node = SecDel ModeNoDel egati on
del egation_state = Seclnitiator
2 Security Attributes: (definer,fanly,type,def_auth, val ue)
SecAttribute(41244,1,4," Adiron”, "30515")
SecAttribute(41244,1,3,” Adiron”,"128.230.99. 3")
SecAttribute(41244,1,2," Adiron”, "30514")
SecAttribute(41244,1,1,"Adiron”,"128.230.99. 3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, "krbtgt/ MPREALM COVM@WREALM COM',
"hel | o_deno_cl i ent @GWREALM COM')

SecRecei vedCredential s
Kerberos_M T

[]

[]

Y ou will notice that Confidentiality is not in the association_options_used, but
Integrity is.

Policies should be chosen that are consistent with the security features advertised in
atarget objects' s IOR. One cannot, for example, use a policy which states to use no
protection if it is not supported by the Server. By the same token, policies should
be specified if they are advertised to be required in the IOR; if the Server requires
trust in a client, for example, the policy should reflect this requirement. Otherwise,
aCORBA::NO_RESOURCES exception may be raised with the reason of “No
matching credentials available”.

Since our new Server has shut off support for NoProtection, change the Sec-
QOPIntegrity policy to one of SecQOPNoOProtection and recompile and rerun the
client. Y ou will get the following output from the Client.

ORBASEC 9.2 41

Getting Started

Getting Hell o Reference
No Matching credentials avail able
Pol i cy mechani sms: Kerberos_MT
I OR mechani sns: Ker ber os
Credential : Kerberos_M T[<sone address>
Target does not support selected options 0x41 target
supports Oxlee
<stack trace>

Y ou will not even get to the Client’ s prompt because in creating the hello reference,
avalid security context had to have the ability to be created. In this case, due to the
lack of commonality between the supported features of the target, the client side

policies, and the client side credentials, no secure association could be established.

Change the QOP Policy set on Current back to one of SecQOPIntegrity and pro-
ceed to the next section.

Changing Policieson Object References

The second way to override policiesis to associate a set of policies with a specific
object reference. Thisis done by creating an array of Policy objects and registering
them with the object using the _set_policy_overrides operation on the object refer-
ence:

hello = // Obtain Object reference sonehow. ..
policies = new org. ong. CORBA. Policy[1];

/1 QOP Policy: use Integ and Conf!
policies[0] =
or basec. SL2.creat e_qop_policy(
org.ong. Security. QOP. SecQOR ntegrityAndConfidentiality);

/1 Set the policy on the hello_2 Object reference
hel l o_2 = Hel | oHel per. narr ow(
hell 0. _set_policy_overrides(
pol i ci es,
or g. ong. CORBA. ADD_OVERRI DE. val ue));

The above code turns on integrity and confidentiality when an invocation is made
through the new hello_2 reference.

42

ORBAsEC 9.2

Modifying the Client

The above overrides do not effect policies associated with the reference on which
_set_policy_overrideswas called (viz., hello); invocations through the hello refer-
ence, for example, will still use the default QOPPalicy on Current, i.e. integrity
and confidentiality. Our demonstration program is set up to make two invocations
when the ‘h’ is hit, one with the hello object reference and the next one is with the
hello_2 object reference. The output from the Server is as follows:

Credenti al s:
credential _type
mechani sm
accepting_options_supported
accepting_options_required
i nvocati on_options_supported [1
i nvocation_options_required [1
associ ation_options_used
[Integrity, Detect Repl ay, ,Establ i shTr ustInTargett, EstablishTrustInC ient, NoDel gat
i on]
del egati on_node = SecDel ModeNoDel egati on
del egation_state = Seclnitiator
2 Security Attributes: (definer,fanly,type,def_auth, val ue)
SecAttribute(41244,1,4," Adiron”, "30515")
SecAttribute(41244,1,3," Adiron”, "128.230.99. 3")
SecAttribute(41244,1,2," Adiron”, "30514")
SecAttribute(41244,1,1,"Adiron”, "128.230.99. 3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, "krbtgt/ MFREALM COM@WREALM COM', " mar ge@WREALM COM')

SecRecei vedCredential s
Kerberos_M T

[]

[]

Credenti al s:
credential _type
mechani sm
accepting_options_supported
accepting_options_required
i nvocati on_options_supported
i nvocation_options_required
associ ation_options_used
[Integrity, Confidentiali ty Det ect Repl ay, Est abl i shTrust | nTargett, Establ i shTrust|
nCl i ent, NoDel gati on]
del egati on_node SecDel MbdeNoDel egat i on
del egation_state Seclnitiator
2 Security Attributes: (definer,fanly,type,def_auth, val ue)
SecAttribute(41244,1,4," Adiron”, "30515")
SecAttribute(41244,1,3,” Adiron”, "128.230.99. 3")
SecAttribute(41244,1,2," Adiron”, "30514")
SecAttribute(41244,1,1,"Adiron”,"128.230.99. 3")
SecAttribute(0,0,0,"”,"Kerberos_MT")
SecAttribute(0, 1,2, "krbt gt/ MFREALM COM@WREALM COM', " mar ge@WREALM COM')

SecRecei vedCredential s
Kerberos_MT

[]

[]

[]
[1

Y ou will notice the difference in the second Credentials object that is printed out.
Confidentiality is on, indicating that successful encrypted communication of the
second request was in effect.

ORBASEC SL.2 43

Getting Started

Whereto Go From Here

The remaining chapters provide a thorough description of the application program-
mer’s interface to ORBASEC SL2. Y ou should have a basic understanding of
CORBA Security as detailed in [4] before proceeding. We also encourage you to
work with the ORBASEC SL 2 implementation and experiment with various accept-
ing option and invocation policy combinations. Doing so will provide a hands-on
familiarity with a small part of CORBA Security, particularly if you have the
CORBA Security Specification within arm’s reach.

There are number of source code demonstration tests in the form of directories
under the sl 2/ deno directory. These tests exercise both the ORBASEC SL2-
GSSKRB and ORBASEC SL2-SSL distributions, and can be used by you to experi-
ment with CORBA Security Level 2 functionality.

ORBAsEC 9.2

CHAPTER 3

9 2 Initialization

Initializing 9.2

The orbasec.SL 2 class provides a collection of static initialization methods for ini-
tializing a secure ORB. Each of these methods initializes the ORB automatically,
so you should not initialize the ORB or BOA before calling any of these methods.
The following sections describe the conditions under which you should use these
intializers.

Sandalone Server Initialization

If you are initializing a standal one server and require a BOA to dispatch requests to
servants, use the init_with_boa method

static void init_wth_boa(
String argv[],
java.util.Properties properties);

This method will initialize the ORB and BOA, and then initialize the ORBAsec
security infrastructure. The argv and properties arguments behave just as they do
in the ORB.init method. (Note. We feel the properties passed to the boa_init
method of the ORB are typically superfluous, so we have combined them into asin-
gle collection of properties.) See See “ORBAsec SL2 Configuration” on page 47.
for rules governing the precedence of ORBAsec properties.

ORBASEC 9.2 45

SL2 Initialization

Sanalone“ Pure” Client Initialization

If you are initializing a standalone “pure’ client, i.e, you do not require a BOA to
dispatch requests to servants, use the init method

static void init(
String argv[],
java.util.Properties properties);

This method will initialize the ORB, and then initialize the ORBASEC security
infrastructure. The argv and properties arguments behave just as they do in the
ORB.init method with the same signature. See See“ ORBAsec SL2 Configuration”
on page 47. for rules governing the precedence of ORBAsec properties.

Applet Initialization

If you areinitializing a Java Applet, use the init method

static void init(
java. appl et. Appl et appl et,
java.util.Properties properties);

This method will initialize the ORB, and then initialize the ORBASEC security
infrastructure. The applet and properties arguments behave just as they do in the
ORB.init method with the same signature. See See“ ORBAsec SL2 Configuration”
on page 47. for rules governing the precedence of ORBAsec properties.

Accessors

Once one of the above initializersis called, you may use the orb and boa accessors

static org.ong. CORBA. ORB orb();
static org. ong. CORBA. BOA boa();

to obtain areference to the ORB (and BOA, if initialized) that was initialized in
ORBASEC.

46

ORBAsEC 9.2

ORBASEC SL2 Configuration

ORBAseC 9.2 Configuration

ORBASEC SL 2 defines a set of Java Properties that can be used to configure secu-
rity protocols, mechanisms, and other features at ORBASEC SL 2 initialization.
These properties can be specified in one of the following ways:

* viaan ORBAcus configuration file;
* viathejava.util.Properties arguments to one of the orbasec.SL 2 initializers;

* via System Property definitions (within a Java program or from the command
line, -D on most systems); or

* viacommand-line options

To define an ORBASEC SL2 property via a configuration file, use the ORBACUS -
ORBconfig command-line option. See the ORBAcuUs manual for how to use this
option and for the syntax of the ORBAcuUSs configuration file.

Command-line options override Java System Property definitions, which in turn
override properties defined in the java.util.Properties argument passed to an ini-
tializer, which in turn override properties defined in an ORBAcUS configuration
file. If no property is defined, an appropriate default is used. Thisbehavior mirrors
that of property definitions in ORBAcCuUS.

Standard ORBASEC SL 2 Properties

This section enumerates the standard ORBA SeC SL2 properties likely to be used by
the Application Programmer, together with their meanings and default values. See
“ Adding your own Security Mechanisms” on page 55 for more ORBASEC SL2
properties.

or basec.seciop

This property determines whether the ORBA sec SECIOP protocol should be
enabled in client or server mode, or whether SECIOP should be disabled all
together. If SECIOP is not enabled in server mode, any CORBA servants will not
be allowed to accept SECIOP connections.

Legal Values
client enable SECIOP in client mode

ORBASEC 9.2 47

SL2 Initialization

server enable SECIOP in (client and) server mode
disable disable SECIOP

Default Value
server

or basec.seciop.host

Use this property to specify a host for SECIOP connections. If this property is not
defined, ORBASEC will use the ooc.boa.hostname property value, or the local
canonical hostname, if that property is not defined.

Legal Values
any legal host name or |P address

Default Value
none

Note — The orbasec.seciop property must equal server in order for this property
to have any effect.

or basec.seciop.port

Use this property to specify a port for SECIOP connections. If this property is not
defined, ORBASEC will use the orb.boa.port property value, or the port chosen by
the ORB, if that value is not defined or defined to be zero.

Legal Values
any port number you are permitted to open

Default Value
none

Note — The orbasec.seciop property must equal server in order for this property
to have any effect. Ports under 1024 need "root" privilege.

48

ORBAsEC 9.2

ORBASEC SL2 Configuration

orbasec.ssliop

This property determines whether the ORBA sec SSLIOP protocol should be
enabled in client or server mode, or whether SSLIOP should be disabled all
together. If SSLIOP is not enabled in server mode, any CORBA servants will not
be allowed to accept SSLIOP connections.

Legal Values
client enable SSLIOP in client mode
server enable SSLIOP in (client and) server mode
disable disable SSLIOP
Default Value
server

orbasec.ssliop.host

Use this property to specify a host for SSLIOP connections. If this property is not
defined, ORBASEC will use the ooc.boa.hostname property value, or the local
canonical hostname, if that property is not defined.

Legal Values
any legal host name or |P address

Default Value
none

Note — The orbasec.ssliop property must equal server in order for this property
to have any effect.

orbasec.ssliop.port

Use this property to specify a port for SSLIOP connections. If this property is not
defined, ORBASEC will use the orb.boa.port property value, or the port chosen by
the ORB, if that value is not defined or defined to be zero.

Legal Values
any port number you are permitted to open

ORBASEC SL.2 49

SL2 Initialization

Default Value
none

Note— The orbasec.ssliop property must equal server in order for this property to
have any effect. Ports under 1024 need "root" privilege.

orbasec.ssliop.exportable_only

This property states whether only exportable ecncryption cipher suites are available
for selection.

U.S. Export laws stipulate the cryptographic strength used for encryption. Setting
this property to true will limit the cipher suites to only "exportable" cipher suites.

Legal Values
true Limit exportable only
false No limit on cipher suites.

Default Value
true

orbasec.iiop

This property determines whether the ORBASEC |10OP protocol should be enabled
in client or server mode, or whether 110OP should be disabled all together. If IIOPis
not enabled in server mode, any CORBA servants will not be allowed to accept
[1OP connections.

[1OP isthe protocol used for general CORBA standard (insecure) communication.

Legal Values
client enable IIOP in client mode
server enable [IOP in (client and) server mode
disable disable IOP

Default Value
disable

50

ORBAsEC 9.2

ORBASEC SL2 Configuration

orbasec.iiop.host

Use this property to specify a host for I|OP connections. If this property is not
defined, ORBASEC will use the ooc.boa.hostname property value, or the local
canonical hostname, if that property is not defined.

Legal Values
any legal host name or |P address

Default Value
none

Note — The orbasec.iliop property must equal server in order for this property
to have any effect.

orbasec.iiop.port

Use this property to specify a port for I10P connections. If this property is not
defined, ORBASEC will use the orb.boa.port property value, or the port chosen by
the ORB, if that value is not defined or defined to be zero.

Legal Values
any port number you are permitted to open

Default Value
none

The orbasec.iiop property must equal server in order for this property to have any
effect. Ports under 1024 need "root" privilege.

orbasec.kerberos session

Setting this property to true automatically creates a Kerberos Credentials object
that isinitialized with the current user's Kerberos session credentials cache (as
obtained from a program such as kinit). On most Unix systems, (some systems
have different system defaults) the credentials cachefile/ t np/ kr b5cc_<ui d>,
where <ui d> isthe current users uid, or it is the value of the KRB5CCACHE environ-
ment variable. It also takes the kerberos configuration fileto be/ et ¢/ kr b5. conf
or the value of the KRB5_CONFI Genvironment variable.

ORBASEC 9.2 51

SL2 Initialization

Note — When running with a Credentials object initialized from the Kerberos
session cache, the process can only use this Credentials object in a client
fashion. That is, the process does not associate these credentials with object
references produced by the ORB.

If you need for the server publish object references with SECIOP-Kerberos creden-
tials information, the Kerberos Credential s objects must be explictly created in
application code.

Legal Values
true use Kerberos session credentials cache
false reguire explicit Kerberos authentication
Default Value
false

orbasec.anonymous _sd

Setting this property to true automatically creates an anonymous SSL Credentials
object during ORBASEC initialization. No certificate file is required for anony-
mous SSL credential initialization. It uses the Diffe-Hillman cipher suites.

Legal Values
true use anonymous SSL credentials
false reguire explicit SSL authentication
Default Value
false

Note — The orbasec.ssliop property must not be set to disable in order for this
property to have any effect.

orbasec.allow_iiop

Setting this property to true automatically creates an I1OP Credentials object dur-
ing ORBASEC initialization.

This credentials object must be created to enable [1OP (insecure) communication
over the CORBA standard protocol.

52

ORBAsEC 9.2

ORBASEC SL2 Configuration

Legal Values
true use ORBAsec |IOP credentials
false reguire explicit [1OP authentication
Default Value
false

Note — The orbasec.iiop property must not be set to disable in order for this
property to have any effect.

ORBASEC SL 2 Command-line Options

ORBASEC SL 2 provides command-line options for specifying the values of
ORBASEC SL2 properties at initialization. Y ou may use these command-line argu-
ments in conjunction with ORBACUS command-line options.

The ORBASEC SL.2 command-line options provide the ability to override
ORBAsec properties defined in a configuration file or via the System Property def-
inition flag to the Java Virtual Machine (-D on most systems). Command-line
usage is summarized in table 3, and the meanings of each flag is the same as that of

ORBASEC SL2 Command-line Option ORBASEC SL2 Property
-SL2SECIOP mode orbasec.seciop=mode
-SL2SECIOPHost host orbasec.seciop.host=host
-SL2SECIOPPort port orbasec.seciop.port=port
-SL2SSLIOP mode orbasec.ssliop=mode
-SL2SSLIOPHost host orbasec.ssliop.host=host
-SL2SSLIOPPort port orbasec.ssliop.port=port
-SL211OP mode orbasec.iiop=mode
-SL21IOPHost host orbasec.iiop.host=host
-SL2I1OPPort port orbasec.iiop.port=port
-SL2KerberosSession orbasec.kerberos _session=true
-SL2AnonymousSSL orbasec.anonymous_ssl=true
-SL2Allowl |IOP orbasec.alow_iiop=true

TABLE 3. ORBASEC command-line options
corresponding ORBAsec property.

ORBASEC SL.2 53

SL2 Initialization

Secure ORB Services

Y ou may specify ORB services using the ORBACUS ooc.service properties or the
ORBAcuUS -ORBservice command-line option. However, references to secure
ORB services must be established after credential acquisition viathe Principal Au-
thenticator. Unfortunately, The Principal Authenticator is only accessible after
SL2 initialization, so ORBASEC SL2 requires atwo-phase initialization in order to
create secure references to ORB services. For this purpose the ORBASEC SL2 class
provides a static method add_initial_services, which creates secure references to
designated ORB services.

i mport org.ong. CORBA. *;

import java.util.Properties;

i mport orbasec. SL2;

public void main(String[] args)

{
SL2.init_with_boa(args, new java.util.Properties());
ORB orb = SL2.orb();
BOA boa = SL2. boa();

// authenticate

// create references to secure ORB services
SL2. add_initial _services();

Getting SecurityCurrent

During theinitialization process aserviceis created called SecurityCurrent, and it
installed on the ORB. Y ou get the reference to the SecurityCurrent object by
usingther esol ve_i ni tal _referencescall, whichisillustrated by the fol-
lowing code fragment:

/'l Java
public void main(String[] args)
{

/1 ORB and possibly BOA initialization

ORBAsEC 9.2

Adding your own Security Mechanisms

// SL2 initialization

org. ong. CORBA. Obj ect obj =
orb.resolve_initial _references(“SecurityCurrent”);

org.ong. SecuritylLevel 2Current current =
org. ong. SecuritylLevel 2. Current Hel per. narrow(obj);

}

Note — A reference to the Security Current object cannot be obtained before
ORBASEC SL2 isinitialized.

Adding your own Security Mechanisms

The CORBA:: SecurityReplaceable module was designed with the intention of
allowing vendors to replace security components suitable for distribution in accor-
dance with export restrictions specific to a country or locality. Beginning with
ORBASEC SL2 Beta 3, Application Programmers can provide their own Security-
Replaceable security components and use them with ORBASEC SL 2, allowing
pluggabl e security mechanism components within ORBASEC SL2.

Assuming you have written your own implementation of the SecurityReplaceable
module, you can use your implementation of these interfaces with ORBASEC SL2
by providing an implementation of the orbasec.corba.SECI OPM echanisml ni-
tializer interface, defined as follows:

package orbasec. corba;
public interface SECI OPMechani smnitializer

{
public void
init(
or g. ong. CORBA. ORB orb,
or g. ong. CORBA. BOA boa,
java.util.Properties properties);
public org.ong. SecurityRepl aceabl e. Vaul t
get _vault();
}

ORBASEC 9.2 55

SL2 Initialization

This interface defines the following methods:
init

This method will be called during ORBASEC SL2 initialization with the ORB and
BOA that were created in one of the orbasec.SL 2 initializers. The properties
parameter will be derived from properties established during initialization. See See
“ORBAsec SL2 Configuration” on page 47. for adescription about the precedence
tules governing the definition of these properties.

get_vault

This method must return the org.omg.SecurityReplaceable.VVault, from which the
rest of the SecurityReplaceable relevant components (Credentials, SecurityCon-
text, etc.) are obtained. Y ou should return a reference to the Vault you have imple-
mented.

To notify ORBASEC SL 2 of the SECIOPM echanismlnitializer you have defined,
you must then specify the fully qualified class name of the initializer in an
ORBASEC SL2 property of the form:

orbasec.seciop.mechanism_initializer.<mechanism_name>

where <mechanism_name> is a name you may choose to distinguish different
SECIOPM echanisml nitializers you might install. The value of this property
should be the fully qualified class name of the SECIOPM echanismlnitializer you
have defined.

Note — Y ou may choose any mechanism name for this property, as long as it
does not conflict with any other mechanism name you have defined for the same
session. There are no ORBASEC “reserved” names, and any name you choose
has no significance to ORBASEC SL2.

For example, if you have written a SECI OPM echanisminitializer called
com acne. Mechani sm ni ti al i zer, then you would write the following
property into the configuration file:

or basec. seci op. nechanism.initializer.my_initializer=\
com acme. Mechani sm nitializer

56

ORBAsEC 9.2

SL2 Version

During ORBASEC SL 2 initialization, the specified SECI OPM echanisml nitializer
will beloaded and an instance of it will be created with its default constructor. Then
the init and get_vault methods of this class will be called. The Vault will be regis-
tered with ORBASEC SL 2, and subsequent calls to the Principal Authenticator’s
authenticate method will acquire credentials using the specified Vault.

Note — Calls to authenticate should use the fully qualified mechanism name
(i.e., with the provider) in the mechanism parameter in order for ORBASEC SL2
to select your Vault.

Y ou should define a or basec.seciop.<mechanism_name>. mechanism_initializer
property for each <mechanism_name> defined in the or basec.seciop.mechanisms
property. Thisway, you can use any number of security mechanisms with
ORBASEC SL.2.

There is no need to specify security mechanisms and SECIOPM echanismlnitial-
izersfor the default SL2-GSSKRB SECIOP security mechanism. ORBASEC SL2
will attempt to load this module by default during initialization.

.2 Version

The orbasec.SL 2 class provides a static String attribute called Version, which can
be used to obtain a String representation of the current version of ORBASEC SL2.

public static final String Version;

Y ou can print this String to the screen by running an ORBASEC SL2 enabled appli-
cation with the -SL 2Version flag at the command line. With this flag set, the appli-
cation will print the version to the screen and exit.

pronpt % j ava <my_app_nane> - SL2Ver si on
ORBAsec SL2 2.0.0

Equivalently, you may simply run the main method of the orbasec.SL 2 class.

pronpt % j ava orbasec. SL2
ORBAsec SL2 2.0.0

ORBASEC 9.2 57

SL2 Initialization

58

ORBAsEC 9.2

CHAPTER 4

Security Current

Security Current

The Security Level 2 Current object is alocality constrained CORBA object that
maintains state information associated with the current execution context, such as
in a multi-threaded execution model. This information is specific to the current
thread of execution and the process/capsule to which the thread belongs.

Getting the Current Object

The SecurityL evel2::Current object is returned from a call to the ORB’s
resolve initial_references operation using the name “ SecurityCurrent”.

/'l Java
org. ong. CORBA.ORB orb = // The SL2 initialized ORB;
org.ong. SecuritylLevel 2. Current current =
org. ong. SecuritylLevel 2. Current Hel per. narrow(
orb.resolve_initial _references(“SecurityCurrent”)

)

ORBAsec 59

Security Current

ORBASEC SL2 Extentionsto Current

ORBASEC SL2 makes several extensions to Securityl evel2::Current. The opera-
tions and attributes that are beyond the standard SecuritylL evel2::Current inter-
face are defined in an ORBASEC SL2 definition of the SecL ev2::Current
interface. Thisinterface is explained at the end of this chapter under “ORBAsec
SL2 Extensionsto Current” on page 67.

Sandard Attributes and Operations

The attributes and options on the SecurityL evel2::Current object are described
below along with their values, semantics, and possible restrictions as pertaining to
the ORBASEC SL2 implementation.

The following operations and attributes are standard on SecuritylL evel2::Current.

supported mechanisms

This attribute returns alist of Security::MechandOptions structures. Each ele-
ment in the list gives the mechanism available and the Security:: AssociationOp-
tions the mechanism supports.

//1DL
readonly attribute Security:: MechandOpti onsLi st
support ed_nechani sns;

/'l Java
public org.ong. Security. MechandOpti ons[]
support ed_nechani sns();

This attribute may be examined to select the security mechanism available.
/1 1DL

modul e Security {
struct MechandOptions {

Mechani snType mechani sm t ype;
Associ ati onOpti ons options_supported;
}s
}s
60 ORBASEC SL.2

Standard Attributes and Operations

/'l Java

package org.ong. Security;

final public class MechandOptions {
String nmechani sm t ype;
short options_supported;

}

In ORBASEC SL2, Mechanism strings have a particular structure. The structure is:

<mechanism_type> :: <mechanism_identifier> [‘,’ <ciphersuite>]
<mechanism_identifier> :: <mechanism>'_’<provider>

Thefirst component of the mechanism type identifier is the name of the security
mechanism. The further components, separated by commas, are the cipher suites.
All cipher suites have symbolic names.

Examples of some mechanism strings supported by ORBASEC SL.2 are:

“ Ker ber 0s”

“Kerberos M T”

“SSL, DH DSS 3DES CBC MD5, DHE_DSS DES CBC SHA’
“SSL_| Al K, DH_anon_DES_CBC_MD5”"

The string “Kerberos” can be used to authenticate a Kerberos principal, which cre-
ates a credentials object using the Kerberos infrastructure using an implementation
from the default provider. The string “Kerberos MIT” can be used to further stipu-
late that a certain provider be used, namely ORBASeC SL2-GSSKRB “plug-in”.
(MIT means the Kerberos implementation from M.I.T.) The string
“SSL,DH_DSS 3DES CBC_MD5,DHE_DSS DES CBC_SHA” can be used to
authenticate principal using a Public Key Infrastructure (PK1), which creates a cre-
dentials object with the ability to use SSL with the listed cipher suites. The string
starting with “ SSL_IAIK” means to use the ORBASeC SL2-SSL “ plug-in” , which
uses the SSL toolkit from 1AIK.

Note — It may not be possible to have two different providers for one mechanism
in the same ORB, although we have not yet experimented with this capability.

recelved_credentials

This read-only attribute is valid only in the context of an object servicing a request
on the target side. Its value is thread specific. It is meant to represent the security
context that has been established between the target’s own credentials and the cli-

ORBASEC 9.2 61

Security Current

ent’s own credentials. Therefore, it represents the identity of the client and any
other security attributes the client may have delivered to the target.

/1 1 DL
readonly attribute ReceivedCredentials received credentials;

/'l Java
public org.ong. SecuritylLevel 2. Recei vedCredenti al s
recei ved_credential s();

Accessing this attribute while not in the context of servicing an object request, such
asinapure client application will result in the raising of a
CORBA::BAD_OPERATION exception.

own_credentials

This attribute is the list of credentials that have been created and initialized by the
application using the Principal Authenticator object. Its value is capsule specific,
meaning the “own” credentials are owned by the capsule that authenticated them. A
facility called remove_own_credentials can remove certain credentials from the
list.

/1 1DL
readonly attribute Credenti al sLi st own_credenti al s;

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s[]
own_credential s();

The capsule may own or initialize any number of credentials using the Principal-
Authenticator object. In fact, the only way a Credentials object makesit on the
“own” credentialslist, is by way of the Principal Authenticator object. This object
isdescribed in “ Principal Authenticator” on page 75.

Once a Credentials object is created by the Principal Authenticator object, it is
placed on the “own” credentialslist only after the Credentials object becomes fully
initialized (depending on the mechanism and authentication method, principal
authentication may be a multistep process). The Credentials object remains on the
“own” credentials list until it is removed by application using the
remove_own_credentials operation. It is the responsibility of the application to
remove Credentials objects from the “own” credentials list when they expire, or
when they have become invalid. Removal from the “own” credentials list does not
happen automatically.

62

ORBAsEC 9.2

Standard Attributes and Operations

remove_own_credentials

This operation removes a given Credentials object from the own credentials list.

/1 1DL
void remove_own_crednti al s(
in Credential s creds
)
/1 Java

public void remove_own_credenti al s(
org.ong. SecuritylLevel 2. Credential s creds

)

This operation gives the programmer some management over the“own” credentials
list, should the application authenticate many principals. The application is respon-
sible for removing Credentials objects from the “own” credentials list when they
have become invalid or expired. Removal does not happen automatically.

principal _authenticator

This attribute’ s value is the Principal Authenticator object that is available in the
environment. This attribute is capsul e specific and is aread-only attribute. It is used
by the application to authenticate principals, which create “own” type Credentials
objects that represent that principal. This object is described in [“Principal Authen-
ticator” on page 75].

/1 1DL
readonly attribute Principal Authenti cator
princi pal _aut henti cator;

/'l Java
public org.ong. SecurityLevel 2. Princi pal Aut henti cat or
princi pal _authenticator();

get_security_mechanisms

This operation for clients wishing to determine which security mechanismsthat are
associated with atarget object reference. It returns alist of all the security mecha
nisms, which are structures containing security names and required/supported
option pairs that are contained in the object’s IOR.

ORBASEC SL.2 63

Security Current

//1DL

Security:: SecurityMechani snDat aLi st get _security_nechani sns(
in Obj ect obj _ref

)

/1 Java
public org.ong. Security. SecurityMechani snDat a[]
get _security_nechani sns(org. ong. CORBA. Obj ect obj _ref);

This operation returns a structure containing the security mechanism, security
name, association options that the target object requires and supports. Thelist con-
tains security mechanism and names contained in the objects IOR. These names
may be different than the authenticated name, which isin the Accessld attribute of
the received credentials. Duplicates are not removed from this list.

/1 1DL
modul e Security {
struct SecurityMechani snData {

Mechani snilype mechani sm
Opaque security_nane;
Assocati onOpti ons options_supported;
Associ ati onOpti ons options_required;
i
b
/1 Java

package org.ong. Security;
final public class SecurityMechani snData {

String mechani sm

byte[] security_nane;
short options_supported;
short options_required;

}

get_target_credentials

This operation is for clients wishing to check the authentication of the target object
reference. It returns areceived credentials object containing the attributes of the
object..

//1DL

Target Credential s get_target_credential s(
in Ohj ect target

)

ORBAsEC 9.2

Standard Attributes and Operations

/1 Java
public org.ong. SecuritylLevel 2. Target Credenti al s
get _target_credential s(org. ong. CORBA. Cbj ect target);

This operation returns a Tar getCredentials object with attributes of the security
context between the client and the server of this object.

get_policy

This operation is meant to return the policies placed on the Current object that are
the default policies for making invocations on objects that do not have their own
policy overrides set.

/1 1DL
CORBA: : Pol icy get_policy(

in CORBA:: PolicyType policy_type
)

/'l Java
public org.omg. CORBA. Policy get_policy(int policy_type);

Unfortunately, this call is semantically defined in the CORBA CORE toretrieve the
policy overrides on the object itself (i.e. the Current object), not as arepository for
policiesto be applied elsewhere. Therefore, we feel that this call is semantically
wrong. However, we do support the get_policy call. However, it makes acall to
get_overrides which will be the proposed CORBA.:: PolicyCurrent operation for
this purpose. We have placed the get_overrides operation on the

orbasec:: SecL ev2::Current object, which are ORBASEC SL2 extensions to the
SecurityL evel2::Current object. See “ORBAsec SL2 Extensions to Current” on

page 67.
required_rights object

This attribute’ s value is the RequiredRights object available in the environment.
This attribute is capsule specific and is aread-only attribute. This object is stated to
be used rarely by any application; it is generally used by any AccessDecision
objects to find the rights required to use a particular interface. However, it may be
used by applications if the application wants to implement its own access control.

/1 1DL
readonly attribute RequiredRi ghts
requi red_rights_object;

ORBASEC SL.2 65

Security Current

/'l Java
public org.ong. SecurityLevel 2. Requi redRi ghts
requi red_rightsobject();

Since this version of ORBASEC SL2 does not support automatic access control,
accessing this attribute raisesa CORBA::NO_IMPLEMENT exception.

access_decision

This attribute’ s value is the AccessDecision object available in the environment.
This attribute is capsule specific and is aread-only attribute. It is used to make
access decisions on invocations on interfaces. It may have any implementation, but
is supposed to interact with Credentials objects, RequiredRights objects, and
DomainAccessPolicy objects.

Note — It is not well defined in the security specification on the topic of the
number of RequiredRights objects that can exist in a capsule and the number of
AccessDecision objects that can exist in a capsule. However, it would imply by
this attribute that only one access decision object may exist.

/1 1DL
readonly attribute AccessDeci sion
access_deci sion;

/'l Java
public org.ong. SecuritylLevel 2. AccessDeci si on
access_deci sion();

Since this version of ORBASEC SL2 does not support automatic access control,
accessing this attribute raisesa CORBA::NO_IMPLEMENT exception.

audit_decision

The attribute’ s value is the AuditDecision object available in the environment. This
attribute is capsule specific and is aread-only attribute. It is suppose to be used by
the application to obtain information about what needs to be audited for other spe-
cific object/interface in this environment.

Note— Again, it is not well defined on the topic of the number of AuditDecision
objects should exist and for what purpose, and which AuditChannel objects
should exist.

66

ORBAsEC 9.2

ORBASEC SL2 Extensions to Current

/1 1DL
readonly attribute AuditDecision audi t _deci sion

/'l Java
public org.ong. SecuritylLevel 2. Audi t Deci si on
audi t _deci sion();

Since this version of ORBASEC SL2 does not support automatic access control,
accessing this attribute raisesa CORBA::NO_IMPLEMENT exception.

ORBAsEC 9.2 Extensions to Current

ORBASEC SL2 makes several extensions to the SecurityL evel2::Current object.
The extensions to SecurityL evel2::Current comein the form of aand interface
called SecL ev2::Current that inherits from Securityl evel2::Current.

The IDL definition of the ORBASEC SL2 SecL ev2::Current interfaceis below:

ORBASEC 9.2 67

Security Current

//1DL
#i ncl ude <SecuritylLevel 2.idl >
#pragma prefix “orbasec”

modul e SeclLev2 {
interface Current : SecuritylLevel 2::Current {
/1 Policy Operations
void set_overrides(

in CORBA:: PolicylList poli cies,

in CORBA:: SetOverrideType override_type
)
CORBA: : Pol i cyLi st get_overrides(

in CORBA:: PolicyTypeSeq poli ¢/_types
)

void renmpove_overrides(
i n CORBA: Pol i cyTypeSeq policy_types
)

/1l Accepting Credentials Operations
attribute SecuirtylLevel 2:: Credenti al sLi st
accepting_credenti al s;

voi d set_accepting_credential s(
in bject servant,
in SecuritylLevel 2:: Credenti al sLi st creds_list

)

SecuritylLevel 2:: Credenti al sLi st get_accepting_credenti al s(
in Object servant

)

void rel ease_accepting_credential s(
in bject servant
)
H
b

The SecL ev2::Current object is returned from a call to the ORB’s
resolve initial_references operation using the name “ SecurityCurrent”.

ORBAsEC 9.2

ORBASEC SL2 Extensions to Current

/'l Java
org. ong. CORBA.ORB orb = // The SL2 initialized ORB;
orbasec. SecLev2. Current current =
or basec. SecLev2. Current Hel per. narrow(
orb.resolve_initial _references(“SecurityCurrent”)

)

The SecL ev2::Current object contains two sets of operations. The first set pertain
to setting and getting security related policies with respect to the current thread of
execution. The second set pertains to assigning the proper credentials objects with
servant object references, so that the proper credentials information gets placed in
the object’s IOR when it is exported to potential clients.

Policy Operations

The following operations are the proposed (or about to be proposed) operations of
the CORBA::PolicyM anager interface, which the CORBA::PolicyCurrent inter-
face inherits. It may be proposed that the SecurityL evel2::Current inherit the
CORBA::PalicyCurrent interface for handling of thread based policies. Both the
CORBA::PolicyM anager and CORBA::PolicyCurrent interfaces are yet to be
adopted and are part of the CORBA Messaging RFP response.

Policies set with these interfaces apply as default policies to object references that
are introduced into the current thread of execution. Object references are intro-
duced into a current thread of execution by unmarshalling an IOR. This unmarshal-
ling is done by the ORB::object_to_string operation or automatically by getting
an object reference from an invocation, such as getting an object reference from a
naming service.

set_overrides

This operation is thread specific and adds or sets the given policies for the current
thread of execution.

ORBASEC SL.2 69

Security Current

/1 1DL
voi d set_overrides(
in CORBA:: PolicylList poli cies,
in CORBA:: Set OverrideType override_type
)
/'l Java
public void set_overrides(
org. ong. CORBA. Pol i cy[] policies,
i nt override_type

)

Policies that are set on the thread can be overridden further and more specifically
on an object by using the set_policy overrides pseudo operation on an object ref-
erence.

get_overrides

This operation is thread specific and gets the policies named by the given policy
types for the current thread of execution.

/1 1DL
CORBA: : Pol i cyLi st get_overrides(

i n CORBA:: PolicyTypeSeq poli g _types
)

/1 Java
public org.ong. CORBA. Policy[] get_overrides(
int[] polig/_types

)

The policy objects returned from this call applies first to the current thread of exe-
cution. If apolicy of agiven type has not been set on the current thread of execution
specifically, apolicy set at the original initializing thread of execution is retrieved.
This allows a server application to set policies for the server at initialization time
before readying the object to start accepting requests. This procedure is most useful
in the thread-per-request execution model.

If agiven policy typeisnot available, (i.e. set at the thread or the initializing thread)
no policy of that type is returned in the list. No exception is raised.

70

ORBAsEC 9.2

ORBASEC SL2 Extensions to Current

remove_overrides

This operation removes policies of the given types that have been set on the current
thread of execution.

/1 1DL
void renmove_overri des(

in CORBA: Pol i cyTypeSeq policy_types
)

/'l Java
public void renove_overrides(

int[] policy_types
)

If policies of agiven type are not found to be previously set on the current thread of
execution, the operation ignores it, and continues with the removal process for any
other policy types given to the operation. No exception is raised.

Accepting Credentials Attributes and Operations

The following section contains descriptions for associating a set of credentials
objects with a servant object. A servant object is an implementation of a
CORBA::Object that islocal to the capsule. Associating Credentials with a ser-
vant object tells the security service which security mechanism components, which
are derived from the Credentials objects, to place in the servant object’s IOR.

accepting_credentials

This thread specific attribute sets or returns the list of Credentials objects that are
associated with new object references, (i.e. object implementations that are con-
nected to the ORB) within the current thread of execution. The credentialsin the
accepting_credentials attribute are set to be the default for the current thread of
execution. To override those defaults for a particular servant object the call
set_accepting_credentials must be called on that servant object implementation.

Note — Calling set_accepting_credentials on an object connects the object to
the ORB. The object must not be previously connected to the ORB, as that is the
point at when its IOR gets generated. If an object given to
set_accepting_credentials is already connected to the ORB a
CORBA::BAD_PARAM exception is raised.

ORBASEC 9.2 71

Security Current

Theinitial value for accepting_credentialsisthe entire list of own_credentials at
the time the servant is connected to the BOA.

/1 1DL
attribute SecuritylLevel 2::Credenti al sLi st
accepting_credenti al s;

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s
accepting_credential s();

public void accepting_credential s(
org.ong. SecuritylLevel 2. Credenti al s[] creds

)

If an attempt to set this attribute to alist of credentials containing a Credentials
object without the ability to accept secure associations, such as a Credentials object
with no accepting_options_supported, thenaCORBA::BAD_PARAM excep-
tion israised. An example of such a Credentials object might be the ReceivedCre-
dentials object from the received_credentials attribute, or a TargetCredentials
object retrieved from the get_target_credentials operation.

set_accepting_credentials

This operation sets the credentials to be used as the authenticating credentials for a
particular servant object.

Thegiven object should be not yet be connected to the ORB! If the object is pre-
viously connected to the ORB the accepting credential s that were associated with
the thread at the time of the connect are the accepting credential s that are associated
with the object reference. Therefore, this operation would have no effect, and hence
aCORBA::BAD_PARAM exception will beraised. Thisoperation will connect
the object to the ORB.

72

ORBAsEC 9.2

ORBASEC SL2 Extensions to Current

/1 1DL

voi d set_accepting_credential s(
in bject servant,
in SecuritylLevel 2:: Credenti al sLi st creds_list

)

/'l Java

public void set_accepting_credential s(

or g. ong. CORBA. Ohj ect servant,

org.ong. SecuritylLevel 2. Credenti al s[] creds_list

)

If an attempt to use this operation with alist of credentials containing a Credentials
object without the ability to accept secure associations then a
CORBA::BAD_PARAM exceptionisraised. If an attempt to use this operation on
an object that is not aservant, a CORBA::BAD_PARAM exception is raised.

get_accepting_credentials

This operation is used to retrieve the accepting credential s that have been set at the
authenticating credentials for a particular servant object when the servant object
was connected to the ORB. This object must be connected to the ORB, or else a
CORBA::BAD_PARAM exception will be raised.

/1 1DL

SecuritylLevel 2:: Credenti al sLi st get_accepting_credenti al s(
in Object servant

)

/'l Java

public org.ong. SecuritylLevel 2. Credenti al s[]
get _accepting_credenti al s(
or g. ong. CORBA. Obj ect servant

)

If no credentials were set for the given servant object, an empty sequence is
returned. If an attempt to use this operation on an object that is not a servant, a
CORBA::BAD_PARAM exceptionis raised.

ORBASEC SL.2 73

Security Current

release _accepting_credentials

This operation is used to remove the association of accepting credentials with the
given servant object. This object must be connected to the ORB, or else a
CORBA::BAD_PARAM exception will be raised.

/1 1DL
void rel ease_accepting_credential s(
in Object servant
)
/'l Java
public void rel ease_accepting_credential s(
or g. ong. CORBA. Obj ect servant
)
74 ORBAsEC 9.2

CHAPTER 5

Principal Authenticator

Principal Authenticator

This section describes the application programmer’ s use of the

SecurityL evel2::Principal Authenticator interface and its specific implementa-
tion relating to the default SecurityReplaceable module installed in ORBASEC
SL2.

The Principal Authenticator interface isimplemented by a sole principal authentica-
tor object. This object is a capsule specific object that resides on the Security Cur-
rent object. It isretrieved as follows:

/'l Java
org.ong. SecuritylLevel 2. Current current = // ... get current
org. ong. SecuritylLevel 2. Princi pal Aut henticator pa =

current. principal _authenticator();

For details on the mechanism to get the Security Current object, see “Getting the
Current Object” on page 59.

An application programmer uses the Principal Authenticator object to initialize
the application’s“own” credentials. The principal authenticator makes calls on the
vault behind the application programmer’s view. It asks the vault to authenticate a

specific principal and create the Credentials object that represents that principals

ORBASEC 9.2 75

Principal Authenticator

identity. We term this notion as the “acquisition” of credentials. The PrincipalAu-
thenticator object then places these operational credentials on the Current object
for retrieval by the application programmer.

The Principal Authenticator interface has three basic operations,
get_supported_authen_methods, authenticate, and continue_authentication.
The get_supported_authen_methods operation takes a security mechanism iden-
tifier and returns the list of authentication methods that are available for that mech-
anism. The authenticate operation starts an authentication sequence that may take
several steps. If additional steps are needed to complete authentication of the prin-
cipal, the continue_authentication operation is used for as many times as needed.

A Credentials object caught in a multistep authentication process contains state
information to facilitate the continuation of the authentication process. Once suc-
cessfully completed, indicated by a Security:: AuthenticationStatus enum value
of SecAuthSuccessreturned by the Principal Authenticator object, the created
Credentials object is placed on the Securityl evel2::Current object’s “own” cre-
dentialslist.

The operations for the Principal Authenticator object’s interface are defined
below:

authenticate

This operation begins the authentication of a principal. We say begin, because
authentication may take several steps to complete, such as with a challenge/
response oriented mechanism. The authenticate operation’ sinterface is described
below.

/1 1DL
Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod nmet hod,
in Security::MechanisniType mechani sm
in Security::Opaque security_nane,
in Security::Opaque aut h_dat a,
in Security::Attributelist privil eges,
out Credentials creds,
out Security:: Opaque continuati on_dat a,
out Security:: Opaque aut h_specific_data
)
76 ORBAsEC 9.2

Principal Authenticator

/'l Java
public org.ong. Security. Assocati onSt at us
aut henti cat e(

i nt met hod,
String mechani sm
byte[] security_nanme,
byte[] aut h_dat a,
org.ong. Security. SecAttribute[] privil eges,
org.ong. SecuritylLevel 2. Credenti al sHol der

creds,
org. ong. Security. OpaqueHol der continuation_data,
org. ong. Security. OpaqueHol der auth_specific_data

)

The parameters to the authenticate operation are described below:

method

This parameter specifies the authentication method that will be used to authenticate
the principal. Values for the authentication method are parameterized on the mech-
anism selected. These values are returned from a call to the
get_supported_authen_methods operation, which takes the mechanism as an
argument.

No values for this parameter have been specified by the OMG presently. Therefore,
we only accept the value 0, meaning “the default for the mechanism”.

mechanism

This parameter specifies the mechanism with which to authenticate the principal
with and create its associated “own” type credentials. The mechanisms that are
allowed in this call are the mechanisms that are listed as supported mechanisms
from the call to SecuritylL evel2::Current object’s get_supported_mechanisms
attribute.

security_name

This parameter is a byte array stating the recognized name of the principal to be
authenticated. The contents and its encoding into bytes of this parameter is specific
to the mechanism specified. For some mechanisms, this parameter may be an
empty sequence of bytes. The name supplied here must be a

ORBASEC 9.2 77

Principal Authenticator

orbasec.corba.Opaque byte encoded name. Please see Chapter on “ Opaque
Encodings” on page 185 for details.

If you have the ORBASEC SL2-GSSKRB distribution and you are using a Kerberos
mechanism, a kerberos security name, such as“ bart@MY REALM.COM” must be
represented as the following:

/'l For Kerberos
byte[] security_nane =
or basec. cor ba. Opaque. encodeKer ber osName(
“bart @GWREALM COM') . get Encodi ng() ;

If you have the ORBASEC SL2-SSL distribution and you are using an SSL mecha-
nism, the security name must be an empty sequence since the default authentication
mechanism gets the security name from the certificate file named in the auth_data
parameter.

/'l For SSL
byte[] security_nane = new byte[O0];

auth_data

This parameter specifies the extra data needed to authenticate the principal. The
format of this object is a sequence of bytes and the format of the data is dependent
on the mechanism and the method used. A value of an argument to this parameter
may contain such esoteric data as the result of a fingerprint or retinal scan.

If you have either of the ORBA SEC SL2-GSSKRB or ORBASEC SL2-SSL distribu-
tions the value of the auth_data parameter be a byte encoded Java string of the
form read by the java.util.Properties class. This form mandates a “name=value”
string format separated by newline characters. The name-value pairs that are
required and their meaning are listed at the end of the section. The names of the
attributes and their associated values are explained at the end of this chapter for
both SL2-GSSKRB and SL2-SSL

privileges

This parameter states the “extra’ privileges that the application programmer wants
to be authenticated along with the principal to create the credentials with those priv-
ileges authorized. Such privileges can have values stating facts such that whether

the principal is the member of a group or has the authorization for a particular role.

78

ORBAsEC 9.2

Principal Authenticator

Note — Currently, in both the ORBA SeC SL2-GSSKRB and ORBASEC SL2-SSL
distributions, this field is ignored, as neither mechanism can handle the
authentication or authorization of privileges in this manner. However, future
mechanisms may have this capability.

creds

This parameter is an output parameter returning the newly created Credentials
object of the “own” type. This operation works in concert with the Current object
and places the new credentialsin the current’ s own credentialslist should the return
value from authenticate be SecAuthSuccess. If it is SecAuthContinue the Cre-
dentials object may not be fully enabled. The authentication mechanism created
interim credential s to be further passed to the continue_authentication operation.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The authenticate call either returns SecAuth-
Success and places the fully enabled Credentials object on the Current object’s
“own” credentialslist, or it raises a system exception with an informative message.

continuation_data

This parameter is an output parameter returning data needed to continue the authen-
tication. This may hold such data labeling a continuation context.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The value of the continuation_data parameter
is unaffected.

auth_specific_data

This parameter is an output parameter returning data that may need to be exposed to
the application programmer, such as a message about what is needed to continue
the authentication. It is completely mechanism and method specific.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The value of the auth_specific_data parame-
ter is unaffected.

ORBASEC SL.2 79

Principal Authenticator

return value

The value returned from this operation is one of the Security:: AuthenticationSta-
tus enumeration type and states whether authentication succeeded, failed, or needs
to be continued.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions
authentication is a one step process. The authenticate call either returns SecAuth-
Success and places the fully enabled Credentials object on the Current object’s
“own” credentialslist, or it raises a system exception with an informative message.

continue_authentication

This operation is meant to continue authentication steps started by authenticate or
from previous calls to continue_authentication. Its interface is defined below:

Security:: AuthenticationStatus continue_athentication(

in Security:: Cpaque response_dat a,

in O edentials creds,

out Security:: Opaque continuati on_data,
out Security:: Opaque aut h_specfic_data

)

In both the ORBASEC SL2-GSSKRB and SL2-SSL distributions authentication is a
one step process. The authenticate call does not return SecAuthContinue. Callsto
this operation raisesa CORBA::BAD_OPERATION exception.

response_data

This parameter returns data in the format required by the mechanism and method
for continuing authentication. Its authenticate counterpart is the auth_data parame-
ter.

creds

This parameter should be credentials returned from authenticate or subsequent
callsto continue_authentication. If the operation returns SecAuthSuccess, the
credentials will be fully enabled and placed on Current’s own credentials list.

80

ORBAsEC 9.2

Authentication using ORBASEC SL2-GSSKRB

continuation_data

This parameter should be continuation data returned from authenticate or subse-
guent callsto continue_authentication. If the operation returns SecAuthCon-
tinue, this output value should be used in the subsequent call to
continue_authentication.

auth_specific_data

This parameter should be authentication specific data returned from authenticate
or subsequent callsto continue_authentication. If the operation returns SecAuth-
Continue, this output value should be used in the subsequent call to
continue_authentication.

get_supported_authen_methods

This operation returns a sequence of authentication methods that are valid for the
calls to authenticate. At some point there will be a standard set. The authentication
methods are parameterized on the mechanism, as some methods may only be valid
authentication methods for particular mechanisms. Its interface is defined below:

Security:: Authenticati onMet hodLi st
get _supported_aut hen_net hods(
in Security:: Mechani smlype mechani sm

)

Note — Currently, only one authentication method is supported for both the
ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions, indicated by the
integer 0.

Authentication using ORBAseC S.2-GSSKRB

This section explains the mechanisms, security name, and authentication data for-
mats for using the Principal Authenticator with the ORBASEC SL2-GSSKRB distri-
bution. This distribution gives you the ability to use standard GSS-API version of
Kerberos as defined by MIT.

ORBASEC 9.2 81

Principal Authenticator

M echanism
If you have the ORBASEC SL2-GSSKRB distribution, you can currently only spec-
ify one mechanism for authenticate. It is:

Kerberos M T

or its default companion:

Ker ber os

In ORBASEC SL2 mechanism naming scheme, the latter two match the above one.
For now, our SL2-GSSKRB distribution only has support for the cipher suites with
your Kerberos installation. Thereis currently no way to specify them.

Security Name

The security_name parameter must be in a orbasec.corba.Opaque byte encoding
of a Kerberos name. This requires taking the string of a kerberos principal such as
“bart@MY REALM.COM” and converting it to a special Opaque byte encoding.
This encoding is simply done as:

i mport orbasec. corba. Opaque;

byte[] security_nane =
Opaque. encodeKer ber osName(“ bart @GAWREALM COM') . get Encodi ng() ;

If the security_name parameter has one of the following values:

* new byt e[0]

* Opaque. encodeKer ber osNanme(“”) . get Encodi ng()

The name stored in the named or default Kerberos credentials cache will be used.

Authentication Data

The authentication data is the value of the auth_data parameter for the authenti-
cate operation. The format for this parameter is the standard Java string to byte
encoding of a Java String containing name-value pairs in the form for the
java.util.Properties class. This format requires each entry to have the form
“name=value” separated by newline characters.

For example, acall in Javato authenticate “bart@MY REAL.COM” would be:

82

ORBAsEC 9.2

Authentication using ORBASEC SL2-GSSKRB

i mport org.ong. Security.*;
i mport org.ong. SecuritylLevel 2. *;
i mport orbasec. corba. Opaque;

Princi pal Aut henticator pa = // get the PA from Current

Credenti al sHol der crecsh = new Credenti al sHol der () ;
OpaqueHol der contdata = new OpaqueHol der () ;
OpaqueHol der aut hspecdata = new OpaqueHodl er () ;

Aut henti cati onSt at us st at ;

stat = pa.authenticat¢g

0,

“Ker beros”,

Opaque. encodeKer ber osName(“ bart @GAYREAL.COM')

. get Encodi ng(),

(“config=FILE:/etc/krb5. conf\n” +
“passwor d=\" MyPassword\”\ n” +
“cache=FI LE: / t np/ kr b5cc_bart\n” +
“lifeti me=360m n” +
“forwardabl e=true\ n”) . get Byt es()

new SecAttribute[0],

credsh,

cont dat a,

aut hspecdat a

)

The names of the properties that are valid for the authentication data are described
below.

config

This property field contains the name of the Kerberos configuration file. The exist-
ence of thisfile is specific to the MIT implementation. This file contains informa-
tion pertaining to the configuration of the kerberos configuration. Such information
includes the network location of the KDC, and other parameters. If the config field
is not present or its value is empty, the default of the Kerberos installation is used.

The config specification has a two part format:

<type>: <config name>

ORBASEC SL.2 83

Principal Authenticator

However, the only type that is currently valid, is“FI LE", where the config name
part names the location of a Kerberos Version 5 configuration file on the local sys-
tem.

On most Unix systems, the default configuration file for Unix systemsislocated by
thename/ et ¢/ kr b5. conf, or by the contents of an environment variable
called “KRB5_CONFI G.

On NT, the default configuration file is specified by a complex logic.

The “kerberos.ini” file must be first located wherever “ini” files are found. This
procedure may be some uniform directory search according to your system, such as
“ C:\winnt; C:\windows;\C:\winnt\system”, etc.

This “kerberos.ini” file may contain an entry as follows:

[Files]
krb5.ini =

If thereis no “krb5.ini” entry, it assumes that “krb5.ini" file exists in your current
directory.

password

This property field must contain the password. Unfortunately, we have a very
minor character translator, so special characters like control characters, tabs, back-
spaces, and such are not representable. If the password field is not present or its
value is empty, and the keytab field (see below) is not present or is empty, then the
Kerberos authenti cation mechanism will use the credentials in the specified cre-
dentials cache file (see below). This assumes the principal has already acquired
credentials externally (for instance, viathe Kerberos kinit program). If the keytab
field is present and non-empty, then the principal’s key is assumed to be stored in
the keytab file.

cache _name

This field names the location of Kerberos credentials cache that you want to use. If
the password and keytab fields are not present, the cache file should contain the
principal’ s already-obtained credentials (e.g., via the Kerberos kinit program). The
credentials cache specification has a two part format:

<type>: <credentials ccache nane>

ORBAsEC 9.2

Authentication using ORBASEC SL2-GSSKRB

The type can be one of “FI LE” or “MEMORY”. The“FI LE" type names afile on
the local system, meaning that the credentials are or will be placed externally to the
running process. If thetypeis “MEMORY” the credentials will be retained inside the
process for the duration of the process. Using a credentials cache of type “ MEM-
ORY” is a safer way to go. However, to use the “MEMORY” type credentials cache,
you must supply a value for the password or keytab field, asit isimpossible to use
already authenticated credentials.

Also, if authenticating multiple Kerberos Credentials and using “MEMORY” type
credential caches, the names must be different. When using “ MEMORY” type caches
the name portion of the cache fileis not that significant, so names such as MEM
ORY: 0, MEMORY: 1, MEMORY: 2, and so on, can be used without any difficulty.

If the cache file specification is not present, then the default “kerberos session”
cache is assumed. The Kerberos session cache is afile, and it isusually initialized
by the “kinit” program from the Kerberos distribution.

The default credentials cache file on most Unix systems, is“FI LE: / t np/
kr b5cc_<ui d>" whereuid is the user number of the principal logged on, or
named by an environment variable “ KRB5 CCNANME" .

On NT, it resides in afile, which may be specified in the “kerberos.ini” file one of
two ways.

[Files]
RegKRB55CCNAME =
or
[Files]
krb5cc =

If the first method is used, which takes precedence over thefirst, the value names a
registry key that points to the file name. Such aregistry key might be
“[HKEY_CURRENT_USER\Software\Gradi-
ent\DCE\Default\KRB5CCNAME]”, and its value will contain a string with the
“FILE:" prefix.

If the second method is used, the “krb5cc” variable names the cache file directory,
using the “FILE:” prefix.

ORBASEC SL.2 85

Principal Authenticator

If the security_name parameter is nonempty and the cache specifiesa“FILE”
type, or the default “session” cache. The security_name must match the principal
stored in the credentials cache file. If the security_name does not match the princi-
pal stored in the credentials cache file, a CORBA::BAD_PARAM exceptionis
raised. If the security _name parameter is empty, then the principal namein the cre-
dentials cache fileis used for the Credentials object.

enable server

This property field isimportant if the credentials you are authenticating will be
used to accept secure assoications. That is to say the process holding on the creden-
tialsisto be aserver. If this property has avalue of “true”, it signifies that a keytab
will be used.

keytab

This property field isimportant and is especially important if the “enable_server”
property is set to “true”. If you want your application to be a CORBA server, i.e. to
service any reguests on its objects from remote clients, (i.e. you initialize the BOA),
you must have the key stored in areadable keytab. If the keytab you need is afile,
which is given to you by your Kerberos administrator, giving a value to this field
forgoes the use of password, because effectively the keytab contains the password.

The keytab specification has atwo part format:
<type>: <keyt ab name>

To use akeytab file, the principal must be contained in a keytab file that the process
has permission to read. Note, that in most Unix installations of the MIT Kerberos
implementation the default keytab file (/ et ¢/ kr b5. conf) isusually only read-
able by the super user, as this file contains the keys for such services as TELNET,
FTP, etc. These servicesinitially have super user privilege until they authenticate
the client and downgrade their privileges.

This situation may reguire you to have the Kerberos administrator make a keytab
file available for your particular server’s principal. For MIT Kerberos installations
only thekadni nor kadm n. | ocal programs are allowed to create and add the
keys of the principalsto a keytab file.

If you label the keytab to be of a MEMORY type keytab, such as MEMORY :0,
then you need a password. The system loads that memory keytab with the princi-

86

ORBAsEC 9.2

Authentication using ORBASEC SL2-GSSKRB

pal’ s key after deriving it from the password. This mechanism alleviates the need to
expose a principal’ s key to the file system.

If the “keytab” property is not defined, the system default file is assumed. On Unix
systems, the default is found first by the value of the “KRB5_KTNAME’ environ-
ment variable, the file specified in the specified Kerberos Configuration file (e.g. /
et ¢/ kr b5. conf), in the following manner:

[1ibdefaul ts]
defaul t _keytab_name =

Lastly, itisdefinedtobe“/ et c/ kr b5. keyt ab” if no entry is found.
On NT, the default keytab file is found the same way through the specified Ker-

beros Configuration File. However, if no entry is found it is assumed to be
“kr b5. keyt ab” inyour current working directory.

Note — Using a MEMORY type keytab is the preferred mechanism for servers.

Note — It has been discovered that if your Kerberos Administrator adds your
principal’s name to a keytab file, at least in the MIT system, its key is
randomized and the password is effectively changed to some unknown value.

lifetime
This property field specifies the lifetime of the credentials. Its valueis of the forma-
tion of an integer immediately suffixed with one of “s”, “ni’, “h”, or “d”. The suf-

fixes each specify seconds, minutes, hours, or days respectively. Absence of the
lifetime field defaults to the system default.

proxiable

This property field specifies that the credentials will be proxiable. This statement
means that your credentials are able to be forwarded to the target on an invocation
for the target to create authentication tickets in your behalf.

Thefield svalueis of the form of true or false. Absence of the proxiable field
defaults to false. Please see the Internet RFC 1510[1] for an explanation of the
details.

ORBASEC 9.2 87

Principal Authenticator

forwardable

This property field specifies that the credentials will be forwardable. This means
that your credentials are able to be forwarded to the target on an invocation for the
target to create authentication tickets in your behalf. Its value is of the form of true
or false. Absence of thisfield defaultstofalse. Please see the Internet RFC 1510[1]
for an explanation of the details.

renewabldife

This property field has the same format as thelifetimefield. It specifies the amount
of time the credential s can be renewed. Absence of the renewablelife field defaults
the renewable life to the system default.

Session Credentials Example

For use as a pure client, where an application uses the ORB, but does not initialize
the BOA, or need to give up references to internal objects (callbacks), the default
Kerberos credentials can be used. A default credentials fileis set up when a user
initializes his/her Kerberos credentials cache file by using the Kerberos “kinit” pro-
gram. This program initializes your credentials cache file by asking for your Ker-
beros principal name and password. The credentials cache file is known as the
user’'s Kerberos “session” cache, and it is usually set up when the user islogged in,
and destroyed when the user logs out.

In ORBASEC SL2, to create a Credentials object using the Kerberos “ session” cre-
dentials cache, the following example illustrates the method by which that is done.

i mport org.ong. Security.*;
i mport org.ong. SecuritylLevel 2.*;

Princi pal Aut henticator pa = // get the PA from Current

Credenti al sHol der credsh = new Credenti al sHol der () ;
OpaqueHol der contdata = new OpaqueHol der () ;
OpaqueHol der aut hspecdata = new OpaqueHodl er ();

Aut henti cati onSt at us st at ;

stat = pa.authenticate(

0, /] auth nethod
“ Ker beros”, /] mechani sm
new byt e[0], /] security_nane

88

ORBAsEC 9.2

Authentication using ORBASEC SL2-SSL

new byt e[0], /1 auth_data

new SecAttribute[0], /1 privileges
credsh, // out Credentials
cont dat a,

aut hspecdat a

)

Note — Session Credentials cannot be used in a CORBA server to accept
CORBA requests with kerberos, because the principal’s key cannot be retrieved.

Authentication using ORBAsSEC SL.2-SS

This section explains the mechanisms, security name, and authentication data for-
mats for using the Principal Authenticator with the ORBASEC SL2-SSL distribu-
tion. This distribution gives you the ability to use standard Secure Socket Layer
Version 3.0. It usesthe iSaSiLk toolkit from IAIK.

M echanism

If you have the ORBASeC SL2-SSL distribution, you can specify one or more of
many mechanisms (cipher suites) available for SSL. A mechanism isastring repre-
sentation with the security mechanism name, plus cipher suites separated by com-
mas. The IAIK toolkit has support for the following cipher suites:

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4 _40_MD5
SSL_RSA_WITH_RC4 MD5

SSL_RSA_WITH_RC4 SHA
SSL_RSA_EXPORT_WITH_RC2 CBC_40_MD5
SSL_RSA_WITH_IDEA_CBC_SHA
SSL_RSA_WITH_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_DES CBC_SHA
SSL_RSA_WITH_3DES EDE_CBC_SHA
SSL_DH_DSS EXPORT_WITH_DES40_CBC_SHA
SSL_DH_DSS WITH_DES CBC_SHA
SSL_DH_DSS WITH_3DES CBC_SHA
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_RSA_WITH_DES CBC_SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS WITH_DES CBC_SHA

ORBASEC SL.2 89

Principal Authenticator

SSL_DHE_DSS WITH_3DES EDE_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_DES CBC_SHA
SSL_DHE_RSA_WITH_3DES EDE_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon WITH_RC4_MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

The above names are the symbolic names for the cipher suites. An example of
mechanism name to use would be:

“SSL_|AIK,SSL_DH_DSA_WITH_DES _CBC_SHA”

The above mechanism name specifies the SSL mechanism from the IAIK provider
(currently the only one). Similarly, the string:

“SSL,SSL_DH_DSA_WITH_DES_CBC_SHA”

names the same cipher suite from the default SSL provider, which in this caseis
IAIK.

Multiple cipher suites can be used with SSL. However, care should be taken when
selecting a mechanism with multiple cipher suites. Some cipher suites have differ-
ent credentials properties than others. Some only can be used with certain certifi-
cates. Say, your credentials consists of a DSA certificate, you cannot use RSA
signed cipher suites. Rather than throw an exception if one cipher suite cannot be
used, the SSL_IAIK Vault, which lies in the internals of the system, will eliminate
any cipher suites from the list that cannot be used. However, if there is no common
cipher suites that are common with the certificates given to authenticate the princi-
pal and the ones specified with the mechanism, then a CORBA::BAD_PARAM
exception is raised.

Also, some cipher suites have different secure association properties than others.
Some cipher suites only provide authentication and integrity, but not confidential-
ity. Others cannot authenticate a client. If a set of ciphers suites specified have dif-
ferent sets of association capabilities only the common association capabilities are
set in the accepting_options_supported and the invocation_options _supported
attributes of the Credentials object. Such mixing the “anon” cipher suites with and
“DSS" cipher suites will not get you the ability to authenticate the client, i.e. the

90

ORBAsEC 9.2

Authentication using ORBASEC SL2-SSL

EstablishTrustInClient Association Option will not be set in the created Creden-
tials object’s accepting_options_supported attribute.

If you have the ORBASEC SL2-SSL distribution, the Cur-
rent::get_supported_mechanisms operation will return an array of Secu-
rity::M echandOptions structures, each of which will list an “SSL_IAIK”
mechanism with cipher suites that have exactly the same common association
options that are supported for those cipher suites.

Also, a utility class called M echUtil in the orbasec.corba package contains static
string definitions of SSL mechanisms with cipher suites grouped in a comprehen-
sive fashion. The names are somewhat self explanatory. However, please check the
JavaDoc built documentation for the exact details. The mechanism strings defined
in orbasec.corba.M echUtil class are defined by the static constants:

e MechUtil.SSL_NON_ANON_MECH

e MechUtil.SSL_NON ANON EXPORT MECH

e MechUtil.SSL_NON_ANON_NON_EXPORT MECH
e MechUtil.SSL_DH ANON MECH

e MechUtil.SSL_DH ANON_EXPORT MECH

e MechUtil.SSL_DH ANON_NON_EXPORT MECH
e MechUtil.SSL_DH DSS_MECH

e MechUtil.SSL_DH DSS_EXPORT MECH

e MechUtil.SSL_DH DSS_NON_EXPORT MECH
e MechUtil.SSL_DHE DSS_MECH

e MechUtil.SSL_DHE DSS_EXPORT MECH

e MechUtil.SSL_DHE DSS_NON_EXPORT MECH
e MechUtil.SSL_DH RSA MECH

e MechUtil.SSL_DH RSA EXPORT MECH

e MechUtil.SSL_DH RSA NON_EXPORT MECH
e MechUtil.SSL_DHE_RSA MECH

e MechUtil.SSL_DHE _RSA EXPORT MECH

e MechUtil.SSL_DHE_RSA NON_EXPORT MECH
e MechUtil.SSL_RSA MECH

e MechUtil.SSL_RSA EXPORT MECH

e MechUtil.SSL_RSA NON_EXPORT MECH

Note — In order to use any cipher suites with RSA or RC4 in them, you are
required to obtain alicense from RSA, Inc. The ORBASEC SL2-SSL distribution
comes with RSA disabled. In order to get ORBASEC SL2-SSL to use the RSA

ORBASEC 9.2 91

Principal Authenticator

cipher suites, you need to obtain from Adiron a special on-site consulting
agreement to get RSA cipher suites enabled. Adiron can only do this after proof
that a license from RSA has been granted.

Security Name

The security_name parameter must be in a orbasec.corba.Opaque byte encoding
of a DirectoryName. Thisrequires creating a DN. Please see your 1AIK toolkit for
an example of how to construct a DN:

i mport orbasec. corba. Opaque;

iai k.asnl.structures.Nane ny_nane = //..... create a DN
byte[] security_nane =
Opaque. encodeDi r ect or yNane(ny_nane) . get Encodi ng() ;

If the value of the security_name parameter has the following value:

* new byt e[0]

the principal’s DN is retrieved from the certificate chain that is specified in the cer-
tificate file, which is specified in the authentication data. If the value of the
security_name parameter is nonempty it is compared with the name in the certifi-
cate. If they do not match, a CORBA::BAD_PARAM exception is raised.

The most common use would be to leave the security _name parameter empty and
let the principal’s DN come from the certificate.

Authentication Data

The authentication data is the value of the auth_data parameter for the authenti-
cate operation. The format for this parameter is the standard Java string to byte
encoding of a Java String containing name-value pairsin the form for the
java.util.Properties class. This format requires each entry to have the form
“name=value” separated by newline characters.

For example, acall in Javato create credentials for a principal with the DN of
“ C=US, O=Adiron, CN=Bart” acall to the Principal Authenticator object would
be:

92

ORBAsEC 9.2

Authentication using ORBASEC SL2-SSL

i mport
i mport
i mport
i mport

org.ong. Security.*;
org.ong. SecuritylLevel 2. *;
or basec. cor ba. Opaque;

or basec. corba. MechUti | ;

Princi pal Aut henticator pa = // get the PA from Current

Credenti al sHol der credh = new Credenti al sHol der ();
OpaqueHol der contdata = new OpaqueHol der () ;
OpaqueHol der aut hspecdata = new OpaqueHodl er ();

Aut henti cati onSt at us st at ;

stat = pa.authenticate(

)

0,

MechUtil.SSL DH DSS MECH, // nechani sm
new byte[0], /] security_name
(“certchai n=FI LE: bart. dsa\n” +

“passwor d=\"MyPassword\ "\ n"). get Bytes(),
new SecAttribute[0],
credh,
cont dat a,
aut hspecdat a

The names of the properties that are valid for the authentication data are described

below.

certchain

This field names the location of X.509 Certificate chain and private key that you
want to use. The certchain specification has atwo part format:

<type>:<cert chain name>

Currently, the only available typeis“FI LE". The“FI LE” type names afile on the
local system. The file must contain a certificate chain and an encrypted private key,
in either DER or PEM format. Please see iaik.utils.K eyAndCertificate from your
IAIK SSL and JCE toolkits for details.

If the certchain specification is empty, the Credentials object can only be used to
set up anonymous communication.

ORBASEC SL.2 93

Principal Authenticator

password

This property field must contain the password for the private key. Unfortunately,
we have avery minor character translator, so special characters like control charac-
ters, tabs, backspaces, and such are not representable.

Example of a creation of an Anonymous SSL Credentials Object

We have shown an example above for authenticating a principal using his certifi-
cate and encrypted private key file. Below, the following shows an example should
one want to create an anonymous SSL Credentials object.

i mport org.ong. Security.*;

i mport org.ong. SecuritylLevel 2.*;
i mport orbasec. corba. MechUtil;

Princi pal Aut henticator pa = // get the PA from Current

Credenti al sHol der credsh = new Credenti al sHol der () ;
OpaqueHol der contdata = new OpaqueHol der () ;
OpaqueHol der aut hspecdata = new OpaqueHodl er ();

Aut henti cati onSt at us st at ;

stat = pa.authenticate(

0, /] auth nethod
MechUtil.SSL_ANON MECH, // mechani sm

new byt e[0], /] security_nane
new byt e[0], /1 auth_data

new SecAttribute[0], /1 privileges
credsh, // out Credentials
cont dat a,

aut hspecdat a

)

An anonymous SSL Credentials object can be used for private and integrity based
communication using Diffe-Hillman key exchange cipher suites, i.e. the cipher
suitesthat arelisted inthe MechUt i | . SSL_ANON_MECHSstring definition.

94 ORBASEC 9.2

Authentication of IIOP Credentials

Authentication of I10OP Credentials

This section explains the process for creating an I11OP Credentials object. [1OP Cre-
dentials are used to identify and set up communication with standard CORBA serv-
ers and clients within ORBAsec SL2. ORBAsec SL2, by default, does not allow
any insecure communication. To do so, would open up a security hole. However,
thereis aneed for a controlled secure application to be able to communicate with
insecure, standard I1OP clients and servers. An application may not communicate
with an insecure, standard I10OP client or server unless it has created 110P creden-
tials, in the following maner.

M echanism
The mechanism must be specified as “11OP".

Security Name

The security name must be specified as:

* new byt e[0]

Authentication Data

The authenitication data can have just one optional value, “enable_server”.

enable server

If the“enabl e_server” propertyissetto“t r ue”, it alows insecure 11OP con-
nections to come into your application. If this property is false, the application may
only iniitate insecure |1OP connections as a client.

Example of a creation of an Anonymous SSL Credentials Object

We have shown an example above for authenticating a principal using his certifi-
cate and encrypted private key file. Below, the following shows an example should
one want to create an anonymous SSL Credentials object.

i mport org.ong. Security.*;
i mport org.ong. SecuritylLevel 2.*;

ORBASEC SL.2 95

Principal Authenticator

Princi pal Aut henticator pa = // get the PA from Current

Credenti al sHol der credsh = new Credenti al sHol der () ;

OpaqueHol der
OpaqueHol der

contdata = new OpaqueHol der () ;
aut hspecdata = new OpaqueHodl er ();

Aut henti cati onSt at us st at ;

stat = pa.authenticate(

)

0, /] auth nethod
“110P", // mechani sm
new byt e[0], /] security_nane

(“enabl e_server=true\n”).getBytes(),
/] auth_data

new SecAttribute[0], /1 privileges
credsh, // out Credentials
cont dat a,

aut hspecdat a

An “anonymous” |10OP Credentials object can be used for insecure communication

as both aclient and a

server. The security attributes of the |1OP Credentials object

will tell of the local hostname and the local TCP/IP port number (if
“enabl e_server” issetto“t r ue”) given to the Credentials.

96

ORBAsEC 9.2

CHAPTER 6

Credentials

What are Credential s?

Credentials are the application programmer’ s interface to querying of security
related attributes belonging to the application itself and of any clients making invo-
cations. Also, one may examine the Credentials of a server. Credentials comein
three flavors, “own” credentials, “received”, and “target” credentials.

The “own” type of credentials represent the application’s credentials from which a
special authentication procedure had to be performed. Own credentials are created
by making arequest on the Principal Authenticator object that resides as an
attribute on the Current object. The principal authenticator goes through the neces-
sary procedures to authenticate the intended security name under the intended secu-
rity mechanism and requested privileges to produce a Cr edentials object that
represents a principal. Own credentials are specific to the capsule, (i.e. they are not
thread specific).

The “received” type of credentials are only valid in the context of servicing a
request as a server object. They represent the establishment of a security context
between the client and the target. The target object can query the “received” cre-
dentials object to identify the principal making the request, and query any special
privileges that the principal may have acquired. Received credentials are specific to
the execution context in servicing arequest, (i.e. they are thread specific).

ORBASEC 9.2 97

Credentials

The “target” type of credentials are the credentials of an object behind the object
reference. It may be desirable to examine that an object has the right credentials
before you start making requests on it. These type of credentials are for examina-
tion only. They cannot be used to make invocations like “own” and “received” cre-
dentials can

FIGURE 1. The Credentials | nterfaces.

Credentials

ReceivedCredentials TargetCredentials

The next two sections explain the Credentials interface, the ReceivedCredentials
interface, and the TargetCredentials interface. The Credentialsinterfaceisthe
base interface and is used to represent “own” credentials. A ReceivedCredentials
object represents the security context between the client and target from the target’s
point of view. A TargetCredentials object represents the security context between
the client and target from the client’s point of view. Each of the ReceivedCreden-
tials and TargetCredentials objects hold more information than an own creden-
tials object.

Credentials

The Credentialsinterfaceis the base type for own credentials, received credentials,
and target credentials, own credentials being the Credentials interface itself.

The Credentials interface holds information pertaining to the authenticated iden-
tity of the subject of the credentials, i.e. the principal. Credentials are a Security
Level 2 module interface. However, the implementation is dependent on the under-
lying security mechanisms that are installed. The Vault, a Security Replaceable

98

ORBAsEC 9.2

Credentials

object, creates Credentials objects. A Credentials object is specific to the security
mechanisms supported by that VVault. The Credentials interface has the following
definition:

/1 1DL
interface Credentials { // Locality Constrained
Credentials copy();

void destroy():

readonly attribute Security:: CredentialsType
credenti als_t ype;

readonly attribute Security:: AuthenticationState
aut hentication_state;

readonly attribute Security::Mechani smlype nechani sm

attribute Security::AssociationOptions
accepting_options_supported;
attribute Security::AssociationOptions
accepting_options_required;
attribute Security::AssociationOptions
i nvocation_opti ons_support ed;
attribute Security::AssociationOptions
i nvocati on_options_required;
bool ean get _security_feature(
in Security:: Comuni cationDirection di rection,
in Security::SecurityFeature feature

)

ORBASEC SL.2 99

Credentials

bool ean set_attributes (
in Security::Attributelist requested_attributes,
out Security::AttributeList actual _attributes

)i

Security::Attributelist get_attributes(
in Security::AttributeTypelLi st attributes

K

bool ean is_valid (
out Security::UcT expiry_tine

)i

bool ean refresh(
in Security::Opaque refresh_data

K
b

The attributes and operations of the Credentials object’ sinterface are:

copy

This operation is produces a“ deep” copy of the Credentials object. There are
semantic issues with what this operation means in the context of the destroy opera-
tion. These issues have not yet been resolved. Guidelines for the implementation of
this method are presenting in the section on “The Vault” on page 144.

The copy operation’sinterface is below:

/1 1DL
Credential s copy();

/'l Java
public org.ong. SecuritylLevel 2. Credentials copy();

destroy
This operation is destroys the copy of the Credentials object.

The destroy operation’s interface is below:

100

ORBAsEC 9.2

Credentials

/1 1DL
void destroy();

/'l Java
public void destroy();

credentials type

This attribute contains the value discerning whether the credentials are of the

own”, “received”, or “target” type.
/1 1DL
readonly attribute Security::Credential sType
credenti als_t ype;
/'l Java

public org.ong. Security. Credential sType
credential s_type();

This operation returns SecOwnCredentialsif the Credentialsis of the “own” cre-
dentialstype. It returns SecReceivedCredentialsif the Credentials object is of the
“received” credentials type and can be narrowed to a ReceivedCredentials object.
It returns SecTargetCredentialsif the Credentials object is of the “target” creden-
tials type and can be narrowed to a TargetCredentials object.

authentication_state

Since Credentials objects may take several operations to fully become initialized
this read-only attributes serves as an indication of the authentication state, which is
the same as the result returned from Principal Authenticator::authenticate and
PrincipalAuthenticator::continue_authentication operations.

/1 1DL
readonly attribute Security::AuthenticationStatus
aut hentication_state;
/'l Java
public org.ong. Security. Aut henti cati onstat us
aut hentication_state();

This attribute has the value of SecAuthSuccess if the Credentials are fully initial-
ized. It returns SecAuthContinueif subsequent calls to Principal Authentica-
tor::continue_authentication are needed. It returns SecAuthFailureif the

ORBASEC 9.2 101

Credentials

continuing authentication of the Credentialshasfailed. It returns SecAuthExpired
if the continuing authentication of the Credentialsis no longer viable.

In both the ORBASEC SL2-GSSKRB and ORBASEC SL2-SSL distributions, the
default authentication method is a one step process, and therefore the Principal Au-
thenticator object only creates Credentials with SecAuthSuccess for an authenti-
cation state. Should the call to PrincipalAuthenticator::authenticate fail, a
Credentials object is not created.

mechanism

This read only attribute specifies the symbolic name security mechanism and the
symbolic name of the cipher suites that the credentials support.

/1 1DL
readonly attribute Security::Mechani smlype nechani sm

/'l Java
public String mechanism();

Please see the section on “ Mechanism” on page 89. for detail.

accepting_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is
placed in the “target_supports’ field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
raisesa CORBA::BAD_PARAM exception.

/1 1DL

attribute Security::AssociationOptions
accepting_options_supported;

/'l Java

public short accepting_options_supported();

public void accepting_options_supproted(short opts);

Accepting options supported must be non-zero to be used with SecL ev2::Cur-
rent::set_accepting_credentials operation. The absolute minimum in security

102

ORBAsEC 9.2

Credentials

terms that any credentials object can have in supported options to establish an asso-
ciationis:

NoProtection + NoDelegation

Note — Only “own” credentials will have accepting options that are not zero.
This attribute having a value of zero simply states that this credentials object
cannot be used to establish secure associations on the server side. A “received”
credentials object will have accepting options of zero. A “target” credentials
object will have a value of zero.

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to less than the accepting_options_required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with their maximum supported options set in this
attribute.

In the ORBA seC SL2-GSSKRB distribution Kerberos credentials initially support
the following association options on the server side:

NoProtection, Integrity, Confidentiality, Detect Replay, EstablishTrustInClient,
EstablishTrustinTarget,NoDel egation,SimpleDel egation.

The user may not set them less than NoProtection, NoDelegation.

Inthe ORBASEC SL2-SSL distribution, the options supported for SSL Credentials
objects depend on the cipher suites that were specified in the Principal Authentica-
tor::authenticate operation. Most cipher suites have the following options set:

NoProtection, Integrity, Confidentiality, Detect Replay, DetectMisordering, Estab-
lishTrustInClient, EstablishTrustlnTarget,NoDelegation

However, anonymous based cipher suites |eave out EstablishTrustInClient and
EstablishTrustInTarget. Some DH cipher suites do not encrypt, and therefore leave
out Confidentiality. The listed according to the SSL mechanism defined in
orbasec.corba.M echUtil are as follows:

ORBASEC SL.2 103

Credentials

M echanism Association Options Supported

MechUtil.SSL_DH_ANON_MECH Integrity, DetectReplay, DetectMisordering, NoDelega-
tion

MechUtil.SSL_DH_DSS MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustinTarget,NoDelegation

MechUtil.SSL_DH_RSA_MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustinTarget,NoDelegation

MechUtil.SSL_DHE_DSS_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-

dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_DHE_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation
MechUtil.SSL_NON_ANON_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

TABLE 4. SSL Cipher Suite Accepting Options Supported

accepting_options required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is
placed in the “target_requires’ field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
raisesaCORBA::BAD_PARAM exception.

/1 1DL

attribute Security::AssociationOptions
accepting_options_required;

/'l Java

public short accepting_options_required();

public void accepting_options_required(short opts);

Accepting options required may be zero.

104

ORBAsEC 9.2

Credentials

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to more than the accepting_options_supported attribute. If one must augment the
options that are required, one must set the supported options first.

In the ORBA SeC SL-GSSKRB distribution, Kerberos credentials initially have
reguired options of zero. However, certain combinations that do not make sense are
illegal to be set, such as, you cannot set NoProtection with any of Integrity, Confi-
dentiality, or Detect Replay. Likewise, you cannot set both NoDelegation and Sim-
pleDelegation to be required.

In the ORBASeC SL2-SSL distribution, the options that can be set to be required
follow the same restrictions.

invocation_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
raisesa CORBA::BAD_PARAM exception.

/1 1DL
attribute Security::AssociationOptions
i nvocati on_opti ons_support ed;
/'l Java
public short invocation_options_supported();
public void invocati on_options_supported(short opts);

Invocation options supported must be non-zero to be used with an

SecurityL evel2::1nvocationCredentialsPolicy. The absolute minimum in security
terms that any credentials object can have in supported options to establish an asso-
ciationis:

NoProtection + NoDelegation

Note — In the case of delegation, “received” credentials may have supported
invocation options. Having a value of zero simply states that this credentials
object cannot be used to establish secure associations on the client side. A
“target” credentials object will have a value of zero.

ORBASEC SL.2 105

Credentials

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to less than the invocation_options _required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with their maximum supported options set in this
attribute.

In the ORBA seC SL2-GSSKRB distribution Kerberos credentials initially support
the following association options on the server side:

NoProtection, Integrity, Confidentiality, Detect Replay, EstablishTrustInClient,
EstablishTrustinTarget,NoDel egation,SimpleDel egation.

The user may not set them less than NoProtection, NoDelegation.

Inthe ORBASEC SL2-SSL distribution, the options supported for SSL Credentials
objects depends on the cipher suites that were specified in the Principal Authenti-
cator::authenticate operation. Most cipher suites have this set:

NoProtection, Integrity, Confidentiality, Detect Replay, DetectMisordering, Estab-
lishTrustInClient, EstablishTrustlnTarget,NoDelegation

However, anonymous based cipher suites |eave out EstablishTrustInClient and
EstablishTrustinTarget. Some DH cipher suites do not encrypt, and therefore they
leave out Confidentiality. The list according to the SSL mechanism defined in
orbasec.corba.M echUtil class are as follows:

M echanism Association Options Supported
MechUtil.SSL_DH_ANON_MECH Integrity, DetectReplay, DetectMisordering, NoDelega-
tion
MechUtil.SSL_DH_DSS MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustinTarget,NoDelegation
MechUtil.SSL_DH_RSA_MECH Integrity, DetectReplay, DetectMisordering, Establish-
TrustInClient, EstablishTrustinTarget,NoDelegation

TABLE 5. SSL Cipher Suite Invocation Options Supported

106 ORBASEC SL.2

Credentials

M echanism Association Options Supported

MechUtil.SSL_DHE_DSS_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_DHE_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_RSA_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

MechUtil.SSL_NON_ANON_MECH Integrity, Confidentiality, DetectReplay, DetectMisor-
dering, EstablishTrustInClient, EstablishTrustInTar-
get,NoDelegation

TABLE 5. SSL Cipher Suite Invocation Options Supported

invocation_options required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
raisesaCORBA::BAD_PARAM exception.

/1 1DL
attribute Security::AssociationOptions
i nvocati on_options_required;
/'l Java
public short invocation_options_required();
public void invocation_options_required(short opts);

Invocation options required may be zero.

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to more than the invocation_options_supported attribute. If one must augment
options that are required, one must set the supported options first.

In the ORBA SeC SL-GSSKRB distribution, Kerberos credentials initially have
reguired options of zero. However, certain combinations that do not make sense are
illegal to be set, such as, you cannot set NoProtection with any of Integrity, Confi-

ORBASEC 9.2 107

Credentials

dentiality, or Detect Replay. Likewise, you cannot set both NoDelegation and Sim-
pleDelegation to be required.

In the ORBASeC SL2-SSL distribution, the options that can be set to be required
follow the same restrictions.

get_security feature
This operation returns a boolean that represent the feature state of the credentials.
/1 1DL

bool ean get_security_feature(
in Security::ComunicationDirection direction

in Security:: SecurityFeature feature
)
/'l Java
public bool ean get_security_features(

i nt di recti on,

org.ong. Security. SecurityFeature feature

)

set_attributes

This operation is intended for use in attribute management of the particular creden-
tials. Its meaning is defined to diminish attributes of the credentials in the context
of the mechanism’s ability. It may be desirable to diminish the set of attributes that
a Credential s object contains. No all mechanisms can support this operation.
Depending on the mechanism, some attributes may not be removed.

The set_attributes operation’s interface is below:

/1 1DL

bool ean set _attri butes(
in Security::Attributelist requested_attributes,
out Security::Attributelist actual _attributes

)

/'l Java
public bool ean set_attributes(
org.ong. Security. SecAttribute[] requestedattributes,

org.ong. Security. AttributeLi st Hol der actual attributes
)

108

ORBAsEC 9.2

Credentials

The value given to therequested_attributes parameter must be a subset of the list
of attributes returned from the get_attributes operation. If it contains an attribute
not from that the list of attributes from the get_attributes operation, a
CORBA::BAD_PARAM exceptionisraised. The value returned in the
actual_attributes parameter is the resultant list of all the attributes the Credentials
object now contains. The return value returns true if the operation was successful
and the actual attributes are indeed the requested attributes. If return value of the
operation is false (i.e. no exception is raised), the operation is considered success-
ful, however, some attributes in the Credentials object that were not given to the
requested_attributes parameter were not removed.

Note — This operation is not effectively supported by the ORBASeC SL2-
GSSKRB or ORBASEC SL2-SSL distributions as the implementations of the
Kerberos and SSL protocols have minimal attributes that cannot be removed.

get_attributes

This operation returns an unordered sequence of security attributes that belong to
the credentials.

/1 1DL
Security::AttributelList get_attributes(
in Security::AttributeTypeli st attributes
)
/'l Java

public org.ong. Security. SecAttribute[] get_attributes(
org.ong. Security. AttributeType[] attributes

)

Security attributes come in many types and values. Please see the section on Secu-
rity Attributes for further details.

Although there is a standard for the attribute types and the values to which they
refer, no standardization effort is underway to define the format of the values of the
particular attributes.

is valid

This operation returns a boolean value indicating whether the credentials are till
valid. The output parameter returns the time of expiration.

ORBASEC SL.2 109

Credentials

/1 1DL
bool ean is_vali d(
out Security::UcT expiry_tine

)

/'l Java
public bool ean is_valid(
org.ong. Ti meBase. Ut cTHol der expiry_tinme

)

refresh

This operation is intended to renew a credentials before it may expire. It returns a
boolean value indicating the success of the renewal .

/1 1DL
bool ean refresh(
in Security::Opaque refresh_data

)

/'l Java
public bool ean refresh(byte[] refresh_data);

In the ORBA seC SL2-GSSKRB distribution, this operation is supported for Ker-
beros credentials of the “own” type only. If invoked on Credentials of the
“received” or “target” typeit raisesa CORBA::BAD_OPERATION exception. If
invoked on Credentials of the “own” type, it returns true if the operation succeeds,
however, it raises an exception with an informative error message if the operation
fails.

Note — For the current version of the GSS-Kerberos mechanism credential's, the
refresh_data is required to be octet sequence of zero length.

In the ORBA SeC SL2-SSL distribution, this operation is not supported for SSL cre-
dentials. If invoked it raisesa CORBA::BAD_OPERATION exception.

110

ORBAsEC 9.2

Received Credentials

Received Credentials

On the target side a ReceivedCredentials object represents a secure association
between the client and target. Received credentials must have more information
than “own” credentials.

The interface inherits from the Credentials interface, and in the case of using the
received credentials for invocations, the invocation features, operations, and
attributes of the Credentials object have the same meaning. Of course, the
credentials_type attributeis set to SecReceivedCredentials. Itsinterface is
defined below:

interface ReceivedCredentials : Credentials {
/1 Locality Constrained

readonly attribute Credentials accepting_credenti al s;
readonly attribute Security::AssociationOptions

associ ati on_options_used;
readonly attribute Security::DelgationState

del egati on_st ate;
readonly attribute Security::Del egati onMode

del egat i on_node;

b

accepting_credentials

Thisread-only attribute is the Credentials objects used to establish the secure asso-
ciation with the client.

/1 1DL
readonly attribute Credential s accepting_credentials

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s
accepting_credential s();

association_options _used

This read-only attribute states the association options that were used to make the
association with the client using the accepting_credentials. Thisvalue should be a
value somewhere between the accepting_options required and the
accepting_options_supported of the accepting_credentials.

ORBASEC 9.2 111

Credentials

// DL
readonly attri bute Security:: AssociationOptions
associ ati on_options_used;
/'l Java
public short association_options_used();

delegation_state

This read-only attribute is the value of the delegation state of the client’s own cre-
dentials. It states whether the immediate invoking principal of the operation is the
initiator or a delegate of some other principal .

/1 1DL
readonly attribute Security::Del egati onState del egation_state

/'l Java
public org.ong. Security. Del egationState
del egation_state();

Note — For some security mechanisms, this information is indeterminable. When
this information is indeterminable, impersonation i s assumed; and therefore, this
attribute has the value of Seclnitiator.

In the ORBASEC SL2-GSSKRB distribution, only unrestricted or simple delegation
is supported for Kerberos credentials. Therefore, Kerberos credentials that are
received have the value of this attribute set to Seclnitiator, since the Kerberos pro-
tocol cannot determine the delegation state of the client.

In the ORBASEC SL2-SSL distribution, no form of delegation is supported so this
attribute always has the value of Seclnitiator.

delegation_mode

This read-only attribute states the delegation mode of the received credentials. It
stipulates that the credentials are in the a del egation mode of:

* No delegation mode (SecDelM odeNoDelegation), where they can not be used
for invocations.

* Simple delegation mode (SecDelM odeSimpleDegation), where the credentials
can be indiscriminately used on the client’s behalf.

112

ORBAsEC 9.2

Target Credentials

* Composite delegation (SecDelM odeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as atrace, a combination of priv-
ileges, etc.

/1 1DL
readonly attribute Security::Del egati onMode del egati on_node;

/'l Java
public org.ong. Security. Del egati onMbde
del egati on_node() ;

In the ORBA sSeC SL2-GSSKRB distribution, Kerberos credentials support no dele-
gation and simple delegation, but not composite delegation. In the ORBA SeC SL2-
SSL distribution, SSL credentials do not support any form of delegation.

Target Credentials

On the client side a TargetCredentials object represents a secure association
between the client and target. Target credentials must have more information than
“own” credentials.

Theinterface inherits from the Credentials interface. The TargetCredentials
object cannot be used for invocations. The credentials type attributeis set to Sec-
TargetCredentials. Itsinterface is defined below:

interface TargetCredentials : Credentials {

/1 Locality Constrained
readonly attribute Credentials initiating_credentials;
readonly attribute Security::AssociationOptions

associ ati on_options_used;

b

initiating_credentials

Thisread-only attribute is the Credentials objects used to establish the secure asso-
ciation with the server.

ORBASEC SL.2 113

Credentials

/1 1DL
readonly attribute Credentials initiating_credentials;

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s
initiating_credentials();

association_options_used

This read-only attribute states the association options that were used to make the
association with the target using the initiating_credentials. This value should be a
value somewhere between the accepting_options required and the
accepting_options_supported of the initiating_credentials.

Security Attributes of Credentials

Security attributes are used to represent the characteristics of the principal behind
the Credentials object. They are defined by the following IDL.

/1 1DL

struct ExtensibleFamly {
unsi gned short famly_definer;
unsi gned short famly;

b
t ypedef unsigned |ong SecurityAttributeType;
struct AttributeType {

Ext ensi bl eFami |y attribute_famly;
SecurityAttributeType attribute_type;

b

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;
Opaque val ue;

b

Security attributes come in many types and have many different values. Thereis
not yet a clear standard for defining the types and values of security attributes. The

114

ORBAsEC 9.2

Security Attributes of Credentials

OMG has defined several attribute type values, but does not yet define there value
types. However, a standard mechanism for defining security attributes (i.e. their
families, types, and values) exists.

CORBA Family of Security Attributes

The OMG defines security attributes by the AttributeType structure. The Attribute-
Type structure is parameterized with a family type. That family type is defined by
an authority. The family_definer field of the ExtensibleFamily structure indicates
the authority that defined the attribute. Thistag is registered with the OMG. The
OMG reserves a family definer value of zero for CORBA.:

TABLE 6. CORBA Family Definer

CORBA Family Definer
0

CORBA currently defines two families of attributes.

TABLE 7. CORBA Families

CORBA

Family Description
0 Identity

1 Privileges

CORBA also defines a number of constants for the attribute_type field of the
AttributeType structure. These constants are defined in the Security module of the
CORBA Security Specification and are not listed here. Unfortunately there are no
standards for the defining_authority and valuefields for attributes of these types.

Adiron Family of Security Attributes

Adiron uses the OMG mechanism for defining its own security attributes for
ORBASEC SL2. This procedure involves creating an families of attributes. A fam-

ORBASEC 9.2 115

Credentials

ily is defined by an authority. In this case, Adiron is the authority. Adiron registers

afamily definer tag by the OMG. It is below:

TABLE 8. Adiron Family Definer

Adiron Family Definer

0xA11C

AttributeType

ORBASEC SL2 uses several of its own types. These types are in families defined by
Adiron’s family definer, OxA11C (41244 decimal). Adiron currently defines the

following attribute families:

TABLE 9. Adiron Families

Family
Definer Family Description
0 Miscellaneous
0xA11C 1 Internet
2 Identity

Adiron also defines the following attribute types.

TABLE 10. Adiron Security Attribute Types

Security
Adiron Attribute
Family Type Description
0 0 Security Mechanism of Credentials
1 Local Host Address
1 2 Local Port Number
3 Peer Host Address
4 Peer Port Number
2 1 Subject Identifier
2 Issuer Identifier

Defining Authority

116 ORBASEC 9.2

Security Attributes of Credentials

Adiron uses one value for the defining_authority attribute for all its attributes. It is
an Opaque encoding (See chapter on “ Opaque Encodings’ on page 185) of the

printable string “ Adiron” .

TABLE 11. Adiron Defining Authority

Adiron Defining Authority Value

Opaque. encodePri nt abl eStri ng(“Adi ron”). get Encodi ng()

Value

The values of the Adiron security attributes use the Opaque encoding scheme (See
chapter on “ Opague Encodings’ on page 185).

TABLE 12. Adiron Attribute Values

Attribute Type

Value Description

Security Mechanism Type

This value is an Opague encoding of a PrintableString.
The string that is encoded is the mechanism type of the
credentials.

Local Host Address

Thisvalueis an Opague encoding of an IPAddress (octet
sequence). This IP address of the local machine.

Local Port Number

This value is an Opaque encoding of an |PPortNumber
(integer). This IP port number is that of the local
machine.

Peer Host Address

Thisvalueis an Opague encoding of an IPAddress (octet
sequence). This IP addressis that of the remote host.
This attribute only exists in ReceivedCredentials or Tar-
getCredentials.

Peer Port Number

This value is an Opaque encoding of an | PPortNumber
(integer). This IP port number is that of the remote
machine. This attribute only exists in ReceivedCreden-
tials or TargetCredentials.

Subject Identity

This value is an Opaque encoding of a value specific to
the mechanism (see below). It is the identify attribute of
the principal.

Issuer Identity This value is an Opaque encoding of a value specific to
the mechanism (see below). It is the identity attribute of
the principal that vouches for the subject principal.

ORBAsEC 9.2 117

Credentials

If you have the ORBASEC SL2-GSSKRB distribution, the value field of the Sub-
ject Identity and the Issuer Identity attributes contain the Opaque encoding of a
KerberosName that is the principal’ s name, such as “bart@MY REALM.COM”.
Thedefining_authority field contains the name of the ticket granting ticket service
for that realm as a name encoding of a KerberosName, such as “krbtgt/
MYREALM.COM@MY REALM.COM”.

If you have the ORBASEC SL2-SSL distribution, the value field of the Subject
Identity and the Issuer Identity attributes contain the Opaque encoding of a Directo-
ryName that is the principal’ s name, which was found in the SubjectDN or Issu-
erDN fields of the prnicipal’s X.509 certificate. Thisvalue, initsraw formisa
DER encoding of an ASN.1 DN. A string representation of such a structure might
be“C=US, O=Adiron, OU=R&D, CN=Bart". If using anonymous ciphers, the
value field will contain the name encoding of a PrintableString containing “anony-
mous”.

CORBA Family 1 Accessld

The Accessld is defined by CORBA Family 1, and its attribute type identifier is 2.
The ORBASEC SL2-GSSKRB and SL2-SSL both create this attribute in the follow-
ing manner:

If you have the ORBA SEC SL2-GSSKRB distribution, the value field of the
Accessld attribute contains the Opaque encoding of a KerberosName that is the
principal’s name, such as “bart@MY REALM.COM”. The defining_authority
field contains the name of the ticket granting ticket service for that realm as aname
encoding of a KerberosName, such as “krbtgt/

MYREALM.COM@MY REALM.COM”.

If you have the ORBASEC SL2-SSL distribution, the value field contains the
Opague encoding of a DirectoryName that is the principal’ s name, which was
found in the SubjectDN field of the prnicipal’s X.509 certificate. Thisvalue, inits
raw formisaDER encoding of an ASN.1 DN. A string representation of such a
structure might be “C=US, O=Adiron, OU=R&D, CN=Bart". The
defining_authority field contains the name of immediate issuer, which is the cer-
tificate authority that issued the principal’ s X.509 certificate. It comes directly from
the IssuerDN field of the principal’s X.509 certificate. If using anonymous ciphers,
both attribute fields will contain the name encoding of a PrintableString containing
the string “anonymous”.

118

ORBAsEC 9.2

How are the Credentials Related to the IOR?

How are the Credentials Related to the IOR?

Thelist of own type credentials represents the information that is placed in the
tagged components section of the [OP 1.1 profile of the IOR.

Each Credentials object that comes from the set of designated accepting creden-
tials [see “ Accepting Credentials Attributes and Operations’ on page 71] places a
security component representing its capabilities and security namein the 110P pro-
file.

ORBASEC SL.2 119

Credentials

Own Credentials IOR

[1OP 1.1 Profile Body

TaggedComponent
tag
Credentials A/' component_data
mechanism M echanism Data

accepting_options_supported ——1 |

accepting_options_required___| target_supports

—— target_requires

attributes

Accessld \/\

crypto_profile

security_name

]

| [

] 1

1 |

I I

1 1
TaggedComponent
tag

Credentials A/" component_data
mechanism M echanism Data

accepting_options_supported —|

accepting_options_required___| target_supports

target_requires
attributes

Accessld \K

crypto_profile

security_name

FIGURE 2. Mapping of Own Credentials Objectsto |IOR

When the object_to_string operation on the ORB is called on an object, or an
object referenceis givento aclient viaareturn value or an output parameter an IOR
is created for the object. ORBASEC SL2 adds a security component for each valid
accepting Credentials object.

120 ORBASEC 9.2

How are the Credentials Related to the IOR?

A tagged security component in general has the following format:

//1DL

t ypedef unsigned | ong Conponentl d;

t ypedef struct TaggedConponent {
Conponent | d t ag;
sequence<oct et > conponent _dat a;

b
t ypedef sequence<TaggedConponent> Mil ti Conponent Profil e;

Each security component in the IOR contains a tag specifying the mechanism, and
acomponent_data attribute that contains the mechanism data. The structure for
most mechanism data has the same format (except for SSL), illustrated below with
the K erberosV5 structure. It is not represented by a common type, because mecha-
nisms of the future may require extended information.

//1DL

nmodul e SECI OP {

t ypedef sequence<octet > SecurityNane;

t ypedef short Crypt ogr aphi cProfil e;

t ypedef sequence<Cryptographi cProfil e>
Crypt ogr aphi cProfil elLi st;

/1 Protocol Conponent for SECI OP
struct SECI OP_I NET_SEC TRANS {
unsi gned short port;

b

/1 conmponent _data attribute of a TaggedConponent.
struct KerberosV5 {

Security::AssociationOptions target _supports;
Security::AssociationOptions target_requires;
Crypt ogr aphi cProfil eLi st crypto_profile;
Securit yNane security_nane;
i
b

The Credentials object’s mechanism attribute contains a combination of the secu-
rity component tag and the cryptographic profiles that the mechanism supportsin

string form. The string has the form of the integer tag of the mechanism, i.e. 17 for
KerberosV5, and separated by a comma, numbers only relevant to that mechanism,

ORBASEC SL.2 121

Credentials

i.e. 11 represents the DES-CBC-MD5 cryptographic profile for the KerberosV5
mechanism. [4, Section A.11.4 Security Mechanisms]

For example, the value of the Credentials object’s mechanism attribute of “ Ker -
ber os, DES- CBC- MD5" will create the | OP:: TaggedComponent with atag of
17 and a component_data field containing the encapsulated value of the
KerberosV5 structure.

The numbers trailing the first number in the mechanism attribute are the crypto-
graphic profile numbers, which are also comma separated. These numbers are
directly mapped to a sequence of short values that are placed in the crypto_profile
attribute of the mechanism data. The utility class orbasec.corba.M echUtil has
these number to symbolic cryptographic profiles associations.

An application programmer controls the capabilities advertised in the IOR by
manipulating the Credentials object’s accepting_options_supported and
accepting_options_required attributes. The values of these attributes are mapped
directly to the target_supports and target_requires attributes of the security com-
ponent.

The security _name attribute is the value of the Accessl d typed security attribute of
the Credentials. At the AP, the security name as a value parameter of the
Accessld security attribute is aorbasec.corba.Opaque encoding. However, for the
IORits“raw” byte encoding, is the one that is placed in this field.

In the ORBA SeC SL2-GSSKRB distribution the security name is the octet
sequence directly mapped to an ASCI| string containing the Kerberos principal
name fully qualified with the realm name, i.e. name @GREALM or nane/

i nst ance@EALM

Important Temporal Considerations

One must be cautious as to the times at which Credentials object’ s accepting
options are modified and the times when object references are given out or con-
verted to strings using the ORB operation object_to_string.

Once an IOR is created for an object reference it contains a snapshot of the state of
the credentials. If the application programmer modifies the credentials accepting
options after object references are given out, then those objects references may be
rendered ineffective. They no longer represent the current security state of the
object to which they are referring.

122

ORBAsEC 9.2

Extensions for ORBASEC SL2-SSL Credentials

Extensions for ORBAsEC 9.2-SS Credentials

The CORBA security credentials model is insufficient for examining the some
aspects of X509 certificate chains. ORBASEC SL2-SSL does verify that every cer-
tificate in the chain verifies with the public key of itsissuer, or isin line with the
TrustedAuthorityPolicy. See “ TrustedAuthorityPolicy” on page 138. ORBASEC
SL2-SSL also verifies that the certificate is till valid with respect to the current
system time. However, for those who need to analyze the certificates with a bit
more fervor, you can get at the certificate chain on the credential s object by casting
the org.omg.SecurityL evel2.Credentials object to an orbasec.ssliop.iaik.Cre-
dentialsobject and useitscertificate_chain method to retrieve the certificate chain
associated with the credentials object. An example follows:

/1 Java
org.ong. SecuritylLevel 2. Credentials rcreds =
current.received_credential s();
java.security.cert.X509Certificate[] cert_chain =
((orbasec.ssliop.iaik.Credentials)rcreds).certificate_chain();

Since |AIK isthe provider (the certificate mechanism will start with “SSL_1AIK"),
more information beyond that of ajava.security.cert.X509Certificate can be
retrieved by casting to an iaik.X509.X509Certificate, such as follows:

i ai k. X509. X509Certificate cert =
(i aik.X509. X509Certficate) cert_chain[0];

Please see your IAIK documentation for details on using this class.

ORBASEC SL.2 123

Credentials

124 ORBASEC SL.2

CHAPTER 7

Policies

Policies

This section explains the various security related policies that the security service
understands and that can be placed on object references. These policies can also be
set as defaults for the thread by using the set_overrides operation on the Current
object. This section also explains the analysis and decision procedure taken on pol-
icies to discover the parameters of a secure association with the target. The set of
default policies out-of-the-box are presented at the end of the section.

The policies that the security service machinery understands is the following poli-
cies:.

* MechanismPolicy

* InvocationCredentialsPolicy

* DelegationDirectivePolicy

* QOPPalicy

* EstablishTrustPolicy

All of the above palicy interfaces are members of the SecurityL evel2 module.

ORBASEC SL.2 125

Policies

One policy of each type may be placed on an object reference by using the objects
pseudo operation, set_policy overrides.

The orbasec.SL 2 static class has factory operation that create simple policies
regarding each of the above listed policies. However, that does not preclude an
application developer from creating a policy object of his own device incorporating
creatively produced results. For example, one may create a QOPPolicy that returns
different Security::QOP values depending on the time of day, location, or other
environmental considerations.

Temporal Considerations

Policy objectsin ORBASEC SL2 are queried at the time a connection to aremote
operation is made. The policiesin place for the connection are in place for the dura-
tion of the connection.

MechanismPolicy

An object of the SecurityL evel2::M echanismPolicy interface specifies a set of
security mechanisms from which to consider when making invocations. Its only
attribute isalist of mechanism types that should be considered in order while trying
to find compatible client credentials and mechanisms of the target. Please see the
PrincipalAuthenticator section “ Mechanism” on page 82 for an explanation of
mechanism type identifiers.

/1 1DL
interface MechanisnPolicy : CORBA::Policy {
/1 Locality Constrained
readonly attribute Security::Mechani snifypelLi st mechani sns;

b

/'l Java
package org.ong. SecuritylLevel 2;
public interface Mechani snPolicy
ext ends org. ong. CORBA. Pol i cy
{

String[] mechanisnms();

}

126

ORBAsEC 9.2

MechanismPolicy

Default M echanism Policy

ORBASEC SL2 comes with a default mechanism policy that is set on the initial
thread of execution and is inherited from every descendant’ s thread until it is
explicitly set. The default MechanismPolicy that is to match the mechanisms of the
received (should one exist) and own credential s objects.

This policy serves as an attempt to use the current credentials that have been cre-
ated by the application, without having the application writer to have to think about
policy objects.

The semantics of this“dynamic” mechanism policy roughly follows the implemen-
tation below:

/'l Java

package orbasec. secl ev2;

i mport org.ong. Security.*;

i mport org.ong. SecuritylLeve2. *;

public class DynMechansi nPol i cy
ext ends or basec. corba. Local Obj ect,
i mpl enents org. ong. SecuritylLevel 2. Mechani snPol i cy

public String[]
mechani sns()
{
/1l Get the invocation credentials policy
I nvocati onCredential sPolicy invocp =
I nvocat i onCr edent ai | sPol i cyHel per. narr ow(
current.get_policy(
Secl nvocati onCredenti al sPol i cy. val ue);
// Create an array of strings of each credentials
/'l mechani sm

Credential s[] creds = invocp.creds();

Vector mechs = new Vector();

for(int i; i < invoc; i++) {
if(creds[i].invocation_options_supported() != 0)

mechs. addEl ement (creds[i]. mechani sm;
String[] ms = new String[nmechs.size()];
nmechs. copyl nt o(ns) ;
return ms;

ORBASEC SL.2 127

Policies

Invocation Credentials Policy

An object of the SecurityL evel2::InvocationCredentialsPolicy interface specifies
aset of Credentials objects from which to consider when making invocations. Its
only attributeisalist of Credentials objects that should be considered.

//1DL
interface InvocationCredential sPolicy : CORBA::Policy {
/1 Locality Constrained
readonly attribute SecuritylLevel 2:: Credenti al sLi st creds;

b

/'l Java

package org.ong. SecuritylLevel 2;

public interface I nvocationCredential sPolicy
ext ends org. ong. CORBA. Pol i cy

{
org.ong. SecuritylLevel 2. Credenti al s[] creds():

}

Default Invocation Credentials Policy

ORBASEC SL2 comes with a default invocation credentials policy. This policy
dynamically selects the received credentials (if its delegation mode is not one of
SecDelM odeNoDelegation), and the own credentials list from the Current object.
This policy serves as the default to give the application writer the default behavior
of using the credentials objects he authenticates.

The semantics of this“dynamic” invocation credentials policy roughly follows the
implementation bel ow:

128 ORBASEC 9.2

QOP Policy

/'l Java

package orbasec. secl ev2
i mport Security.*;

i mport SecuritylLevel 2.*;

public class DynRecvOwCredenti al sPolicy
i mpl enents orbasec. corba. Local Obj ect,
I nvocat i onCredenti al sPolicy

{

public Credential s[]
creds()

{
Vector v = new Vector();
try {

Recei vedCredentials rcreds =
current.received_credentail s();
i f(rcreds. accepting_options_supported() != 0)
v. addEl ement (rcreds);
} catch (BAD_OPERATION e) {

}
Crededentail s[] own = current.own_credential s();
for(int i =0; i <own.length; i++) {
if(own[i].invocation_options_supported != 0)
v. addEl ement (own[i]);
}

Credential s[] creds = new Credential s[v.size()];
v. copyl nto(creds);
return creds;

QOP Palicy

An object of the Securityl evel2:: QOPPoalicy interface specifies the quality of pro-
tection that should be used when making an invocation on the target.

ORBASEC SL.2 129

Policies

/1 1DL

interface QOPPolicy : CORBA::Policy {//Locality Constrained
readonly attribute Security:: Q0P qop;

b

/'l Java
package org.ong. SecuritylLeve?2;
public interface QOPPolicy

ext ends org. ong. CORBA. Pol i cy

{
}

public org.ong. Security. QOP qop();

Default QOP Poalicy

ORBASEC SL2 comes with a default QOP policy that is set on the initial thread of
execution and is inherited from every descendant thread until it is explicitly set.
The default QOPPalicy returns a QOP to match the invocation options that are
required or supported by the credentials on the thread based Invocation Credentials
Policy.

This policy serves as an attempt to use the current credential s that have been cre-
ated by the application, without having the application writer to have to think about
policy objects.

The semantics of this “dynamic” QOP policy roughly follows the implementation
below:

130

ORBAsEC 9.2

QOP Policy

/'l Java

package orbasec. secl ev2

i mport org.ong. Security.*;

i mport org.ong. SecuritylLeve2. *;

public class DynQOPPolicy
ext ends or basec. corba. Local Obj ect,

i mpl enents org. ong. SecuritylLevel 2. QOPPol i cy

private QOP get QOP(short associ ati on_options)

/1 definition of function that translates the association
/] options to a QOP, with preecdence to Integ and Conf
/1 Conf or Integ, then NoProtection

}

/1 Policy Function
public QOP

qop()

{

/1l Get the invocation credentials policy
I nvocati onCredential sPolicy invocp =
I nvocat i onCr edenti al sPol i cyHel per. narrow
current.get_policy(
Secl nvocati onCredenti al sPol i cy. val ue);
// Create an array of strings of each credentials
/'l mechani sm

Credential s[] creds = invocp.creds();
QOP qop = QOP. SecQOPI ntegrityAndConfientiality;
int qopmask = NoProtection.value | Integrity.value
Confidentiality.val ue;
for(int i =0 ; i < creds.length; i++) {
/1 Can we even use the credentials?
if(creds[i].invocation_options_supported() == 0)

continue; // No, keep |ooking
if((creds[i].invocation_options_required() & qopmask)
== O){
/1 Translate invocation_options_supported() attribute
/Il into a QOP
gop = getQOP(creds[i].invocation_options_supported());
br eak;
} else {
/1 Translate invocation_options_required() attribute
/] into a QOP
gop = getQOP(creds[i].invocation_options_supported());

ORBASEC 9.2 131

Policies

br eak;
} /] forloop
return qop;
}
}

Delegation Directive Policy

An object of Securityl evel2::DelegationDirectivePolicy interface specifies
whether the credentials selected may be delegated to the target or not.

/1 1DL
interface Del egationDirectivePolicy : CORBA::Policy {
//Locality Constrained
readonly attribute Del egati onDirective del egati on_node;

b

/'l Java

package org.ong. SecuritylLevel 2;

public interface Del egationDirectivePolicy
ext ends org. ong. CORBA. Pol i cy

{
public org.ong. Security. Del egati onDirective

del egation_directive();
Default Delegation Directive Policy

ORBASEC SL2 comes with adefault DelegationDirectivePolicy that always returns
org.omg.Security.DelegationDirective.SecNoDelegate just to be on the safe side.

Establish Trust Policy

An object of SecurityL evel2::EstablishTrustPolicy interface specifies the invoca-
tion conditions on establishing client or target trust.

132

ORBAsEC 9.2

Establish Trust Policy

/1 1DL
interface EstablishTrustPolicy : CORBA::Policy {
/'l Locality Constrained
readonly attribute Security:: EstablishTrust trust;

b

/'l Java

package org.ong. SecuritylLevel 2;

public interface EstablishTrustPolicy
ext ends org. ong. CORBA. Pol i cy

{
}

public org.ong. Security. EstablishTrust trust();

If the value of the trust_in_client field of the trust attribute is true, then client
must select a mechanism that supports client side authentication. If the value is
false, it does not matter.

If the value of thetrust_in_target field of the trust attribute is true, then the client
must select a mechanism that is capable of getting the target to authenticate itself
before theinvocation can be made. If it isfalse, whether the target does authenticate
itself does not matter.

Default Establish Trust Policy

ORBASEC SL2 comes with a default Establish Trust policy that is set on theinitial
thread of execution and is inherited from every descendant thread until it is explic-
itly set. The default EstablishTrustPolicy that is set dynamically sets the Estab-
lishTrust to match the invocation options that are required or supported by the
credentials on the thread based I nvocationCredentialsPolicy.

This policy serves as an attempt to use the current credential s that have been cre-
ated by the application, without having the application writer to have to think about
policy objects.

The semantics of this“dynamic” Establish Trust Policy roughly follows the imple-
mentation below:

ORBASEC SL.2 133

Policies

/'l Java

package orbasec. secl ev2

i mport org.ong. Security.*;

i mport org.ong. SecuritylLeve2. *;

public class DynEstablishTrustPolicy
ext ends or basec. corba. Local Obj ect,
i mpl enents org.ong. SecuritylLevel 2. Establ i shTrust Policy

private EstablishTrust

get Est abl i shTrust (short associ ati on_opti ons)

{
/1 definition of function that translates the association
/] options to an EstablishTrust structure

134

ORBAsEC 9.2

Establish Trust Policy

/1 Policy Function
public EstablishTrust
trust()
{
/1l Get the invocation credentials policy
I nvocati onCredential sPolicy invocp =
I nvocat i onCredenti al sPol i cyHel per. narr ow(
current.get_policy(
Secl nvocati onCr edenti al sPol i cy. val ue);
/!l Create an array of strings of each credentials
/'l mechani sm
Credential s[] creds = invocp.creds();
Establ i shTrust trust = new EstablishTrust(true,true);
int etmask = EstablishTrustInCient.val ue
Est abl i shTrust | nTar get. val ue;

for(int i =0; i < creds.length; i++) {
/1 Can we even use the credentials?
if(creds[i].invocation_options_supported() == 0)

continue; // No, keep |ooking
if((creds[i].invocation_options_required() &etpmask)
== O){
/1 Translate invocation_options_supported() attribute
/'l into an EstablishTrust.
trust = getEstablishTrust(
creds[i].invocation_options_supported());
br eak;
} else {
/1 Translate invocation_options_required() attribute
/1 into a EstablishTrust.
trust = getEstablishTrust(
creds[i].invocation_options_required());
br eak;
} // forloop
return trust

}
}

ORBASEC SL.2 135

Policies

Invocation Policy Analysis

On every first invocation of a operation on an object the ORB sets up a secure asso-
ciation with atarget viaits object reference. The properties of the secure associa-
tion depend upon two things. Firstly, it depends upon the policies that are placed on
the abject references using the object’ s pseudo operation, set_policy overrides
(_set_policy_overridesin the Java Mapping) Secondly, it depends upon the poli-
ciesthat are set as the thread’ s default policies by adding them using the Current
object’s set_overrides operation. The security services does an analysis of those
policiesto select a mechanism, quality of protection, trust establishment, delegation
directive, and invocation credentials that are compatible with the security compo-
nents of the target’s IOR.

In ORBASEC SL2 the Current object holds a default policy for each of the Mecha
nism Policy, Invocation Credentials Policy, QOP Policy, Delegation Directive Pol-
icy, and Establish Trust Policy. If any of the five aforementioned policies does not
exist on the particular object reference, it is taken from the Current object’s
get_overrides operation. Therefore, avalue for each of the attributes listed in the
policies will always have a value when a secure invocation needs to be established.

The following decision procedure is used in finding a mechanism, a compatible
Credentials object, and a security component from the targets IOR from the poli-
cies. This decision procedure is part of the CORBA Security Specification and is
repeated here for your benefit.

For each mechanism type in the MechanismPolicy {
Select a matching security component in the targets |OR by the mechanism
type.
If amatching component is found {
Find a credentials object in the credentials list that supports the
mechanism.
If acredentials object is found and it supports
the QOP Palicy,
the Delegation Directive Policy,
and the EstablishTrust Policy {
If the association options implied by all policies are supported
by the selected security component in the IOR and all the
required association options of security component are satisfied {
Use the selected attributes to set up the secure association.
} else{
Find another credentials object and continue.

136

ORBAsEC 9.2

Specific Policies on Object References

}
} else{
Find another credentials object and continue.
}
} else{
Get the next mechanism type from the M echanismPolicy and continue.
}
If no mechanism can be found {
Raise a CORBA:NO_PERMISSION with an informative error message.

}
}

Specific Policies on Object References

Setting the specific policies to use on an object reference is done in Java by using
the _set_policy_overrides method on the abject reference. A Java example fol-
lows:

/'l Java
org. ong. CORBA. Cbj ect a_object = // Some target object

org. ong. SecuritylLevel 2. Mechani smsPol i cy nechpol =

/1 a mechani sm policy
org.ong. SecuritylLevel 2. Del egati onDirectivePolicy del pol =

/1 a del egation directive policy
org. ong. CORBA. Pol i cy[] policies = new org.ong. CORBA. Policy[2];

policies[0]
policies[1]

= mechpol ;
= del pol ;
org. ong. CORBA. Cbj ect b_object =
a_object._set_policy_overrides(
policies,
or g. ong. CORBA. ADD_OVERRI DE. val ue) ;

The b_object variable contains a completely new object reference to the same
object to which the a_object refers. However, their invocation policies may be dif-
ferent. Depending on the policies applied to the b_object reference, invocations
made with the a_obj ect reference and the b_object reference can have completely
different security association attributes.

ORBASEC 9.2 137

Policies

Setting Default Policies

Default policies are policies are not set specifically on the object reference.
ORBASEC SL 2 gets the default policies off of the Current object’s get_overrides
operation. An application programmer sets the default policies by setting them on
the Current object by using its set_overrides operation.

Since the policy override mechanism has not yet been standardized for Current at
thistime, (it is awaiting agreement between the POA and the Messaging groups),
setting the default policiesis an ORBASEC SL2 extension; and therefore the
get_overridesand set_overrides operations are found on the ORBASEC SL2
SecL ev2::Current interface. See “ORBAsec SL2 Extentionsto Current” on

page 60.

/'l Java
org.ong. SecuritylLevel 2. Mechani snmsPol i cy nechpol =
/1 a mechani sm policy
org.ong. SecuritylLevel 2. Del egati onDirectivePolicy del pol =
/1 a del egation directive policy
org. ong. CORBA. Pol i cy[] policies = new org.ong. CORBA. Policy[2];

policies[0]
policies[1]

= mechpol ;
= del pol ;
or basec. SecLev2. Current current =
/1 Get SecurityCurrent Objet
current.set_overrides(policies,
or g. ong. CORBA. ADD_OVERRI DE. val ug;

ORBAsec SL.2 Specific Policies

ORBAsec SL 2 has the following Policies above and beyond standard
Securitylevel2 policies:

TrustedAuthorityPolicy

The Trusted Authority Policy limits the SL2 verification of authentication to spe-
cific authorities. The CORBA credentials model allows you to see the immediate
principal, viathe Accessl d security attribute. However, seeing further than that,

138

ORBAsEC 9.2

ORBAsec SL2 Specific Policies

such as an X509Certificate chain, takes special interfaces, see “Extensions for
ORBAsec SL2-SSL Credentials’ on page 123 for details.

Y ou can use a TrustedAuthorityPolicy to have the system automatically accept
authentication from authorities that you trust. The interface for the TrustedAuthor-
ityPolicy is as follows:

#pragma prefix “orbasec”

modul e SeclLev2

{
struct TrustedAuthority {
Security:: Mechani sniType nmechani sm
Security:: Opaque security_nane;
| ong aut h_di st ance;
b

typedef sequence<TrustedAut hority> TrustedAuthorityList;

struct TrustedAut horityContent {

Trust edAut hori tyLi st own_trusted authorities;
Trust edAut hori t yLi st client_peer_trusted_authorities;
Trust edAut hroi t yLi st server_peer _trusted_authorities;

s

interface TrustedAuthorityPolicy : CORBA::Policy {

readonly attribute TrustedAuthoritylLi st
own_trusted authorities;

readonly attribute TrustedAuthoritylLi st
client_peer_trusted_authorities;

readonly attribute TrustedAuthoritylLi st
server_peer_trusted_authorities;

b
}

TrustedAuthority

This structure holds a description of a trusted authority. It has the mechanism
name, such as “Kerberos’ or “ SSL” that the Opaque encoded (see “ Opague Encod-
ings” on page 185) security _name is taken as a trusted authority. The
auth_distance field is a distance in a metric specific to the mechanism of the max-
imum allowable distance between the principal and the authority.

ORBASEC SL.2 139

Policies

For SSL, the mechanism field must be “SSL". The security_name field must be
the Opague encoding of the authority’s DER encoded Directory Name (i.e.
Opaque.DirectoryName). The auth_distance field carries the number of certifi-
catesin a certificate chain. A distance of zero means that the distance between the
principal and the trusted authority is zero. Therefore, the trusted authority must be
the principal, and since the issuer’s certificate must be in the chain as well, its cer-
tificate must be self-signed.

For Kerberos, the mechanism field must be “Kerberos’. The security _name must
be the Opague encoding of a Kerberos name (i.e. Opaque.K erberosName). The
name must be in the form of the principal of the Ticket Granting Ticket service for
aKerberos Realm, (e.g. “krbtgt/MY REALM.COM@MY REALM.COM"). The
auth_distance not defined, and it isignored (for now).

TrustedAuthorityContent

This structure is used to create a Trusted Authority Policy. The structure contains
three lists of trusted authorities.

Thefirst list, own_trusted_authorities, is used for verification of “own” creden-
tials using the Principal Authenticator object.

The second list, client_peer_trusted_authorities, lists the authorities that are
trusted on the server side, should the capsule be a client during an invocation.

Thethird list, server_peer_trusted_authorities, lists the authorities that are
trusted on the client side, should be capsule be servicing aremote request on one of
its objects.

A class that implements the TrustedAuthorityPolicy interfaceisin the
orbasec.corba package. The constructor for the class takes the TrustedAuthority-
PolicyContent structure. The interface of this class in Java and its constructor is
the following:

140

ORBAsEC 9.2

ORBAsec SL2 Specific Policies

/'l Java
package orbasec. corba;
public class TrustedAuthorityPolicy
i mpl enent s Local Obj ect,
or basec. SecLev?2. Trust edAut horityPolicy

/'l Constructor
public TrustedAut horityPolicy(
or basec. SecLev2. Trust edAut hori tyPol i cyContent policy

)

public orbasec. SecLev2. Trust edAut hority[]
own_trusted_authorities();

public orbasec. SecLev2. Trust edAut hority[]
client_peer_trusted_authorities();

public orbasec. SecLev2. Trust edAut hority[]
server_peer_trusted_authorities();

In the Absence of a Trusted Authority Policy

If atrusted authority policy has atrusted authority list of length zero for a particular
authentication type, own, client peer, or server peer, al authorities are considered
“trusted” for that particular type of authentication. In the absence of a trusted
authority policy, all authorities are trusted for all the authentication types.

For Kerberos, the absence of a trusted authority policy for a particular authentica-
tion type means that all principals that successfully authenticate are accepted.

For SSL, the absence of atrusted authority policy for a particular authentication
type means that all principals whose certificate chains verify are accepted. How-
ever, verification in this case reguires that X509 certificates from the principal up to
and including aroot certificate, which is a self-signed certificate, must be present in
the principal’ s certificate chain.

ORBASEC 9.2 141

Policies

142 ORBASEC SL.2

CHAPTER 8

Security Replaceable

Security Replaceable

This section outlines the Security Replaceable module components, which are able
to be replaced within the SECIOP protocol. See “ Adding your own Security Mech-
anisms” on page 55 for more details about how to add your own SecurityReplace-
able module to ORBASEC SL2.

If the interfaces in this document are adhered to and the semantics of the operations
and attributes specified are strictly followed, an interested party may build their
own Security Replaceable Module Component and add them into the SECIOP pro-
tocol by the new modul€e’ s vault into ORBASEC SL2.

We usetheterm “ Vault” to refer to the Security Replaceable components, Vault,
SecurityContext, and Securityl evel2::Credentials, since all of these components
must be heavily integrated behind the interfaces with each other. The Vault creates
objects that adhere to the SecurityL evel2:: Credentials interface, and the Securi-
tyContext interface.

The Vault and SecurityContext are used by the ORBASec SL2 SECIOP machin-
ery, but only the Credentialsis exposed to the application programmer. Therefore,
care must be taken by the implementer of a SecurityL evel2:: Credentials object to
ward off user mistakes and recognize bad arguments to parameters or attribute set-

ORBASEC SL2 143

Security Replaceable

tings. The following diagram, Figure 3 on page 144, illustrates the use relationships
between the application visible components, the Security Replaceable components,
and the ORBASEC SL2 internal components. The components with the thicker lines
are Security Replaceable Components.

Application

SECIOP

uses

uses

Principal Authenticator

SecurityContext

FIGURE 3. Security Replaceable Components

The Vault

The Vault isthe object that creates Credentials and SecurityContext objects. The
Vault creates Credentials on behalf of the Principal Authenticator object thatisa

144

ORBASEC SL2

The Vault

default component of the SL2 machinery. The Vault isalso called upon to create a
Server SecurityContext accepting secure association to targets and from clients,
and ClientSecurityContext objects for clientsinitiating secure association to tar-
gets.

The Vault’s operations are described below:

init_security context

This operation is used by the ORBA sec SL2 SECIOP machinery when a new
secure association is needed to communicate with a client. Its outputs are required
to be a GSS compliant Initial token and a ClientSecurityContext object.

/1 1DL
Security::AssociationStatus init_searity_context(
in SecuritylLevel 2::Credentials i nvoc_creds,
in Security::Opaque target _security_nane,
in Object target,
in Security::Del egati onMbde del egati on_nopde,
in Security::OptionsDirectionPairList
associ ati on_options,
in Security::Mechani snilype nmechani sm
in Security:: Qaque nech_dat a,
in Security::Channel Bi ndi ngs chan_bi ndi ngs,
out Security:: OpaqueBuffer security_token,
out ClientSecurityContext security_context
)
/'l Java

public org.ong. Security. Associ ati onSt at us
init_security_context(
org.ong. SecuritylLevel 2. Credentials invoc_creds,

byte[] target _security_name,
or g. ong. CORBA. Obj ect target,
org.ong. Security. Del egati onMode del egati on_node,

org.ong. Security. OptionsDirectionPair][]
assocation_options,

String mechani sm

byte[] nmech_dat a,

org. ong. Security. Channel Bi ndi ngs chan_bi ndi ngs,

org. ong. Security. OpaqueBuf f er Hol der security_token,

Cl i ent SecurityCont ext Hol der security_context

ORBASEC SL2 145

Security Replaceable

There are arange of inputs. Not all of the parameters listed for this operation are
used by ORBASEC SL 2, i.e. given meaningful values.

creds

This parameter is given the Credentials object with which to create the security
context. This parameter may be a ReceivedCredentials from a SecurityContext
object, or it may be an “own” Credentials object created by this Vault. It cannot be
aTargetCredentials object. The ORBAsec SL2 only makes sure that this Creden-
tials object is compatible with this Vault, using the mechanism attribute of the
Credentials object.

target_security_name

This parameter is the name of the target that will be used to set up the association.
Thisname is pulled from the selected security component from the IOR of atarget.
This name is not uniquely specific to any one target object, as one target name may
service many objects. The constraints on the value of this argument that ORBASEC
SECIOP machinery will adhere with respect to the argument given to this parame-
ter are:

* Thetarget_security_name is the security name of the target according to
mechanism selected.

* Thetarget_security _name will be the same security name found in the
mech_data argument, as the mech_data argument is the selected security com-
ponent from the IOR.

target

This parameter is not used by ORBASEC SL2 as the internal architecture does not
yield the target object reference used to make the invocation at the transport level.
Also, security associations established with a principal that is represented by a
security name, which is not guaranteed to reference a single target object.
ORBASEC SL2 may choose, based on policy analysis at the time of an invocation,
to reuse a security context.

delegation_mode

This argument specifies a capability of no delegation, simple delegation, or com-
posite delegation that will be used. It is guaranteed by ORBASEC SL2 policy analy-
sis that the values presented to this parameter have the values of the delegation

146

ORBASEC SL2

The Vault

mode the credentials being used will support, such as from the
invocation_options _required attribute on Credentials.

association_options

ORBASEC SL 2 gives this parameter an argument that is a sequence that contains
only one OptionsDirectionPair structure. ORBASEC SL2 gives an argument to
this parameter adhering to the following constraints:

e The communications_direction attribute of that structure will be SecCommu-
nicationsDirectionBoth.

* Thevalue of the association_options attribute will be suitably selected, such
that it will adhere correctly to the mech_data containing the target_supports
and target_requires attributes.

* Thevalue of the association_options attribute will correctly adhere to the
options that are supported from invocation_options _supported attribute and
invocation_options_required attribute of the Credentials object specifiedin
the invoc_creds parameter.

The ORBASEC SL2 policy analysis will guarantee that the value of the association
optionswill fit in with the capabilities of the target and the credentials being used to
set up the security context.

mechanism

This parameter is the selected mechanism to use to set up the secure association.
ORBASEC SL 2 gives an argument to this parameter adhering to the following con-
straints:

* Themechanism is the value of the mechanism name constructed from the secu-
rity component in the |OR that was selected. The selected security component is
in the mech_data argument.

mech_data

ORBASEC SL 2 gives as a value to this argument the security component of the
selected mechanism from the IOR.

ORBASEC SL2 147

Security Replaceable

chan_bindings

This argument is used by the SECIOP machinery, which runs over TCP/IP. The
Channel Bindings that are supported are those of the GSS_C_AF_INET address
type, which stipulate the network byte order host |P addresses of the client and the
server.

security_token

This parameter is an output parameter. Any implementation is required to make this
token a GSS compliant Initial Token, [4, Section 15.9] to guarantee interoperabil-
ity. However, if one chooses to build and install a proprietary Vault for all commu-
nicating ORBs in its enterprise, then this token just needs to adhere to a format
compatible with the in_token of the accept_security context operation of the
Vault.

security_context

This parameter is an output parameter. The Vault must create a ClientSecurity-
Context object to represent the initialized security context.

return value

Valid return values for this operation are Security:: SecAssocSuccess if the Vault
was successful in creating a security token and a Client SecurityContext in an ini-
tialized state. It must not return Security:: SecAssocContinue. It may return Secu-
rity::SecAssocFailureshouldit fail to create atoken and aClientSecurityContext
for some reason. However, we would prefer that a CORBA system exception be
raised with an informative message detailing the error encountered.

accept_security _context

This operation is called upon by the ORBASEC SL.2 SECIOP machinery when a
SECIOP EstablishContext message is received.

148

ORBASEC SL2

The Vault

/1 1DL
Security::Associ ationStatus accept_searity_context(
in SecuritylLevel 2::Credential sList creds_list,

in Security::Channel Bi ndi ngs chan_bi ndi ngs,
in Security::OpaqueBuffer in_t oken,
out Security:: OpaqueBuffer out _t oken,
out Server SecurityContext security_cont ext
)
/'l Java

org.ong. Security. Associ ati onSt at us
accept _security_context(

org.ong. SecuritylLevel 2. Credenti al s[] creds_list,

org. ong. Security. Channel Bi ndi ngs chan_bi ndi ngs,
org. ong. CORBA. Security. OpaqueBuf fer i n_t oken,

or g. ong. CORBA. Security. OpaqueBuf f er Hol der out _t oken,
Server Securi t yCont ext security_context

)

The arguments given to this operation are as follows:

creds list

This parameter holds the credentials that may be needed to accept the request to
establish a secure association. ORBASEC SL 2 gives this parameter thelist of “own”
credentials that were created by all the Vault oBJECTS. According to a discrimina
tor on the front of the GSS Initial Token [4, Section 15.10.7] the Vault should be
able to discern the mechanism used. The Vault must have the capability to search
through the list of “own” credentials and find the proper ones to support the secure
association.

chan_bindings

This argument is used by the SECIOP machinery, which runs over TCP/IP. The
Channel Bindings that are supported are those of the GSS_C_AF_INET address
type, which stipulate the network byte order host |P addresses of the client and the
server.

in_token

This parameter is given the token verbatim that is extracted from the SECIOP
EstablishContext message that is received from the client.

ORBASEC SL2 149

Security Replaceable

out_token

This token must be a buffer containing a sequence of bytes that is of the format of a
GSS compliant ContinueEstablish or a TargetResult token.

security_context

This parameter must contain a newly created Server SecurityContext in the appro-
priate state as a result of processing the in_token.

return value

This operation should return Security:: SecAssocSuccess if processing the initial
token results in an established secure association with the client. A SECIOP Com-
pleteEstablishment message will be sent back to the client with the value of the
out_token parameter. The out_token should contain a GSS compliant TargetRe-
sult token.

This operation should return Security:: SecAssocContinueif processing the initial
token resultsin creating a Server SecurityContext that is not quite established (i.e.
the target is requesting more authentication). A SECIOP ContinueEstablishment
message will be sent back to the client with the value of the out_token parameter.
The out_token parameter should contain a GSS compliant ContinueEstablish
token.

This operation may return Security:: SecAssocFailure if processing theinitial
token yields an error. However, we prefer that a CORBA system exception be
raised with an informative message as to the error encountered. In either case a
SECIOP DiscardContext message will be sent back to the client.

acquire_credentials

This operation is used by the Principal Authenticator to create “own” credentials.
In ORBASEC SL2 the Principal Authenticator ::authenticate operation makes the
call to the Vault::acquire_credentials operation almost as a pass through opera-
tion. The PrincipalAuthenticator acts as the application’ s delegate to the Vault,
but places the created “own” credentials on the Current object’s own credentials
list.

150

ORBASEC SL2

The Vault

Note. The current PrincipalAuthenticator in ORBASEC SL2 does not to any
parameter integrity checking.

The acquire_credentials operation’s interface is described below.

/1 1DL

Security::AuthenticationStatus acquire_credentials (

in
in
in
in
in
out
out
out

)

/1 Java

Security::
Security::

Aut henti cati onMet hod
Mechani snType

Security::Opaque

Security::
Security::

Opaque
Attri butelLi st

SecuritylLevel 2:: Gedential s

Security::
Security::

Opaque
Opaque

org.ong. Security. AuthenticationStat us
acquire_credential s(

i nt

String
byte[]
byte[]
org.ong. Security. SecAttribute[]
org.ong. SecuritylLevel 2. Credenti al sHol der

org. ong. Security. OpaqueHol der
org. ong. Security. OpaqueHol der

)

method

met hod,
mechani sm
security_nane,

aut h_dat a,
privil eges,
creds,

conti nuati on_dat a,
aut h_specific_data

met hod,
mechani sm
security_nanme,
aut h_dat a,
privil eges,

creds,
continuation_dat a,
auth_specific_data

This parameter specifies method with which to authenticate the principal. The
methods that are allowed in this call are specific to the implementation of the

Vault.

mechanism

This parameter specifies mechanism with which to authenticate the principal using
the security_name and create the credentials. The mechanisms that are allowed in
this call are the mechanisms that must be supported by Vault.

ORBASEC SL2

151

Security Replaceable

Security_name

This parameter is a byte array stating the recognized name of the principal for
which to acquire credentials.

auth_data

This parameter specifies the extra data needed to authenticate the principal using
the security_name. The format of this must be specified by the implementer of the
Vault.

privileges

This parameter states the “extra’ privileges that the application programmer wants
to be authenticated along with the principal to create the credentials with those priv-
ileges authorized. Such privileges can be requesting or stating that the principal is
the member of a group, or has the authorization for a particular role.

creds

This parameter is an output parameter returning the newly created “own” Creden-
tials object. The Principal Authenticator worksin concert with the Current
object and places the new credentials in the current’s own credentials list reposi-
tory. These may not be fully enabled credentials as the authentication mechanism
may have created interim credentials to be further passed to the
continue_credentials acquistion operation. The Principal Authenticator will not
place these Credentials on the “own” credentials list until avalue of SecAuthSuc-
ess has been returned from acquire_credentials or

continue_credentials acquision.

continuation_data

This parameter is an output parameter returning data needed to continue the authen-
tication of the principal using the security _name. This may hold such data labeling
a continuation context. Its output will be given to the

continue_credentials acquistion operation.

auth_specific_data

This parameter is an output parameter returning data that may need to be exposed to
the application programmer, such as a message about what is needed to continue

152

ORBASEC SL2

The Vault

the authentication. The implementer of the Vault will need to specify what the for-
mat is and how the application implementer may use it.

return value

Thereturn value is one of the value of the Security:: AuthenticationStatus enu-
meration type, and states whether authentication succeeded, failed, needs to be con-
tinued, or if continued, the further continuation has expired.

This operation must return a value of Security:: SecAuthSuccessif the operation
was successful and the output credentials are valid “own” credentials. It must return
avalue of Security::SecAuthContinue if the acquisition process needs to be con-
tinued. This operation should return Security:: SecAuthFailure should the acquisi-
tion fail. However, we would prefer to the operation to raise a CORBA system
exception with an informative message as to the error encountered. This operation,
being the initial acquisition, must not return Security::SecAuthExpired.

continue_credentials acquisition

This operation is meant to continue acquisition steps started by
acquire_credentials, and possibly still continued by subsequent calls to
continue_credentials acquistion. Itsinterface is defined below:

/1 1DL
Security::AuthenticationStatus
conti nue_credential s_acqui sition(

in Security:: Opaque response_dat a,
in SecuritylLevel 2:: Gedentials creds,
out Security:: Opaque conti nuati on_dat a,
out Security:: Opaque aut h_specfic_data
)
/'l Java

public org.ong. Security. AutenticationStatus
conti nue_credential s_aqui si on(

byte[] response_dat a,
org.ong. SecuritylLevel 2. Credential s creds,

org. ong. Security. OpaqueHol der continuation_data,
org. ong. Security. OpaqueHol der aut h_specific_data

ORBASEC SL2 153

Security Replaceable

response_data

The argument given to this parameter is data in the format specified by the imple-
menter of the Vault that pertains to the mechanism of credentials being used to
continue the acquisition of the credentials.

creds

The argument given to this parameter will be credentials returned from
acquire_credentials or subsequent callsto continue_credentials acquisition. If
the operation returns a value of Security:: SecAuthSuccess, the credentials will be
fully enabled and placed on Current’s own credentials list by the Principal Au-
thenticator.

continuation_data

If the operation returns Security:: SecAuthContinue, this output value should be
used in the subsequent call to continue_credentials_acquisition.
auth_specific_data

If the operation returns Security:: SecAuthContinue, this output value should be
used in the subseguent call to continue_credentials acquisition.

return value

This operation must return a value of Security::SecAuthSuccessif valid “own”
credentials are created. The Principal Authenticator will place these credentialsin
the Current object’s own credentials list.

This operation must return a value of Secuirty::SecAuthContinueif subsequent
callsto continue_credentials acquistion are still needed.

This operation must return a value of Security:: SecAuthExpired if the continua-
tion has gone on too long and for some reason can no longer be continued.

This operation must return a value of Security::SecAuthFailureif the credentials
cannot be created. However, we prefer that a CORBA system exception be raised
with an informative message as to the error encountered.

154

ORBASEC SL2

The Vault

get_supported_mechs

This operation should return the mechanisms and supported options for which the
Vault is capable of creating credentials and security contexts.

/1 1DL
Security:: MechandOpti onsLi st get_supprted_nechs();

/'l Java
org. ong. Security. MechandOpti ons|[]
get _supported_nechs();

get_supported_authen_methods

This operation should return the authentication method tags that are supported by
this vault for a particular mechanism that this Vault supports. If the Vault has
advertised that it supports a mechanism type, fromits get_supported_mechs oper-
ation, this call must return alist of valid tags for the mechanism that it supports for
the call to acquire_credentials. We suggest that the tag value of zero be used to
mean “default”.

/1 1DL

Security:: Authenticati onMet hod get_supported_aut hen_net hods(
in Security:: Mechani snilype mechani sm

)

/'l Java

pubilc int[]

get _supported_aut hen_net hods(String mechani sm;

supported_mech_oids

This operation should return the | SO standard OIDs for the supported mechanisms
for which the Vault is capable of creating credentials and security contexts. An
OID of a specific mechanism is always contained in the header of a GSS Initial
Token which is given to the accept_security_context operation. The OIDs are
advertised here by the VVault so that the SECIOP machinery can determine the
whether the Vault can handle a specific GSS Initial Token, or direct it to a Vault
that can.

/1 1DL
Security:: O DLi st supported_mech_oids();

ORBASEC SL2 155

Security Replaceable

/1 Java

byte[][]
supported_mech_oi ds();

Credentials

The SecurityL evel2:: Credentialsinterface is the base type for own credentials
and received credentials. The “own” type credentialsis the Securityl evel2::Cre-
dentials interface itself, while SecurityL evel2:: ReceivedCredentials and
SecuritylL evel2:: TargetCredentials extends it.

A Credentials object holds information pertaining to the authenticated identity of
the subject of the credentials, i.e. the principal, viathe security name, by either
acquire_credentials or accept_security_context operation of the Vault.

/1 1DL
interface Credentials { // Locality Constrained
Credentials copy();

void destroy():

readonly attribute Security::Credential sType
credential s_type;

readonly attribute Security:: AuthenticationState
aut hentication_state;

readonly attribute Security::Mechani smiype nechani sm

attribute Security::AssociationOptions
accepting_options_supported;
attribute Security::AssociationOptions
accepting_options_required;
attribute Security::AssociationOptions
i nvocation_options_support ed;
attribute Security::AssociationOptions
i nvocati on_options_required;
bool ean get _security_feature(
in Security:: Comuni cationDirection di rection,
in Security::SecurityFeature feature

)i

156 ORBASEC SL2

Credentials

bool ean set _attributes (
in Security::Attributelist requested_attributes,
out Security::AttributeList actual _attributes

)i

Security::Attributelist get_attributes(
in Security::AttributeTypelLi st attributes

)
bool ean is_valid (
out Security::UcT expiry_tine
)
bool ean refresh(
in Security::Opaque refresh_data
)
b

The attributes and operations of the Credentials interface are:

copy

This operation may be called on by the user to copy credentials. The credentials
may be modified by the user, so care should be taken to create a new Credentials
object preserving information in any context it may be place in for which a copy of
the Credentials is deemed warranted.

ORBASEC SL2 SECIOP machinery makes no calls to the copy operation of Cre-
dentials.

The implementer should take care to make copies of credentials in the various
places they are produced and housed in the context of the replaceable module. For
example, the Credentials stored in the client_credentials attribute on the Client-
SecurityContext should be a copy of the Credentials used to create the context,
which are may be one of the user accessible “own” Credentials on the Current
object. The application may change the option attributes of user accessible Creden-
tials object and then alter the credentials hanging off the ClientSecurityContext
object.

The implementer should detail how the general copies of Credentials objects are
affected by the destroy operation on one of the copies.

ORBASEC SL2 157

Security Replaceable

/1 1DL
Credential s copy();

/'l Java
public org.ong. SecuritylLevel 2. Credentials copy();

destroy

This operation is called upon destroy the credentials object so that applications can
do their own credentials management. This also gives the Credentials operation
the ability to do some memory management and take care of loose ends.

ORBASEC SL2 SECIOP machinery makes no calls on the destroy operation.

/1 1DL
void destroy();

/'l Java
public void destroy();

credentials type

This attribute contains the value discerning whether the credentials are of the
“own” or “received” type.

/1 1DL
readonly attribute Security::Credential sType
credential s_type;
/'l Java
public org.ong. Security. Credential sType
credential s_type();

This operation must return Security:: SecCredentialsType:: SecOwnCredentials
if the Credentialsis of the “own” credentials type, Security::SecCredential-
sType::SecReceivedCredentialsif the Credentials object is of the “received” cre-
dentials type and can be narrowed to a ReceivedCredentials object, and
Security::SecCredentialsType:: SecTargetCredentials if the Credentials object
is of the “target” credentials type and can be narrowed to a TargetCredentials
object.

158

ORBASEC SL2

Credentials

authentication_state

Since Credentials objects may take several operations to fully become initialized
this read-only attribute serves as an indication of the authentication state, which is
the same as the result returned from Principal Authenticator::authenticate and
PrincipalAuthenticator::continue_authentication operations.

/1 1DL
readonly attribute Security::AuthenticationStatus
aut hentication_state;
/'l Java
public org.ong. Security. Aut henti cati onstat us
aut hentication_state();

This attribute must have the value of Security:: AuthenticationStatus:: SecAuth-
Success if the Credentials are fully initialized. It must have the value of Secu-
rity::AuthenticationStatus:: SecAuthContinue if subsequent calls to
PrincipalAuthenticator::continue_authentication are needed. It must have the
value Security:: AuthenticationStatus:: SecAuthFailure if the continuing authen-
tication of the Credentials has failed. It must have the value of Security::Authen-
ticationStatus:: SecAuthExpired if the continuing authentication of the
Credentialsis no longer viable.

mechanism
This read only attribute specifies the symbolic name security mechanism and the
symbolic name of the cipher suites that the credentials support.

/1 1DL
readonly attribute Security:: Mechani sniType nechani sm

/'l Java
public String mechanism);

Please see the section on “ Mechanism” on page 89. for detail. Also, please see the
JavaDoc built documentation on or basec.corba.M echUtil to see how you may reg-
ister symbolic names for your mechanisms and ciphersinto that facility.

accepting_options_supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is

ORBASEC SL2 159

Security Replaceable

placed in the “target_supports’ field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

/1 1DL

attribute Security::AssociationOptions
accepting_options_supported;

/'l Java

public short accepting_options_supported();

public void accepting_options_supported(short opts);

Accepting options supported must be non-zero to be used with SecL ev2::Cur-
rent::set_accepting_credentials operation. The absolute minimum in security
terms that any credentials object can have in supported options to establish an asso-
ciationis:

NoProtection + NoDelegation

For most security mechanisms, “received” credentials object must have accepting
options of zero. This attribute having a value of zero simply states that this creden-
tials object cannot be used to establish secure associations on the server side.

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to less than the accepting_options_required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with their maximum supported options set in this
attribute. The implementer should take care to enforce these rules.

accepting_options required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the server side. It also serves as the value that is
placed inthe“target_requires’ field of the security component (should one exist)
for the particular security mechanism in an objects’s IOR.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

160

ORBASEC SL2

Credentials

/1 1DL

attribute Security::AssociationOptions
accepting_options_required

/'l Java

public short accepting_options_required();

public void accepting_options_required(short opts);

Accepting options required may be zero.

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the server side. They cannot be set
to more than the accepting_options_supported attribute. If one must augment the
optionsthat are required, one must set the supported options first. The implementer
should take care to enforce these rules.

invocation_options supported

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

/1 1DL
attribute Security::AssociationOptions
i nvocati on_opti ons_supported
/'l Java
public short invocation_options_supported();
public void invocation_options_supported(short opts);

Invocation options supported must be non-zero to be used with an

SecurityL evel2::1nvocationCredentialsPolicy. The absolute minimum in security
terms that any credentials object can have in supported options to establish an asso-
ciationis:

NoProtection + NoDelegation
In the case of delegation, “received” credentials may have supported invocation

options. This attribute having a value of zero simply states that this credentials
object cannot be used to establish secure associations on the client side.

ORBASEC SL2 161

Security Replaceable

After Credentials are fully initialized the user can change the options these creden-
tials support. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to less than the invocation_options _required attribute. If one must decrement the
options that are supported, one must set the required options first. The options that
are supported cannot be set to more than the options that the credentials were cre-
ated with. Credentials are created with there maximum supported options set in this
attribute. The implementer should take care to enforce these rules.

invocation_options required

This attribute gives control over certain capabilities of the credentials object when
setting up secure associations on the client side.

Setting of the attribute’ s value to an illegal set of Security::AssociationOptions
must raise a CORBA::BAD_PARAM exception.

/1 1DL
attribute Security::AssociationOptions
i nvocati on_options_required;
/'l Java
public short invocation_options_required();
public void invocation_options_required(short opts);

Invocation options required may be zero.

After Credentials are fully initialized the user can change the options these creden-
tials require. Changing the options alters the characteristics of the credentials when
they are used to establish secure associations on the client side. They cannot be set
to more than the invocation_options_supported attribute. If one must augment
optionsthat are required, one must set the supported options first. The implementer
should take care to enforce these rules.

get_security feature

This operation returns a boolean that represent a security feature's state of the cre-
dentials. It is not used by any ORBAsec SL2 SECIOP machinery. It is a user level
interface.

162

ORBASEC SL2

Credentials

/1 1DL
bool ean get _security_feature(
in Security::ComunicationDirection di rection,

in Security:: SecurityFeature feature
)
/'l Java
public bool ean get_security_features(

i nt di recti on,

org.ong. Security. SecurityFeature feature

)

If the communication direction is Security:: CommunicationDirection:: SecDi-
rectionRequest, the feature returned should be for invocation, i.e. asaclient. If the
communication direction is Security::CommunicationDirection:: SecDirection-
Reply, the feature return should be for the accepting requests, i.e. as a server.

We suggest that the values returned for agiven feature mirror the option state in the
invocation_options_supported attribute in the SecDirectionRequest case, and
the accepting_options_supported attribute in the SecDirectionReply case. How-
ever, your mechanism may specify otherwise.

set_attrbiutes

This operation is intended for use in attribute management of the particular creden-
tials. Its meaning is defined to diminish the attributes of the credentials in the con-
text of the mechanism’ s ability. The implementer should take care to notice that the
reguested attributes is a subset of the exact attributes that would be returned from
the get_attributes operation.

The set_attributes operation’s interface is below:

/1 1DL

bool ean set _attri butes(
in Security::Attributelist requested_attributes,
out Security::Attributelist actual _attributes

)

/'l Java
public bool ean set_attributes(
org.ong. Security. SecAttribute[] requested_attri butes,

org.ong. Security. AttributeListHol der actual _attributes
)

ORBASEC SL2 163

Security Replaceable

Users may call this operation if they want to subsequently remove security
attributes from the Credentials. The implementer should take care to make sure that
the value given to the requested_attributes is a subset of the exact attributes that
would be returned from the get_attributes operation. It is realized that some
attributes that are not supplied may not be able to be removed from the credentials.
Y et, the operation may be successful enough not to warrant the raising of an excep-
tion. This operation should return true if the operation is successful and all the
attributes of the credentials now match the requested attributes. This operation
should return false if the operation is successful, but some of the requested
attributes did not include attributes that cannot be removed. The actual_attributes
parameter always returns all the attributes of the credentials. If the operation is not
successful a system exception of CORBA::BAD_PARAM should be raised.

get_attributes

This operation returns an unordered sequence of security attributes that belong to
the credentials. Although there is a standard for the attribute types and the values to
which they refer, no standardization effort is underway to define the format of the
values of the particular attributes.

/1 1DL
Security::Attributelist get_attributes(
in Security::AttributeTypeli st attributes
)
/'l Java

public org.ong. Security. SecAttribute[] get_attributes(
org.ong. Security. AttributeType[] attributes

)

We strongly suggest that you use the orbasec.corba.Opaque class for Opaque
encodings of the defining_authority and value fields of the SecAttribute. See
“ Opague Encodings’ on page 185.

is valid

This operation returns a boolean value indicating whether the credentials are till
valid. The output parameter returns the time of expiration.

164

ORBASEC SL2

Received Credentials

/1 1DL
bool ean is_valid(
out Security::UcT expiry_tine

)

/'l Java
public bool ean is_valid(
org.ong. Ti meBase. Ut cTHol der expiry_tinme

)

refresh

This operation is intended to renew a credentials before it may expire. It returns a
boolean value indicating the success of the renewal .

/1 1DL
bool ean refresh(
in Security::Opaque refresh_data

)

/'l Java
public bool ean refresh(byte[] refresh_data);

We suggest that if your mechanism cannot refresh either own credentials or
received credentials, that this operation raisea CORBA::BAD_OPERATION
exception.

Received Credentials

On the target side a ReceivedCredentials object represents a secure association
between the client and target. Received credentials must have more information
than “own” credentials. An object implementing this interface should be returned
from the call to accept_security_context on the Vault.

The interface inherits from the Credentials interface, and in the case of using the
received credentials for invocations, the invocation features, operations, and
attributes of the Credentials object have the same meaning. Of course, the
credentials_type attribute is set to SecReceivedCredentials. Itsinterfaceis
defined below:

ORBASEC SL2 165

Security Replaceable

interface ReceivedCredentials : Credentials {
/'l Locality Constrained

readonly attribute Credentials accepting_credenti al s;
readonly attribute Security::AssociationOptions

associ ati on_options_used;
readonly attribute Security::Del gationState

del egati on_state
readonly attribute Security::Del egati onMode

del egati on_node;

b

accepting_credentials

Thisread-only attribute is the Credentials objects that was used to establish the
secure association with the client. It should be one of the credential s objects that
was given to accept_security context of the Vault.

/1 1DL
readonly attribute Credentials accepting_credential s;

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s
accepting_credential s();

association_options_used

This read-only attribute states the association options that were used to make the
association with the accepting_credentials. This value should be a value some-
where between the accepting_options_required and the
accepting_options_supported of the accepting_credentials.

// 1DL
readonly attri bute Security::AssociationOptions
associ ati on_options_used;
/'l Java
public short accociation_options_used();

delegation_state

This read-only attribute is the value of the delegation state of the client’s own cre-
dentials. It states whether the immediate invoking principal of the operation isthe
initiator or a delegate of some other principal .

166

ORBASEC SL2

Target Credentials

/1 1DL
readonly attribute Security::Del egati onState del egati on_state;

/'l Java
public org.ong. Security. Del egationState
del egation_state();

Note — For some security mechanisms, this information is indeterminable. When
this information is indeterminable, impersonation is assumed; and therefore, this
attribute must have the value of Seclnitiator.

delegation_mode

This read-only attribute states the delegation mode of the received credentials. It
stipulates that the credentials are in the a del egation mode of:

* No delegation mode (SecDelM odeNoDelegation), where they can not be used
for invocations.

* Simple delegation mode (SecDelM odeSimpleDegation), where the credentials
can be indiscriminately used on the client’ s behalf.

* Composite delegation (SecDelM odeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as atrace, a combination of priv-
ileges, etc.

/1 1DL
readonly attribute Security::Del egati onMode del egati on_npde;

/'l Java
public org.ong. Security. Del egati onMbde
del egati on_node() ;

Target Credentials

On the target side a TargetCredentials object represents a secure association
between the client and target from the client’s point of view. Target credentials
must have more information than “own” credentials. An object implementing this
interface should be returned from the call to server_credentials attribute on Cli-
entSecurityContext.

ORBASEC SL2 167

Security Replaceable

The interface inherits from the Credentials interface, and in the case of using the
received credentials for invocations, the invocation features, operations, and
attributes of the Credentials object have the same meaning. The credentials type
attribute is set to SecTargetCredentials. Its interface is defined below:

interface TargetCredentials : Credentials {

/1 Locality Constrained
readonly attribute Credentials initiating_credentials
readonly attribute Security::AssociationOptions

associ ati on_options_used;

b

initiating_credentials

Thisread-only attribute is the Credentials objects used to establish the secure asso-
ciation with the server. This Credentials object should be the one given to the
init_security_context operation.

/1 1DL
readonly attribute Credentials initiating_credentials

/1 Java
public org.ong. SecuritylLevel 2. Credenti al s
initiating_credentials();

association_options_used

This read-only attribute states the association options that were used to make the
association with the initiating_credentials. This value should be a value some-
where between the invocation_options required and the
invocation_options_supported of the initiating_credentials.

// DL
readonly attri bute Security::AssociationOptions
associ ati on_options_used;
/1 Java
public short accociation_options_used();

168

ORBASEC SL2

Security Context

Security Context

The SecurityContext object is the base interface for the ClientSecurityContext
object and the Target SecurityContext object.

interface SecurityContext {
readonly attribute Security :Context Type context_type;
readonly attribute Security :ContextState context_state;
readonly attribute Securty::Mechani snmlype nechanism

readonly attribute bool ean supports_refresh;
readonly attribute Security::Channel Bi ndi ngs
chan_bi ndi ng;

readonly attribute SecurityLeve2::Credentials
peer _credenti al s;

Security::AssocationStatus continue_security_context(

in Security::OpaqueBuffer in_t oken,
out Security:: OpaqueBuffer out _t oken
)
voi d protect_nessage(
in Security::OpaqueBuffer nessage,
in Security::QOP qop,
out Security:: OpaqueBuffer text _buffer
out Security:: QpaqueBuffer out _t oken
)
voi d recl ai m message(
in Security::OpaqueBuffer text _buffer,
in Security::OpaqueBuffer token,
out Security::QOP qop,
out Security:: OpaqueBuffer nessage
)
bool ean is_valid(
out Security::UcT expiry_tine
)
void refresh_security_context(
in Security::Opaque refresh_dat a,
out Security:: OpaqueBuffer out _t oken

)

ORBASEC SL2 169

Security Replaceable

bool ean process_refresh_t oken(
in Security:: OpaqueBuffer refresh_t oken

)

voi d discard_security_context(
in Security::Opaque refresh_dat a,
out Security:: OpaqueBuffer out _t oken

)

bool ean process_di scard_t oken(

in Security:: OpaqueBuffer refresh_t oken
)
b

context_type

This read-only attribute contains the discriminator that determines whether this
context isa ClientSecurityContext or a Server SecurityContext.

/1 1DL
readonly attribute Security:: SecurityContextType
cont ext _type;
/'l Java
public org.ong. Security. SecurityContext Type
context _type();

context_state
This read-only attribute indicates the establishment state of the security context.

/1 1DL
readonly attribute Security:: SecurityContextState
cont ext _state;
/'l Java
public org.ong. Security. SecurityContextState
context_state();

The ORBAsec SL2 SECIOP machinery pays attention to the following states dur-
ing its processing of secure associations:

170

ORBASEC SL2

Security Context

SecContextl nitialized

A SecurityContext state of SecContextlnitialized istheinitial state of a security
context created by the Vault.

SecContextContinued

A SecurityContext state of SecContextContinued means the security context still
needs to do continuance processing. It will not be used protect messages.
SecContextClientEstablished

A SecurityContext state of SecContextClientEstablished means the security con-
text still needs to do continuance processing, but is able to protect messages on the
client side.

An example of this situation is when mutual authentication is not needed. Once the
client produces the initial token, it can be ready to protect messages without some
response from the target.

Note — SECIOP protocol has no provision for being able to reclaim messages
without first entering the SecContextEstablished state.

SecContextEstablished

A SecurityContext state of SecContextEstablished means the security context is
able to protect messages and reclaim messages.

SecContextEstablishExpired

A SecurityContext of SecContextEstablishExpired means that establishment
processing for the security context has expired, and it can no longer be used to
accept calls to continue establishment, protect messages, or reclaim messages.

SecContextExpired

A SecurityContext state of SecContextExpired means the security context has
expired, and it can no longer be used to accept calls to continue establishment, pro-
tect messages, or reclaim messages.

ORBASEC SL2 171

Security Replaceable

SecContextlnvalid

A SecurityContext of SecContextlnvalid means that the security context is no
longer usable.

supports refresh
This read-only attribute tells the ORBASEC SL.2 SECIOP machinery whether the
context may be, or has the ability to be refreshed.

/1 1DL
readonly attribute bool ean supports_refresh;

/'l Java
publ i c bool ean supports_refresh();

mechanism

This read-only attribute is the mechanism used in the creation of the SecurityCon-
text. by the Vault. It usually depends upon the capabilities of the Vault and the
Credentials object(s) giventoinit_security context or accept_security_context.

/1 1DL
readonly attribute Security:: Mechani smlype nechani sm

/1 Java
public String mechanism);

chan_binding
Thisread-only attribute is the chan_binding parameter used in the creation of the
SecurityContext by the Vault.

/1 1DL
readonly attribute Security:: Channel Bi ndi ngs chan_bi ndi ng;

/'l Java
public org.ong. Security. Channel Bi ndi ngs chan_bi ndi ng();

peer credentials

This attribute returns the ReceivedCredentials or TargetCredentials object that rep-
resents the secure association. If the security context is a ClientSecurityContext, the

172

ORBASEC SL2

Security Context

peer credentials are that of TargetCredentials. If the security context is a ServerSe-
curityContext, the peer credentials are that of ReceivedCredentials.

continue_security _context

This operation is called on by SECIOP to continue security contexts. The input
token is either supplied by SECIOP::ContinueEstablishment or SECIOP::Com-
pleteEstablishment messages.

/1 1DL
Security::AssocationStatus continue_security_context(
in Security::OpaqueBuffer i n_t oken,
out Security:: OpaqueBuffer out _t oken
)
/'l Java

public org.ong. Security. Associ ati onSt at us

conti nue_security_context(
org. ong. Security. OpaqueBuffer i n_t oken,
org. ong. Security. OpaqueBuf f er Hol der out _t oken

)

protect_message

This operation is used by SECIOP to send SECIOP:: M essagel nContext mes-
sages.

/1 1DL
void protect_nessage(
in Security::OpaqueBuffer nessage,
in Security::QOP qop,
out Security:: OpaqueBuffer text _buffer
out Security:: QaqueBuffer out _t oken
)
/'l Java
public void protect_message(
org.ong. Security. OpaqueBuffer nmessage,
org.ong. Security. QOP qgop,

org. ong. Security. OpaqueBuf f er Hol der text_buffer,
org. ong. Security. OpaqueBuff er Hol der out _t oken

ORBASEC SL2 173

Security Replaceable

reclaim_message
This operation is used by SECIOP to decode SECIOP:: M essagel nContext mes-

sages.

/1 1DL

void reclai m nessage(
in Security::OpaqueBuffer text _buffer,
in Security::OpaqueBuffer t oken,
out Security:: QOP gop,
out Security:: OpaqueBuffer nmessage

)

/'l Java

public void reclai mmessage(
org. ong. Security. OpaqueBuffer text _buffer,
org. ong. Security. OpaqueBuffer t oken,
org. ong. Security. QOPHol der qop,

org.ong. Security. OpaqueBuf f er Hol der nessage
)

is valid

This operation states the expiry time of the security context should it be known.
ORBAsec SL2 currently does not make use of this operation.

/1 1DL
bool ean is_valid(
out Security::UcT expiry_tine
)
/'l Java

public bool ean is_valid(
org. ong. Ti neBase. Ut cTHol der expiry_tinme

)
refresh_security context

This operation attempts to refresh the security context. It has one input parameter
and one output parameter.

174 ORBASEC SL2

Security Context

/1 1DL

void refresh_security_context(
in Security::Opaque refresh_dat a,
out Security:: OpaqueBuffer out _t oken

)

/'l Java

public void refresh_security_context(
org. ong. Security. Opaque refresh_dat a,

org.ong. Security. OpaqueBuf f er Hol der out _t oken

refresh_data

This parameter contains the information that may be necessary to reestablish the
context.

out_token

This parameter contains the information that is to be transmitted back to the remote
side in a SECIOP EstablishContext message.

Note— There is a flaw in SECIOP in the way it is supposed to reestablish a
context should it expire on the target side.

ORBASEC SL2 currently does not make use of this operation.

process refresh_token

This operation attempts to process a refresh token produced by the
refresh_security_context operation of the remote side of the security context. It
has one input parameter.

/1 1DL
bool ean process_refresh_t oken(
in Security:: OpaqueBuffer refresh_t oken
)
/'l Java

public bool ean process_refresh_t oken(
org.ong. Security. OpaqueBuffer refresh_token

)

ORBASEC SL2 175

Security Replaceable

refresh_token

This parameter contains the evidence and information that may be necessary to
reestablish the context.

ORBASEC SL2 currently does not make use of this operation.

discard_security_context

This operation attempts to discard the security context. It has one input parameter
and one output parameter.

/1 1DL
voi d discard_security_context(
in Security::Opaque refresh_dat a,
out Security:: OpaqueBuffer out _t oken
)
/'l Java
public void discard_security_context(
org. ong. Security. Opaque refresh_dat a,

org. ong. Security. OpaqueBuff er Hol der out _t oken
)
discard data
This parameter contains the information that may be necessary to discard the con-
text.
out_token

This parameter contains the information that is to be transmitted back to the remote
side in a SECIOP DiscardContext message.

process discard_token

This operation attempts to process a discard token produced by the
discard_security _context operation of the remote side of the security context. It
has one input parameter.

176

ORBASEC SL2

ClientSecurityContext

/1 1DL
bool ean process_di scard_t oken(
in Security:: OpaqueBuffer refresh_t oken
)
/'l Java

publ i c bool ean process_di scard_t oken(
org. ong. Security. OpaqueBuffer refresh_t oken

)
discard token

This parameter contains the evidence and information that may be necessary to dis-
card the context.

ClientSecurityContext

The ClientSecurityContext object is created by the Vault after a successful
init_security_context operation. It is used to represent the establishment of a
secure association with atarget. It has the following interface:

interface ClientSecurityContext : SecurityContext {
readonly attribute Security::AssociationOptions
associ ati on_options_used,;
readonly attribute Security::Del egati onMode
del egati on_node;
readonly attribute Security:: Opaque
mech_dat a;
readonly attribute SecuritylLevel 2:: Credenti al 4.i st
client _credentials;
readonly attribute Security::AssociationOptions
server _opti ons_support ed;
readonly attribute Security::AssociationOptions
server_options_required;
readonly attribute Security::Opaque
server_security_naneg;

ORBASEC SL2 177

Security Replaceable

association_options_used

This read-only attribute states the association options that were used to make the
association with the client_credentials. This value should be a value somewhere
between the accepting_options_required and the accepting_options _supported
of the client_credentials.

/1 1DL
readonly attribute Security::AssociationOptions
associ ati on_options_used;
/'l Java
public short accociation_options_used();

delegation_mode

This read-only attribute states the delegation mode of the security context, which
must be a supported del egation mode of theclient_credentials. It stipulates that the
credentials are in the a del egation mode of:

* No delegation mode (SecDelM odeNoDelegation), where they can not be used
for invocations.

* Simple delegation mode (SecDelM odeSimpleDegation), where the credentials
can be indiscriminately used on the client’ s behalf.

* Composite delegation (SecDelM odeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as atrace, a combination of priv-
ileges, etc.

/1 1DL
readonly attribute Security::Del egati onMode del egati on_npde;

/'l Java
public org.ong. Security. Del egati onMbde
del egati on_node() ;

mech_data

Thisread-only attribute is the mechanism data from the IOR that was used to set up
the secure association, inits raw form.

178

ORBASEC SL2

ClientSecurityContext

/1 1DL
readonly attribute Security:: Qpaque mech_data;

/'l Java
public byte[] mech_data();

client_credentials

This read-only attribute holds the credentials object that was used to create the
secure association with the target. These credentials can be either of the “own” cre-
dentials type, or “received” credentials type.

/1 1DL
readonly attribute SecuritylLevel 2::Credential s
client _credentials;

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s
client_credential s();

Note — For internal integrity, the credentials placed in this attribute while on the
ClientSecurityContext should be a non-modifiable copy of the credentials used
to create the context, because the application can manipulate various attributes

of the credentials.

server_options_supported

This read-only attribute holds the attributes that the server is said to support for the
selected mechanism, i.e. from thetarget_supportsattribute of the selected security
component in the target’s IOR.

/1 1DL
readonly attribute Security::Asssociati onOptions
server_opti ons_support ed;

/'l Java
public short server_options_supported();

ORBASEC SL2 179

Security Replaceable

server_options required

This read-only attribute holds the attribute that the server is said to require for the
selected mechanism, i.e. from the target_requires attribute of the selected security
component in the target’s IOR.

/1 1DL
readonly attribute Security::Asssociati onOpti ons
server_options_required

/'l Java
public short server_options_required();

server_security_name

This read-only attribute holds the target’ s security name that was used to set up the
secure association.

/1 1DL
readonly attribute Security:: Qpaque
server_security_nane;

/'l Java
public byte[] server_security_nane();

Server Security Context

The Server SecurityContext object is created by the Vault after a successful
accept_security_context operation. It is used to represent the establishment of a
secure association with a client. It has the following interface:

180

ORBASEC SL2

Server Security Context

interface ServerSecurityContext : SecurityContext {
readonly attribute Security::Associ ati onOptions
associ ati on_options_used;
readonly attribute Security::Del egati onhMbde
del egati on_node;
readonly attribute SecuritylLevel 2:: Credenti al sLi st
server_credential s;
readonly attribute Securitye::Associ ati onOptions
server_opti ons_support ed;
readonly attribute Security::Associ ati onOptions
server_options_required
readonly attribute Security::Opaque
server_security_nane;

i
association_options _used

This read-only attribute states the association options that were used to make the
association with the server_credentials. This value should be a value somewhere
between the accepting_options_required and the accepting_options _supported
of the server_credentials.

// DL
readonly attri bute Security::AssociationOptions
associ ati on_options_used;
/'l Java
public short accociation_options_used();

delegation_mode

This read-only attribute states the delegation mode of the security context, which
must be the same as the delegation mode of the received_credentials. It stipulates
that the credentials are in the a del egation mode of:

* No delegation mode (SecDelM odeNoDelegation), where they can not be used
for invocations.

* Simple delegation mode (SecDelM odeSimpleDegation), where the credentials
can be indiscriminately used on the client’ s behalf.

* Composite delegation (SecDelM odeCompositeDelegation) where the creden-
tials have some sort of composite ability, such as atrace, a combination of priv-
ileges, etc.

ORBASEC SL2 181

Security Replaceable

/1 1DL
readonly attribute Security::Del egati onMode del egati on_npde;

/'l Java
public org.ong. Security. Del egati onMbde
del egati on_node() ;

server_credentials

This read-only attribute holds the credentials object that was used to create the
secure association with the client. This Credentials object should be one of the cre-
dentials objects given to accept_security context.

/1 1DL
readonly attribute SecuritylLevel 2:: Credential s
server_credential s;

/'l Java
public org.ong. SecuritylLevel 2. Credenti al s
server_credential s();

Note — For internal integrity, the credentials placed in this attribute while on the
Server SecurityContext should be a non-modifiable copy of the credentials used
to create the context, because the application can manipulate various attributes
of the credentials.

server_options_supported

This read-only attribute holds the attributes that the server is said to support for the
selected mechanism, i.e. from thetarget_supportsattribute of the selected security
component in the target’s IOR that was used to set up the security context.

/1 1DL
readonly attribute Security::Asssociati onOptions
server_options_support ed;

/'l Java
public short server_options_supported();

182

ORBASEC SL2

Server Security Context

server_options required

This read-only attribute holds the attribute that the server is said to require for the
selected mechanism, i.e. from the target_requires attribute of the selected security
component in the target’s IOR that was used to set up the security context.

/1 1DL
readonly attribute Security::Asssociati onOptions
server_options_required

/'l Java
public short server_options_required();

server_security_name

This read-only attribute holds the target’ s security name that was used to set up the
secure association.

/1 1DL
readonly attribute Security:: Qpaque
server_security_nane;

/'l Java
public byte[] server_security_nane();

ORBASEC SL2 183

Security Replaceable

184

ORBASEC SL2

Opaque Encodings

CHAPTER 9 Security Opaque
Encodings

Opaque Encodings

CORBA Security Level 2 functionality has many a data structure containing Secu-
rity::Opaque data typed elements, which is defined below as:

/1 1DL
modul e Security {
t ypedef sequence<octet> Opaque;

b
The IDL to Java mapping translates this datatypeinto abyt e[] in Java.

The Security::Opaque datatypeis used in several places where it affects the Secu-
rity Level 2 API:

* Asthesecurity_name parameter of the authenticate operation of the Princi-
palAuthenticator object.

* Asthedefining_authority and value fields of the Security:: SecAttribute
structure, which is returned from a get_attributes operation on the
SecurityL evell::Current object and a SecurityL evel2:: Credentials object.

ORBASEC SL.2 185

Security Opaque Encodings

* Thesecurity_name field of the Security:: SecurityM echanismData struc-
ture, which is returned from the get_security _mechanisms operation on the
SecurityL evel2::Current object.

The problem is that the “ opagqueness” of these data fields are a hinderance to apply-
ing general security solutions unless you know the format or the byte encodings of
all particular fields ahead of time. However, this quickly falls apart if you have two
different mechanisms that can deliver different byte encodings for such things as
security attributes containing an Access Id. With one mechanism it may be a
straight byte to ASCII character string translation, in another it may be one of two
different encodings, such as a string, or a binary X.500 Directory Name, which is
used in X.509 certificates.

Unfortunately, the CORBA Security Specification is quite lacking in the respect of
making sense of the “opaqueness” of security attributes. One would hope that a bet-
ter scheme will develop over time. In the meantime, Adiron has developed a utility
for ORBASEC SL 2 containing functionality for generalizing and typing the byte
encodings of such applications of the Security::Opaque data type. This utility isa
class called Opaque with staticly defined functions.

The Opaque Class

A security name may be several different types and have several different encod-
ings into bytes. In order to make sense of this “ opaqueness’, ORBASEC SL2 intro-
duces a utility object class called Opaque which resides in the orbasec.corba
package.

This utility class encodes names of different types into atag value and a byte
encoding and packages them up in a CDR encapsulation. When names, such as
security names, or the fields of the Security:: SecAttribute structure, are used at
the Security Level 2 APl level, they must be in this CDR encapsulation format.

A better way to say thisrestriction is that any time you access a Security::Opaque
field or parameter as a name of something, (e.g. a security name or afield of an
attribute) wrap it using the Opaque class before encoding or decoding it to a Secu-

rity::Opaque (i.e. byte[]).

186

ORBAsEC 9.2

The Opaque Class

The Opaque Interface

A brief introduction to the Opaque class specifying the most used features of it and
how it is used is given here. However, please see the JavaDoc built documentation
for the orbasec.corba.Opaque class for the more precise details.

public abstract class Opaque {
/1 Static classes

public static class KerberosNane extends Opaque { }
public static class DirectoryName extends Opaque { }
public static class PrintableString extends Opaque {....}

/1 Static Functions

public static Opaque encodeKerberosNane(String nane);
public static Opaque encodeDirectoryNane(byte[] der_dn);
public static Opaque encodePrintableString(String nane);

public static Opaque decode(byte[] opaque_encoding);
/'l I nstance Functions
public String toString(); // Overrides Object
public byte[] getEncoding();
public byte[] getRawBytes();

}

The Opagque class has support for the encoding and decoding of different name
types to and from Security::Opaque, such as printable strings, X.500 binary
encoded Distinguished Names, Kerberos names, and more. The entire interface is
not presented here. A thorough explaination isin the JavaDoc built documentation
for the orbasec.corba.Opaque class.

The Opaque.encode M ethods

The encoding functions all have the form of:

Opaque encode<subcl ass nane>(<paraneters>)

ORBASEC 9.2 187

Security Opaque Encodings

They may take one or more parameters and create an object that is a subclass of the
Opaque class. The parameters represent the content of the intended name in some
form.

For example, examine the Opaque.encodeK er ber osName method. This method
takes the string that represents a Kerberos name in string form, and creates a
Opaque object. The most common use of this object would bein a call the Princi-
palAuthenticator object’s authenticate operation. An example of this scenario fol-
lows:

/'l Java
/1 The Principal Authenticator conmes from Security Current
org.ong. SecuritylLevel 2. Princi pal Authtenticator pa =

/1 A few holders for out paraneters of authenticate
org.ong. SecuritylLevel 2. Credenti al sHol der credsh =
new org.ong. SecuritylLevel 2. Credenti al sHol der () ;
org. ong. Security. OpaqueHol der cont_datah =
new org. ong. Security. OpaqueHol der () ;
org.ong. Security. OpaqueHol der auth_specific_datah =
new org. ong. Security. OpaqueHol der () ;

/1 A normal Kerberos Nane
String princi pal = “bart @GWREALM COM ;

/1 The kerberos name encoded as a Opaque obj ect
or basec. cor ba. Opaque nanePrinci pal =
or basec. cor ba. Opaque. encodeKer ber osNane(pri nci pal) ;

/1 The Opaque encoded as bytes.
byte[] security_name = nanePrinci pal . get Encodi ng();

// A call to authenticate
pa. aut henti cat e(

0, // et hod
“ Ker ber os”, // mechani sm
security_nane, /] security_nane

(“cache_name=MEMORY: 0\ n” +

“passwor d=\"nypassword\ "\ n").getBytes(),// auth_data
new org.ong. Security. SecAttribute[0], /1 privileges
credsh, /] creds hol der
cont _dat ah,
aut h_speci fi c_dat ah

188

ORBAsEC 9.2

The Opaque Class

In the above example, you can see that the normal Kerberos name of
“bart@MY REALM.COM” went through two transformations before it became a
byte array suitable for use with the Principal Authenticator object, namely

String ® encodeKerberosName b Name ® getEncoding P Opaque

The Opaque.decode Operation

To get a name back from an Opaque encoding you must use the Opaque.decode
function. One might do this, in order to perform access checks, i.e. you may need to
do a comparison on the Accessld security attribute value.

For the following example, assume that we have retrieved the “received” creden-
tials, the ReceivedCredentials object representing a client’s Kerberos identity.

/'l Java
org.ong. SecuritylLevel 2. Current current = // get current

org. ong. SecuritylLevel 2. Recei vedCredentials creds =
current.received_credential s();

org.ong. Security. AttributeType[] attr_types =
new org.ong. Security. AttributeType[1];

/1l Generate an AttributeType for Accessld
/1 FAM LY DEFINER 0, FAMLY 1, Accessld = 2
attr_types[0] = new org.ong. Security.AttributeType(
new org. ong. Security. Extensi bl eFamni | y(
(short) 0, (short) 1),
2);

org.ong. Security. SecAttribute[] attrs =
creds.get_attributes(attr_types);

try {
Opaque kNanme = Opaque. decode(attrs[O0].val ue);
Systemout.println(“Access id =" +kNanme.toString());
} catch (Opaque. Codi ngException e) {

Systemout.println(e);

}

ORBASEC SL.2 189

Security Opaque Encodings

In the above code segment beyond all the set up for retrieving an Accessl d security
attribute, is the decoding of the Opaque encoding. Y ou will notice that
Opaque.decode may throw a coding exception. This exception isthrown if the data
doesn’t unmarshal correctly.

Note — All ORBASEC SL2 internal mechanisms use this Opaque utility to
encode Opaque security names and fields of security attributes, so decoding
should be okay.

Y ou will also notice that other classes that were not previously shown exist for the
different forms of names, such as Opaque.K erberosName. This classis aclass
that extends Opaque, but it is defined within the scope of the Opaque class. Such
as:

public abstract class Opaque {

public static class KerberosName extends Opaque {
String name;
public toString()
{

return nane,

}
public byte[] get R RawBytes()
{

}

return name. get Bytes();

}

Y ou might think that all of this encoding/decoding mechanisms is excessive, until
you consider using SSL. The SSL protocol uses X.509 certificates in which the sub-
ject’sidentifier isin the form of an X.500 Directory Name. An X.500 Directory
Name (DN), sometimes called “ Distinguished Name”, is an ASN.1 binary data
structure encoded with the Distinguished Encoding Rules (DER).

In order to parse one of these names, one must have a provider that can decode the
DER encoding of the ASN.1 structure representing the DN.

Note — If you have the ORBASeC SL2-SSL plug-in module, the IAIK toolkit has
that functionality.

190

ORBAsEC 9.2

The Opaque Class

For the following example, consider the case in which the Accessld attributeis
retrieved from a Credentials object using the SSL supplied protocol. This means
that value field of the Accessl d security attribute is an orbasec.corba.Opaque
encoded DN.

try {
/1l Get the Directory Name

Opaque. Di rect oryNane dName =
(Opaque. Di rect oryNane) Opaque. decode(attrs[0].val ue);
byte[] name = dNane. nane;

try {
/1 Use IAIK to parse it and turn it into a string.
i ai k.asnl.structures. Nane dn =
i ai k. asnl. structures. Name(nane);
Systemout.println(“Access id =" + dn.toString());
} catch (iaik.asnl. Codi ngException e) {
System out. prinln(e);
}
} catch (Opaque. Codi ngException e) {
Systemout.println(e);

}

The class Opaque.DirectoryName contains a
byte[] nane;

field. Thisfield represents the raw binary structure of a X.500 Directory Name, not
its Opaque encoding. This “raw” binary structure is the DER encoding of a DN.
However, the Opaque class does nothing to enforce that the raw bytes are actually
aDER encoding of aDN.

Other name forms are supported, such as RFC822, which is an Email name. Again,
no structure is enforced; however, the name component for a
orbasec.corba.Opaque.RFC822Name object is asimple String.

Please check the JavaDoc built documentation that comes with the ORBASEC SL2
distribution for more details and interfaces.

ORBASEC 9.2 191

Security Opaque Encodings

192 ORBASEC 9.2

The SL2 Class

CHAPTER 10 ﬂ]e 8_2
Class

The 3.2 Class

ORBASEC SL2 has a Java class that contains statically defined methods that are
used to initialize SL2. It also contains statically defined methods that help with
such things like creating certain Security Level 2 policy objects. The interface for
the SL2 Classis:

/'l Java
package orbasec;

public class SL2

{
/1 ORBAsec SL2 Version string
public static String Version;

public static void init(
String argv[],
java.util.Properties properties

K

ORBASEC SL.2 193

The SL2 Class

public static void init(

j ava. appl et . Appl et appl et,
java.util.Properties properties

public static void init_w th_boa(
String argv[],
java.util.Properties properties

public static org.ong. CORBA. ORB
orb();

public static org.ong. CORBA. BOA
boa();

public static org.ong. SecuritylLevel 2. QOPPol i cy
org.ong. Security. QOP qop
)

public static org.ong. SecuritylLevel 2. Mechani snPol i cy
creat e_nechani sm policy(
String[] nmechani sns

K

public static
org.ong. SecuritylLevel 2. I nvocati onCredenti al sPol i cy
create_invoc_creds_policy(

org.ong. SecurityLevel 2. Credenti al s[] creds_list

K

public static org.ong. SecuritylLevel 2. EstablishTrustPolicy
create_establish_trust_policy(
org.ong. Security. EstablishTrust trust

K

public static
org.ong. SecuritylLevel 2. Del egati onDi recti vePolicy
create_del egation_directive_policy(
org.ong. Security. Del egati onDirective
del egation_directive

)

public static
or basec. SecLev2. Trust edAut horityPolicy

194 ORBASEC 9.2

The SL2 Class

create_trusted_authority_policy(
or basec. SecLev2. Trust edAut hori t yPol i cyCont ent
trusted authorities
)
I3

Version

Thisfield contains a string describing the version of ORBASEC SL 2 that you are
working with.

init (String parameter)

Thisinitializer is used to initialize the security service of the ORB for stand-alone
“pureclient” CORBA applications. The String array and Properties parameters are
passed to the ORB initialization methods. Use the orb accessor of this class to
obtain areference to the ORB. This method is described in detail in the chapter
entitled “Initializing SL2" on page 45.

init (Applet parameter)

Thisinitializer isused to initialize the security service of the ORB for Java Applets,
which are “pure client” applications, since they cannot accept connections. The
Applet and Properties parameters are passed to the ORB initialization methods.
Use the orb accessor of this class to obtain areference to the ORB. This method is
described in detail in the chapter entitled “ Initializing SL2" on page 45.

init_with_boa

Thisinitializer is used to initialize the security service of the ORB for stand-alone
CORBA applications that are capable of accepting connections, i.e., act as CORBA
servers. The String array and Properties parameters are passed to the ORB and
BOA initialization methods. Usetheorb and boa accessors of this classto obtain a
reference to the ORB and BOA, respectively. It is described in detail in the chapter
entitled “Initializing SL2" on page 45.

orb

This accessor returns areference to the org.omg.CORBA.ORB initialized in one
of the above SL2 initializers.

ORBASEC SL.2 195

The SL2 Class

boa

This accessor returns areference to the org.omg.CORBA.BOA initialized in the
init_with_boainitializer. If ORBASEC SL2 was not initialized with the
init_with_boainitializer, this accessor returnsnul | .

create_qop_policy

This operation is a convenience function that acts as a factory for creating asimple
quality of protection policy, i.e. a QOPPolicy object.

Note — This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create_mechanism _policy

This operation is a convenience function that acts as a factory for creating a simple
mechanisms policy that stipulates the mechanisms to be used during invocations on
targets, e.g. a M echanismPolicy object.

Note — This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create invoc_creds policy

This operation is a convenience function that acts as a factory for creating asimple
invocation credentials policy, e.g. an InvocationCredentialsPolicy object. How-
ever, the credentialslist given as input to this function should be avalid credentials
list for an InvocationCredentialsPolicy object.

Note — This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

Actually, ORBASEC SL2 has two policies that can be used out of the box. They are
defined by the attributes:

* orbasec. SL2. Oml nvocati onCredenti al sPol i cy

196

ORBAsEC 9.2

The SL2 Class

Always returns the own_credentials attribute of Security Current when policy
analysisis performed at binding time.

* orbasec. SL2. Recei vedl nvocati onCredenti al sPolicy

Always returns the received_credentials attribute of Security Current inasin-
gle element list when policy analysisis performed at binding time.

create establish_trust_policy

This operation is a convenience function that acts as a factory for creating a policy
that stipulates whether client and/or target authentication should be established dur-
ing an invocation, e.g. an EstablishTrustPolicy object. [“Establish Trust Policy”
on page 132].

Note — This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create _delegation _directive policy

This operation is a convenience function that acts as a factory for creating a policy
that stipulates whether the credentials being used for the invocation should be dele-
gated to the target or not, e.g. an DelegationDirectivePolicy object. [“ Delegation
Directive Policy” on page 132].

Note — This function does not preclude the implementation of a more
complicated policy, such as depending on the time of day, location, or other
environmental considerations.

create _trusted_authorities_policy

This operation is a convenience function that acts as a factory for creating a policy
that lists the authorities that are trusted for authentication. [see “ TrustedAuthority-
Policy” on page 138].

ORBASEC 9.2 197

The SL2 Class

198 ORBASEC SL.2

Other Java Utility Classes

CHAPTER 11 Othq \]ava
Utility
Classes

Other Java Utility Classes

ORBASEC SL2 has a number of Java Utility Classes that contain statically defined
functions that help with certain aspects of dealing with CORBA Security Level 2
interfaces and Javain general, which the internals of ORBASEC SL2 actually use.

The utilities come in the following Java packages:
orbasec.util. This package contains classes for implementing a Linked List utility,
debugging, and some functions for printing hexadecimal buffers, etc. that are actu-

ally used by ORBASEC SL2.

orbasec.io. This package contains some I nput/Output classes for manipulating
files, and other general manipulating java.io objects.

orbasec.corba. This package contains classes that help with CORBA and the Secu-
rity Interfaces.

ORBASEC SL.2 199

Other Java Utility Classes

orbasec.tools. This package contains some stand-alone tools for dealing with cer-
tain external aspects of the system. For example, if you have the ORBASEC SL 2-

SSL distribution, this package contains atool for generating simple X.509 certifi-
cates. See the JavaDoc generated documentation that comes with your ORBASEC
SL 2 distribution for command syntax of these tools.

The obvious classes of interest to the ORBASEC SL2 user are in the or basec.corba
package. Some of the most important classes are listed below.

Class Purpose

Opaqgue This class contains classes and functions for creating Opaque encod-
ings for the content of security names and security attribute values.
See “ Opague Encodings’ on page 185.

MechUtil This class contains statically defined fields and functions that deal
with the Kerberos and SSL mechanism strings. Its best use is already
defined strings that represent the available cipher suites and mecha-
nismsin ORBASEC SL2.

CredUtil This class contains statically defined functions for querying
SecurityL evel2: Credentials objects, creating security attribute types
and security attributes, printing out credentials, etc.

AttrDef This class contains statically defined constants for attribute type and
family definers used by CORBA and Adiron. It also contains convi-
ence functions for constructing SecAttribute structures.

10PULIl This class contains statically defined functions for querying and
manipulating IORs.

CDRBuffer Lightweight CDR encoders and decoders that implement
CDRDecoder | org.omg.CORBA .portable.lnputStream and

CDREncoder | org.omg.CORBA .portable.OutputStream interfaces of the IDL/
TypeCode Java mapping. These classes do not handle complex data types such
as“any” or recursive data types.

U A utility for doing translations between org.omg.SECIOP.ulonglong
structures and the Java long primitive type.

TABLE 13. Some M ember s of the orbasec.corba Package

Documentation for these utilities can be found in the JavaDoc generated explana
tions that can be found in the documentation API section of your ORBASEC SL 2
distribution.

200

ORBAsEC 9.2

CHAPTER 12

References

. Kohl J, Neuman C., “ The Kerberos Network Authentication Service (V5)”, Net-

work Working Group RFC 1510, September 1993.

. The Object Management Group, “ The Common Object Request Broker: Archi-

tecture and Sepcification”, Version 2.2, Feburary 1998.

. The Object Management Group, “ CORBAservices: Common Object Services

Specification”, November 1997.

. The Object Management Group, “ Security Service Specification”, Version 1.2

Draft 4.1, 5 January, 1998.

. The Object Management Group, “ Security Service Specification”, Version 1.5,

March 1999.

. Object Oriented Concepts, Inc. “ORBAcus C++ and Java’, Version 3.1, 1999.

ORBASEC 9.2 201

References

202 ORBASEC 9.2

