Cracking RC5 with Java applets

Pavel Gladychev*, Ahmed Patel*, and Donal O’Mahony+

* CNDSRG, Dept. of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland;

e-mail: {pavel,apatel}@net-cs.ucd.ie

+ Dept. of Computer Science, Trinity College Dublin, Dublin 2, Ireland;

e-mail: Donal.OMahony@cs.tcd.ie

The paper describes a distributed brute-force attack on RC5 cipher using Java applets. It introduces a novel model for long-term parallel computing based on the abstraction of solvers with limited lifetime. The associated problems and scheduling policy are discussed. The paper comments on the inherent performance problems of Java Virtual Machine and presents performance measurements of the cipher breaking applet for several computing platforms.

Introduction

Nowadays, the Internet represents sufficient technical base for a distributed brute-force attack on block ciphers with the key length up to 56 bits. Over the past two years successful attacks have been made on several popular ciphers including RC4, RC5, and DES. The “traditional” approach to distributed brute-force cipher breaking employs C programming. The code needs to be manually configured and started on every participating computer. Alternatively, Java applets provide a convenient way for automated attack propagation. Java applets do not require recompiling or manual starting when downloaded from the network. They are as simple to download as browsing a Web page. It makes the attack much easier to distribute and increases the number of potential participants.

A suitable cipher breaking contest was started by RSA Data Security on 28 January 1997 [7]. The contest enabled a very straightforward implementation of the brute-force attack in Java. Although our software did not win the contest, it was able to find the 40-bit RC5 key in reasonable time. Besides, the experiment brought up several important aspects of the Web based parallel processing. Our work concentrated on achieving the maximal performance of the attack. Code optimisations as well as efficient scheduling strategy in a long term computation have been addressed.

The rest of the paper gives brief coverage of the achieved results. The next section provides a concise summary of Java applets for parallel computing. The third section outlines the design of the runtime support for the brute-force attack. The fourth section deals with RC5 decryption procedure and presents experimental results.

2. Java applets for parallel processing

Java applets offer an easy way to assemble processing power spread across the Internet. When someone downloads a Web page into a Web browser, the applet embedded into the page can automatically start background processing. Multiple instances of the applet can run in parallel on different computers. If their work is properly co-ordinated, the joint processing power can be enormous. Several recent research projects proposed the use of Java applets for high-performance computing (see [1], [3]).

The basic architecture of an applet based parallel computation consists of a Web server and multiple instances of the applet downloaded from that server. Each instance run on a separate computer and solves some part of the larger problem. The server acts as the job scheduler and data repository for the community of applet instances. This architecture can potentially provide zero-cost solutions to many computationally intensive tasks of public interest. However, there are several issues that complicate things:

a) Centralisation

According to the Java security model, the applet instances running on different computers cannot communicate to each other directly. They can communicate only to the Web server from which they were downloaded. It means that the architecture has star topology with the Web server in the middle. The scalability of such a system is limited. Any applet based parallel computation must minimise both the network traffic and the server load to put off system saturation.

b) Heterogeneous execution platform

The performance of an applet instance may vary in a broad range. It depends on characteristics of the execution platform. The server must schedule jobs carefully, taking in account individual performance of each applet instance. The next section shows how careless work partitioning may decrease the overall performance in a heterogeneous environment.

c) Dynamic runtime behaviour

Applet instances join and leave the computation asynchronously as people browse and quit the web page. An applet instance may disappear without any notification. In a long term run the number of applet instances continually changes. The computation must accommodate these changes; the load must be re-distributed efficiently and consistently.

d) Lack of security

Java does not protect applet’s data and algorithms against the execution platform. However, any computer connected to the Internet can participate in an applet based computation. It represents a potential avenue of data disclosure and computation result falsification. Therefore, the applet based computation should implement some mechanism to verify computed results as well as some data protection scheme.

The above problems require significant software support. It seems reasonable to design a runtime library which isolates applications from the complexity of the parallel environment. Besides, it is a natural way to implement well known parallel programming paradigms. Several experimental frameworks have been proposed recently. Those include “Charlotte”, “WebCrunch”, “Javelin” and a few others.

“Charlotte” framework [3] provides programmers with the abstraction of a shared memory system. The shared data resides on the server while the parallel processes are scheduled one by one for executing in applet instances. “Charlotte” provides fault tolerance, but it does not try to minimise network traffic. “WebCrunch” framework [6] employs the abstraction of a “problem” which can be divided into “sub-problems”. The programmer must specify how to divide, transmit, and solve a sub-problem; and how to assemble sub-results into the overall computation result. The framework is basic but functional. Unfortunately, it may lose data under circumstances. “Javelin” [5] provides the most advanced runtime support. It aims to create a commercial base for parallel computing with Java applets. “Javelin” supports multiple programming paradigms including data parallel programming, message passing, and LINDA tuple space.

The runtime support for a distributed brute-force attack has specific requirements. Unlike many parallel tasks, the brute-force attack is very MIPS consuming. It may take months before completion. It must use thousands of computers to achieve necessary speed. Hence the runtime support must make the following assumptions about the parallel execution environment:

1) Applet instances appear and disappear at random times. The lifetime � EMBED Equation.3 ���of an instance is a random variety with some probability distribution � EMBED Equation.3 ���.

2) Different applet instances have different performance.

3) The Web server has limited processing power.

4) The Web server may crash.

The above means that the runtime support must be able to handle thousands of applet instances without saturation. It must tolerate server faults along with the loss of applet instances.

3. Runtime support for the brute-force attack

The runtime support for the brute-force attack has been implemented as a class library called DISCO�. It introduces two key abstractions: the “kernel” which represents a Web server and the “solver” which represents a Java applet. DISCO employs give-me-work approach to parallel processing which guarantees automatic load balancing:

Parallel computation consists of a kernel and multiple instances of the solver.

The kernel performs centralised management of data and workload. It partitions work for solver instances and assembles the result of the computation.

Each solver instance makes a job request to the kernel when the instance is created or when it finishes a previous job. When the job is completed, the result is sent back to the kernel.

We assume that a solver instance will exist for time � EMBED Equation.3 ���on average after it has requested the job. In order to mask the loss of solver instances, every scheduled job gets a time stamp. If no result comes during time � EMBED Equation.3 ���, the job is re-scheduled to another solver instance. This scheme introduces specific problems as described below.

First of all, the job must not seize the instance for longer than time � EMBED Equation.3 ���. In a heterogeneous environment, benchmarking is required for the correct estimating of the job size.

Besides, the eager behaviour of solver instances has several drawbacks. Let’s assume that a solver instance performs work by equal portions. All portions require equal execution time. The total work � EMBED Equation.3 ��� carried out by the solver instance in the lifetime � EMBED Equation.3 ���can be estimated as:

� EMBED Equation.3 ���

Where	� EMBED Equation.3 ��� -	period of time required for a portion of work; � EMBED Equation.3 ���-	amount of work per portion; � EMBED Equation.3 ��� -	overhead on scheduling and data transmission which is not less than some � EMBED Equation.3 ���. Let’s estimate the performance � EMBED Equation.3 ��� of the solver instance as

� EMBED Equation.3 ���

If � EMBED Equation.3 ��� is too little for the particular computer, � EMBED Equation.3 ��� is approaching 0, and therefore, the performance is limited by � EMBED Equation.3 ���. The network is obviously the bottleneck.

If we can choose � EMBED Equation.3 ��� so that � EMBED Equation.3 ���, the performance of the solver instance is close to its maximum: � EMBED Equation.3 ���. In some cases (i.e. brute-force attack) this can be achieved by increasing � EMBED Equation.3 ���. Unfortunately we cannot increase � EMBED Equation.3 ��� infinitely because � EMBED Equation.3 ��� is limited by the solver instance’s lifetime � EMBED Equation.3 ���.

Another problem is the saturation of kernel with too many requests from solver instances. The saturation increases the overhead � EMBED Equation.3 ��� and decreases the performance. Longer � EMBED Equation.3 ��� would decrease request ratio and put off the saturation, but again, � EMBED Equation.3 ��� is limited by � EMBED Equation.3 ���.

The above can be summarised as:

1) The performance depends heavily on solver instance’s lifetime � EMBED Equation.3 ���and its probability distribution;

2) Often, it is possible to improve the performance maximising � EMBED Equation.3 ���;

3) Usually, it is possible to increase � EMBED Equation.3 ��� by appropriate choice of � EMBED Equation.3 ���;

4) The benchmarking is required for precise � EMBED Equation.3 ��� estimating.

A convenient work representation is also important for automatic computing of � EMBED Equation.3 ��� . The brute-force attack is a data parallel task. It tests every possible cipher key against the encrypted text until the right key is found. Each key can be tested independently. It is natural to express the brute force attack as a parallel loop. A parallel loop is similar to a normal sequential loop. The difference is that iterations of the parallel loop can run simultaneously and, therefore, must be independent. The brute force attack is represented as a set of independent parallel iterations which cover every possible key. The parallel loop is convenient for automatic work partitioning due to several reasons:

It is a very concise work representation. A representation of an arbitrary interval of parallel iterations requires two integer values: the start iteration number, and the final iteration number.

An interval of iterations can be easily divided into two or more sub-intervals.

Often, it is possible to estimate the amount of work in the interval of iterations using simple functions of start and final iteration numbers:

� EMBED Equation.3 ���

where � EMBED Equation.3 ���- amount of work; � EMBED Equation.3 ���- amount of work in one iteration, � EMBED Equation.3 ���- start and final iteration numbers.

DISCO defines the job for a single solver as an interval of parallel iterations. The kernel dispatches intervals sequentially on requests from solvers (see Fig.1).

� EMBED MSDraw.1.01 ���

Figure 1: Work partitioning in DISCO

To implement a parallel loop, a programmer must extend Disco.Kernel and Disco.Solver classes. The following methods should be implemented:

MySolver.solve(Strt, Finl) - performs an interval of parallel iterations � EMBED Equation.3 ���

MySolver.benchmark() - returns a float point measure of performance. The programmer is supposed to write a loop-specific benchmark. By default benchmark() computes the number of idle loop iterations per millisecond.

MyKernel.chunk(Strt, Time, Speed) - computes the number of iterations (� EMBED Equation.3 ���) to be scheduled to a particular solver. Strt is the first iteration in the interval, Time is the required execution time (� EMBED Equation.3 ���)�, Speed is the value returned by benchmark(). By default chunk() returns 1.

The combination of chunk() and benchmark() methods provides performance aware work partitioning.

The kernel and the solver are high level abstractions. In reality, they operate in different address spaces on different computers. In order to hide communication complexity and initialisation issues, two Java interfaces have been declared: KernelContext and SolverContext which support execution of kernel and solver instances respectively. The actual implementation of SolverContext extends Java Applet class. The implementation of KernelContext is based on the freely available Java HTTP server.

4. Lessons of RC5 implementation

RSA Challenge presented 13 encrypted messages for the public contest. One message was encrypted using DES, others were encrypted using variations of RC5 cipher [2]. According to the RSA challenge rules, each encrypted message is prefixed with 24 known bytes: “The unknown message is: ”. The brute-force attack then can simply test all possible keys against the known cipher text to find the right key. The fast implementation of the key testing procedure is essential for the success of the brute-force attack. The following optimisations were introduced to minimise computations:

1) Decrypting of the first data block only (i.e. ‘T’,‘h’,‘e’,‘ ’,‘u’,‘n’,‘k’,‘n’ letters).

2) Encrypted data was hard coded into the decryption procedure.

3) The source code of the decryption procedure was carefully optimised for better bytecode generation.

The actual attack on 40-bit RC5 cipher was made during 14,15,16 March 1997. It used 58 computers running Netscape Navigator v3.0. The key was found approximately after 56 hours. Four computers were turned off by their owners during the experiment. The peak search speed exceeded 1,300,000 keys per second. The performance achieved on different platforms supporting Java are shown in Table 1.

Table 1. Performance of the cipher breaking applet under Netscape Navigator

Computing Platform�
 Average performance (keys per second)�
�
Windows 95 + Pentium-II / 300MHz (JIT)�
56,300�
�
MacOS + Power Macintosh / 300 MHz �
1,787�
�
Solaris + Sun Ultra Sparc / 167 MHz�
642�
�

Despite the best efforts, RC5 implementation in Java is significantly slower than similar implementations used in Bovine effort [4] or by its competitors. There are at least three objective reasons:

1) Lack of rotations in the Java Virtual Machine instruction set

Java Virtual Machine does not implement rotations. Rotations of 32 bit values are basic operations in RC5. They have been implemented using logical shifts. It takes 4 Java Virtual Machine instructions to perform one rotation.

2) 32-bit architecture of Java Virtual Machine

Leading edge workstations have 64-bit ALU architecture. It can provide additional RC5 speedup due to extra parallelism. Java programs cannot benefit from 64-bit architecture because of 32-bit Java Virtual Machine design.

3) Imperfect just-in-time compilation

The best examples of the just-in-time compilers generate output code which is two or more times slower than optimised C code. Besides, just-in-time compilers are available for the limited number of computing platforms. Netscape Navigator supports just-in-time compilation only for x86 computers.

Finally, an interesting performance observation was made during initial experiments with the decryption procedure. Several algorithm structures were tested. The algorithm with unrolled loops showed the maximal performance on Java interpreters. However, the algorithm with short loops performed better on Pentium computers with just-in-time compilation. This result can be explained as a caching effect: short loops reside in Pentium’s internal cache while long loops must be fetched from the main memory all the time.

5. Conclusions

The foregoing has described an effort to use Java applets for the distributed brute-force attack on RSA Secret-Key Challenge’97. The paper has outlined DISCO, a runtime support for the long-term parallel computing with Java applets. The abstraction of solvers with limited lifetime has been proposed to describe the runtime architecture. Subsequently, a new approach to performance aware scheduling of parallel loops has been devised. Finally, an RC5 decryption procedure has been introduced along with the performance pitfalls of the Java Virtual Machine. The authors believe that highlighted problems will be overcome in the future development of Java. At the present stage, the work is continuing towards other possible applications of the designed framework. We are investigating efficient implementations of basic numerical algorithms in the environment with unreliable processing units.

References

1. A.D.Alexandrov, M.Ibel, K.E.Schauser, K.E.Scheiman, “SuperWeb: Research issues in Java-Based Global Computing”, In proceedings of the Workshop on Java for High performance Scientific and Engineering Computing Simulation and Modelling. Syracuse University, New York, 1996.

2. R.Baldwin, R.Rivest, “RFC-2040: The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms”, 1996

3. A.Bartaloo, M.Karaul, Z.Kedm, and P.Wyckoff, “Charlotte: Metacomputing on the Web”, In proceedings of the 9th Conference on Parallel and Distributed Computing Systems, 1996.

4. “Bovine RC5 Cracking Effort Home Page”, http://www.distributed.net/

5. P.Capello, B.Christiansen, M.F.Ionescu, M.O.Neary, K.E.Schauser, and D.Wu, “Javelin: Internet-Based Parallel Computing Using Java”. Technical Report, University College of Santa Barbara, 1997.

6. C.Daly, “WebCrunch. Client/server distributed problem solving harness in Java”, http://www.oasis.leo.com/java/classes/parallel/cdaly.WC.dsc.html.

7. “The RSA Data Security Secret-Key Challenge”. http://www.rsa.com/rsalabs/97challenge/

� DISCO stands for “DIStributed COmputation”

� In the current implementation, Time increases at pre-defined ratio as the number of solvers increases. The initial value of Time is defined by the programmer.

