JWarp: A Java Library For

Parallel Discrete-Event Simulations

Pedro Bizarro
Luís M. Silva
João Gabriel Silva

bizarro@dsg.dei.uc.pt
luis@dei.uc.pt
jgabriel@dei.uc.pt

Departamento de Engenharia Informática

Universidade de Coimbra, Polo II

3030 Coimbra

PORTUGAL

Abstract

Java is a very promising language for use in the simulation of physical models due to its object-oriented nature, portability, robustness and support for multithreading. This paper presents JWarp, a Java library for discrete-event parallel simulations. It is based on an optimistic model for synchronization of the simulation entities: the Time Warp mechanism. We introduce the main features of the library and discuss some of the implementation details.

1. Introduction

Several areas like engineering, computer science, economics and military applications are particularly interested in using simulation to study the behaviour of complex models. The execution of some of those simulation models can be a very time consuming task. For statistical reasons, it might be necessary to simulate a model for quite a long time, or to perform the same simulation several times with different parameter values.

A possible solution to reduce the execution times of long-running simulations is by using multiple processors operating in parallel [Fujimoto90]. A typical simulation model involves several components or entities. By exploiting this inherent model of parallelism, it would be possible to speed up the performance of the simulations by decomposing these components through several processors. Every simulation model is a specification of the corresponding physical model and is composed by a set of states and events. In a discrete event simulation, the state of the system only changes at discrete points in simulated time. A natural decomposition strategy can result in an object-oriented system design, where an object corresponds to some component of the real system and is represented by a computational task that is assigned to a processor for execution. In this way, every component of the model is simulated by a logical process (LP). A discrete-event simulation requires the existence of multiple LP entities, a time-ordered event list holding time stamped events to be processed in the future, a global discrete clock that indicates the current simulation time and a set of state variables that define the state of the simulation. The simplest way for managing the event-list would be based on a centralized strategy. The list of events would be managed by a single process (master), and there would be a pool of slave processes running on the parallel system that would execute those events in a concurrent way. However, the existence of a centralized queue of events would represent a bottleneck to the simulation thereby clearly reducing the potential for parallelism.

The most permissive way of conducting parallel simulations is to eliminate the globally shared-event list and use a completely distributed list of events. Each LP will be assigned to a processor that maintains its own local simulation clock (LVT - local virtual time), a local event list and a set of state variables. Events are modeled as timestamped messages, which are exchanged between the physical objects of the application (LP).

However, the schemes that follow a distributed strategy would require some synchronization protocols to make sure the events are processed in a consistent order by all the LP entities. These synchronization protocols may increase the costs of communication between processors. Nevertheless, they have deserved a considerable attention by the parallel simulation research community [Lin95].

In order to understand the main issue behind the use of distributed event-lists let us look at Figure 1. It represents the temporal execution of two logical processes (LP1 and LP2). The LP1 entity is processing event alpha while LP2 is processing event beta. The execution of event alpha generates a new event (gamma) that is sent to LP2. Event gamma has a lower timestamp than event beta, and thus should been consumed before. Due to the asynchrony of the LP entities it was not possible to assure a consistent order in the processing of events, thereby resulting in a causality error [Fujimoto90].

[image: image1.wmf]IQ

Input Queue

ev5@6, +

ev2@5, -

ev4@7,+

Communication System

+

3

ev1

LP

OQ

Output Queue

OB

Output Buffer

IB

Input Buffer

SS

State Stack

 ev2@9,+

ev1@8,+

-

4

ev3

+

5

ev2

+

7

ev1

+

4

ev4

+

5

ev6

+

8

ev1

+

9

ev2

GVT

GVT

LVT

LVT

5

5

4

4

3

S8

S7

S6

S5

S4

LVT

GVT

The synchronization protocols have been broadly classified as Conservative or Optimistic [Ferscha95]. Both schemes are based on the sending of messages carrying some causality information.

The Conservative approach [Chandy79] strictly avoids the possibility of any causality error ever occurring. This is achieved by stopping each process until the system is sure that no other event will be scheduled by any other LP with a timestamp smaller than the one in the top of the local list of events. This method introduces some blocking on the execution of processes and restricts the potential for parallelism. Besides it is prone to the occurrence of deadlock and thus requires a deadlock detection and recovery scheme.

The Optimistic approach tries to exploit all the potential parallelism available in the simulations. The Time Warp mechanism is a well-known optimistic approach based upon the Virtual Time paradigm [Jefferson85]. It relies upon a scheme for causality error detection and a recovery scheme based on a rollback technique. An optimistic LP advances simulation and its local virtual time as far as possible.

An event scheduled in some LP with a timestamp in the local past relative to the local virtual clock is said to be out of chronological order or to be the straggler message. It will force the LP entity to roll back to the most recently saved state in the simulation history consistent with the arrival of that event message. LP will then restart the simulation at that point thereby correcting the causality error.

In order to allow this rollback operation every LP entity is forced to save its simulation state from time to time. All the messages that were sent previously after that instant of time should be undone. This is achieved by sending some sort of anti-messages to annihilate the original messages. If these ones were already consumed by the destination processes they will be forced to roll back as well to a previous saved state. It was proved that the protocol will not roll back until the beginning of the simulation and always assures some forward progress for the computation [Jefferson85].

The major drawback of the Time Warp approach is the need to save each process state periodically [Jefferson87]. To free up some of the used memory the simulation system calculates a time limit, called Global Virtual Time (GVT) [Bellenot90] beyond which no process is required to roll back and thereby the system can perform some garbage collection scheme to free up some of the unused data structures.

2. The JAVA Option

Java has received a tremendous hype in the past few years. In fact, it has several advantages over other languages and it fits particularly well with this kind of programming. The features of Java that facilitate our implementation were:

· Communication-centric - Java has some built-in classes for network communication and solve the problem of portability. No little-endian vs. big-endian dilemmas. All data types are well defined and consistent in both size and binary representation across the JVM implementations.

· Object-oriented - it allows the exchange of objects (events) between processes and assures the modularly of code.

· Multi-threaded - allows splitting the program into separate and cleaner modules providing greater concurrency.

· Serialization mechanism - Gives support to checkpoint and recovery schemes of the Time Warp approach.

A comprehensive list of computing platforms has been enhanced with the support of Java Virtual Machine (JVM) [Oasis]. Since Java programs are entirely portable across the systems that have a JVM we will be able to execute parallel simulations in heterogeneous systems, comprising networks of personal computers running a Microsoft Windows operating system or clusters of workstation machines running some flavor of Unix. All this will be possible with a simulation tool like JWarp. Programmers are not required to change any line of code of their simulations since Java provides the necessary support to deal with the heterogeneity.

3. JWarp Architecture

[image: image2.wmf]ib2iq

oq2ob

ob2cs

cs2ib

IQ

Communication System

LP

OQ

OB

IB

SS

rollback?

no

yes

Positive Events

Negative Events

State Saving (activated by positive events)

Rollback Actions (due out-of-order or negative event)

GVT start and report

GVT internal calculation phase (due to GVT start message)

Acknowledgements

Set message status to acknowledge (due to ack. message)

GVT broadcast

Garbage Colection (due to GVT broadcast)

Figure 2 presents JWarp’s architecture. The left side highlights the message flows (lines), threads (ovals) and buffers (rectangles). The right side shows what goes on inside the buffers. It will be used to explain rollback and garbage collection operations. As can be seen, threads have short names that represent the data storages they connect. Message flows are represented with full lines and other information flows with dotted lines.

Events arrive to every LP by being first received in cs2ib, placed in IB, received in ib2iq and placed in IQ. Outgoing events are placed in OQ by LP, received by oq2ob, placed in OB, received by ob2cs and sent into the network.

LP state variables (defined by the programmer) are saved from time to time in the State Stack (SS).

Although all the buffers have been represent equally in the Figure 2 they do not have the same behaviour. In JWarp, when a buffer is asked to retrieve the next event it can do one of two things: retrieve, return and delete the message; or just retrieve and return. Buffers IB and OB delete retrieved messages while IQ and OQ do not. Events are maintained in IQ and OQ because whenever a rollback happens, already consumed events (those in IQ before LVT pointer) must be consumed again. Likewise, sent events (those in OQ before LVT pointer) must be kept because there could be a need to send anti-messages, which are generated from the normal ones. Thus, fetching an event in IQ or OQ means only to retrieve a copy of it and move forward the LVT pointer.

Note, that although the pointers are called LVT and GVT they do not store LVT and GVT time values. They are just a reference in the array buffers. Buffers IB and OB do not need to keep any of its messages. All the information needed for a rollback is stored in IQ, OQ and SS between each one’s GVT and LVT pointers.

The threads cs2ib, oq2ob and ob2cs are just running an infinite cycle fetching data from one side and placing it in the other. The real brain of the operations is performed by thread ib2iq: it will detect messages out-of-order and causality errors, it will command the state restoring and anti-message sending, it will process GVT calculation requests and it will acknowledge every received message.

If there were no straggler messages the JWarp internal behaviour would be the following:

1) Message arrives at cs2ib.

2) Message is placed in IB in arriving order.

3) Is fetched by ib2iq.

4) A corresponding acknowledge message is put in OB by ib2iq.

5) Acknowledge message is sent by ob2cs.

6) ib2iq puts the received message in IQ ordered by simulation time.

7) Depending on the checkpoint frequency, the LP’s state is saved in SS.

8) Just after the state saving the message finally arrives to LP. LVT is updated to a new value: the incoming message processing (or simulation) time.

9) LP processes the message and responds by sending 0, 1 or more messages, to one or more recipients, that are placed in the Output Queue in arriving order.

10) Messages are then fetched from OQ and placed in OB by oq2ob.

11) [image: image3.wmf]alpha

gama

beta

LP1 time

LP1 event list

LP2 event list

LP2 time

LP1

current

time

LP2

current

time

They are finally sent over the network if they are remote events (to be processed in another LP) or placed in IQ if they are local events.

On the acknowledge message receiving side, the incoming acknowledge message is cross-checked to the messages in OB to find its counterpart. When it finds it, it changes its status from unacknowledged to acknowledged. Messages need to be acknowledged due to the GVT calculation, as shown in [Samedi87].

Causality errors are detected when the ib2iq thread places a new event in buffer IQ. Causality errors may be caused by just two things: an arrival of a positive message timestamped in the past, or an arrival of a negative message timestamped in the past when its positive counterpart had been consumed already. Everytime a causality error happens the LP must rollback. Rollback consists in restoring the state (fetched from SS), send anti-messages, if necessary, and adjust the pointers LVT in the buffers (this will lead to re-simulate some events is IQ). Restoring the state is achieved by inverting the checkpoint operation. The messages that need to be undone i.e. to send their corresponding negative version, are the ones sent after the new restored state.

In a rollback operation, the system adjusts OQ’s LVT pointer to the proper place and switchs signs of all the messages between the new LVT pointer position and the old LVT pointer position (this corresponds to the messages that were sent before and must be undone). Messages that were kept after the old LVT pointer were never sent and are simply deleted. See Figure 3. Unlike normal messages, the anti-messages are deleted from OQ after being sent because they will never be undone.

Checkpointing is obtained by converting all declared data-structures, together with the LVT value, into a byte stream, and storing this byte stream into a Java hashtable
. Restoring the state corresponds to the opposite operation i.e. transform the byte stream into variables and LVT. Both operations use the object serialization facility of Java.

The GVT algorithm that was used in JWarp was the one described in [Samedi87]. It finds a lower bound to GVT value. A real GVT value is impossible to obtain due to communications delays and in-transit messages. In-transit messages are the ones sent by one process but not received by the other. GVT calculation is vital to the good behaviour of the simulation. It is the only way to prevent memory starvation, since the garbage collection scheme is attached to the calculation of GVT. One LP is defined as the GVT master. From time to time, it will broadcast an GVT start message that must be replied with a GVT report message stating each LP’s choice to the next GVT value (calculated through its own LVT and the acknowledged and unacknowledged messages). The GVT master calculates the minimum of all GVT proposals and announces that value in a GVT broadcast message. The GVT broadcast message will start the garbage collection operation in each LP. That involves removing data from IQ, OQ and SS and to adjust their internal GVT pointers.

4. Related Work

The Time Warp concept was proposed by [Jefferson85] and it was implemented into the TWOS (Time Warp Operating System) [Jefferson87]. Several parallel simulation languages have also appeared in the last decade: OLPS [Abrams88], Maisie [Bagrodia90], ModSim [West88], SCE [Gill89], Sim++ [Baezer94] and YADDES [Preiss89]. Other approach has been followed by other researchers that decided to implement the parallel simulation system as a run-time library written in C++: examples include WARPED [Martin94], SPEEDES [Steinman91] and HASE++ [Howell97]. The first simulation libraries in Java, SimJava [SimJava] and SimKit [SimKit], only supported sequential simulations. Shortly after, PDES Java libraries appeared: JTED [Cowie98] following the conservative approach and Formax [Halderen98] following a web-based optimistic approach.
5. Conclusions

Time Warp is a relatively complex simulation protocol but it has been proved a very effective technique for running complex asynchronous simulations [Wieland89][Presley89]. We foresee that with an implementation in Java the use of Time Warp could become more widespread within the research community and it can be used for educational purposes.
Java is a very suited language for building programming libraries. Its most distinguishable features are object serialization, platform independence, object-orientation, support for network communications, modularity and easy debugging.

References

[Abrams88] M.Abrams. “The Object Library for Parallel Simulations (OLPS)”, Proceedings Winter Simulation Conference, pp. 210-219, San Diego, California, December 1988

[Baezner94] D.Baezner, G.Lomow, B.Unger. “A Parallel Simulation Environment Based on Time Warp”, International Journal in Computer Simulation, Vol. 4 (2), pp. 183-207, 1994

[Bagrodia94] R.L. Bagrodia, V.Jha, J.Waldorf. “The Maisie Environment for Parallel Simulation”, Proceedings 27th Annual Simulation Symposium, California, pp. 4-12, 1994

[Bellenot90] S.Bellenot. “Global Virtual Time Algorithms”. Proceedings of SCS Multiconference on Distributed Simulation, Vol 22, No 2, pp. 122-127, January 1990.

[Chandy79] K.M.Chandy, J.Misra. “Distributed Simulation: A Case Study in Design and Verification of Distributed Programs”, IEEE Transactions on Software Engineering, Vol. SE-5, No. 5, pp. 440-452, September 1979.

[Cowie98] J Cowie. “JTED: Parallel Discrete-Event Simulation in Java”, Proceedings of ACM 1998 Workshop on Java for High Performance Network Computing, pp 251-254, February 1998.

[Ferscha95] A.Ferscha, S.Tripathi. “Parallel and Distributed Simulation of Discrete-Event Systems”, Technical Report University of Vienna, 1995

[Fujimoto90] R.M. Fujimoto. “Parallel Discrete Event Simulation”, Communications of the ACM, Vol.33, No 10, pp. 30-53, October 1990.

[Gill89] D.H.Gill, F.X.Maginnis. “An Interface for Programming Parallel Simulations”, Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 21 (2), pp. 151-154, Tampa, Florida, March 1989.

[Halderen98] B. Halderen, B. Overeinder, “Formax: Web-based Distributed Discrete Event Simulation in Java”, Proceedings of ACM 1998 Workshop on Java for High Performance Network Computing, pp 113-122, February 1998.

[Howell97] F.Howell. “HASE++: A Discrete-Event Simulation Library for C++”, Technical Report Department of Computer Science, University of Edinburgh, Available at: http://www.dcs.ed.ac.uk/home/hase/projects/hase++.html

[Jefferson85] D.R.Jefferson. “Virtual Time”. ACM Transactions on Programming Languages and Systems, Vol. 7, No 3, pp. 404-425, July 1985, pp. 404-425.

[Jefferson87] D.Jefferson, et al. “Distributed Simulation and the Time Warp Operating System”. Proceedings of 11th ACM Symposium on Operating Systems Principles, Vol 21, No 5, pp 77-93, November 1987.

[Lin95] Y.B.Lin, P. Fishwick. “Asynchronous Parallel Discrete Event Simulation”, IEEE Transactions on Systems, Man and Cybernetis, Vol. 26, No. 4, pp. 397-412, 1995

[Martin94] D.Martin, P:Wilsey, T.McBrayer. “The WARPED Time-Warp Simulation Kernel”, Technical Report University of Cincinnati, USA, 1994

[Oasis] The Java Oasis, “The Java Oasis: Java Developers Kit (JDK) - Index”, http://www.oasis.leo.org/java/development/jdk/00-index.html

[Preiss89] B.R.Preiss. “The YADDES Distributed Discrete-Event Simulation Specification Language”, Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 21 (2), pp. 139-144, Tampa Florida, March 1989

[SimJava] SimJava Homepage. http://www.dcs.ed.ac.uk/home/hase/simjava/simjava-1.1/

[SimKit] SimKit Homepage: http://www.cpsc.ucalgary.ca/~adi/simkit/workshop/index.htm

[Steinman91] J.S.Steinman. “SPEEDES: Synchronous Parallel Environment for Emulation and Discrete-Event Simulation”, Proceedings of Parallel and Distributed Simulation Conference, pp. 95-103, 1991

[Wieland89] F.Wieland, L. Hawley, A.Feinberg, M. DiLoreto, L.Blume, et al. “The Performance of Distributed Combat Simulation with the Time Warp Operating System”. Concurrency: Pratice and Experience, Vol 1(1), pp. 35-40, September 1989.

[West88] J.West, A.Mullarney. “ModSim: A Language for Distributed Simulation”, Proceeedings of the 1988 SCS Multiconference on Distributed Simulation, Vol. 4(2), pp. 235-257, 1994

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

Figure 2

On the left, the flow of internal messages, threads and buffers; on the right the buffer behaviour with GVT=3 and LVT=5.

Figure 1

The problem of causality errors.

� EMBED Visio.Drawing.4 ���

Figure 3

OQ buffer behaviour when a rollback occurs. Messages sent after the new LVT are undone (ev6, ev1) and not yet sent are deleted (ev2).

� The Java VM does not allows to obtain the execution state of the threads and therefore one must force rollbacks and restores to happen always in the same execution place inside the cycle.

[image: image4.wmf]OQ

Output Queue

(before)

+

4

ev4

+

5

ev6

+

8

ev1

+

9

ev2

GVT

LVT

OQ

Output Queue

(after)

+

4

ev4

-

5

ev6

-

8

ev1

GVT

LVT

[image: image5.wmf]OQ

Output Queue

(before)

+

4

ev4

+

5

ev6

+

8

ev1

+

9

ev2

GVT

LVT

OQ

Output Queue

(after)

+

4

ev4

-

5

ev6

-

8

ev1

GVT

LVT

[image: image6.wmf]ib2iq

oq2ob

ob2cs

cs2ib

IQ

Communication System

LP

OQ

OB

IB

SS

rollback?

no

yes

Positive Events

Negative Events

State Saving (activated by positive events)

Rollback Actions (due out-of-order or negative event)

GVT start and report

GVT internal calculation phase (due to GVT start message)

Acknowledgements

Set message status to acknowledge (due to ack. message)

GVT broadcast

Garbage Colection (due to GVT broadcast)

[image: image7.wmf]alpha

gama

beta

LP1 time

LP1 event list

LP2 event list

LP2 time

LP1

current

time

LP2

current

time

[image: image8.wmf]IQ

Input Queue

ev5@6, +

ev2@5, -

ev4@7,+

Communication System

+

3

ev1

LP

OQ

Output Queue

OB

Output Buffer

IB

Input Buffer

SS

State Stack

 ev2@9,+

ev1@8,+

-

4

ev3

+

5

ev2

+

7

ev1

+

4

ev4

+

5

ev6

+

8

ev1

+

9

ev2

GVT

GVT

LVT

LVT

5

5

4

4

3

S8

S7

S6

S5

S4

LVT

GVT

_948469136.vsd

_952722261.vsd

_948218070.vsd

_947818105.vsd

