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1. ABSTRACT 
Prior work on dynamic memory allocation has largely 
neglected long-running server applications, for example, 
web servers and mail servers. Their requirements differ 
from those of one-shot applications like compilers or text 
editors. We investigated how to build an allocator that is 
not only fast and memory efficient but also scales well on 
SMP machines. We found that it is not sufficient to focus 
on reducing lock contention - higher speedups require a 
reduction in cache misses and bus traffic. We then 
designed and prototyped a new allocator, called LKmalloc, 
targeted for both traditional applications and server 
applications. LKmalloc uses several subheaps, each one 
with a separate set of free lists and memory arena. A thread 
always allocates from the same subheap but can free a 
block belonging to any subheap. A thread is assigned to a 
subheap by hashing on its thread ID. WC compared its 
performance with several other allocators on a server-like, 
simulated workload and found that it indeed scales well 
and is quite fast hut memory more efficiently. 

1.1 Key words 
Dynamic memory allocation, server applications, 
concurrency, multiprocessor scalability, reducing lock 
contention, cache-conscious algorithms. 
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2. INTRODUCTION 
Long-running scrvcr application like web servers, mail 
servers, and database scrvcrs are widely used but there has 
been little rcscarch on dynamic memory allocation and 
garbage collection for this class of applications. Server 
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applications have different allocation patterns and different 
requirements than traditional one-shot applications like 
compilers or text editors. They are usually multithreaded 
and frequently run on large SMP systems, which implies 
that allocators targeted for this class of applications must 
be able to handle high levels of concurrency. 
This paper describes our progress in developing a dynamic 
memory allocator targeted both for traditional applications 
and server applications. In addition to the traditional 
objectives of speed and efficient memory usage, our design 
emphasizes scalability on SMP systems. 

The rest of the paper is organized as follows. Section 3 sets 
the stage by describing typical server applications, their 
workload, and how they are architected. Section 4 
summarizes our view of the requirements on dynamic 
memory allocators for server applications. Section 5 
provides a brief summary of prior work in this area. The 
current design of our allocator is described in section 6. 
Experimental results, using a simulated workload, are 
reported in section 7. Section 8 summarizes our findings 
and offers some conclusions. 

3. BACKGROUND 
In this section we explain the background surrounding the 
problem space. First we talk in general about the server 
applications and next we describe generically how requests 
arc processed in typical server applications. 

3.1 Server applications 
It is impossible to come up with an exact definition of 
“server application” but, for the purpose of this paper, we 
define a server application as follows. A server application 
provides some service; its purpose is to accept requests 
from clients and process them. Typically a server 
application runs for a long time (indefinitely), processing 
requests received from a variety of client applications. 
Most commonly server applications are used for networked 
services. A server application is expected to process many 
requests per unit of time and do so with minimum delay. 
A request is the unit of work given to a server application. 
The requests can be and usually are generated by a wide 
range of client applications that can be running either 
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locally or on wide area networks. Requests arrive at 
random intervals at the server. The number of requests and 
the rate of requests are usually not within the control of the 
server. A typical request is “small”, that is, the processing 
and resources required are usually small in comparison to 
the resources available on the server systems. 

Here are a few examples of widely used servers that fit the 
above description of servers and request types. 

Database servers. 

Web servers. 

Directory/name servers. 

Authentication servers. 

Mail servers. 

3.2 Anatomy of server applications 
A server application can be implemented in many different 
ways depending on the needs of the service and the type of 
environment in which it is used. Commonly we can 
categorize servers based on state involved and the manner 
in which requests are processed. 

A server may have to accumulate and maintain state about 
a client for processing future requests from the same client. 
Such a server is said to be stat&l.. A stateful server 
typically requires the client to first open a connection to the 
server before making requests. The connection is closed 
after all the requests are handled. To the server, the 
connection is the client and the server usually stores the 
state information about the client along with the connection 
object. 

A server that does not maintain any state about the client is 
said to be stuteless. Some server applications function this 
way (eg: time servers or DNS servers). 

The architecture of many servers is based on the thread- 
per-connection model’. The basic version of this 
architecture creates a thread for each open connection, 
which maintains the state information and also processes 
all requests arriving on its connection. Two refinements of 
this model are common: worker threads and service 
threads. 

It may be quite expensive to create a thread for each 
connection and keep the thread alive between requests. 
This is the case, for example, on some Unix systems where 

’ We use “thread” as a generic term meaning an independent 
thread of control. A “thread’ can be implemented in several 
ways: as an OS thread, an OS process, or as a user-level 
(lightweight) thread. The specific implementation choice 
depends most often on what the underlying OS provides. 

a “thread” must actually be implemented as a separate OS 
process. In that case, usually a fixed number of worker 
threads (a pool of workers) are created and used. When a 
request arrives, it is put on a queue of requests waiting to 
be processed, from where it will eventually be picked up 
by a worker thread for processing. In this scenario, a 
connection is a passive data structure that survives between 
requests and is handed to the worker thread together with a 
request. Worker threads not only avoid the overhead of 
creating/destroying a thread for each connection but the 
level of concurrency can be adjusted simply by increasing 
or decreasing the number of worker threads. 

It is not desirable to tie up the main worker threads by 
waiting for I/O operations or requests to other servers to 
finish. With a limited supply of threads, this may result in 
all threads being blocked even though there are requests 
that could be processed. This can be handled by having 
specialized service threads, for example, one I/O thread for 
each disk. When a worker thread needs to read or write 
from a disk, it puts one or more I/O request on the queue 
for the appropriate disk, suspends processing of the current 
request and resumes processing of another request. The 
same idea can be applied when a server needs to request 
services from another server, for example, a database 
server sending a request to an authentication server. 
We predominantly focus on stateful multi-threaded servers. 
There are two notable trends. First, servers are no longer 
fully monolithic pieces of code. Many server applications 
load and use shared modules for processing a request. A 
second trend is that the server applications and shared 
modules are increasingly implemented in C++ or other 
object oriented languages that rely more heavily on 
dynamic memory allocation than traditional languages. 

For instance let us look at what happens inside a 
Microsoft’s web server (IIS) when it processes a request. 
The web servers maintain state for connections and clients. 
Besides the web server’s connection state, several 
additional code modules, may be loaded into the server 
application and called upon to process the request. For 
example, a request for legacy data access on a web server 
is processed by the web server code, by database 
connector, and by page formatter modules. To avoid tying 
up the I/O threads for long duration, the server implements 
a pool of worker threads and delegates work from the I/O 
service thread to the worker thread. We found that request 
processing can impose loads as high as 1000 
allocation/frees per request. For most part objects allocated 
were small - 80% of allocations were for blocks of 40 
bytes or smaller. 
A server application may have to handle very high request 
rates, often in the range of thousands of requests per 
second. To support a high request rate, it is often necessary 
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to run the application on an SMP systems. The most 
common configuration today is four to eight processors but 
some systems go much higher. 

4. REQUIREMENTS 
Does this mean that server applications impose different 
requirements on memory allocators than traditional single- 
shot applications, like compilers, word processors, or mail 
clients? We claim that they do and attempt to explain the 
requirements in this section. 

Consider a web server running on an SMP system with, 
say, eight processors. Assume that its basic architecture is 
a simple thread-per-request with a worker pool, that is, 
when a request arrives it is put on a queue, a worker thread 
eventually picks it up for processing, and the worker thread 
does all the processing required to complete the request. 
Also, assume that the server receives say 1000 requests per 
second at peak time and that the processing of a request 
involves 1000 allocations. The peak allocation rate is then 
IO6 allocate and IO6 free operations per second. A good 
memory allocator must be designed to handle millions of 
malloc-free operations per second on large SMP systems. 

Here is our list of requirements for dynamic memory 
allocators targeted at any application augmented with 
requirements specific for server environment. 

1. 

2. 

3. 

4. 

Fast - Speed is essential. Allocate and free are the 
most common operations so they must be very fast. 
Less frequently used operations like reallot, 
compaction, or gathering statistics need not be 
particularly fast. 

High memory utilization - As always, reducing 
overhead and wasted space is important. However, 
server applications tend to run on systems with 
massive amounts of memory so this requirement is not 
as critical as it might be on smaller systems. 

Size independence - Speed should not be greatly 
affected by the size distribution and ordering of 
allocation requests. Given that object sizes can be very 
varied on server systems, some dependent on the 
nature of incoming requests, it is important to have 
size independence. 
Maximize locality - Allocating chunks of memory 
that are typically used together near each other. This 
reduces page and cache misses during execution and 
thus improves performance. This also has the potential 
of reducing unused space. 

These four are all quite standard requirements that apply to 
all memory allocators. However, the subsequent ones are 
more specific to server applications. 

Scalable - The allocator must support highly 
concurrent operations and execution in SMP systems, 
ideally scaling linearly with the number of processors. 

Thread independence - A block must not be tied to 
the thread that allocated it. A block should be free to 
migrate among threads, that is, it should be possible 
for one thread to allocate a block, a second thread to 
use it, and a third thread to free it (even if the original 
thread has already died). This makes it possible to pass 
objects from thread to thread in a server system. This 
is a strict requirement for server applications. 

Predictable speed - Servers are (soft) real-time 
applications and need to exhibit not only low but also 
predictable response times. This means that the time it 
takes to allocate or free a block should, ideally, be 
constant and independent of its size, the number of 
allocated or free blocks, amount of memory in use, 
allocation history, etc. In particular, occasional long 
pauses for garbage collection or large-scale coalescing 
are unacceptable. 
Stability - For long running systems it is very 
important that the memory allocator’s performance 
remains stable over time. In other words, memory 
utilization should not decrease or allocation times 
increase over time if the load on the system remains 
stable. 

We do not claim that each one of points 5 to 7 is unique to 
server applications. For example, animation software needs 
highly predictable speed (but not necessarily scalability) 
and video conferencing clients are long running and care 
greatly about stability. We do, however, believe that the 
combination of requirements is unique to server 
applications. 

5. PRIOR WORK 
Many dynamic memory allocators have been designed 
over the years. Wilson, Johnstone, Neely, and Boles 
[15]have written an excellent survey of this work. The 
main focus appears to have been on sequential allocators, 
with emphasis on speed and memory utilization. Benjamin 
Zorn maintains a site [16] with links to dynamic memory 
allocators that are publicly available on the net. 
The allocator designed by Doug Lea [lo], here called 
DLmalloc, has been found to be both the fastest and most 
memory efficient on several applications 9. However, the 
original version is neither thread-safe nor scalable. 
Wolfram Gloger created a thread-safe and scalable version, 
called Ptmalloc [4]. 
Vmalloc by K-P Vo [14] is more of an allocator 
framework. Memory is divided into regions and each 
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region can be managed by different policies. The specific 
allocators to be used are chosen at link time. This makes it 
easy to experiment with different allocators for a given 
application. Grunwald and Zorn [5] also investigated how 
to tailor allocators to specific programs, mainly to improve 
speed but without too high a cost in memory space. 

We have not found much work on parallel memory 
allocators. The latest appears to be Arun Iyengar’s work 
[7] [8], which is somewhat difficult to assess because the 
experimental results are for such an unusual machine (a 
dataflow machine). His most scalable allocator uses 
multiple free lists, with a lock on each free list. Operating 
system kernels for parallel machines also need scalable 
memory allocators. A paper by McKenney and Slingwine 
[12] describes the kernel allocator used in Sequent’s 
version of Unix. Somewhat simplified, it has one subheap 
per processor. No locks are needed on these subheaps 
because all allocation and deallocation is restricted to one 
processor. Unfortunately, this idea cannot be applied at the 
user level because an application program typically has no 
control over which processor it runs on at any given time. 

Extensive research has been done on garbage collection 
techniques, especially incremental and concurrent garbage 
collection [ 181. Appel et al [I] describe concurrent garbage 
collection technique based on a virtual memory marking 
technique. This allows concurrency between garbage 
collection and the mutator (application program). While 
this and other refinements make garbage collection more 
efficient, it does not address issues with traditional heap 
based allocation. 

6. LKmalloc 
This section describes our design of a memory allocator, 
called LKmalloc, targeted for both traditional applications 
and for server applications. We have concentrated on 
scalability and speed. We describe not only the final design 
but also some of the not-so-successful attempts along the 
way. 
Doug Lea’s allocator [IO] has been found to be both fast 
and memory efficient. We adopted three of its key design 
features with little change. 

A: Binning. Free blocks are kept in 128 bins, grouped by 
size. All blocks are aligned on &byte boundaries. There 
are 64 bins for blocks of size 512 or less, space 8 bytes 
apart, each holding blocks of exactly the same size. The 
remaining (large-block) bins have coarser spacing and a 
bin may contain blocks of different size. The bins are 
implemented as doubly linked lists. DLmalloc keeps 
blocks in large-block bins sorted by size but we did not 
retain this feature. 

B: Approximate best fit. Searching for a free block starts 
from the first list containing free blocks of sufficient size 
and proceeds one list at a time. The first free block found is 
taken. This is a combination of best fit and first fit. If the 
free block found is on a small-block list, it is guaranteed to 
be the best-fitting block but not if it is found on a large- 
block list because large-block list are not kept sorted. 

C: Immediate coalescing. When a block is freed, we 
immediately try to coalesce it with its left and/or right 
neighbor. This reduces fragmentation and improves 
memory utilization. It also avoids postponing work, 
providing more predictable speed, and improves stability. 
This policy requires that checking whether two blocks can 
be coalesced and performing the actual coalescing must be 
very fast. To this end, we use two standard techniques, 
namely boundary tags and doubly-linked free list. Each 
block, whether free or allocated, carries size and type 
information in a 4-byte field at the beginning and at the 
end of the block. These techniques make it possible to 
check and perform coalescing in constant time (and very 
fast). 

LKmalloc does not maintain a cache of free blocks, often 
called quick lists or look-aside lists. The basic operations, 
including coalescing, are sufficiently fast that there was 
little to be gained from quick lists and delaying coalescing 
tends to reduce memory utilization. 

DLmalloc organizes each small-block list as a queue (or 
FIFO list). Large-blocks lists are kept sorted on block size 
to make best-fit allocation faster. We changed the policy 
for small-block lists to LIFO, that is, blocks are added to 
and deleted from the front of the list. The idea is to 
improve cache locality (both for the allocator and the 
application) by reusing blocks as quickly as possible, 
hopefully, before the block has been purged from the 
processor cache. Keeping large-block lists unsorted and 
applying first-fit were also adopted so as to reduce cache 
misses both during searching (fewer free blocks touched) 
and in the application. 
Normally one expects searching to slow down as the 
number of items searched increases. Here we see the 
opposite effect. As the number of free blocks increases, 
there will be fewer empty small-block bins, which reduces 
the number of such lists that have to be checked. 
The remaining key design decisions were driven primarily 
by the need to support a high level of concurrency. 
D: Lock on each free list. A spin lock protects each free 
list; there are no other locks. The lock on a free list protects 
additions to and deletions from the free list, nothing more. 
No locks are held when checking whether blocks can be 
coalesced, nor when coalescing the blocks. 
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We use our own spin lock implementation, shown below. 
It is designed to minimize load on the memory bus by 
performing the lock testing in the cache during a busy wait. 
When the lock becomes free, the thread tries to acquire it. 
(InterlockedExchange is a WIN32 funtion that atomically 
sets a variable to a new value and returns the old value.) If 
it fails to acquire the lock, it continues spinning. Busy 
waits are bounded, i.e. a thread yields after it has tested the 
lock a maximum number of times. The bound was set to 
4000 times in all our tests. 

-inline static int S-LOCK( long *laddr ) 
( 

int cnt, sleeps=0 ; 
do (: 

cnt = MAXSPIN ; 
/* check max MAXSPIN times then yield *I 
/* spinning in cache until lock changes */ 
while( *laddr == LOCKED ) { 

cnt-- ; 
if( cnt c 0 ){ 

sleeps++ ; 
Sleep(O) ; /* yield */ 
cnt = MAXSPINS ; 

1 
) while( InterlockedExchangelladdr, LOCKED) 

== LOCKED ) ; 
return(sleeps) ; 

E: Multiple subheaps. Having a lock on each free list and 
minimizing lock time reduced contention on the free lists 
to virtually nothing. Even so, it wasn’t enough - we found 
that the speedup was still less than two on a 4-way or 8- 
way processor. 

The problem is caused by “cache sloshing”, that is, the 
current value of a cache line rapidly migrating from cache 
to cache. When different processors read and modify the 
same cache line frequently, the current value is almost 
never available in the cache when needed by a processor, 
resulting in a cache miss and a memory read. Cache 
sloshing occurs not only on free list locks and headers but 
also on boundary tags. 

To combat this, we decided to use multiple, independent 
subheaps and assign each thread to a subheap. A subheap 
is a complete heap with its own set of 128 free lists and 
memory arena. The address space is divided into “stripes” 
of fixed size (currently 4MB). An arena grows and shrinks 
one stripe at a time. 
A thread always allocates blocks from its assigned subheap 
but can free blocks in any subheap. To which subheap a 
block belongs can be determined from its address by first 
determining which stripe (explained below) it belongs to 
and then looking up to which subheap that stripe is 
assigned. 

In the current implementation, the number of subheaps 
must be determined when the library is initialized and 
remains fixed thereafter. Choosing the number of subheaps 
is an open question but setting it slightly higher than the 
number of processors is a reasonable first heuristic. 

F: Select subheap by hashing. Given a call to allocate a 
block for a particular thread, how do we quickly decide 
which subheap to use? LKmalloc does it by hashing on the 
ID of the thread. This has the virtue of being fast and 
simple because the library maintains no information about 
existing threads. The drawback is the pseudo-random 
assignment of threads to subheaps: multiple concurrent 
threads may be assigned to the same subheap even though 
there are currently unused subheaps. However, any other 
scheme requires some explicit bookkeeping and 
assignment of threads to subheaps. It is not clear that an 
explicit scheme would do much better than random 
assignment. 

G: Memory striping. We must be able to grow and shrink 
the memory area assigned to a subheap. A fixed division of 
the address space won’t do; a subheap must, if necessary, 
be allowed to grow arbitrarily large. LKmalloc divides the 
address space into fixed-size stripes (default size 4 MB). 
When a subheap needs more space it is assigned another 
stripe. A subheap can also return a stripe. A small array 
keeps track of which stripes have been assigned to which 
subheaps. 
Initially, no physical memory is committed to a stripe. 
Physical memory is requested from (committed) and 
returned to (decommitted) the operating system one page at 
a time. The amount of memory committed to a stripe and 
to which pages within as stripe varies over time depending 
on demand. When to decommit memory is a policy 
decision. The current version decommits pages whenever a 
free block larger than two pages is created. 

6.1 Discussion 
As far as we know, the idea of using a fixed number of 
subheaps and assigning threads to subheaps by hashing is 
new. Here is a brief explanation of why we adopted this 
solution. 

Let’s first consider the two extremes: a single subheap 
used by all threads and a completely separate subheap for 
each thread. We tried using a single subheap and found 
that it scaled poorly even if when lock contention was 
reduced to virtually nothing. As mentioned above, the 
problem is probably bus saturation caused by many 
processors accessing the same fast-changing data items 
(locks, free list headers, block headers and footers). 

Using a subheap per thread is not viable for server 
applications because the overhead of keeping track of 
threads, creating/destroying subheaps and mapping threads 
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to subheaps could be substantial. Furthermore, a block 
might survive longer than the thread that created it by 
being transferred to another thread. If so, it is not clear 
when to destroy a subheap and, most likely, memory 
utilization would suffer. 

Using a small number of subheaps and assigning threads to 
subheaps by hashing improves scalability without having 
to explicitly keep track of the mapping of threads to 
subheaps. 

7. EXPERIMENTAL RESULTS 
This section reports on the observed performance of five 
allocators on a simulated server-like workload. We 
compare the performance of two versions of LKmalloc 
with four other allocators. 

1. 

2. 

3. 

4. 

5. 

6. 

Lkmalloc with 10 subheaps. This version is 
identified by “Lkmalloc 10” in subsequent figures. 

LKmalloc with a single heap. Results for this 
version are labeled “Lkmalloc 1” in the figures. 

DLmalloc with a global lock. This is Dlmalloc (Doug 
Lea’s malloc), which we made thread-safe with the 
addition of a single, global lock. The lock is 
implemented as a bounded spin lock. The label “dlm, 
global” in the figures refers to this allocator. 

DLmalloc with local locks. This is another thread- 
safe version of DLmalloc with no global lock but 
instead using a lock on each of its 128 free lists. We 
had to slightly reorder the code and eliminate one 
speed-enhancing device (a bit array used for quickly 
finding a non-empty free list), which slowed down the 
allocator somewhat. The label “dlm, local” is used for 
this allocator in the figures. 
Ptmalloc. This is a third thread-safe version of 
DLmalloc, designed by Wolfram Gloger [4], and 
intended to be scalable. It uses a linked list of 
subheaps where each subheap has a lock, 128 free 
lists, and some memory to manage. When a thread 
needs to allocate a block, it scans the linked list of 
subheaps and grabs the first unlocked one, allocates 
the required block, and returns. If it can’t find an 
unlocked subheap, it creates a new one and adds it to 
the list. In this way, a thread never waits on a locked 
subheap. Ptmalloc has no provisions for reducing the 
number of subheaps so memory utilization is likely to 
suffer, especially for long running server applications. 

Libc malloc. This is the allocator distributed in the 
standard C library of Microsoft Visual C++ 5.0. It is 
thread-safe, which is accomplished by means of a 
single, global lock (actually a WIN32 critical section). 
It was not designed for scalability on SMP systems. 

Workload. The workload generated is intended to model a 
server responding to client requests. It is based on a thread- 
per-request model, creating a new thread for each request. 
The number of threads running concurrently is an input 
parameter. 

When a worker thread is created, it receives a set of blocks 
already allocated. It then performs a sequence of random 
replacements, that is, one of the existing blocks is 
randomly selected and freed and a new block of random 
size is allocated. We call this a malloc-free operation. How 
many such operations a thread performs is another input 
parameter. When the thread has completed its sequence of 
malloc-free operations, it creates a new thread, passes its 
currently allocated blocks to the new thread, and 
terminates. After 30 seconds, all activity was stopped and 
performance data collected. Threads do nothing else so 
even the slow allocators perform several million malloc- 
free operations during 30 seconds. 

Why pass allocated blocks between threads? In server 
applications, a small fraction of the blocks allocated by one 
thread is typically passed to other threads, used in some 
way, and finally freed by some thread other than the 
creating thread. We refer to this as blocks “bleeding” 
between threads. On a large web server, we observed 
bleeding in the 2-3% range. 

For the series of experiments reported here, the input 
parameters were set as follows. Each thread received 1000 
blocks and performed 50,000 malloc-free cycles (2% 
bleeding). Block size was randomly drawn from a uniform 
distribution with range 10 to 1000 bytes. Experiments were 
run on three different machines: a uniprocessor system 
with a 300 MHz Pentium II processor, on a 4-processor 
SMP with 200 MHz Pentium Pro processors, and an 8- 
processor SMP also with 200 MHz Pentium Pro 
processors. All systems were running Windows NT 4.0. 
The number of concurrently executing threads was varied 
from one to ten. 

Metrics. We are mainly interested in how fast the 
allocators are, how well they stand up to increased levels 
of concurrency, and how effectively they use memory, 
which we assess by the following metrics: 
1. Throughput in total malloc-free operations per second 

(malloc-free pairs per second). 

2. Speedup, defined as throughput when running n 
threads in parallel, divided by throughput when 
running only one thread at a time (using the same 
allocator). 

3. Memory utilization, defined as the fraction of the total 
arena size (memory requested from the OS) occupied 
by application data. This metric takes into account 
both external and internal fragmentation. 
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Figures 1 to 3 show the results obtained on a uniprocessor 
system. Not surprisingly, DLmalloc with a single global 
lock and Ptmalloc have the highest throughput because 
they retain all the performance optimizations of the serial 
version of the code. DLmalloc with local locks is slower 
because some of these optimizations had to be eliminated 
when adding the locks. LKmalloc is slower yet because of 
the overhead caused by retrieving and hashing the thread 
ID for every malloc call and locating the appropriate 
subheap for every free call. Libc malloc is the slowest 
allocator, especially when the number of concurrent 
threads is high. 

Figure 2 show the speedup. In the uniprocessor case, the 
objective is to achieve the same throughput regardless of 
the number of threads. Libc malloc clearly does not 
achieve this. Relying on a single critical section for 
synchronization causes too many context switches, thereby 
reducing throughput. Interestingly enough, using a single 
(bounded) spin lock for synchronization does not have this 
effect, witness the line for “dlm, global”. 

Figure 3 plots the memory utilization, except for libc 
malloc for which we couldn’t get the data easily. 
DLmalloc, regardless of lock type, and LKmalloc with a 
single heap have high and stable memory utilization for all 
levels of concurrency. Ptmalloc and LKmalloc with 
multiple subheaps are not as memory efficient. Ptmalloc 
tends to waste memory because it creates a new subheap 
and arena as soon as there is a lock conflict. Also, it has no 
policies or mechanisms for eliminating subheaps. 

Figure 2: Speedup on 1 P 

8 
1 

z 
2 

0.8 

2 0.6 
u 
g 0.4 

tn 0.2 

I I I I I 

2 4 6 8 10 

No of threads 

+Lkmalloc 10 -W-Lkmalloc 1 +ptmalloc ~ 

--:t dlm, local +dlm, global -O- libc, malloc 

0 
/ I 

0 2 4 6 8 10 

No of threads 

~%Lkm~%c~~~ % I-Kmallbcl 1 

[ * ptmalloc +I+ DLmalloc 
i~~~~_~ ~~~ ~~~~~ __ J 

LKmalloc 10 spreads the allocated blocks over ten 
subheaps, regardless of the number of concurrently 
executing threads. The low memory utilization for low 
levels of concurrency may be caused by the design of the 
experiments but not for higher levels of concurrency. A 
highest memory utlization of less then 60% is clearly a 
problem. We run some experiments (not shown) 
increasing the number of concurrently executing thread 
beyond ten but memory utlization did not improve. 
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7.2 Results on 4P 
Figures 4 and 5 show interesting scalability effects: we 
have allocators with negative scaling, allocators with flat 
performance and one allocator with significant positive 
scaling. 

The two allocators relying on a single global lock (libc 
malloc and DLmalloc with a global spin lock) have clear 
negative scaling, that is, as the number of threads 
increases, the total throughput decreases. Three allocators 
(DLmalloc with local locks, Ptmalloc and LKmalloc with a 
single subheap) gain virtually nothing from the extra 
processors. Their throughput appears to be limited by bus 
saturation caused by cache sloshing. LKmalloc with 
multiple subheaps is the only one gaining signficantly from 
the additional processors. A maximum speedup of 3.5 on a 
4 processor system is outstanding. 

Memory utilization is plotted in Figure 6. As one would 
expect, Ptmalloc’s memory utilization is lower than for the 
uniprocessor case. With four processors, there is a higher 
probability of finding no unlocked subheaps and creating a 
new subheap. This results in more subheaps and a lower 
memory utilization. 

7.3 Results for 8P 
The 8P results shown in figures 7 to 9 (on next page) 
amplify the findings for 4P. The allocators relying on 
global locks continue to scale negatively and the same 
three allocators gain virtually nothing from the seven 
additional processors. LKmalloc with 10 subheaps 
continues to scale well, reaching a maximum speedup 5.3 
out of 8. We had set a goal of a million malloc-free 
operations per second and reached 1.1 million. 

Figure 6: Memory utilization on 4P 
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Figure 9 shows the same pattern for memory utilization as 
figures 3 and 6. The dip in the Lkmalloc 10 curve for 9 
and 10 does not indicate a trend - it did not show up in 
other runs. Again, Lkmalloc shows a high memory 
utilization of only 60%. 
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Figure 7: Throughput on 8P 
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8. Summary and conclusion 
Long-running server applications behave dil’t’erently than 
traditional client applications and impose different 
requirements on dynamic memory allocators. We first 
described what server applications typically do and how 
they are architected. We identified several additional 
requirements on memory allocators intended for server 
applications: good scalability on SMP systems, thread 
independence, stability, and predictable performance. 

We then described the design of a new allocator called 
LKmalloc targeted for both traditional applications and 
server applications. LKmalloc uses several subhcaps, each 
one with a separate set of free list and memory arena. A 
thread always allocates from the same subheap but can free 
a block belonging to any subheap. A thread is assigned to a 
subheap by hashing on its thread ID. This slightly complex 
scheme was necessary to achieve any significant scalability 
- all simpler schemes failed. 
On uniprocessor systems, LKmalloc was about 25% slower 
than the fastest allocator we tested. On 4-way and g-way 
SMP systems, LKmalloc scaled far better than any of the 
other allocators tested. Two allocators relying on a single 
global lock showed negative scaling on SMP systems, that 
is, throughput decreased when the number of processors 
increased. Allocators with multiple locks but a single 
common arena showed positive but limited scaling (a 
speedup of less than 1.5 on an g-way SMP). 

The main lesson learned from our experiments is as 
follows. To build a highly sculable &locator, it is not 
sufJicient to minimize lock contention. One must also 
reduce bus trajfic by reducing the frequency of access to 
shared, ,fast-changing data items like list heads, counters, 
block headers and block footers. 

Figure 8: Speedup on 8P 
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Figure 9: Memory utilization on 8P 
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LKmalloc’s memory utilization is definitely too low when 
multiple subheaps are used. For ten subheaps and five or 
more concurrent threads, it needed almost twice as much 
memory as the most memory efficient allocators tested. 
We are looking into ways of automatically adjusting the 
number of subheaps based on the level of concurrency 
exhibited by the application. The problem is how to 
improve memory utilization without losing too much in 
scalability. 

We believe that LKmalloc results in fewer cache misses 
not only within the allocator itself but also in application 
code. However, additional experiments are needed to 
determine whether this is true. 
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