
Memory Allocation for Long-Running Server Applications
Per-Ake Larson and Murali Krishnan

Microsoft

palarson@microsoft.com, muralik@microsoft.com

1. ABSTRACT
Prior work on dynamic memory allocation has largely
neglected long-running server applications, for example,
web servers and mail servers. Their requirements differ
from those of one-shot applications like compilers or text
editors. We investigated how to build an allocator that is
not only fast and memory efficient but also scales well on
SMP machines. We found that it is not sufficient to focus
on reducing lock contention - higher speedups require a
reduction in cache misses and bus traffic. We then
designed and prototyped a new allocator, called LKmalloc,
targeted for both traditional applications and server
applications. LKmalloc uses several subheaps, each one
with a separate set of free lists and memory arena. A thread
always allocates from the same subheap but can free a
block belonging to any subheap. A thread is assigned to a
subheap by hashing on its thread ID. WC compared its
performance with several other allocators on a server-like,
simulated workload and found that it indeed scales well
and is quite fast hut memory more efficiently.

1.1 Key words
Dynamic memory allocation, server applications,
concurrency, multiprocessor scalability, reducing lock
contention, cache-conscious algorithms.

Authors’ address: Microsoft, One Microsoft Way,
Redmond, WA 9X052-6399, USA.

2. INTRODUCTION
Long-running scrvcr application like web servers, mail
servers, and database scrvcrs are widely used but there has
been little rcscarch on dynamic memory allocation and
garbage collection for this class of applications. Server

Permission to make d,gWal o, hard cop,es of all or part of this work for
perwnal or classroom use IS granted w!thout lee provided that
copses are not made or dlstnbuted for proflt or commercial advan~
tage and that cop,es bear this not,ce and the full c,ta,,on on the first page
,o copy otherwise. 10 republish. to post on servers or to
red,strfbute to I~sts, requres prior specd~ perm~.s~r and/or a fee.
ISMM ‘98 lO/SS Vancouver. 6.C
B ,998 ACM l-581 13-1 14.3/98/0010...$5.00

applications have different allocation patterns and different
requirements than traditional one-shot applications like
compilers or text editors. They are usually multithreaded
and frequently run on large SMP systems, which implies
that allocators targeted for this class of applications must
be able to handle high levels of concurrency.
This paper describes our progress in developing a dynamic
memory allocator targeted both for traditional applications
and server applications. In addition to the traditional
objectives of speed and efficient memory usage, our design
emphasizes scalability on SMP systems.

The rest of the paper is organized as follows. Section 3 sets
the stage by describing typical server applications, their
workload, and how they are architected. Section 4
summarizes our view of the requirements on dynamic
memory allocators for server applications. Section 5
provides a brief summary of prior work in this area. The
current design of our allocator is described in section 6.
Experimental results, using a simulated workload, are
reported in section 7. Section 8 summarizes our findings
and offers some conclusions.

3. BACKGROUND
In this section we explain the background surrounding the
problem space. First we talk in general about the server
applications and next we describe generically how requests
arc processed in typical server applications.

3.1 Server applications
It is impossible to come up with an exact definition of
“server application” but, for the purpose of this paper, we
define a server application as follows. A server application
provides some service; its purpose is to accept requests
from clients and process them. Typically a server
application runs for a long time (indefinitely), processing
requests received from a variety of client applications.
Most commonly server applications are used for networked
services. A server application is expected to process many
requests per unit of time and do so with minimum delay.
A request is the unit of work given to a server application.
The requests can be and usually are generated by a wide
range of client applications that can be running either

176

locally or on wide area networks. Requests arrive at
random intervals at the server. The number of requests and
the rate of requests are usually not within the control of the
server. A typical request is “small”, that is, the processing
and resources required are usually small in comparison to
the resources available on the server systems.

Here are a few examples of widely used servers that fit the
above description of servers and request types.

Database servers.

Web servers.

Directory/name servers.

Authentication servers.

Mail servers.

3.2 Anatomy of server applications
A server application can be implemented in many different
ways depending on the needs of the service and the type of
environment in which it is used. Commonly we can
categorize servers based on state involved and the manner
in which requests are processed.

A server may have to accumulate and maintain state about
a client for processing future requests from the same client.
Such a server is said to be stat&l.. A stateful server
typically requires the client to first open a connection to the
server before making requests. The connection is closed
after all the requests are handled. To the server, the
connection is the client and the server usually stores the
state information about the client along with the connection
object.

A server that does not maintain any state about the client is
said to be stuteless. Some server applications function this
way (eg: time servers or DNS servers).

The architecture of many servers is based on the thread-
per-connection model’. The basic version of this
architecture creates a thread for each open connection,
which maintains the state information and also processes
all requests arriving on its connection. Two refinements of
this model are common: worker threads and service
threads.

It may be quite expensive to create a thread for each
connection and keep the thread alive between requests.
This is the case, for example, on some Unix systems where

’ We use “thread” as a generic term meaning an independent
thread of control. A “thread’ can be implemented in several
ways: as an OS thread, an OS process, or as a user-level
(lightweight) thread. The specific implementation choice
depends most often on what the underlying OS provides.

a “thread” must actually be implemented as a separate OS
process. In that case, usually a fixed number of worker
threads (a pool of workers) are created and used. When a
request arrives, it is put on a queue of requests waiting to
be processed, from where it will eventually be picked up
by a worker thread for processing. In this scenario, a
connection is a passive data structure that survives between
requests and is handed to the worker thread together with a
request. Worker threads not only avoid the overhead of
creating/destroying a thread for each connection but the
level of concurrency can be adjusted simply by increasing
or decreasing the number of worker threads.

It is not desirable to tie up the main worker threads by
waiting for I/O operations or requests to other servers to
finish. With a limited supply of threads, this may result in
all threads being blocked even though there are requests
that could be processed. This can be handled by having
specialized service threads, for example, one I/O thread for
each disk. When a worker thread needs to read or write
from a disk, it puts one or more I/O request on the queue
for the appropriate disk, suspends processing of the current
request and resumes processing of another request. The
same idea can be applied when a server needs to request
services from another server, for example, a database
server sending a request to an authentication server.
We predominantly focus on stateful multi-threaded servers.
There are two notable trends. First, servers are no longer
fully monolithic pieces of code. Many server applications
load and use shared modules for processing a request. A
second trend is that the server applications and shared
modules are increasingly implemented in C++ or other
object oriented languages that rely more heavily on
dynamic memory allocation than traditional languages.

For instance let us look at what happens inside a
Microsoft’s web server (IIS) when it processes a request.
The web servers maintain state for connections and clients.
Besides the web server’s connection state, several
additional code modules, may be loaded into the server
application and called upon to process the request. For
example, a request for legacy data access on a web server
is processed by the web server code, by database
connector, and by page formatter modules. To avoid tying
up the I/O threads for long duration, the server implements
a pool of worker threads and delegates work from the I/O
service thread to the worker thread. We found that request
processing can impose loads as high as 1000
allocation/frees per request. For most part objects allocated
were small - 80% of allocations were for blocks of 40
bytes or smaller.
A server application may have to handle very high request
rates, often in the range of thousands of requests per
second. To support a high request rate, it is often necessary

177

to run the application on an SMP systems. The most
common configuration today is four to eight processors but
some systems go much higher.

4. REQUIREMENTS
Does this mean that server applications impose different
requirements on memory allocators than traditional single-
shot applications, like compilers, word processors, or mail
clients? We claim that they do and attempt to explain the
requirements in this section.

Consider a web server running on an SMP system with,
say, eight processors. Assume that its basic architecture is
a simple thread-per-request with a worker pool, that is,
when a request arrives it is put on a queue, a worker thread
eventually picks it up for processing, and the worker thread
does all the processing required to complete the request.
Also, assume that the server receives say 1000 requests per
second at peak time and that the processing of a request
involves 1000 allocations. The peak allocation rate is then
IO6 allocate and IO6 free operations per second. A good
memory allocator must be designed to handle millions of
malloc-free operations per second on large SMP systems.

Here is our list of requirements for dynamic memory
allocators targeted at any application augmented with
requirements specific for server environment.

1.

2.

3.

4.

Fast - Speed is essential. Allocate and free are the
most common operations so they must be very fast.
Less frequently used operations like reallot,
compaction, or gathering statistics need not be
particularly fast.

High memory utilization - As always, reducing
overhead and wasted space is important. However,
server applications tend to run on systems with
massive amounts of memory so this requirement is not
as critical as it might be on smaller systems.

Size independence - Speed should not be greatly
affected by the size distribution and ordering of
allocation requests. Given that object sizes can be very
varied on server systems, some dependent on the
nature of incoming requests, it is important to have
size independence.
Maximize locality - Allocating chunks of memory
that are typically used together near each other. This
reduces page and cache misses during execution and
thus improves performance. This also has the potential
of reducing unused space.

These four are all quite standard requirements that apply to
all memory allocators. However, the subsequent ones are
more specific to server applications.

Scalable - The allocator must support highly
concurrent operations and execution in SMP systems,
ideally scaling linearly with the number of processors.

Thread independence - A block must not be tied to
the thread that allocated it. A block should be free to
migrate among threads, that is, it should be possible
for one thread to allocate a block, a second thread to
use it, and a third thread to free it (even if the original
thread has already died). This makes it possible to pass
objects from thread to thread in a server system. This
is a strict requirement for server applications.

Predictable speed - Servers are (soft) real-time
applications and need to exhibit not only low but also
predictable response times. This means that the time it
takes to allocate or free a block should, ideally, be
constant and independent of its size, the number of
allocated or free blocks, amount of memory in use,
allocation history, etc. In particular, occasional long
pauses for garbage collection or large-scale coalescing
are unacceptable.
Stability - For long running systems it is very
important that the memory allocator’s performance
remains stable over time. In other words, memory
utilization should not decrease or allocation times
increase over time if the load on the system remains
stable.

We do not claim that each one of points 5 to 7 is unique to
server applications. For example, animation software needs
highly predictable speed (but not necessarily scalability)
and video conferencing clients are long running and care
greatly about stability. We do, however, believe that the
combination of requirements is unique to server
applications.

5. PRIOR WORK
Many dynamic memory allocators have been designed
over the years. Wilson, Johnstone, Neely, and Boles
[15]have written an excellent survey of this work. The
main focus appears to have been on sequential allocators,
with emphasis on speed and memory utilization. Benjamin
Zorn maintains a site [16] with links to dynamic memory
allocators that are publicly available on the net.
The allocator designed by Doug Lea [lo], here called
DLmalloc, has been found to be both the fastest and most
memory efficient on several applications 9. However, the
original version is neither thread-safe nor scalable.
Wolfram Gloger created a thread-safe and scalable version,
called Ptmalloc [4].
Vmalloc by K-P Vo [14] is more of an allocator
framework. Memory is divided into regions and each

178

region can be managed by different policies. The specific
allocators to be used are chosen at link time. This makes it
easy to experiment with different allocators for a given
application. Grunwald and Zorn [5] also investigated how
to tailor allocators to specific programs, mainly to improve
speed but without too high a cost in memory space.

We have not found much work on parallel memory
allocators. The latest appears to be Arun Iyengar’s work
[7] [8], which is somewhat difficult to assess because the
experimental results are for such an unusual machine (a
dataflow machine). His most scalable allocator uses
multiple free lists, with a lock on each free list. Operating
system kernels for parallel machines also need scalable
memory allocators. A paper by McKenney and Slingwine
[12] describes the kernel allocator used in Sequent’s
version of Unix. Somewhat simplified, it has one subheap
per processor. No locks are needed on these subheaps
because all allocation and deallocation is restricted to one
processor. Unfortunately, this idea cannot be applied at the
user level because an application program typically has no
control over which processor it runs on at any given time.

Extensive research has been done on garbage collection
techniques, especially incremental and concurrent garbage
collection [181. Appel et al [I] describe concurrent garbage
collection technique based on a virtual memory marking
technique. This allows concurrency between garbage
collection and the mutator (application program). While
this and other refinements make garbage collection more
efficient, it does not address issues with traditional heap
based allocation.

6. LKmalloc
This section describes our design of a memory allocator,
called LKmalloc, targeted for both traditional applications
and for server applications. We have concentrated on
scalability and speed. We describe not only the final design
but also some of the not-so-successful attempts along the
way.
Doug Lea’s allocator [IO] has been found to be both fast
and memory efficient. We adopted three of its key design
features with little change.

A: Binning. Free blocks are kept in 128 bins, grouped by
size. All blocks are aligned on &byte boundaries. There
are 64 bins for blocks of size 512 or less, space 8 bytes
apart, each holding blocks of exactly the same size. The
remaining (large-block) bins have coarser spacing and a
bin may contain blocks of different size. The bins are
implemented as doubly linked lists. DLmalloc keeps
blocks in large-block bins sorted by size but we did not
retain this feature.

B: Approximate best fit. Searching for a free block starts
from the first list containing free blocks of sufficient size
and proceeds one list at a time. The first free block found is
taken. This is a combination of best fit and first fit. If the
free block found is on a small-block list, it is guaranteed to
be the best-fitting block but not if it is found on a large-
block list because large-block list are not kept sorted.

C: Immediate coalescing. When a block is freed, we
immediately try to coalesce it with its left and/or right
neighbor. This reduces fragmentation and improves
memory utilization. It also avoids postponing work,
providing more predictable speed, and improves stability.
This policy requires that checking whether two blocks can
be coalesced and performing the actual coalescing must be
very fast. To this end, we use two standard techniques,
namely boundary tags and doubly-linked free list. Each
block, whether free or allocated, carries size and type
information in a 4-byte field at the beginning and at the
end of the block. These techniques make it possible to
check and perform coalescing in constant time (and very
fast).

LKmalloc does not maintain a cache of free blocks, often
called quick lists or look-aside lists. The basic operations,
including coalescing, are sufficiently fast that there was
little to be gained from quick lists and delaying coalescing
tends to reduce memory utilization.

DLmalloc organizes each small-block list as a queue (or
FIFO list). Large-blocks lists are kept sorted on block size
to make best-fit allocation faster. We changed the policy
for small-block lists to LIFO, that is, blocks are added to
and deleted from the front of the list. The idea is to
improve cache locality (both for the allocator and the
application) by reusing blocks as quickly as possible,
hopefully, before the block has been purged from the
processor cache. Keeping large-block lists unsorted and
applying first-fit were also adopted so as to reduce cache
misses both during searching (fewer free blocks touched)
and in the application.
Normally one expects searching to slow down as the
number of items searched increases. Here we see the
opposite effect. As the number of free blocks increases,
there will be fewer empty small-block bins, which reduces
the number of such lists that have to be checked.
The remaining key design decisions were driven primarily
by the need to support a high level of concurrency.
D: Lock on each free list. A spin lock protects each free
list; there are no other locks. The lock on a free list protects
additions to and deletions from the free list, nothing more.
No locks are held when checking whether blocks can be
coalesced, nor when coalescing the blocks.

179

We use our own spin lock implementation, shown below.
It is designed to minimize load on the memory bus by
performing the lock testing in the cache during a busy wait.
When the lock becomes free, the thread tries to acquire it.
(InterlockedExchange is a WIN32 funtion that atomically
sets a variable to a new value and returns the old value.) If
it fails to acquire the lock, it continues spinning. Busy
waits are bounded, i.e. a thread yields after it has tested the
lock a maximum number of times. The bound was set to
4000 times in all our tests.

-inline static int S-LOCK(long *laddr)
(

int cnt, sleeps=0 ;
do (:

cnt = MAXSPIN ;
/* check max MAXSPIN times then yield *I
/* spinning in cache until lock changes */
while(*laddr == LOCKED) {

cnt-- ;
if(cnt c 0){

sleeps++ ;
Sleep(O) ; /* yield */
cnt = MAXSPINS ;

1
) while(InterlockedExchangelladdr, LOCKED)

== LOCKED) ;
return(sleeps) ;

E: Multiple subheaps. Having a lock on each free list and
minimizing lock time reduced contention on the free lists
to virtually nothing. Even so, it wasn’t enough - we found
that the speedup was still less than two on a 4-way or 8-
way processor.

The problem is caused by “cache sloshing”, that is, the
current value of a cache line rapidly migrating from cache
to cache. When different processors read and modify the
same cache line frequently, the current value is almost
never available in the cache when needed by a processor,
resulting in a cache miss and a memory read. Cache
sloshing occurs not only on free list locks and headers but
also on boundary tags.

To combat this, we decided to use multiple, independent
subheaps and assign each thread to a subheap. A subheap
is a complete heap with its own set of 128 free lists and
memory arena. The address space is divided into “stripes”
of fixed size (currently 4MB). An arena grows and shrinks
one stripe at a time.
A thread always allocates blocks from its assigned subheap
but can free blocks in any subheap. To which subheap a
block belongs can be determined from its address by first
determining which stripe (explained below) it belongs to
and then looking up to which subheap that stripe is
assigned.

In the current implementation, the number of subheaps
must be determined when the library is initialized and
remains fixed thereafter. Choosing the number of subheaps
is an open question but setting it slightly higher than the
number of processors is a reasonable first heuristic.

F: Select subheap by hashing. Given a call to allocate a
block for a particular thread, how do we quickly decide
which subheap to use? LKmalloc does it by hashing on the
ID of the thread. This has the virtue of being fast and
simple because the library maintains no information about
existing threads. The drawback is the pseudo-random
assignment of threads to subheaps: multiple concurrent
threads may be assigned to the same subheap even though
there are currently unused subheaps. However, any other
scheme requires some explicit bookkeeping and
assignment of threads to subheaps. It is not clear that an
explicit scheme would do much better than random
assignment.

G: Memory striping. We must be able to grow and shrink
the memory area assigned to a subheap. A fixed division of
the address space won’t do; a subheap must, if necessary,
be allowed to grow arbitrarily large. LKmalloc divides the
address space into fixed-size stripes (default size 4 MB).
When a subheap needs more space it is assigned another
stripe. A subheap can also return a stripe. A small array
keeps track of which stripes have been assigned to which
subheaps.
Initially, no physical memory is committed to a stripe.
Physical memory is requested from (committed) and
returned to (decommitted) the operating system one page at
a time. The amount of memory committed to a stripe and
to which pages within as stripe varies over time depending
on demand. When to decommit memory is a policy
decision. The current version decommits pages whenever a
free block larger than two pages is created.

6.1 Discussion
As far as we know, the idea of using a fixed number of
subheaps and assigning threads to subheaps by hashing is
new. Here is a brief explanation of why we adopted this
solution.

Let’s first consider the two extremes: a single subheap
used by all threads and a completely separate subheap for
each thread. We tried using a single subheap and found
that it scaled poorly even if when lock contention was
reduced to virtually nothing. As mentioned above, the
problem is probably bus saturation caused by many
processors accessing the same fast-changing data items
(locks, free list headers, block headers and footers).

Using a subheap per thread is not viable for server
applications because the overhead of keeping track of
threads, creating/destroying subheaps and mapping threads

180

to subheaps could be substantial. Furthermore, a block
might survive longer than the thread that created it by
being transferred to another thread. If so, it is not clear
when to destroy a subheap and, most likely, memory
utilization would suffer.

Using a small number of subheaps and assigning threads to
subheaps by hashing improves scalability without having
to explicitly keep track of the mapping of threads to
subheaps.

7. EXPERIMENTAL RESULTS
This section reports on the observed performance of five
allocators on a simulated server-like workload. We
compare the performance of two versions of LKmalloc
with four other allocators.

1.

2.

3.

4.

5.

6.

Lkmalloc with 10 subheaps. This version is
identified by “Lkmalloc 10” in subsequent figures.

LKmalloc with a single heap. Results for this
version are labeled “Lkmalloc 1” in the figures.

DLmalloc with a global lock. This is Dlmalloc (Doug
Lea’s malloc), which we made thread-safe with the
addition of a single, global lock. The lock is
implemented as a bounded spin lock. The label “dlm,
global” in the figures refers to this allocator.

DLmalloc with local locks. This is another thread-
safe version of DLmalloc with no global lock but
instead using a lock on each of its 128 free lists. We
had to slightly reorder the code and eliminate one
speed-enhancing device (a bit array used for quickly
finding a non-empty free list), which slowed down the
allocator somewhat. The label “dlm, local” is used for
this allocator in the figures.
Ptmalloc. This is a third thread-safe version of
DLmalloc, designed by Wolfram Gloger [4], and
intended to be scalable. It uses a linked list of
subheaps where each subheap has a lock, 128 free
lists, and some memory to manage. When a thread
needs to allocate a block, it scans the linked list of
subheaps and grabs the first unlocked one, allocates
the required block, and returns. If it can’t find an
unlocked subheap, it creates a new one and adds it to
the list. In this way, a thread never waits on a locked
subheap. Ptmalloc has no provisions for reducing the
number of subheaps so memory utilization is likely to
suffer, especially for long running server applications.

Libc malloc. This is the allocator distributed in the
standard C library of Microsoft Visual C++ 5.0. It is
thread-safe, which is accomplished by means of a
single, global lock (actually a WIN32 critical section).
It was not designed for scalability on SMP systems.

Workload. The workload generated is intended to model a
server responding to client requests. It is based on a thread-
per-request model, creating a new thread for each request.
The number of threads running concurrently is an input
parameter.

When a worker thread is created, it receives a set of blocks
already allocated. It then performs a sequence of random
replacements, that is, one of the existing blocks is
randomly selected and freed and a new block of random
size is allocated. We call this a malloc-free operation. How
many such operations a thread performs is another input
parameter. When the thread has completed its sequence of
malloc-free operations, it creates a new thread, passes its
currently allocated blocks to the new thread, and
terminates. After 30 seconds, all activity was stopped and
performance data collected. Threads do nothing else so
even the slow allocators perform several million malloc-
free operations during 30 seconds.

Why pass allocated blocks between threads? In server
applications, a small fraction of the blocks allocated by one
thread is typically passed to other threads, used in some
way, and finally freed by some thread other than the
creating thread. We refer to this as blocks “bleeding”
between threads. On a large web server, we observed
bleeding in the 2-3% range.

For the series of experiments reported here, the input
parameters were set as follows. Each thread received 1000
blocks and performed 50,000 malloc-free cycles (2%
bleeding). Block size was randomly drawn from a uniform
distribution with range 10 to 1000 bytes. Experiments were
run on three different machines: a uniprocessor system
with a 300 MHz Pentium II processor, on a 4-processor
SMP with 200 MHz Pentium Pro processors, and an 8-
processor SMP also with 200 MHz Pentium Pro
processors. All systems were running Windows NT 4.0.
The number of concurrently executing threads was varied
from one to ten.

Metrics. We are mainly interested in how fast the
allocators are, how well they stand up to increased levels
of concurrency, and how effectively they use memory,
which we assess by the following metrics:
1. Throughput in total malloc-free operations per second

(malloc-free pairs per second).

2. Speedup, defined as throughput when running n
threads in parallel, divided by throughput when
running only one thread at a time (using the same
allocator).

3. Memory utilization, defined as the fraction of the total
arena size (memory requested from the OS) occupied
by application data. This metric takes into account
both external and internal fragmentation.

181

-

Figure 1: Throughput for 1 P

4 6

No of threads

7.1 Results for 1P Figure 3: Memory utilization on 1 P

Figures 1 to 3 show the results obtained on a uniprocessor
system. Not surprisingly, DLmalloc with a single global
lock and Ptmalloc have the highest throughput because
they retain all the performance optimizations of the serial
version of the code. DLmalloc with local locks is slower
because some of these optimizations had to be eliminated
when adding the locks. LKmalloc is slower yet because of
the overhead caused by retrieving and hashing the thread
ID for every malloc call and locating the appropriate
subheap for every free call. Libc malloc is the slowest
allocator, especially when the number of concurrent
threads is high.

Figure 2 show the speedup. In the uniprocessor case, the
objective is to achieve the same throughput regardless of
the number of threads. Libc malloc clearly does not
achieve this. Relying on a single critical section for
synchronization causes too many context switches, thereby
reducing throughput. Interestingly enough, using a single
(bounded) spin lock for synchronization does not have this
effect, witness the line for “dlm, global”.

Figure 3 plots the memory utilization, except for libc
malloc for which we couldn’t get the data easily.
DLmalloc, regardless of lock type, and LKmalloc with a
single heap have high and stable memory utilization for all
levels of concurrency. Ptmalloc and LKmalloc with
multiple subheaps are not as memory efficient. Ptmalloc
tends to waste memory because it creates a new subheap
and arena as soon as there is a lock conflict. Also, it has no
policies or mechanisms for eliminating subheaps.

Figure 2: Speedup on 1 P

8
1

z
2

0.8

2 0.6
u
g 0.4

tn 0.2

I I I I I

2 4 6 8 10

No of threads

+Lkmalloc 10 -W-Lkmalloc 1 +ptmalloc ~

--:t dlm, local +dlm, global -O- libc, malloc

0
/ I

0 2 4 6 8 10

No of threads

~%Lkm~%c~~~ % I-Kmallbcl 1

[* ptmalloc +I+ DLmalloc
i~~~~_~ ~~~ ~~~~~ __ J

LKmalloc 10 spreads the allocated blocks over ten
subheaps, regardless of the number of concurrently
executing threads. The low memory utilization for low
levels of concurrency may be caused by the design of the
experiments but not for higher levels of concurrency. A
highest memory utlization of less then 60% is clearly a
problem. We run some experiments (not shown)
increasing the number of concurrently executing thread
beyond ten but memory utlization did not improve.

182

Figure 4: Throughput for 4P Figure 5: Speedup on 4P

4 6

No of threads

7.2 Results on 4P
Figures 4 and 5 show interesting scalability effects: we
have allocators with negative scaling, allocators with flat
performance and one allocator with significant positive
scaling.

The two allocators relying on a single global lock (libc
malloc and DLmalloc with a global spin lock) have clear
negative scaling, that is, as the number of threads
increases, the total throughput decreases. Three allocators
(DLmalloc with local locks, Ptmalloc and LKmalloc with a
single subheap) gain virtually nothing from the extra
processors. Their throughput appears to be limited by bus
saturation caused by cache sloshing. LKmalloc with
multiple subheaps is the only one gaining signficantly from
the additional processors. A maximum speedup of 3.5 on a
4 processor system is outstanding.

Memory utilization is plotted in Figure 6. As one would
expect, Ptmalloc’s memory utilization is lower than for the
uniprocessor case. With four processors, there is a higher
probability of finding no unlocked subheaps and creating a
new subheap. This results in more subheaps and a lower
memory utilization.

7.3 Results for 8P
The 8P results shown in figures 7 to 9 (on next page)
amplify the findings for 4P. The allocators relying on
global locks continue to scale negatively and the same
three allocators gain virtually nothing from the seven
additional processors. LKmalloc with 10 subheaps
continues to scale well, reaching a maximum speedup 5.3
out of 8. We had set a goal of a million malloc-free
operations per second and reached 1.1 million.

Figure 6: Memory utilization on 4P
,

100

g 80

2 60

% 40
E
g 20

0 I I I I

0 2 4 6 8 10

No of threads

Figure 9 shows the same pattern for memory utilization as
figures 3 and 6. The dip in the Lkmalloc 10 curve for 9
and 10 does not indicate a trend - it did not show up in
other runs. Again, Lkmalloc shows a high memory
utilization of only 60%.

183

Figure 7: Throughput on 8P

2 4 6 8 10

No of threads

+ Lkmalloc 10 Lkmalloc 1 ---AT ptmalloc

i .-
dlm, local +dlm, global +libc. malloc

8. Summary and conclusion
Long-running server applications behave dil’t’erently than
traditional client applications and impose different
requirements on dynamic memory allocators. We first
described what server applications typically do and how
they are architected. We identified several additional
requirements on memory allocators intended for server
applications: good scalability on SMP systems, thread
independence, stability, and predictable performance.

We then described the design of a new allocator called
LKmalloc targeted for both traditional applications and
server applications. LKmalloc uses several subhcaps, each
one with a separate set of free list and memory arena. A
thread always allocates from the same subheap but can free
a block belonging to any subheap. A thread is assigned to a
subheap by hashing on its thread ID. This slightly complex
scheme was necessary to achieve any significant scalability
- all simpler schemes failed.
On uniprocessor systems, LKmalloc was about 25% slower
than the fastest allocator we tested. On 4-way and g-way
SMP systems, LKmalloc scaled far better than any of the
other allocators tested. Two allocators relying on a single
global lock showed negative scaling on SMP systems, that
is, throughput decreased when the number of processors
increased. Allocators with multiple locks but a single
common arena showed positive but limited scaling (a
speedup of less than 1.5 on an g-way SMP).

The main lesson learned from our experiments is as
follows. To build a highly sculable &locator, it is not
sufJicient to minimize lock contention. One must also
reduce bus trajfic by reducing the frequency of access to
shared, ,fast-changing data items like list heads, counters,
block headers and block footers.

Figure 8: Speedup on 8P

0 2 4 6

No of threads

8 10

~ + Lkmalloc 10 Lkmalloc 1 --A-ptmalloc ~

I dlm, local +dlm, global +libc malloc ~

Figure 9: Memory utilization on 8P

I

2 4 6 8 10

No of threads

+ Lkmalloc 10 Lkmalloc 1

i -A-- ptmalloc + DLmalloc i I

LKmalloc’s memory utilization is definitely too low when
multiple subheaps are used. For ten subheaps and five or
more concurrent threads, it needed almost twice as much
memory as the most memory efficient allocators tested.
We are looking into ways of automatically adjusting the
number of subheaps based on the level of concurrency
exhibited by the application. The problem is how to
improve memory utilization without losing too much in
scalability.

We believe that LKmalloc results in fewer cache misses
not only within the allocator itself but also in application
code. However, additional experiments are needed to
determine whether this is true.

184

9. References
[l] Andrew W. Appel, John R. Ellis, and Kai Li, Real-

time concurrent collection on stock multi-processors,
ACM SIGPLAN Notices, 23(7): 1 I-20, 1988.

[2] David Detlefs, Al Dosser, and Benjamin Zorn,
Memory Allocation Costs in Large C and C++
Programs, Software Practice and Experience 24(6):
527--542, June 1994.

[3] J. S. Fenton and D. W. Payne. Dynamic storage
allocations of arbitrary sized segments. In Proc. IFIPS,
pages 344--348, 1974.

[4] Wolfram Gloger, Dynamic memory allocator
implementations in Linux system libraries,
http://www.dcnt.mcd.uni-mucnchcn.dc/-wmglo/
malloc-slideshtml (site visited May 11, 1998)

[5] Dirk Grunwald and Benjamin Zorn, CustoMalloc:
Efficient Synthesized Memory Allocators, Software:
Practice and Experience. 23(8): 8.5 l--869, August
1993.

[6] Dirk Grunwald and Benjamin Zorn and Rob
Henderson, Improving the Cache Locality of Memory
Allocation, ACM SIGPLANP3 Conference on
Programming Language Design and Implementation,
pp 177--186. Albuquerque, NM. June 1993.

[7] Arun K. Iyengar, Parallel dynamic storage allocation
algorithms, In Fifth IEEE Symposium on Parallel and
Distributed Processing. IEEE Press, 1993.

[8] Arun Iyengar, Scalability of Dynamic Storage
Allocation Algorithms, In Frontiers ‘96 - The 6th
Symposium on Frontiers of Massively Parallel
Computing, IEEE Computer Society Press. Pages:
223-232.

[9] Donald E. Knuth. Fundamental Algorithms, Vol. 1 of
The Art of Computer Programming, chapter 2, pages
435-45 I. Addison Wesley, Reading, MA, 2nd edition,
1973.

[lo] Doug Lea, A memory allocator,
http://g.oswe,go.edulcll/html/malloc.html (site visited
May 11, 1998).

[1 l] B. W. Leverett and P. G. Hibbard. An adaptive system
for dynamic storage allocation. Software Practice and
Experience, 12(6): 543--556, June 1982.

[12]Paul E. McKenney and Jack Slingwine. Efficient
kernel memory allocation on shared-memory
multiprocessors. In USENIX Conference Proceedings,
Berkeley CA, February 1993.

[13]C. J. Stephenson. Fast fits: New methods for dynamic
storage allocation. In Proceedings of the Ninth ACM
Symposium on Operating System Principles, pages
30--32, Bretton Woods, NH, October 1983.

[14] Kiem-Phong Vo, Vmalloc: A general and efficient
memory allocator. Software Practice and Experience,
26(3), 357-374, 1996.

[15] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic storage allocation: A
survey and critical review. In 1995 International
Workshop on Memory Management, Kinross,
Scotland, UK, 1995. Springer Verlag LNCS.

[161 Benjamin Zorn, Malloc/free and GC implementations,
http:Nwww.cs.colorado.edu/-zorn/Malloc.lltn~l (site
visited May 11, 1988).

[17] Benjamin Zorn and Dirk Grunwald, Evaluating
Models of Memory Allocation, ACM Transactions on
Modeling and Computer Simulation. 4(1): 107--131,
January 1994.

[181 Richard Jones, and Rafael Lins, Garbage Collection:
Algorithms for automatic dynamic memory
management, John Wiley & Sons, 1998

185

