Chapter 1. Agent Based Dynamic Load Balancing

Section 1. Dynamic Load Balancing

An adaptive load balancing or scheduling system should be efficient, stable, scalable, configurable and general purpose capable of handling different architectures, configurations and job types. It should be easy to use, by either system services or user applications. As far as the users are concerned, this activity should be almost transparent to them, where little or no changes to their applications are required. In addition, the system should have the capability to balance the load for different job types (CPU, Memory or I/O intensive), batch or interactive jobs.

Decentralized control is at the heart of our approach where many agents are active in carrying out load balancing across a network through which they communicate and affect the over-all performance of the system. In performing distributed load balancing, a node/ agent makes local decisions which depend on its own local state and the states of the other nodes. The state of the nodes is constantly changing. Therefore, acquiring up-to-date state information about all components of the network (global system state) can be expensive in terms of communication overhead and of maintaining stability in the network. We rely on cooperation and controlled state information exchanges in situations of low and medium traffic/load conditions. In cases of high loads, nodes should be able to infer or predict the states of other nodes using uncertain or not up-to-date information.

Load Balancing in a distributed environment is highly complex and many factors effect its performance. However, the following three factors are of utmost importance to the load balancing activities:

· System load: In making load balancing decisions, a node requires a knowledge of the system load which includes its local state (load) and a certain level of information about the global state of the different processors in the network. An important question to be investigated is how is the load characterized?

· Network traffic conditions: The underlying network is a key member of our environment. The state of the network can either be measured by performing experiments or predicted by estimating its state from some partial state information. Network traffic conditions determine whether more cooperation can be carried out among the different nodes in making the load balancing decisions (which requires more message passing or communication) or whether the load balancing activities should rely more on local measures in estimating or predicting the state.

· Task Characteristics: The task characteristics involve the size of the task which is summarized by its execution and migration time. Also, tasks can be CPU bound, I/O bound or a combination of the two. The task description includes both quantitative parameters (e.g., the number of processors required for a parallel application) and qualitative parameters (e.g., level of precision of the results or some hardware or software requirement). Estimating the task execution time is helpful in making the load balancing decision. Once the task characteristics are determined and given knowledge of the state of other nodes, and the network, the effect of running this task locally or on any other node can be estimated and consequently decisions about load balancing can be made.

We characterize any dynamic load balancing strategy using four autonomous components or polices. These components or policies describe the major operations involved; HOW to describe or measure the load on each node (processor load measurement policy), WHEN to transfer jobs and WHICH jobs to transfer (transfer policy), HOW OFTEN do the nodes exchange state or load information (information exchange policy) and WHERE is the location of the task to be migrated (cooperation and location policy). Hence, any dynamic load balancing strategy can be described in terms of four components or policies. These policies are: 1) load measurement policy, 2) information exchange policy, 3) transfer policy, and 4) location policy. In what follow, we discuss several techniques that have been proposed or used to implement each dynamic load balancing policy.
1. Load Measurement Policy -

The load measurement aims at obtaining a reasonable indicator of the processor’s load. This load indicator should be stable (does not have high frequency fluctuations) and simple to evaluate. The following metrics are used to measure the load on a processor:

· Number of tasks (processes) in the run queue.

· Rate of system calls.

· Rate of CPU context switching.

· Amount of free CPU time.

· Size of available memory.

· One minute load average.

· Execution time of a test program.
2. Information Exchange Policy

This policy is responsible for determining the periodicity and the manner of collecting state information. This policy answers the question when should a processor communicate its state to the rest of the system processors. The following techniques have been used to exchange state information:
· Periodic exchange of information. The period can be fixed or it can be changed dynamically based on the current load in the network and the change rate in the processor load.

· On-demand. The processor passes the state information whenever it is probed for that information.

· Degree of change. If the load on the processor changes larger than a predetermined threshold, the processor needs to report the changes in its load. The threshold value can be set statically or changed dynamically.
3. Transfer Policy

This policy deals with the questions of deciding on the conditions that trigger process migration and which process (large, small, or newly arrived process) is the best candidate for migration. The techniques proposed to trigger migrations are:
· Whenever the load on a given processor exceeds certain threshold.

· Whenever the load on a given processor becomes lower than certain threshold (processor becomes idle).

· Whenever the load imbalance among a set of processors becomes larger than a certain threshold. The set of processors could involve all the processors in the system or just neighboring processors.

The techniques proposed to select a candidate process for migration are:

· Newly-arriving processes.

· Blocked processes. This may not affect the local processor load; it depends on the process activities when it resumes its execution.

· Currently scheduled processes.

· The process with the best current response time ration.

· Small processes.

· The process with the highest remaining service time.

· Processes that communicate frequently with remote processes.

· The process that has the highest load requirements on the local processor.

4. Location Policy

This policy concerns with the cooperation methods among the system processors to choose the appropriate locations of the processes to be migrated. There are two techniques proposed for location policy:
· Sender-initiated approach. An overloaded processor initiates the search of an appropriate location to migrate some of its processes and thus reduces its load.

· Receiver-initiated approach. An underloaded processor initiates the search for processes that can be executed locally and thus reduces the loads on some of the heavily loaded processors.
The techniques proposed to determine an appropriate location to migrate the process to are:
· Random. Choose randomly a processor to run the process to be migrated. This scheme gives reasonable performance results when the system is lightly loaded. In this case, it is the probability of finding a lightly loaded processor is high. However, this migration does not improve the system performance when the system is highly loaded; the probability of finding an idle (lightly loaded processor) is relatively low.

· Polling. Choose a processor either randomly or following certain procedure (choose a neighboring processor from a local set) and check its load. If its load exceeds a static threshold, choose another processor to be probed and so on. This procedure is repeated until one processor is found.
Section 2. Design of an Intelligent Load Balancing Runtime System
Dynamic load balancing and scheduling algorithms differ in the strategy used to implement each of the four main policies. Our goal is to devise methods to select dynamically the best strategy to implement each policy according to the application requirements and the current system state. Each selected strategy becomes a building block from which a final dynamic load balancing strategy is composed. Fortunately, these policies are completely independent and autonomous. The process of selecting appropriate techniques to implement each strategy can be synthesized in parallel and therefore the task of load balancing is simplified and is made more efficient by performing smaller tasks independently. This is in contrast to approaching the problem as a whole and solving it serially without taking advantage of the inherent parallelism in the problem space.

We are investigating the use of delegated agent technology to dynamically select the appropriate implementation of each policy. In this approach, an intelligent agent integrates all the different strategies available for implementing each dynamic load balancing policy in a knowledge base. Given the state information and the models contained in the knowledge base, decisions can be made, in an adaptive and dynamic manner, about the best possible strategy for each of the four policies. Figure 4-1 shows the proposed architecture for an intelligent load balancing runtime system. In this architecture, an intelligent agent will run on each managed object and have access to a knowledge base (Master). The master knowledge or rules describes the appropriate techniques to implement each of the four main load balancing strategies when the system and network loads change in real-time. In the next section, we will describe our implementation approach of this architecture.
[image: image1.wmf]AA

DMA

AA

Mobile Agent

Executor

Mobile Agent

Executor

Mobile Agent

Executor

UDP

Task

1

Task

2

CIT

ACT

Resource

Resource

UDP

CIT

ACT

Mobile Agent

Executor

Mon

UDP

Resource

App. Generator

User Interface

App. Graph

Execution Monitor

Runtime Display

System Status

ACM

AA

DMA

MA

Template

AA

Task1

Task2

I1

O1

O2

CIT

ACT

AFT

Mon

Mobile Agent Interface

1.

2.

3

4.

5.

6

7

8

[image: image2.wmf]DMA

ACM

AA

Managed

Object

DMA

DMA

DMA

DMA

AA

AA

Managed

Object

Managed

Object

DMA

Group

AA

Group

S

A

S

S

A

ACM :Application Centric Manager

DMA: Delegated Management Agent

AA: Application Agent

S:Sensor

A:Actuator

Figure 4-1 The architecture of an intelligent dynamic load balancing system.
Section 3. Agent Based Implementation Approach
We are currently developing a proactive application management system that can control and manage the performance, fault, security and operations of any network-centric application. Our goal is to integrate the dynamic load balancing system discussed in the previous section in the performance management. In what follow, we describe the architecture of the Proactive Application Management System (PAMS) and then we describe the PAMS’s dynamic load balancing service.

The architecture of PAMS is shown in Figure 4-2. The overall goal of PAMS is to develop programmable management services and monitor the execution of large-scale information systems and their applications. The main key components of PAMS include User Interface, Application-centric Manager (ACM) and Mobile Agent Communication subsystems.

[image: image3.wmf]Newly arrived process

Small Process

Large Process

Random

Transfer Strategy

Sender Initiated

Recever Initiated

Random

Location Strategy

Periodic

On-Demand

Random

Information Exchange

Strategy

CPU Queue Length

I/O Queue Length

....

Load Strategy

Delegated Agent

DLB

Figure 4-2 The architecture of PAMS

When a user develops an application using PAMS user interface subsystem (Step 1 in Figure 4-2), it is then interpreted by the application generator module that characterizes and quantifies the application requirements in the Application Flow Table (AFT). The AFT is decomposed into two tables: one table describes the application computing and management requirements (Application Configuration Table ACT), and the second table describes the communication requirements between the application tasks (Channel Interconnect Table CIT) (Step 2). These tables are fed into the ACM module that checks the Management Agent (MA) templates and generates the appropriate MA templates to run and manage the application (Step 3). The MA templates include management services to monitor common system or network resources and application-specific services. Once the application agents required to execute and manage the application are identified, the next step is to download the agents and the appropriate execution codes into the selected computing resources. The Mobile Agent Interface, then (step 4) will launch agents and download the codes to the resources that have been selected for the application execution. On each machine selected, an agent (step 5) is activated in order to start the execution of the monitored task on that machine. For example, the application agents (AAs), Monitoring agent (Mon) and Delegated Management Agent (DMAs) are selected to control and manage the application tasks (task 1 and Task 1) as shown in Figure 4-2. The DMA is a delegated manager responsible for application execution as well as performing control and management functions. The Mon agent is a common management agent tasked to monitor and collect status information about the appropriate environment events.

During the application execution, the Mon agent monitors the execution (step 6) and in case something went wrong during the application execution such that it can not meet its requirements, the Mon agent will contact the DMA to get a backup resource (step 7). ACM creates new application agent (AA) to run on the selected backup resource. The new execution environment is setup (step 8) and the task is migrated to the new environment where it is executed.
Figure 4-3 shows how the services of PAMS will be implemented using delegated management agents and the data structures of the application agents. We will emphasize the implementation of the DMA to achieve dynamic load balancing.

[image: image4.wmf]
Figure 4-3 The implementation of PAMS services.

The DMA for dynamic load balancing will store the heuristics to implement each dynamic load balancing policy and also the rules (knowledge) to select the appropriate implementation scheme based on the current system load and the application characteristics. Figure 4-4 shows the dynamic load balancing (DLB) DMA services and the techniques that can adopted to implement each service or policy.
[image: image5.wmf]
Figure 4-4 The DLB DMA services and heuristics.

Master Rules

l1

l2

lk

i1

w1

i2

ik

t1

t2

tk

w2

wk

Information Exchange Strategy

Transfer Strategy

Location Strategy

Network

Master Rules

l1

l2

lk

i1

w1

i2

ik

t1

t2

tk

w2

wk

Master Rules

l1

l2

lk

i1

w1

i2

ik

t1

t2

tk

w2

wk

DLB DMA

Location Policy Techniques

Information Exchange Techniques

Transfer Policy Techniques

Load Measurement Techniques

� EMBED Visio.Drawing.5 ���

� EMBED Unknown ���

� EMBED OrgPlusWOPX.4 ���

[image: image6.wmf]AA

DMA

AA

Mobile Agent

Executor

Mobile Agent

Executor

Mobile Agent

Executor

UDP

Task

1

Task

2

CIT

ACT

Resource

Resource

UDP

CIT

ACT

Mobile Agent

Executor

Mon

UDP

Resource

App. Generator

User Interface

App. Graph

Execution Monitor

Runtime Display

System Status

ACM

AA

DMA

MA

Template

AA

Task1

Task2

I1

O1

O2

CIT

ACT

AFT

Mon

Mobile Agent Interface

1.

2.

3

4.

5.

6

7

8

[image: image7.wmf]DMA

ACM

AA

Managed

Object

DMA

DMA

DMA

DMA

AA

AA

Managed

Object

Managed

Object

DMA

Group

AA

Group

S

A

S

S

A

ACM :Application Centric Manager

DMA: Delegated Management Agent

AA: Application Agent

S:Sensor

A:Actuator

[image: image8.wmf]Newly arrived process

Small Process

Large Process

Random

Transfer Strategy

Sender Initiated

Recever Initiated

Random

Location Strategy

Periodic

On-Demand

Random

Information Exchange

Strategy

CPU Queue Length

I/O Queue Length

....

Load Strategy

Delegated Agent

DLB

_994192071.vsd
ACM :Application Centric Manager
DMA: Delegated Management Agent
AA: Application Agent
S:Sensor
A:Actuator�

DMA�

DMA�

DMA�

DMA�

AA�

AA�

Managed Object�

Managed Object�

AA�

DMA�

�

S�

DMA
Group�

AA
Group�

A�

S�

S�

A�

ACM�

Managed Object�

_994508777.bin

_989965688.vsd
AA�

DMA�

AA�

Mobile Agent Executor�

Mobile Agent Executor�

Mobile Agent Executor�

UDP�

Task1�

Task2�

CIT�

ACT�

Resource�

Resource�

UDP�

CIT�

ACT�

Mobile Agent Executor�

Mon�

UDP�

Resource�

App. Generator�

User Interface�

App. Graph
Execution Monitor
Runtime Display
System Status�

ACM�

AA�

DMA�

MA
Template�

AA�

Task1�

Task2�

I1�

O1�

O2�

CIT�

ACT�

AFT�

Mon�

Mobile Agent Interface�

�

1.�

2.�

3�

4.�

5.�

6�

7�

8�

