ParKBench HPF Initiative

Aims

The aims of the ParkBench HPF group are to discuss, design, implement, test and release a set of HPF benchmarks that satisfies the needs of applications developers and vendors. The codes that are developed should be capable of being used to compare different platforms running HPF and different vendor implementations HPF.

Methodology

It is anticipated that the basic design and implementation methodology used for the HPF benchmarks will closely follow that previously used by Parkbench to develop, and then release, the Message Passing (MPI/PVM) benchmark codes (http://www.netlib.org/parkbench/).

The existing Parkbench codes are split up into three catorgories:

Low Level - These codes are used to measure low level system performance characteristics, such as inter-processor bandwidth and peak processor computational performance.

Kernels - These codes comprise of what would be considered the core kernels of applications. For example a matrix reduction or a FFT.

Compact applications - These codes are complete user applications which are used to assess the performance of the parallel machines on "real" applications.

The existing ParkBench benchmark codes are predominantly used for comparing different parallel platforms, rather implementations of MPI or PVM on a particular platform (they can be used for this purpose if need are such).

Within the Parkbench HPF version of the benchmarks it is likely that an important usage of the codes will be the analysis of different vendor releases of HPF on a parallel platform. This particular emphasis, coupled with the fact that many of the MP low-level codes cannot easily mapped onto equivalent HPF versions, means that it is probable that the HPF low-level codes will consist of a mixture of codes - some being similar to the existing MP codes and others which can be used to assess important aspects that influence the efficiency of HPF implementations by a particular vendor, answering questions such as:

 -- How well does the system deal with regular communications?

 -- Does the system use ghost regions for the regular case?

 -- How well does the system deal with irregular communications?

 -- Does the system cache pre-computed communication schedules ?

 -- How efficiently are the common array intrinsics implemented?

Working Groups

The discussion on the HPF codes will be led by the following people:

Low-Level		- Mark Baker, University of Portsmouth, UK

Kernels			- Chuck Koebel, Rice University, USA

Compact Applications	- Subhash Saini, NAS, NASA, USA

�
Parkench HPF Benchmarks

Introduction

This report represents a summary of the ideas that have been recently discussed via email on a proposed set of HPF benchmarks to be designed, implemented under the ParkBench initiative. The codes mentioned in this report are by no means represent a definitive list or the implementations method discussed the final methodology that will be used.

It is anticipated that the HPF benchmarks will be implemented in an iterative way, with a small number of low level being designed and tested first; follow by the other codes in discrete stages.

Low Level Codes - based on Parkbench Codes

Sequential Codes

tick1/tick2

rinf1

poly1/poly2

In theory, no HPF directives would be needed here. In practice, odd things happen if nothing is distributed in the code (in particular, redundant computation is often inserted). So, I would recommend trying this with all of

No HPF mapping for arrays

BLOCK distribution for all arrays (and use equal-sized arrays)

CYCLIC distribution for all arrays

Parallel Codes

comms1/comms2

comms3

poly3

These is skepticism about measuring "message latency" and "message bandwidth" for a language that does not support message-passing.

If it is necessary the idea of using array copies to simulate (force) data transfer is sound, providing that all "communicated" arrays are modified somewhere in the outermost timing loop, or a smart compiler is likely to optimise away the messages you're trying to measure. For example:

DO I = 1, 1000

 A(1:N) = B(N+1:2*N)

 B(N+1:2*N) = A(1:N)

END DO

will probably produce round-trip messages (with the right distributions of A and B), while

DO I = 1, 1000

 A(1:N) = B(N+1:2*N)

END DO

will probably have the communication removed from the loop. The first example could, of course, could also have the outer loop removed - if we discover that this happens (i.e. time is independent of number of iterations) then we will have to write even more convoluted code.

HPF System Codes

Embarrassingly parallel computation

- The low-level benchmarks will measure this (BLOCK and CYCLIC distributions of arrays in low-level codes).

Nearest-neighbor computations

- Jacobi iteration or some other very simple iterative method

- Average of nearest neighbors, and/or 1- and 2-away neighbours

- Expressed using array syntax, FORALL, INDEPENDENT, CSHIFT, EOSHIFT

- BLOCK distributions in 1, 2, and 3 dimensions

- CYCLIC, CYCLIC(2), CYCLIC(3), CYCLIC(4), CYCLIC(8), CYCLIC(10), CYCLIC(100), CYCLIC(128), CYCLIC(1000), CYCLIC(1024) distributions,

- 1-d only - this simulates what people might do for (simple) load balancing

- HPF distributions - worth testing BLOCK(m) type distributions, in addition to BLOCK, CYCLIC, and CYCLIC(m) distributions? For example, coping a regular array section from a BLOCK(m) array to a regular array section of a BLOCK(n) array, where n < m. Some of the ex-serial finite-element codes we are working with do these kinds of copies for scatter/gather reasons, it would be interesting to know if one is introducing significant inefficiencies with this copy. It would be interesting to see a comparison of doing a straight copy versus using an HPF intrinsic.

Reductions

- Statistics on randomly-generated data (sum, sum of squares, max, min, ...)

- Expressed using HPF library functions, HPF2 REDUCTION clause in INDEPENDENT loop

- BLOCK, CYCLIC, CYCLIC(100), CYCLIC(128) distributions

MATMUL

 - Something akin to BLAS3

Remapping

- Like low-level codes, but copy between arrays with different distributions BLOCK to CYCLIC.

- (BLOCK,*) to (*,BLOCK)

- CYCLIC(1) to CYCLIC(2)

- CYCLIC(4) to CYCLIC(8)

- CYCLIC(4) to CYCLIC(5)

- CYCLIC(4) to CYCLIC(10)

- Do the same combinations, but implement using REDISTRIBUTE

Procedure interfaces

- Put one nice, simple kernel (one sweep of Jacobi, or one purely local computation) in a SUBROUTINE TESTER

- Vary the calling sequence of TESTER:

	- Prescriptive mapping, caller matches callee

	- Prescriptive mapping, caller is BLOCK, callee is CYCLIC

	- Descriptive mapping

	- Transcriptive mapping, use array directly

	- Transcriptive mapping, pass array to descriptively mapped subsidiary routine

HPF Kernels

Livermore Loops, NASA 7, and other short code snippets

- Basic kernels, with everything distributed BLOCK

- Basic kernels, with everything distributed CYCLIC

- Version with array syntax (not possible for all loops)

- Version with FORALL syntax (not possible for all loops)

- Version with INDEPENDENT (not possible for all loops)

Dense Linear Algebra

- "the usual factorizations" and back-substitutions

- at least one eigensolver

- conjugate gradient for solving a dense system

FFTs

- one-dimensional, using vector operations

- 2- and 3-dimensional, with transposes between the 1-d FFTs

- 2- and 3-dimensional, with all dimensions distributed

Sparse Linear Algebra (use diagonal preconditioning everywhere)

- preconditioned conjugate gradient on finite differences from a rectangular mesh

- GMRES on finite differences from a rectangular mesh

- preconditioned conjugate gradient on an unstructured matrix in CSR format (build matrix as adjacency list from a rectangular mesh)

- GMRES on an unstructured matrix in CSR format

- A benchmark that deals with irregular communication, in particular scatter/gather type operations (more severe ones than what I had in mind in item a, above). Also, it would be interesting to subdivide this into a case where the same irregular subscripting pattern is repeated many times, and a case where each iteration of an outer loop has a different subscript array, to test whether and how effectively the compiler is doing inspector/executor.

The flashy stuff

 - Mandelbrot set computation

Note: It should be use one benchmark to build another one. For the linear algebra, we can just about use code from the Templates book (Dongarra et al) or MATLAB directly.

Nas Parallel Benchmarks

HPF based NPB (kernels and compact applications) source codes are available at

http://www.nas.nasa.gov/NAS/NPB/

