The volume of a 5-sphere is .
Here is the output for 40 data points:
--------------------------------------------- VALUES AVERAGED OVER ALL PROCESSORS: volume of 5 sphere is 3.2000000000000002e+00 st. dev. is 2.5000000000000000e-01 total number of points: 40 ---------------------------------------------
Here is the output for 400 data points:
--------------------------------------------- VALUES AVERAGED OVER ALL PROCESSORS: volume of 5 sphere is 5.3600000000000003e+00 st. dev. is 3.7290279534053250e-01 total number of points: 400 ---------------------------------------------
Here is the output for 4000 data points:
--------------------------------------------- VALUES AVERAGED OVER ALL PROCESSORS: volume of 5 sphere is 5.1760000000000002e+00 st. dev. is 3.6815375987510152e-01 total number of points: 4000 ---------------------------------------------
Here is the output for 40000 data points:
--------------------------------------------- VALUES AVERAGED OVER ALL PROCESSORS: volume of 5 sphere is 5.2711999999999994e+00 st. dev. is 3.7090335868295232e-01 total number of points: 40000 ---------------------------------------------
Here is the output for 400000 data points:
--------------------------------------------- VALUES AVERAGED OVER ALL PROCESSORS: volume of 5 sphere is 5.2960000000000003e+00 st. dev. is 3.7163076719029231e-01 total number of points: 400000 ---------------------------------------------
Here is the output for 4000000 data points:
--------------------------------------------- VALUES AVERAGED OVER ALL PROCESSORS: volume of 5 sphere is 5.2578799999999992e+00 st. dev. is 3.7055543917950218e-01 total number of points: 4000000 ---------------------------------------------
Again, we see quick convergence to about 0.1 far as it goes. This demonstrates that Monte Carlo methods are good with multi-dimensional integrals, PROVIDED you only need an accuracy of 1 part in 100 or 1000.