
Distributed Search
�

Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
E-mail: b-wah@uiuc.edu

URL: http://manip.crhc.uiuc.edu

Searching in a distributed system involves a thorough examination of the
system in order to �nd something of interest. It involves a partitioning of
the state space and its associated operator and control regime so that local
searches can be performed in di�erent parts of the distributed system [1]. A
local search in this case entails the execution of a conventional search algorithm
in a sequential processor.

There are numerous applications involving distributed search. In the sim-
plest case, �nding a route from a source computer to a destination computer in
the Internet involves sending queries to various domain name servers in order to
translate the destination machine name into an IP address, and looking up the
local routing table to determine the next computer to forward the message to.
Such a search can be done e�ciently because up-to-date information on network
connectivity and routing is periodically distributed in the system. As another
example, a user wishing to look up the topic \distributed search" may call a
search engine to look up information in various digital libraries and the World
Wide Web. This information can be found in a short amount of time when the
collection of information in the system has been indexed previously.

An application involving a distributed search may have one or more well-
de�ned objectives, as in �nding the shortest path to a destination, or have a
set of ill-de�ned objectives, such as �nding all the articles on the World Wide
Web related to \distributed search." When the objectives are ill-de�ned or
unde�ned, the search may start with some initial objectives, and users may
be asked to evaluate the quality of the results returned in order to re�ne the
objectives and the scope of the search. The results returned by a search may not
always be the best because the information sought in a distributed system may
be time varying and of large quantity, and there are �nite delays in propagating
information from one point to another. This happens in �nding the shortest
path to a destination in which the shortest path may be based on possibly

�Research supported by National Science Foundation Grant MIP 96-32316 and National

Aeronautics and Space Administration Grant NAG 1-613

1



out-dated topology and congestion information in the network. The searcher
must, therefore, operate based on the local state of the distributed system and
information that can be obtained, and be able to extrapolate the information
in time when the information obtained is out-dated.

There are four components of a distributed search:
Search algorithms. Extended from sequential search algorithms, these

include depth-�rst, breadth-�rst, best-�rst, and heuristic searches. In each case,
the algorithm maintains a queue of nodes to be searched, fetches a node from
the queue, performs the search, adds any new nodes found to the queue, and
sorts the queue of nodes according to some measure.

The performance of a search algorithm in a distributed system depends on
the order that nodes are traversed. A depth-�rst search that focuses the search
on one node and traverses all subtrees rooted at this node before traversing
others may overload the node. In contrast, a breadth-�rst search that traverses
all nodes in the queue before going deeper into the subtrees may result in a large
queue of pending nodes. To avoid space from growing unbounded, a heuristic
function can be used to determine the next best node to search. This function
can be designed to optimize a combination of delays, amount of information
obtained, workload, number of nodes traversed, and queue size.

Search algorithms are employed in Internet search services, such as Lycos
[2], WebCrawler [3] that access Web pages and compile index information to
be used later. These algorithms are generally based on heuristic searches that
employs some popularity heuristics which measure, for example, the number of
external Web servers with at least one link to a Web page. Such heuristics are
used to indicate the usefulness of a Web page and, therefore, the demand from
others to access the information.

Search algorithms can also be combined to formmeta-search algorithms. The
idea is that di�erent search algorithms may return di�erent information. Hence,
a meta-search algorithm that calls multiple search algorithms in parallel and
integrate the responses received by ranking it may provide better results. For
example, MetaCrawler [4] is an Internet meta-search service that calls multiple
search services and aggregates the information before returning it to users. The
key services provided in meta-search is, therefore, the assimilation of information
returned rather than the search itself.

The order that a search is performed may also be driven by factors other
than the information desired. These factors may include network load, net-
work connectivity, �rewalls in networks, protocol compatibility, and language
compatibility. The search algorithm may need to utilize dynamic information
collected at run time in order to determine the next node to search.

Search agents. These are specialized �ne-grained software modules that
logically traverse a distributed system and looks for desired information [1].
Physically, they can be implemented as clients that communicate with remote
servers using a standard networking protocol to download the necessary infor-
mation. The information received is then parsed, �ltered, and indexed before
being passed to a search engine.

On the World Wide Web, the search agents are called robots that commu-

2



nicate with WWW servers using the Hypertext Transfer Protocol (HTTP). A
robot will not access a site if it or a portion of it is excluded from public access.
It will also avoid retrying repeatedly on failed accesses. It must be intelligent
enough to detect loops in circular symbolic links leading to loops in accesses of
the same set of sites.

To allow agents to cope with new conditions not anticipated at design time,
they may have meta-knowledge that allows them to be reusable and adapts to
unforeseen conditions [1]. Such meta-knowledge allows the agents to share met-
alevel search information at run time, allowing them to run more e�ciently,
adaptable, and maintainable. In this mode of distributed problem solving,
agents preserve their own local view of the world, bounded by their local knowl-
edge. Since agents with only local information may generate con
icting so-
lutions, the solutions found must be integrated into a coherent form before
delivered to users.

An alternative to using search agents is to have servers periodically push
the necessary information to the searchers so that it can stored for later lookup.
This mode of operation is useful in maintaining time-varying control information
in a distributed system. For instance, the best route to a destination is obtained
by searching a routing table that contains information pushed from other sites
in the network, and does not involve traversing the network at run time to �nd
the most e�cient route.

Indexing schemes. These involve abstracting information found and stor-
ing it in a database to facilitate future lookups. This is necessary when the
overhead of sending queries in a distributed system in real-time is large, and
users are satis�ed by retrieving information stored in a database in a timely
fashion rather than actually performing the search in real time.

When the amount of information involved is small and precise, it can be
kept e�ciently in local memory. For instance, network connectivity can be
maintained in a routing table in local memory and accessed when queried.

On the other hand, when the information involved is large and possibly
imprecise, such as the information returned by a search robot in the World Wide
Web, then the searcher has to decide what information to keep, how to keep the
information to facilitate e�cient insertion of new information and random read
accesses to any particular record, and how to manage the information e�ciently
in terms of disk space. For instance, some Web searchers keep the whole text of
pages, while others rely on author-generated descriptions of documents. These
schemes may result in large disk usage and possibly copyright violations. Lycos
[2] uses automated abstracts that combine the 100 keywords most related to the
document being indexed with the titles, header text, and an excerpt of the �rst
20 lines, or 10% of the document, to result in an abstract about one quarter the
size of the original document. The keywords and abstract form an index to be
used when queried. In contrast, Yahoo prede�nes a tree-structured hierarchy of
descriptions as an index structure, and documents found are matched against
the hierarchy in order to �nd a node to be associated with.

Querying processing with interactive feedback. Query processing is
important when the information searched may not be precise and may be con-

3



tained in a large number of documents, as in the case of the World Wide Web
or a digital library. Queries supplied by users may be incomplete, or imprecise,
or too general, leading to a huge amount of information found by the searcher.
In this case, the queries will have to be re�ned interactively until the required
information is identi�ed.

For a given query, there are four general schemes to match a query with
the information stored or searched: Boolean keyword query, regular expression
matching, vector-space retrieval, and inverted �le indexing. In Boolean key-
word query, the query is formulated as Boolean expressions of keywords, and
the searcher �nds documents that satisfy the expression. In regular expression
matching, the entire database is searched to �nd documents that match the
regular expression. Besides being very expensive, both of these schemes retrieve
information in database order, not in relevance order. In vector-space retrieval
[5], the similarity between a document and a query is measured by the cosine
of the angle between their vector representations in a multi-dimensional space.
One way to compute this similarity value is to compute the sum of the weights
of the query terms that appear in a document, normalized by the Euclidean vec-
tor length of the document. Here, the weight of a term depends on the term's
occurrence frequency in the document and the number of documents contain-
ing the term in the document. Finally, inverted �le indexing is used in some
commercial Internet search engines, including WebCrawler [3], Lycos [2], and
RBSE Spider. In this approach, the searcher keeps a list of all occurrences of
keywords in an inverted �le, each of which points to a list of documents and a
list of positions in the documents. The inverted �le allows a searcher to deter-
mine the proximity of the query terms to the terms in a document, the relative
positions of the query terms, the frequency of occurrence of the query terms,
and the number of query terms. This scheme has been found to be relatively
inexpensive to compute for a large database.

References

[1] S. E. Lander and V. R. Lesser, Sharing Metainformation to Guide Co-

operative Search among Heterogeneous Reusable Agents, IEEE Transactions on
Knowledge and Data Engineering, vol. 9, no. 2, March-April 1997, pp. 193-208.

[2] M. L. Mauldin, Lycos: Design Choices in an Internet Search Service,
IEEE Expert, vol. 12, no. 1, January-February 1997, pp. 1-8.

[3] B. Pinkerton, Finding What People Want: Experiences with the We-

bCrawler, Proc. Second Int'l World Wide Web Conference, Elsevier Science,
1994.

[4] E. Selberg and O. Etzioni, The MetaCrawler Architecture for Resource

Aggregation on the Web, IEEE Expert, vol. 12, no. 1, January-February 1997,
pp. 8-14.

[5] G. Salton and C. Buckley, Term Weighting Approaches in Automatic

Text Retrieval, Information Processing and Management, vol. 24, no. 5, pp.
513-523, 1988.

4


