
+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

awk Syntax Summary : : :

� Operators include

+ - * / usual arithmetic

^ exponentiation (NB: di�ers

from C)

% remainder

++ increment

-- decrement

&& AND

|| OR

! NOT

~ regexp match

+ 13

+ +

awk Syntax Summary : : :

� Operators : : :

!~ regexp no match

%= *= += -= /= ^=

assignment shorthands,

as in C

> >= < <= == comparisons

? : conditional

+ 14

+ +

awk Syntax Summary : : :

Fortran Awk

k = k + 1 ++k or ++k

n = 5*n n *= 5

(x .eq. y) (x == y)

(a .and. b) (a && b)

mod(m,n) m % n

do 10 k = 1,n for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y = 4

else y = (x > 3) ? 4 : 5

y = 5

endif

+ 15

+ +

awk Syntax Summary : : :

� Data types include only
oating-point and

string scalars, and one-dimensional arrays,

but array subscripts can be any scalar type

(tables in icon, or associative memory).

table[3.14159] = "table of pi"

age["John"] = 23

birthday["Mary"] = "1974.11.31"

name
[1/3] = "one-third"

office["Kelly"] = "123 JWB"

� No type declarations; variables are given

values by assignment, with type according

to context.

+ 16

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

awk Syntax Summary : : :

� Operators include

+ - * / usual arithmetic

^ exponentiation (NB: di�ers

from C)

% remainder

++ increment

-- decrement

&& AND

|| OR

! NOT

~ regexp match

+ 13

+ +

awk Syntax Summary : : :

� Operators : : :

!~ regexp no match

%= *= += -= /= ^=

assignment shorthands,

as in C

> >= < <= == comparisons

? : conditional

+ 14

+ +

awk Syntax Summary : : :

Fortran Awk

k = k + 1 ++k or ++k

n = 5*n n *= 5

(x .eq. y) (x == y)

(a .and. b) (a && b)

mod(m,n) m % n

do 10 k = 1,n for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y = 4

else y = (x > 3) ? 4 : 5

y = 5

endif

+ 15

+ +

awk Syntax Summary : : :

� Data types include only
oating-point and

string scalars, and one-dimensional arrays,

but array subscripts can be any scalar type

(tables in icon, or associative memory).

table[3.14159] = "table of pi"

age["John"] = 23

birthday["Mary"] = "1974.11.31"

name
[1/3] = "one-third"

office["Kelly"] = "123 JWB"

� No type declarations; variables are given

values by assignment, with type according

to context.

+ 16

+ +

awk Syntax Summary : : :

� Type coercion: add 0 to a variable to

convert to number, concatenate the null

string to convert it to a string:

n = v + 0

s = v ""

� All variables pre-initialized to empty string.

This is equivalent to 0 when used as a

number.

� No limit on string sizes (thanks to NHFB's

suggestions), and all 256 character values,

including NULL, may appear in a string.

+ 17

+ +

awk Syntax Summary : : :

� Adjacent string expressions are concate-

nated:

string = "ONE" "-AND-" "TWO";

string = "ONE-AND-TWO";

are the same.

� Input parsing handled by awk language;

each input record is available as $0, with

�elds $1, $2, : : : , $NF. Out of range �eld

numbers are null strings.

� Fields are normally delimited by white space,

but the �eld separator can be set on the

command line, or changed within the pro-

gram.

+ 18

+ +

awk Syntax Summary : : :

� awk programs may be given on the com-

mand line, or in a speci�ed �le.

� Input comes from all �les listed on com-

mand line, or from standard input. In

nawk, it may also come from �les opened

explicitly by the program.

� Output goes to standard output. In nawk,

it may also be redirected to speci�ed �les.

� system() function permits running arbi-

trary programs from inside awk program.

+ 19

+ +

awk Syntax Summary : : :

� nawk introduced functions:

function name(arg1,: : : ,argn, lcl1,: : : ,lclm)

f

statements

g

Local variables declared as extra arguments;

otherwise, all awk variables are global.

No space permitted between name and

parenthesized argument list.

One or more spaces conventionally sepa-

rate actual arguments from local variables

in function statement.

+ 20

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

awk Syntax Summary : : :

� Operators include

+ - * / usual arithmetic

^ exponentiation (NB: di�ers

from C)

% remainder

++ increment

-- decrement

&& AND

|| OR

! NOT

~ regexp match

+ 13

+ +

awk Syntax Summary : : :

� Operators : : :

!~ regexp no match

%= *= += -= /= ^=

assignment shorthands,

as in C

> >= < <= == comparisons

? : conditional

+ 14

+ +

awk Syntax Summary : : :

Fortran Awk

k = k + 1 ++k or ++k

n = 5*n n *= 5

(x .eq. y) (x == y)

(a .and. b) (a && b)

mod(m,n) m % n

do 10 k = 1,n for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y = 4

else y = (x > 3) ? 4 : 5

y = 5

endif

+ 15

+ +

awk Syntax Summary : : :

� Data types include only
oating-point and

string scalars, and one-dimensional arrays,

but array subscripts can be any scalar type

(tables in icon, or associative memory).

table[3.14159] = "table of pi"

age["John"] = 23

birthday["Mary"] = "1974.11.31"

name
[1/3] = "one-third"

office["Kelly"] = "123 JWB"

� No type declarations; variables are given

values by assignment, with type according

to context.

+ 16

+ +

awk Syntax Summary : : :

� Type coercion: add 0 to a variable to

convert to number, concatenate the null

string to convert it to a string:

n = v + 0

s = v ""

� All variables pre-initialized to empty string.

This is equivalent to 0 when used as a

number.

� No limit on string sizes (thanks to NHFB's

suggestions), and all 256 character values,

including NULL, may appear in a string.

+ 17

+ +

awk Syntax Summary : : :

� Adjacent string expressions are concate-

nated:

string = "ONE" "-AND-" "TWO";

string = "ONE-AND-TWO";

are the same.

� Input parsing handled by awk language;

each input record is available as $0, with

�elds $1, $2, : : : , $NF. Out of range �eld

numbers are null strings.

� Fields are normally delimited by white space,

but the �eld separator can be set on the

command line, or changed within the pro-

gram.

+ 18

+ +

awk Syntax Summary : : :

� awk programs may be given on the com-

mand line, or in a speci�ed �le.

� Input comes from all �les listed on com-

mand line, or from standard input. In

nawk, it may also come from �les opened

explicitly by the program.

� Output goes to standard output. In nawk,

it may also be redirected to speci�ed �les.

� system() function permits running arbi-

trary programs from inside awk program.

+ 19

+ +

awk Syntax Summary : : :

� nawk introduced functions:

function name(arg1,: : : ,argn, lcl1,: : : ,lclm)

f

statements

g

Local variables declared as extra arguments;

otherwise, all awk variables are global.

No space permitted between name and

parenthesized argument list.

One or more spaces conventionally sepa-

rate actual arguments from local variables

in function statement.

+ 20

+ +

Built-in Arithmetic Functions

atan2(y,x) arctangent of y=x in range �� : : : + �

cos(x) cosine of x, x in radians

exp(x) exponential, ex

int(x) integer part of x (truncates)

log(x) base e logarithm of x

rand() random number r; 0 � r < 1

sin(x) sine of x, x in radians

+ 21

+ +

Built-in Arithmetic Functions : : :

sqrt(x) square root of x

srand(x) supply new seed, x, for rand()

+ 22

+ +

Built-in String Functions

gsub(r,s) substitute s for r globally in $0,

return number of substitutions made

gsub(r,s,t) substitute s for r globally in string

t, return number of substitutions

made

index(s,t) return �rst position of string t in

s, or 0 it t is not present

length(s) return number of characters in s

match(s,r) test whether s contains a sub-

string matched by r; return index

or 0; sets RSTART and RLENGTH

+ 23

+ +

Built-in String Functions

split(s,a) split s into array a on FS, return

number of �elds

split(s,a,fs)

split s into array a on �eld sepa-

rator fs, return number of �elds

sprintf(fmt,expr-list)

return expr-list formatted accord-

ing to format string fmt

sub(r,s) substitute s for the leftmost longest

substring of $0 matched by r, re-

turn number of substitutions made

+ 24

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

awk Syntax Summary : : :

� Operators include

+ - * / usual arithmetic

^ exponentiation (NB: di�ers

from C)

% remainder

++ increment

-- decrement

&& AND

|| OR

! NOT

~ regexp match

+ 13

+ +

awk Syntax Summary : : :

� Operators : : :

!~ regexp no match

%= *= += -= /= ^=

assignment shorthands,

as in C

> >= < <= == comparisons

? : conditional

+ 14

+ +

awk Syntax Summary : : :

Fortran Awk

k = k + 1 ++k or ++k

n = 5*n n *= 5

(x .eq. y) (x == y)

(a .and. b) (a && b)

mod(m,n) m % n

do 10 k = 1,n for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y = 4

else y = (x > 3) ? 4 : 5

y = 5

endif

+ 15

+ +

awk Syntax Summary : : :

� Data types include only
oating-point and

string scalars, and one-dimensional arrays,

but array subscripts can be any scalar type

(tables in icon, or associative memory).

table[3.14159] = "table of pi"

age["John"] = 23

birthday["Mary"] = "1974.11.31"

name
[1/3] = "one-third"

office["Kelly"] = "123 JWB"

� No type declarations; variables are given

values by assignment, with type according

to context.

+ 16

+ +

awk Syntax Summary : : :

� Type coercion: add 0 to a variable to

convert to number, concatenate the null

string to convert it to a string:

n = v + 0

s = v ""

� All variables pre-initialized to empty string.

This is equivalent to 0 when used as a

number.

� No limit on string sizes (thanks to NHFB's

suggestions), and all 256 character values,

including NULL, may appear in a string.

+ 17

+ +

awk Syntax Summary : : :

� Adjacent string expressions are concate-

nated:

string = "ONE" "-AND-" "TWO";

string = "ONE-AND-TWO";

are the same.

� Input parsing handled by awk language;

each input record is available as $0, with

�elds $1, $2, : : : , $NF. Out of range �eld

numbers are null strings.

� Fields are normally delimited by white space,

but the �eld separator can be set on the

command line, or changed within the pro-

gram.

+ 18

+ +

awk Syntax Summary : : :

� awk programs may be given on the com-

mand line, or in a speci�ed �le.

� Input comes from all �les listed on com-

mand line, or from standard input. In

nawk, it may also come from �les opened

explicitly by the program.

� Output goes to standard output. In nawk,

it may also be redirected to speci�ed �les.

� system() function permits running arbi-

trary programs from inside awk program.

+ 19

+ +

awk Syntax Summary : : :

� nawk introduced functions:

function name(arg1,: : : ,argn, lcl1,: : : ,lclm)

f

statements

g

Local variables declared as extra arguments;

otherwise, all awk variables are global.

No space permitted between name and

parenthesized argument list.

One or more spaces conventionally sepa-

rate actual arguments from local variables

in function statement.

+ 20

+ +

Built-in Arithmetic Functions

atan2(y,x) arctangent of y=x in range �� : : : + �

cos(x) cosine of x, x in radians

exp(x) exponential, ex

int(x) integer part of x (truncates)

log(x) base e logarithm of x

rand() random number r; 0 � r < 1

sin(x) sine of x, x in radians

+ 21

+ +

Built-in Arithmetic Functions : : :

sqrt(x) square root of x

srand(x) supply new seed, x, for rand()

+ 22

+ +

Built-in String Functions

gsub(r,s) substitute s for r globally in $0,

return number of substitutions made

gsub(r,s,t) substitute s for r globally in string

t, return number of substitutions

made

index(s,t) return �rst position of string t in

s, or 0 it t is not present

length(s) return number of characters in s

match(s,r) test whether s contains a sub-

string matched by r; return index

or 0; sets RSTART and RLENGTH

+ 23

+ +

Built-in String Functions

split(s,a) split s into array a on FS, return

number of �elds

split(s,a,fs)

split s into array a on �eld sepa-

rator fs, return number of �elds

sprintf(fmt,expr-list)

return expr-list formatted accord-

ing to format string fmt

sub(r,s) substitute s for the leftmost longest

substring of $0 matched by r, re-

turn number of substitutions made

+ 24

+ +

Built-in String Functions

sub(r,s,t) substitute s for the leftmost longest

substring of t matched by r, re-

turn number of substitutions made

substr(s,p)

return su�x of s starting at po-

sition p (counting from 1)

substr(s,p,n)

return su�x of s of length n start-

ing at position p (counting from

1)

+ 25

+ +

Built-in Variables

ARGC number of command-line arguments

ARGV array of command-line arguments

FILENAME name of current input �le

FNR record number in current input �le

FS controls the input �eld separator (de-

fault: " ")

NF number of �elds in current record

NR number of records read so far

+ 26

+ +

Built-in Variables : : :

OFMT output format for numbers (default:

"%.6g")

OFS output �eld separator (default: " ")

ORS output record separator (default: "\n")

RLENGTH length of string matched by match

function

RS controls the input record separator

(default: "\n")

RSTART start of string matched by match

function

SUBSEP subscript separator (default: "\034")

+ 27

+ +

Simple awk Programs

� Simple programs look like

/optional-regexp/ { statements }

or

expression { statements }

The braced statements are executed for

each input line that matches the expres-

sion. If the expression is omitted, then the

statements are executed for all input lines.

If the statements are omitted, matching

lines are printed.

+ 28

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

awk Syntax Summary : : :

� Operators include

+ - * / usual arithmetic

^ exponentiation (NB: di�ers

from C)

% remainder

++ increment

-- decrement

&& AND

|| OR

! NOT

~ regexp match

+ 13

+ +

awk Syntax Summary : : :

� Operators : : :

!~ regexp no match

%= *= += -= /= ^=

assignment shorthands,

as in C

> >= < <= == comparisons

? : conditional

+ 14

+ +

awk Syntax Summary : : :

Fortran Awk

k = k + 1 ++k or ++k

n = 5*n n *= 5

(x .eq. y) (x == y)

(a .and. b) (a && b)

mod(m,n) m % n

do 10 k = 1,n for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y = 4

else y = (x > 3) ? 4 : 5

y = 5

endif

+ 15

+ +

awk Syntax Summary : : :

� Data types include only
oating-point and

string scalars, and one-dimensional arrays,

but array subscripts can be any scalar type

(tables in icon, or associative memory).

table[3.14159] = "table of pi"

age["John"] = 23

birthday["Mary"] = "1974.11.31"

name
[1/3] = "one-third"

office["Kelly"] = "123 JWB"

� No type declarations; variables are given

values by assignment, with type according

to context.

+ 16

+ +

awk Syntax Summary : : :

� Type coercion: add 0 to a variable to

convert to number, concatenate the null

string to convert it to a string:

n = v + 0

s = v ""

� All variables pre-initialized to empty string.

This is equivalent to 0 when used as a

number.

� No limit on string sizes (thanks to NHFB's

suggestions), and all 256 character values,

including NULL, may appear in a string.

+ 17

+ +

awk Syntax Summary : : :

� Adjacent string expressions are concate-

nated:

string = "ONE" "-AND-" "TWO";

string = "ONE-AND-TWO";

are the same.

� Input parsing handled by awk language;

each input record is available as $0, with

�elds $1, $2, : : : , $NF. Out of range �eld

numbers are null strings.

� Fields are normally delimited by white space,

but the �eld separator can be set on the

command line, or changed within the pro-

gram.

+ 18

+ +

awk Syntax Summary : : :

� awk programs may be given on the com-

mand line, or in a speci�ed �le.

� Input comes from all �les listed on com-

mand line, or from standard input. In

nawk, it may also come from �les opened

explicitly by the program.

� Output goes to standard output. In nawk,

it may also be redirected to speci�ed �les.

� system() function permits running arbi-

trary programs from inside awk program.

+ 19

+ +

awk Syntax Summary : : :

� nawk introduced functions:

function name(arg1,: : : ,argn, lcl1,: : : ,lclm)

f

statements

g

Local variables declared as extra arguments;

otherwise, all awk variables are global.

No space permitted between name and

parenthesized argument list.

One or more spaces conventionally sepa-

rate actual arguments from local variables

in function statement.

+ 20

+ +

Built-in Arithmetic Functions

atan2(y,x) arctangent of y=x in range �� : : : + �

cos(x) cosine of x, x in radians

exp(x) exponential, ex

int(x) integer part of x (truncates)

log(x) base e logarithm of x

rand() random number r; 0 � r < 1

sin(x) sine of x, x in radians

+ 21

+ +

Built-in Arithmetic Functions : : :

sqrt(x) square root of x

srand(x) supply new seed, x, for rand()

+ 22

+ +

Built-in String Functions

gsub(r,s) substitute s for r globally in $0,

return number of substitutions made

gsub(r,s,t) substitute s for r globally in string

t, return number of substitutions

made

index(s,t) return �rst position of string t in

s, or 0 it t is not present

length(s) return number of characters in s

match(s,r) test whether s contains a sub-

string matched by r; return index

or 0; sets RSTART and RLENGTH

+ 23

+ +

Built-in String Functions

split(s,a) split s into array a on FS, return

number of �elds

split(s,a,fs)

split s into array a on �eld sepa-

rator fs, return number of �elds

sprintf(fmt,expr-list)

return expr-list formatted accord-

ing to format string fmt

sub(r,s) substitute s for the leftmost longest

substring of $0 matched by r, re-

turn number of substitutions made

+ 24

+ +

Built-in String Functions

sub(r,s,t) substitute s for the leftmost longest

substring of t matched by r, re-

turn number of substitutions made

substr(s,p)

return su�x of s starting at po-

sition p (counting from 1)

substr(s,p,n)

return su�x of s of length n start-

ing at position p (counting from

1)

+ 25

+ +

Built-in Variables

ARGC number of command-line arguments

ARGV array of command-line arguments

FILENAME name of current input �le

FNR record number in current input �le

FS controls the input �eld separator (de-

fault: " ")

NF number of �elds in current record

NR number of records read so far

+ 26

+ +

Built-in Variables : : :

OFMT output format for numbers (default:

"%.6g")

OFS output �eld separator (default: " ")

ORS output record separator (default: "\n")

RLENGTH length of string matched by match

function

RS controls the input record separator

(default: "\n")

RSTART start of string matched by match

function

SUBSEP subscript separator (default: "\034")

+ 27

+ +

Simple awk Programs

� Simple programs look like

/optional-regexp/ { statements }

or

expression { statements }

The braced statements are executed for

each input line that matches the expres-

sion. If the expression is omitted, then the

statements are executed for all input lines.

If the statements are omitted, matching

lines are printed.

+ 28

+ +

Simple awk Programs

print second and seventh fields of input

awk '{print $2, $7;}'

print long lines

awk 'length($0) > 72'

print line count

awk 'END { print NR }'

print sum of column 3 and average

awk '{ sum += $3; }

END { print sum, sum/NR }'

print sort list of user names

awk -F: '{ print $1 | "sort" }' /etc/passwd

ypcat passwd | \

awk -F: '{ print $1 | "sort" }'

+ 29

+ +

Simple awk Programs

print duplicate words

{

for (k = 1; k <= NF; ++k)

{

frequency[$k]++;

if (frequency[$k] > 1) print $k;

}

}

print words used only once

{

for (k = 1; k <= NF; ++k)

frequency[$k]++

}

END {

for (word in frequency)

if (frequency[word] == 1) print word;

}

+ 30

+ +

Simple awk Programs : : :

� Special patterns BEGIN and END can be

used to get control before and after input

is read.

� Compound selection patterns combine reg-

ular expressions with && (AND), || (OR),

! (NOT), and parentheses.

� Range expressions /regexp1/,/regexp2/

match all statements between the �rst line

matched by /regexp1/ and the next line

matched by /regexp2/, inclusive.

+ 31

+ +

Simple awk Programs : : :

� Tilde operator available for more control

over pattern matching:

expression ~ /regexp/

expression !~ /regexp/

The �rst is true if /regexp/ matches a sub-

string of expression; the second is true if

there is no match.

+ 32

+ +

AWK
A Text Processing Language

Nelson H.F. Beebe

Center for Scienti�c Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

E-mail: <beebe@math.utah.edu>

+ 1

+ +

Overview

� What is awk?

� Background

� Documentation on awk

� Related Programs and Languages

� awk syntax summary

� Built-in arithmetic functions

+ 2

+ +

Overview : : :

� Built-in string functions

� Built-in variables

� Simple awk programs

� Case studies

+ 3

+ +

What is awk?

� awk is a language that provides easy and

powerful facilities for string processing, with

regular-expression pattern matching for se-

lection, and subdivision of input records

into counted �elds.

� The name awk comes from the initials of

its authors, A. V. Aho, P. J. Weinberger,

and B. W. Kernighan.

� Aftermake, awk is probably the next most

useful tool on the UNIX workbench.

+ 4

+ +

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.

Kernighan produce �rst awk.

1978{ awk distributed as standard part of

UNIX, and rapidly becomes a widely-

used programming language.

1987 Original authors redesign awk, and write

a book about the new language, nawk,

an upward-compatible superset of the

old language. Source code for the

new language is made available under

license from AT&T.

+ 5

+ +

Background : : :

1987 nawk ported to TOPS-20, VAX VMS,

and PC DOS by NHFB, and the portable

version returned to AT&T with many

comments and recommendations.

1988 Improved nawk appears incorporating

several of NHFB's ideas.

1988 Free Software Foundation develops �rst

prototype of independent implemen-

tation of nawk subset, to be called

gawk. gawk runs on UNIX and PC

DOS.

1989 Commercial implementations for PC

DOS appear from Mortice Kern Sys-

tems and Polytron.

+ 6

+ +

Background : : :

1989 nawk becomes standard part of AT&T

System VR4 UNIX, and part of IEEE

POSIX.

1989 nawk regular expressions extended for

international use in X/Open speci�ca-

tions.

1989 FSF's gawk reaches compatibility with

complete nawk language, and its au-

thors collaborate with AT&T in plans

for extending and improving the lan-

guage.

1990 gawk ported to VAX VMS by NHFB.

+ 7

+ +

Documentation on awk

� A. V. Aho, B. W. Kernighan, and P. J.

Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

� D. B. Close, A. D. Robbins, P. H. Rubin,

and R. M. Stallman, The GAWK Manual,

Free Software Foundation, 1989.

+ 8

+ +

Related Programs and Languages

snobol Pattern-matching language developed

in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-

gramming Language, Prentice-Hall,

1971.

spitbol Descendant of snobol, developed in

1970s.

C Main implementation language of UNIX,

designed in 1971.

sed UNIX stream editor, 1978.

+ 9

+ +

Related Programs and Languages : : :

grep UNIX pattern-matching �lter (from ed

editor command, g/re/p, global regular-

expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-

scribed in R. E. Griswold and Madge

T. Griswold, The Icon Programming

Language, Prentice-Hall, 1983, and

The Implementation of the Icon Pro-

gramming Language, Princeton Uni-

versity Press, 1986.

perl Larry Wall's pattern extraction report

language, 1988. Book: L. Wall and

R. Schwarz, Programming perl, O'Reilly,

1991.

+ 10

+ +

awk Syntax Summary

� Case-sensitive, like C.

� Control structures from C language.

{ f statement; : : : ; statement; g

{ if (expression) statement

{ if (expression) statement1

else statement2

{ while (expression) statement

{ for (expr1; expr2; expr3) statement

{ for (variable in array) statement

{ do statement while (expression)

+ 11

+ +

awk Syntax Summary : : :

� Control structures

{ break

{ continue

{ next

{ exit

{ exit expression

� Statements must normally �t on one line,

except that breaks after a comma, or with

a backslash-newline, are permitted.

� Comments go from # to end of line.

+ 12

+ +

awk Syntax Summary : : :

� Operators include

+ - * / usual arithmetic

^ exponentiation (NB: di�ers

from C)

% remainder

++ increment

-- decrement

&& AND

|| OR

! NOT

~ regexp match

+ 13

+ +

awk Syntax Summary : : :

� Operators : : :

!~ regexp no match

%= *= += -= /= ^=

assignment shorthands,

as in C

> >= < <= == comparisons

? : conditional

+ 14

+ +

awk Syntax Summary : : :

Fortran Awk

k = k + 1 ++k or ++k

n = 5*n n *= 5

(x .eq. y) (x == y)

(a .and. b) (a && b)

mod(m,n) m % n

do 10 k = 1,n for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y = 4

else y = (x > 3) ? 4 : 5

y = 5

endif

+ 15

+ +

awk Syntax Summary : : :

� Data types include only
oating-point and

string scalars, and one-dimensional arrays,

but array subscripts can be any scalar type

(tables in icon, or associative memory).

table[3.14159] = "table of pi"

age["John"] = 23

birthday["Mary"] = "1974.11.31"

name
[1/3] = "one-third"

office["Kelly"] = "123 JWB"

� No type declarations; variables are given

values by assignment, with type according

to context.

+ 16

+ +

awk Syntax Summary : : :

� Type coercion: add 0 to a variable to

convert to number, concatenate the null

string to convert it to a string:

n = v + 0

s = v ""

� All variables pre-initialized to empty string.

This is equivalent to 0 when used as a

number.

� No limit on string sizes (thanks to NHFB's

suggestions), and all 256 character values,

including NULL, may appear in a string.

+ 17

+ +

awk Syntax Summary : : :

� Adjacent string expressions are concate-

nated:

string = "ONE" "-AND-" "TWO";

string = "ONE-AND-TWO";

are the same.

� Input parsing handled by awk language;

each input record is available as $0, with

�elds $1, $2, : : : , $NF. Out of range �eld

numbers are null strings.

� Fields are normally delimited by white space,

but the �eld separator can be set on the

command line, or changed within the pro-

gram.

+ 18

+ +

awk Syntax Summary : : :

� awk programs may be given on the com-

mand line, or in a speci�ed �le.

� Input comes from all �les listed on com-

mand line, or from standard input. In

nawk, it may also come from �les opened

explicitly by the program.

� Output goes to standard output. In nawk,

it may also be redirected to speci�ed �les.

� system() function permits running arbi-

trary programs from inside awk program.

+ 19

+ +

awk Syntax Summary : : :

� nawk introduced functions:

function name(arg1,: : : ,argn, lcl1,: : : ,lclm)

f

statements

g

Local variables declared as extra arguments;

otherwise, all awk variables are global.

No space permitted between name and

parenthesized argument list.

One or more spaces conventionally sepa-

rate actual arguments from local variables

in function statement.

+ 20

+ +

Built-in Arithmetic Functions

atan2(y,x) arctangent of y=x in range �� : : : + �

cos(x) cosine of x, x in radians

exp(x) exponential, ex

int(x) integer part of x (truncates)

log(x) base e logarithm of x

rand() random number r; 0 � r < 1

sin(x) sine of x, x in radians

+ 21

+ +

Built-in Arithmetic Functions : : :

sqrt(x) square root of x

srand(x) supply new seed, x, for rand()

+ 22

+ +

Built-in String Functions

gsub(r,s) substitute s for r globally in $0,

return number of substitutions made

gsub(r,s,t) substitute s for r globally in string

t, return number of substitutions

made

index(s,t) return �rst position of string t in

s, or 0 it t is not present

length(s) return number of characters in s

match(s,r) test whether s contains a sub-

string matched by r; return index

or 0; sets RSTART and RLENGTH

+ 23

+ +

Built-in String Functions

split(s,a) split s into array a on FS, return

number of �elds

split(s,a,fs)

split s into array a on �eld sepa-

rator fs, return number of �elds

sprintf(fmt,expr-list)

return expr-list formatted accord-

ing to format string fmt

sub(r,s) substitute s for the leftmost longest

substring of $0 matched by r, re-

turn number of substitutions made

+ 24

+ +

Built-in String Functions

sub(r,s,t) substitute s for the leftmost longest

substring of t matched by r, re-

turn number of substitutions made

substr(s,p)

return su�x of s starting at po-

sition p (counting from 1)

substr(s,p,n)

return su�x of s of length n start-

ing at position p (counting from

1)

+ 25

+ +

Built-in Variables

ARGC number of command-line arguments

ARGV array of command-line arguments

FILENAME name of current input �le

FNR record number in current input �le

FS controls the input �eld separator (de-

fault: " ")

NF number of �elds in current record

NR number of records read so far

+ 26

+ +

Built-in Variables : : :

OFMT output format for numbers (default:

"%.6g")

OFS output �eld separator (default: " ")

ORS output record separator (default: "\n")

RLENGTH length of string matched by match

function

RS controls the input record separator

(default: "\n")

RSTART start of string matched by match

function

SUBSEP subscript separator (default: "\034")

+ 27

+ +

Simple awk Programs

� Simple programs look like

/optional-regexp/ { statements }

or

expression { statements }

The braced statements are executed for

each input line that matches the expres-

sion. If the expression is omitted, then the

statements are executed for all input lines.

If the statements are omitted, matching

lines are printed.

+ 28

+ +

Simple awk Programs

print second and seventh fields of input

awk '{print $2, $7;}'

print long lines

awk 'length($0) > 72'

print line count

awk 'END { print NR }'

print sum of column 3 and average

awk '{ sum += $3; }

END { print sum, sum/NR }'

print sort list of user names

awk -F: '{ print $1 | "sort" }' /etc/passwd

ypcat passwd | \

awk -F: '{ print $1 | "sort" }'

+ 29

+ +

Simple awk Programs

print duplicate words

{

for (k = 1; k <= NF; ++k)

{

frequency[$k]++;

if (frequency[$k] > 1) print $k;

}

}

print words used only once

{

for (k = 1; k <= NF; ++k)

frequency[$k]++

}

END {

for (word in frequency)

if (frequency[word] == 1) print word;

}

+ 30

+ +

Simple awk Programs : : :

� Special patterns BEGIN and END can be

used to get control before and after input

is read.

� Compound selection patterns combine reg-

ular expressions with && (AND), || (OR),

! (NOT), and parentheses.

� Range expressions /regexp1/,/regexp2/

match all statements between the �rst line

matched by /regexp1/ and the next line

matched by /regexp2/, inclusive.

+ 31

+ +

Simple awk Programs : : :

� Tilde operator available for more control

over pattern matching:

expression ~ /regexp/

expression !~ /regexp/

The �rst is true if /regexp/ matches a sub-

string of expression; the second is true if

there is no match.

+ 32

+ +

Case Studies

� `one-liners' (awk book, pp. 17{18)

� table generation

� form letters in LaTEX

� book indexing

� BibTEX bibliography subset extraction

� cross-reference of LaTEX style �le macros

+ 33

+ +

Case Studies : : :

� indent LaTEX \begin{} : : : \end{} groups

and check for nesting errors

� check #if : : : #endif nesting in C code

� comment #if : : : #endif blocks

� expand #include "..." directives

� extract complete Fortran FORMAT statements

� extract complete C printf() statements

+ 34

