A Text Processing Language

Nelson H.F. Beebe
Center for Scientific Computing
Department of Mathematics
University of Utah
Salt Lake City, UT 84112
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: <beebe®@math.utah.edu>

Overview

What is awk?

e Background

e Documentation on awk

e Related Programs and Languages

awk syntax summary

Built-in arithmetic functions

Overview ...

Built-in string functions

Built-in variables

Simple awk programs

Case studies

What is awk?

e awk is a language that provides easy and
powerful facilities for string processing, with
regular-expression pattern matching for se-
lection, and subdivision of input records
into counted fields.

e The name awk comes from the initials of
its authors, A. V. Aho, P. J. Weinberger,
and B. W. Kernighan.

e After make, awk is probably the next most
useful tool on the UNIX workbench.

Background

1978 A. V. Aho, P. J. Weinberger, and B. W.
Kernighan produce first awk.

1978— awk distributed as standard part of
UNIX, and rapidly becomes a widely-
used programming language.

1987 Original authors redesign awk, and write
a book about the new language, nawk,
an upward-compatible superset of the
old language. Source code for the
new language is made available under
license from AT&T.

Background ...

1987 nawk ported to TOPS-20, VAX VMS,
and PC DOS by NHFB, and the portable
version returned to AT&T with many
comments and recommendations.

1988 Improved nawk appears incorporating
several of NHFB's ideas.

1988 Free Software Foundation develops first
prototype of independent implemen-
tation of nawk subset, to be called
gawk. gawk runs on UNIX and PC
DOS.

1989 Commercial implementations for PC
DOS appear from Mortice Kern Sys-
tems and Polytron.

Background ...

1989 nawk becomes standard part of AT&T
System VR4 UNIX, and part of IEEE
POSIX.

1989 nawk regular expressions extended for
international use in X/Open specifica-
tions.

1989 FSF’s gawk reaches compatibility with
complete nawk language, and its au-
thors collaborate with AT&T in plans
for extending and improving the lan-
guage.

1990 gawk ported to VAX VMS by NHFB.

Documentation on awk

e A. V. Aho, B. W. Kernighan, and P. J.
Weinberger, The AWK Programming Lan-
guage, Addison-Wesley, 1988.

e D. B. Close, A. D. Robbins, P. H. Rubin,
and R. M. Stallman, The GAWK Manual,
Free Software Foundation, 1989.

snobol

Related Programs and Languages

Pattern-matching language developed
in late 1960s.

snobol4 R. E. Griswold, J. F. Poage, and

I. P. Polonsky, The SNOBOL4 Pro-
gramming Language, Prentice-Hall,
1971.

+

grep

Related Programs and Languages ...

UNIX pattern-matching filter (from ed
editor command, g/re/p, global regular-
expression print), 1978.

icon Distant descendant of snobol, but with

block-structured language syntax. De-
scribed in R. E. Griswold and Madge
T. Griswold, The Icon Programming
Language, Prentice-Hall, 1983, and

spitbol Descendant of snobol, developed in The Implementation of the Icon Pro-
1970s. gramming Language, Princeton Uni-
versity Press, 1986.
C Main implementation language of UNIX,
designed in 1971. perl Larry Wall's pattern extraction report
language, 1988. Book: L. Wall and
R. Schwarz, Programming perl, O'Reill
sed UNIX stream editor, 1978. 7rog g pert v
1991.
+ 9 + 10
+ + + +

awk Syntax Summary

Case-sensitive, like C.

Control structures from C language.
— { statement; ...; statement; }
— if (expression) statement

— if (expression) statementl
else statement2

— while (expression) statement
— for (exprl; expr2; expr3) statement
— for (variable in array) statement

— do statement while (expression)

11

awk Syntax Summary ...

e Control structures
— break
— continue
— next
— exit
— exit expression
e Statements must normally fit on one line,

except that breaks after a comma, or with
a backslash-newline, are permitted.

o Comments go from # to end of line.

12

awk Syntax Summary ...

e Operators include

awk Syntax Summary ...

e Operators ...

+ - x / usual arithmetic e regexp no match
- exponentiation (NB: differs h= *= += -= [= "=
from C) assignment shorthands,
as in C
% remainder
> >= < <= == comparisons
++ increment
? conditional
- decrement
&& AND
Il OR
! NOT
~ regexp match
+ 13 + 14
+ + + +
awk Syntax Summary ... awk Syntax Summary ...
Fortran Awk . . .
e Data types include only floating-point and
k=k +1 ++k or ++k , . .
string scalars, and one-dimensional arrays,
but array subscripts can be any scalar type
n = 5%n n *x= 5
(tables in icon, or associative memory).
(x .eq. y) (x ==y)
R v table[3.14159] = "table of pi"
age["John"] = 23
(a .and. b) (a && b)
birthday["Mary"] = "1974.11.31"
name [1/3] = "one-third"
mod (m,n) mY% n

do 10 k = 1,n

for (k = 1; k <= n; ++k)

if (x .gt. 3) then

y=4

else y=(x>3)74:5
y =5

endif

+

15

office["Kelly"] = "123 JWB"

e No type declarations; variables are given
values by assignment, with type according
to context.

awk Syntax Summary ...

Type coercion: add O to a variable to
convert to number, concatenate the null
string to convert it to a string:

n=v+0

s =y "

All variables pre-initialized to empty string.
This is equivalent to O when used as a
number.

No limit on string sizes (thanks to NHFB's
suggestions), and all 256 character values,
including NULL, may appear in a string.

17

awk Syntax Summary ...

e Adjacent string expressions are concate-

nated:

string = "ONE" "-AND-" "TWO";
string = "ONE-AND-TWO";

are the same.

Input parsing handled by awk language;
each input record is available as $0, with
fields $1, $2, ..., $NF. Out of range field
numbers are null strings.

Fields are normally delimited by white space,
but the field separator can be set on the
command line, or changed within the pro-
gram.

18

awk Syntax Summary ...

awk programs may be given on the com-
mand line, or in a specified file.

Input comes from all files listed on com-
mand line, or from standard input. In
nawk, it may also come from files opened
explicitly by the program.

Output goes to standard output. In nawk,
it may also be redirected to specified files.

system() function permits running arbi-
trary programs from inside awk program.

19

awk Syntax Summary ...

nawk introduced functions:

function name(arg1,...,argn, Icl1,...,Iclm)

{

statements

}

Local variables declared as extra arguments;
otherwise, all awk variables are global.

No space permitted between name and
parenthesized argument list.

One or more spaces conventionally sepa-
rate actual arguments from local variables
in function statement.

20

+ + + +
Built-in Arithmetic Functions Built-in Arithmetic Functions ...
atan2(y,z) arctangentofy/xzinrange —w... + = sqrt(z) square root of z
cos(x) cosine of z, x in radians srand(z) supply new seed, z, for rand()
exp(zx) exponential, e*
int(z) integer part of x (truncates)
log(x) base e logarithm of z
rand() random numberr, 0<r<1
sin(z) sine of =, z in radians
+ 21 + 22
+ + + +
Built-in String Functions Built-in String Functions
gsub(r,s) substitute s for r globally in $0, split(s,a) split s into array a on FS, return
return number of substitutions made number of fields
gsub(r,s,t) substitute s for r globally in string split(s,a,fs)
t, return number of substitutions split s into array a on field sepa-
made rator fs, return number of fields
index(s,t) return first position of string t in sprintf(fmt, expr-list)
s, or O it tis not present return expr-list formatted accord-
ing to format string fmt
length(s) return number of characters in s
sub(r,s) substitute s for the leftmost longest
) substring of $0 matched by r, re-
match(s,r) test whether s contains a sub- o
)) turn number of substitutions made
string matched by r; return index
or 0; sets RSTART and RLENGTH
+ 23 + 24

Built-in String Functions

sub(r,s,t) substitute s for the leftmost longest
substring of t matched by r, re-
turn number of substitutions made

substr(s,p)
return suffix of s starting at po-
sition p (counting from 1)

Built-in VVariables

ARGC number of command-line arguments

ARGV array of command-line arguments

FILENAME name of current input file

FNR record number in current input file
substr(s,p,n)
return suffix of s of length n start- FS controls the input field separator (de-
ing at position p (counting from fault: " ")
1)
NF number of fields in current record
NR number of records read so far
+ 25 + 26
+ + + +

Built-in Variables ...

OFMT output format for numbers (default:
ll%.sgll)

OFS output field separator (default: " ")

ORS output record separator (default: "\n")

RLENGTH length of string matched by match
function

RS controls the input record separator
(default: "\n")

RSTART start of string matched by match
function

SUBSEP subscript separator (default: "\034")

+ 27

Simple awk Programs

e Simple programs look like

/optional-regexp/ { statements }

or

expression { statements }

The braced statements are executed for
each input line that matches the expres-
sion. If the expression is omitted, then the
statements are executed for all input lines.
If the statements are omitted, matching
lines are printed.

Simple awk Programs

print second and seventh fields of input
awk ’{print $2, $7;}°

print long lines
awk ’length($0) > 72’

print line count
awk ’END { print NR }’

print sum of column 3 and average

Simple awk Programs

print duplicate words

{
for (k = 1; k <= NF; ++k)
{
frequency [$k]++;
if (frequency[$k] > 1) print $k;
}
}

print words used only once

awk ’{ sum += $3; } {
END { print sum, sum/NR }’ for (k = 1; k <= NF; ++k)
frequency [$k]++

print sort list of user names }
awk -F: ’{ print $1 | "sort" }’ /etc/passwd END {
ypcat passwd | \ for (word in frequency)

awk -F: ’{ print $1 | "sort" }’ if (frequency[word] == 1) print word;

}

+ 29 + 30
+ + + +

Simple awk Programs ...

e Special patterns BEGIN and END can be
used to get control before and after input
is read.

e Compound selection patterns combine reg-
ular expressions with & (AND), || (OR),
! (NOT), and parentheses.

e Range expressions /regexpl/,/regexp2/
match all statements between the first line
matched by /regexpl/ and the next line
matched by /regexp2/, inclusive.

Simple awk Programs ...

e Tilde operator available for more control
over pattern matching:

expression ~ /regexp/

expression !~ /regexp/

The first is true if /regexp/ matches a sub-
string of expression; the second is true if
there is no match.

Case Studies

‘one-liners’ (awk book, pp. 17—18)

table generation

form letters in LaTEX

book indexing

BibTEx bibliography subset extraction

cross-reference of LaTEX style file macros

33

Case Studies ...

indent LaTEX \begin{} ... \end{} groups
and check for nesting errors

check #if ... #endif nesting in C code

comment #if ... #endif blocks

expand #include "..." directives

extract complete Fortran FORMAT statements

extract complete C printf() statements

34

Simple awk Programs ...

Tilde operator available for more control
over pattern matching:

expression ~ /regexp/

expression !~ /regexp/
The first is true if /regexp/ matches a sub-

string of expression; the second is true if
there is no match.

32

