
A Simple “Black Box” Method for Obtaining Aggregate Models from More
Detailed Models: Applied to Unopposed Military Mobility Modeling

Stephen A. Kukolich
Richard Schaffer

Dan Speicher
Tom Schady

Lockheed Martin Information Systems,
Advanced Simulation Center

37 North Ave., Burlington, MA 01803
781-505-9500

skukolich@lads.is.lmco.com
schaffer@lads.is.lmco.com
dspeiche@lads.is.lmco.com

tschady@lads.is.lmco.com

Keywords:
Analysis, Aggregate, Mobility

ABSTRACT: We present a straightforward method for obtaining an aggregate model consistent with an existing
higher resolution model. The technique involves fitting the results of tests using the higher resolution model. This
is a "black box" technique as it is not necessary to look inside the higher resolution model to see how it works. The
method only requires access to externally visible outcomes. As such, it is especially valuable when the desired
aggregate model must incorporate the complex effects resulting from combinations of simpler detailed models.
Such complex effects may be difficult or impossible to capture through more direct analytic techniques.

The technique represents a straightforward application of standard least squares fit methods. While the user of
the technique must still propose the form of the aggregate formulae, the technique determines which parameters in
the formulae are most significant. By determining which parts of a model are the most important, this method
demonstrates which parts deserve more developer attention. Many modeling situations could benefit from such an
approach.

In applying this technique to unopposed military movement modeling, a script was constructed to pick random
start and stop goal points on the terrain. By avoiding human bias in the choice of sample problems, we hope to
draw general conclusions from the results. Results include probabilistic weights according to estimated likelihood
of occurrence in a general simulation. Alternative sample distributions are possible, including those which
concentrate more sample points where the effects on results are more extreme, rapidly varying, or difficult to
accurately model. Choosing appropriate sample spaces is one of the most difficult tasks, especially when testing
the models requires more complex situations.

1. Introduction

JSIMS and other near-future military simulation
projects may require the synthetic natural environment
to service multi-resolution simulation. This means a
heterogeneous mix of platform and aggregate
representations forces may exist in the same simulated
battle-space simultaneously. It would be very
disturbing if, for example, drastically changing the
resolution at which the forces are being simulated at
were to change where those forces could get to on the

simulated terrain. This is just one of many related
consistency issues that must be addressed in trying to
deal with multi-resolution simulation. Multi-resolution
simulation is needed in simulating ground forces
because the available computer resources cannot
support simulating the required sized forces by
representing all of them at the platform (e.g. tank)
level.

The simple approach described here attempts to tackle
some of these consistency problems by deriving the

aggregate component models statistically from the
more detailed models. This should build in some
amount of consistency at the component model level,
though by itself this certainly does not guarantee
consistency at the simulation output level, which might
be described by who won the battle. The specific area
studied here is unopposed cross-country military
movement. However the techniques described here are
quite generic, and should easily generalize to other
component models and to deriving higher-level
aggregate models from less aggregated models.

Section 2 describes all of the theory behind these fit
algorithms, including the pseudo-inverse tricks needed
to solve potential numerical instabilities arising from
linear dependence and from our ranking algorithm.

Section 3 describes an application of these techniques
to extract an aggregate mobility model from a platform
mobility model, and unit behaviors driving that model.

Section 4 concludes this paper.

2. "Black Box" Fit Algorithms

2.1 Introduction

This section will give the basic mathematics for the
linear fit techniques, and the algorithm for ranking fit
expressions in order of importance. Towards the end of
this section, a matrix pseudo-inverse technique is
discussed, along with an extra modification required to
give numerical stability in the context of the ranking
process.

This section starts by describing an example problem,
that of developing an efficient formula describing how
fast a military ground unit can travel over simulated
terrain. By construction, such a formula must have
some statistical consistency with the original model,
and is thus a candidate for use as an aggregate model
consistent with the original simulation.

Let routei be the i th route, where the "route" includes
everything that should describe a specific experimental
condition, including: the spatial path over a database,
the unit type and formation(s), and the environmental
conditions (e.g. has rained, is foggy etc.). Let Τi be a
measured travel time for a given routei .

Next, let us assume that we can compute various terms
for a given route, and that we are going to fit for the

coefficients for those terms in a total travel time fit
formula. Thus the assumed formula is:

T Croute a a routei j j j i
j

;mrd i b g= *å

where the sum over j is over all fit terms, Χ j routei() is

any reasonable formula applied to the route i

information, and a j is an as-yet-unknown constant

coefficient which will be computed by the subsequent
fit procedure. Thus, each jth fit term is a product of

Χ j routei() and each a j . The resultant function

T route ai j;mrd i can compute an estimated travel time

for any given route. The argument " a jmr" is displayed

here to show explicitly that the Τ() function depends

on the set of a j fit parameters; this argument might be

dropped in subsequent formulae.

Example Χ j routei() functions on a route are:

distance / commanded_speed ,
sum_absolute_turn_angles ,
number_of_bridges_crossed ,
net_slope_upwards*distance ,
net_slope_downwards*distance ,
average_abs_slope*distance .

2.2 Basic least squares fits for linear coefficients

This section gives a derivation of the formulae for

obtaining the unknown fit coefficients, a jmr above,

from some experimental data. An equivalent
derivation can be found in all good experimental
analysis books, e.g. Bevington [1], and is only given
here because it is short, and helps to make this paper
more complete as an isolated document.

After running many experiments, the experimental
data can be put in the form of "data points", where
each single "data point" is a set of values like:

Τi, Χ1 routei(), Χ2 routei(),

These data points could easily be stored in a data file,
as one line of ASCII numbers per data point. This
allows a computer program to effect the fit process
described in this paper, independent of where the data
comes from, or what the data means.

To begin the derivation of the fit formulae, a χ 2 error
measure is defined. This χ 2 error measure is
effectively a distance between the set of data points

Til q and the function Τ(), which the desired Τ()
function should minimize:

c s
2 2

2

1= * -å / ; .
i i i j

i

route ae j mrd ie jT T

The 1/ σ
i

2 values are effectively weights, Wi , that

include a pre-experiment estimate of the relative
statistical errors in each of the Τi data values. If the
deviations arise from a sum of apparently random and
frequent fluctuations (possibly due to our simplified
model not correctly modeling the whole system), a
good guess for the uncertainties in the Τi values might

be σ
i

2 = Τi . If deviations tend to be consistently high

or low for a given route, then σ i = Τi would be a better
approximation.

The "method of maximum likelihood", says that the
best fitting, i.e. most probable, set of a j coefficients are

those which minimize the χ 2 . Elementary calculus
says that if χ 2 is at a minimum with respect to
variations in an ak parameter, then the partial
derivative of χ 2 with respect to that ak parameter
must equal zero. (As a notational convenience, we use
the index k instead of index j for the remainder of the
section - it indexes the same set of parameters.)

0 = ∂χ 2 /∂ ak ⇒

0 1 2
1= * - *å / ;s i i j k i

i

route a routec h mrd ie j b gT T C

where we have used the chain rule and the definition of
Τ() to obtain:

¶ ¶T Croute a a routei j k k i; / .mrd i b g=

Because of the assumed linear dependence of T on the
unknown a j parameters, these N equations formed by

taking partial derivatives with respect to each
particular ak , will lead to N linear equations in the N
unknown a j parameters:

Akja j

j
∑ = βk ,

where

Akj = 1/ σ i
2()

i
∑ ∗Χk routei()∗Χ j routei(),

βk = 1/σ i
2()∗ Χ k

i
∑ routei()∗Τi,

and where Akj are the elements of a square matrix A,

and βk are the elements of a column vector β, and
both are easily computed from the input data points.

Inverting the A matrix can yield the desired
coefficients:

a j = A−1()
jk

βk .
k

∑

These conclude the derivation of the a j formulae.

A few extra notes are in order concerning the inverse
matrix, A −1 .

First, the matrix A might not be directly invertible
using floating point arithmetic, e.g. by Gaussian
elimination, because it might have a (nearly) zero
determinant. A useable inverse matrix can still be
found in the form of a pseudo inverse, which is
described in a later section.

Also, the diagonal elements of A −1 matrix gives
estimates in the uncertainties of how well the a j have

been determined from the given data,

σa j
= Α−1()jj

.

These uncertainties are a result of having imperfect
knowledge of the assumed underlying statistical
distribution, because we only have a finite number of
random data samples from that statistical distribution.
These uncertainties would go to zero, given an infinite
number of samples.

However, nearly zero uncertainties does not imply zero
error, because a proper discussion of errors would
necessarily include a discussion of how well the
simplified model (and statistical distribution
assumptions made in the fit process) describe the

original system. Such an extensive discussion will not
be started here.

This section has given a derivation of the formulae for
obtaining the unknown a j coefficients from a set of

data points.

2.3 Search to rank importance of fit terms

The technique works as follows: the user supplies the

guesses for expressions to use in the fit, i.e. C jmr, and

the fit tool outputs the fit coefficients a jmr, and

describes which terms were most important in fitting to
the data. Here is described a simple technique to rank
the Χ j terms in descending order of importance.

This technique begins with an empty ordered "kept" set
of Χ j terms (or correspondingly a j coefficients). At

each major iteration, it will search for the best
remaining Χ j (or a j) to move from the "unused" set to

the "kept" set of terms (or coefficients). The best Χ j to

move is the Χ j that will give the greatest reduction in

the χ 2 error measure.

"Keeping" an Χ j term is equivalent to allowing its

corresponding a j coefficient to be non-zero.

For example, suppose there are three fit terms Χ1 , Χ2 ,
Χ3 , which when combined with T, label all of the
columns in a given data set. Furthermore, the 3 by 3
matrix A and length 3 vector β are formed from this
data set as described above.

The first major iteration would look for the term which
does the best, when it is the only term used in the fit.
So for each term, the appropriate submatrix of A is
kept, and the appropriate subvector of β is kept, and
the corresponding Aa = β equation is solved (using
pseudo inverse methods described later) for the
corresponding a coefficient, e.g. A22a2 = β2 .

To evaluate which fit is best, we need to be able to
recompute χ 2 for each of the subsets of the a vector
being tried. The formula for χ 2 can be recast as:

 χ 2 = aΤ Αa − 2a Τβ + c,

where a is the column vector containing the a j

coefficients, and where matrix A and vector β are
defined above, and where scalar c is given by:

c = 1/ σ
i

2()
i

∑ ∗ Τi ∗Τi .

When only some of the a j coefficients are currently in

the "kept" category, this χ 2 formula can still be used
by setting the other "unkept" coefficients to zero.
Alternatively, one can substitute the appropriate
submatrix of A for the whole matrix A, and similarly
for β into the above χ 2 formula. Note that in either
case we never have to recompute an A submatrix or β

subvector from the original data points, just use
portions of the whole A matrix and whole β vector,
which are computed just once. The difference in speed
obtained by not recomputing from the original data
could be important if there are many thousands of data
points, and many Χ j terms being tried.

Also, it is usually beneficial to work with a "reduced"
χ 2

χr
2 = χ 2 / N data ,

where Ndata , is the number of data points in the given
data set, indexed by i in the above formulae. The
reason this is frequently better is that if one were to
have multiple sets of data, each of a different length,
the reduced χr

2 values still may be comparable between
the data sets, where χ 2 would not be.

Getting back to the example, we might find that

χr ,02
2 = a22 ∗ A22 ∗a22 − 2 ∗a22 ∗ β22 + c,

c c cr r r, , ,. , . .02
2

01
2

03
210 2 15 6, 231= = =

This would mean that Χ2 is the best next term to move

into the permanently "kept" set.

The second major iteration, on separate steps, would
try adding Χ1 , then Χ3 to the "kept" set, which is

currently C 2l q, to see which was best. "Trying" Χ3

involves solving Aa = β for a, and finding χr
2 , using

the currently "kept" set of C C2 3,l q. Explicitly, the

submatrices in Aa = β when C C2 3,l q is being used

would look like:

A32

A22 A33

A23

 a3

a2

 β

3

β2

 .

Again, either Χ1 or Χ3 would be added to the
permanently "kept" set, based on which try gave the
lowest χr

2 .

The final results include the final a j coefficients, a

ranking of the Χ j terms given in descending order of

importance, and the descending values of χr
2 resulting

from each major iteration. The degree of reduction in
χr

2 with each major iteration tells how important the
newly added Χ j term is. If many terms are given to

try, it is highly probably that the last few terms will
contribute very little to reducing the error measure.

In theory, χr
2 should be reduced with the addition of

each newly kept term. The Χ j terms are all vectors in

the Ndata -dimensional space, and in theory the T-vector
resulting from each fit is the nearest projected point of
the original Τi vector onto the subspace spanned by the
kept Χ j vectors. This vector space is measured using

Wi weight values as a distance metric. Augmenting the
subspace with another Χ j vector cannot increase the

distance between the original point and its nearest
projection onto the subspace. Therefore, χr

2 should
never increase with the addition of each new Χ j term

to the kept set. If χr
2 does increase with any major

step it means that there are some numerical round-off
problems involved. The following pseudo-inverse
section corrects all of the numerical difficulties that we
came across.

Various alternatives to above described ranking
technique have been considered, including using linear
correlation coefficients, and directly investigating the
pseudo-inverse eigenvectors described below.
However, we have found the above ranking technique
to be the most useful.

In addition to solving for the a j coefficients which

give a best fit, we have given a technique for ranking
the Χ j terms in descending order of importance to the

fit process.

2.4 A stable pseudo-inverse of A is required

Linear dependence and problems associated with
floating point numerical round-off are serious issues in
getting reasonable results from the above fit process.
Therefore, in addition to using double precision
arithmetic, a pseudo-inverse technique with a carefully
controlled eigenvalue threshold λthreshold is required.

When computing A −1 (the matrix inverse of A), it is a
good idea to use a Singular Value Decomposition
(SVD) inverse technique instead of Gaussian
elimination. SVD will give a reasonable inverse even
when A is singular - which could happen if there is an
accidental linear dependence between the Χ j terms.

Instead of using a standard SVD algorithm (see
"Numerical Recipes" [2]) on matrix A, we take
advantage of the fact that A is real and symmetric, and
use eigenvector-eigenvalue decomposition methods.
The latter methods work equally well on real,
symmetric matrices, and use more widely understood
mathematics. So, to compute an SVD-based pseudo-
inverse of matrix A, eigen-decomposition is applied to
A (implemented using routines from "Numerical
Recipes" converted to double precision):

A = SΛSΤ

where Λ has diagonal entries that are the eigenvalues
of A, Λ ll = λl , and where the off-diagonal entries of Λ
are all zero, and where S is the matrix whose columns
are the corresponding eigenvectors of A.

Next let us define the pseudo-inverse of A via a pseudo-
inverse function applied to the eigenvalues:

pseudo_inverse Λ ll()=

0

 1 /

otherwise

threshold

L

L

ll

llR
S|
T|

<=l

Then the pseudo inverse of A, to be used in place of
A −1 is:

pseudo_inverse A()
jk =

Sjl

l
∑ ∗ pseudo_inverse Λ ll()∗ Skl.

If some inverse eigenvalues are set to zero by the
pseudo-inverse method, it means that some Χ j terms

are linearly dependent on others (at least for the given
set of experimental data points), and can probably be
discarded.

A reasonable way to compute the threshold value
λthreshold is to multiply a small fraction (e.g. 10−9) by
the sum of the absolute values of the eigenvalues.

In the Χ j ranking technique described above, it is vital

that λthreshold be computed just once from all of the
eigenvalues of full matrix A. If it were to be
recomputed from the current submatrix of A each time,
anomalies in the form of increasing χr

2 values can
result.

The method of computing a pseudo-inverse matrix
described above is very useful in the above fit
techniques, for solving matrix equations of the form
Aa = β for the column vector of unknowns

a = pseudo_inverse A()β .

2.5 Summary

This section has described a straightforward linear-
coefficient least squares technique which, when
coupled with experimental outcomes, can be applied to
developing a simpler model from a more detailed
model. The user of this technique is responsible for
guessing fit expressions to try, and providing
experimental data in the proper form. However, the
user need not worry about linear dependence amongst
the guessed expressions, nor about which expressions
are most likely, because the algorithms given here will
reliably rank the expressions from most to least
important. Results also detail measures of that
importance in the form of improvements to χr

2 , and
the desired fit coefficients.

3. Mobility Experiments

3.1 Experiment Design

This section explains the setup of our experiment to
create an aggregate model using the black box
technique. The scenario used was the unopposed
movement of a platoon of tanks.

The high-resolution model that we selected was the
SIMNET SAF tracked mobility model. The CCTT

SAF mobility model might have been a more popular
choice. However, at the start of these mobility
experiments, the fidelity of the implementation of the
CCTT mobility model in ModSAF had not been
confirmed. The major drawback of the SIMNET
tracked mobility model is the assumption that the
speed going up slopes degrades linearly with the slope
angle. Other than that, the SIMNET tracked mobility
model does include the typical effects of speed and
acceleration limits, which depend on soil type.

We decided to create an aggregate model that would
predict the amount of time it would take a unit to travel
a given distance. To do a linear fit to create the
aggregate model, we needed to generate a large
number of data points. Each data point consisted of
various terms that described the physical attributes of
the route the unit took and the time it took the unit to
complete its trip.

To generate these data points, we performed the
following steps. First, we ran a TCL script that had
previously been tied into ModSAF. This script
repeatedly created a unit in ModSAF at a random
location, tasked the unit to move to another random
location, and recorded the start point, the end point,
and the travel time. We then ran a program called
"rdata" over the data we had collected. The rdata
program took each starting and ending point and
calculated the values of the terms for that route. It
worked by first using libroutemap, taken from
ModSAF, to plot a course around all of the major
obstacles in the route. It then examined the route
segment by segment and used this information to
calculate the values of the terms for that route.

At this point, we had a datafile with one line for each
data point, where each data point corresponded to a
single tasking of a unit by the TCL script. Each line of
the datafile was of the following format:

time term1 term2 term3 term4 ...

Where the "time" was the time taken by the unit to
travel the requested distance, as recorded by the TCL
script, and each term was the value calculated for that
term by the rdata program. The values of these terms
are the Χ j variables in the formula shown in section

2.1. This format was appropriate for feeding into the
linear fitting program.

We have shown how we created our initial data and
then modified that data in preparation for doing a
linear fit.

3.2 Choice of terms

This section lists the terms that we chose to use in the
linear fit. It defines what each term is, and provides
some insight into how and why we chose some of the
terms we did, and problems that we encountered.

The ideas for the terms we chose to have the rdata
program calculate for each data point came, in part,
from previous experiments. In these previous
experiments, we observed what aspects of the terrain
and route had visible affects on a unit's travel time.
Using these results, we arrived at a large set of
potentially useful terms. Some preliminary runs of the
linear fitting program enabled us to discard some of
these terms, since their values correlated very poorly
with the travel time. The following list shows the final
set of terms that we determined were useful.

TERM DEFINITION
num_turns the number of turns in the route
tot_angles the sum of the absolute value of

the angles of all the turns in the
route

ave_angles the average angle of a turn
angles_0_45 the number of turns that were less

then 45 degrees
angles_45_plus the number of turns that were

greater than or equal to 45 degrees
dist_3d the length of the route
dist_2d the flat length of the route; the Z-

value of each point was ignored in
this calculation

est_time_3d estimated travel time, assuming a
3D route
(dist_3d/commanded_speed)

est_time_2d estimated travel time, assuming a
flat route
(dist_2d/commanded_speed)

steepest the value of the steepest slope in
the route

total_rise the sum of the positive vertical
changes in the route, in meters

ave_slope the average slope, but only of the
parts of the route with an uphill
slope

sd_slope the standard deviation of the slope
on the positively sloped sections of
the route

ave_slope_full the average positive slope over the
whole length of the route
(total_rise/dist_2d)

sd_slope_full the standard deviation of the
positive slopes measured over the
entire route

dist_0_15_2d number of meters of the route that
are positively sloped between 0
and 15 degrees, measured on a flat
plane

dist_15_30_2d number of meters of the route that
are positively sloped between 15
and 30 degrees, measured on a flat
plane

dist_30plus_2d number of meters of the route that
are positively sloped over 30
degrees, measured on a flat plane

dist_0_15_3d number of meters of the route that
are positively sloped between 0
and 15 degrees, measured in three
dimensions

dist_15_30_3d number of meters of the route that
are positively sloped between 15
and 30 degrees, measured in three
dimensions

dist_30plus_3d number of meters of the route that
are positively sloped over 30
degrees, measured in three
dimensions

slope_dist_2d ave_slope * dist_2d
slope_dist_3d ave_slope * dist_3d
sd_slope_dist_2d sd_slope * dist_2d
sd_slope_dist_3d sd_slope * dist_3d
slope_sq_dist_2d ave_slope * ave_slope * dist_2d
slope_sq_dist_3d ave_slope * ave_slope * dist_3d

We had two-dimensional and three-dimensional
versions of most of the terms because it was not
immediately obvious to us which version would yield
the best results. The last six terms are mathematical
combinations of previous terms. We did this as an
experiment, since by itself the average slope and the
standard deviation of the slope do not directly
correspond to the travel time. To illustrate, consider a
route with a given average slope. Adding several
hundred meters of flat terrain to the end of the route
would not change the average slope, since our way of
calculating the average slope only includes the
positively sloped portions of the route. However,
adding this extra flat difference would increase the
travel time. Therefore, by multiplying in the distance

of the route, we hoped to improve the correlation with
the travel time.

The choice of these terms took advantage of knowing
that the ModSAF tracked model does not cause the
speed to increase above the requested speed when
travelling downhill. Therefore, downhill travel is
treated as flat; our choice of terms reflects this, as we
did not use terms that measured the downhill slopes.

Our next problem was that many of these terms are
linearly dependent with respect to each other. This
caused difficulties in determining which terms were
needed to produce a good aggregate model, as the
contribution of a highly correlated term may already be
incorporated by another linearly dependent term. For
example, the terms dist_2d and dist_3d are obviously
very close to the same value, but it is not obvious
which of these two terms is more important in
calculating an accurate travel time. This problem was
solved by having the linear fit program tolerate linear
dependencies, and rank the terms in usefulness
according to which term most reduced the chi-squared
value at each part of the linear fit calculation.

We have explained and defined the terms we chose for
the linear fitting. The difficulties we had in deciding
which terms were better than others, caused us to
include all the terms that seemed interesting. This led
to the problem of linear dependence between terms,
which we solved by making the linear fitting program
more robust.

3.3 Results

This section explains how we made the aggregate
model and gives the data that demonstrates the
accuracy and robustness of the aggregate model.

Three sets of data were used in the creation of the
aggregate model. The base set of data contained 1500
data points. These data points consisted of about 120
distinct start and end points. The multiple copies of
each point were either the same route with a different
speed or simple repeats. The various data points in this
data set covered the full range of possible commanded
speeds for the unit being tasked. The other two sets of
data were comparison data sets. The first contained
300 data points, representing approximately 60 distinct
start and end points. The second contained 150 data
points, which consisted of approximately 30 distinct
start and end points. The start and end points in the
comparison data sets were completely different from
the base data set.

We first ran the linear fitting program over the base
data set. One of the outputs of this program is a
coefficient for each term. These coefficients are the a j

terms in the formula from section 2.1. The following
table shows another of the outputs of the program; the
ranking of all the terms used in order of decreasing
contribution to improving the χ 2 value.

TERM χ 2 ∆χ2

dist_3d 208.4903 +0.000000
dist_15_30_3d 163.5644 -44.925894
est_time_3d 150.9655 -12.598905
angles_0_45 140.4305 -10.535073
dist_2d 138.0646 -2.365841
est_time_2d 137.1702 -0.894415
dist_30plus_3d 136.2898 -0.880423
ave_angles 135.5885 -0.701245
angles_45_plus 133.9754 -1.613157
tot_angles 132.5012 -1.474155
ave_slope 132.2078 -0.293429
total_rise 131.8465 -0.361311
dist_0_15_3d 131.3915 -0.455013
ave_slope_full 130.9237 -0.467786
dist_0_15_2d 130.5069 -0.416741
dist_15_30_2d 130.1336 -0.373325
sd_slope 129.8662 -0.267457
slope_sq_dist_2d 129.1605 -0.705623
sd_slope_dist_2d 128.8372 -0.323383
slope_sq_dist_3d 128.4313 -0.405890
sd_slope_dist_3d 128.1129 -0.318392
steepest 128.0116 -0.101296
dist_30plus_2d 127.9714 -0.040193
slope_dist_2d 127.9468 -0.024575
slope_dist_3d 127.5861 -0.360710
sd_slope_full 127.4989 -0.087171
num_turns 127.4970 -0.001937

Note that only the first few terms actually make a
noticeable contribution to improving the χ 2 value.

These results, while interesting, do not actually give
any sort of indication as to whether we have actually
created a linear equation which could perform as a
decent aggregate model. To determine how good our
model will be, a checking program was run. This
checking program reads each line of our data file,
multiplies each coefficient generated by the linear fit
program by the corresponding term’s value, and adds
all of these products together. As shown in section 2.1,
this sum is the calculated travel time for this route.

The checking program compares the calculated time to
the known time that was originally recorded back when
we were collecting data. Running this checking
program over our base data set gave the following
results.

Average error was 0.242512
Worst error was 0.783882
Standard Deviation was 0.161821

The errors were calculated by dividing the difference
between the calculated time and the actual time by the
actual time. Therefore, on average, the aggregate
model gives an answer that is only 24% off, with the
worst error for the entire data set of 78%. However,
since the aggregate model was derived from this set of
data, we expect the error to be fairly low. Therefore,
we also ran the checking program on the two
comparison data sets. Since the positions in the
comparison data sets are completely unrelated to the
positions in the base data set, this is a good way to
check the accuracy of the aggregate model.

Running the checking program over the first set of
comparison data gave the following results.

Average error was 0.339922
Worst error was 0.641584
Standard Deviation was 0.113844

The second set of comparison data gave the following
results.

Average error was 0.308581
Worst error was 0.655578
Standard Deviation was 0.191049

As expected, these errors were slightly worse than for
the base data set, but they were still fairly small.

Once we had the terms ranked by contribution to chi-
squared value, we reran the rdata program using only
the terms that made the biggest contribution: dist_3d,
dist_15_30_3d, est_time_3d, and angles_0_45.
Running the linear fitting program on the base data
set, followed by the checking program on each data set
gave the following results for the base data set, the first
comparison data set, and the second comparison data
set, respectively.

Average error was 0.26152
Worst error was 0.773478
Standard Deviation was 0.158833

Average error was 0.335249
Worst error was 0.638632
Standard Deviation was 0.122243

Average error was 0.315842
Worst error was 0.764344
Standard Deviation was 0.177276

These results were all very close to our results when
using all of the terms. However, we would expect that
using a reduced set of terms will actually improve our
aggregate model, since the non-contributing terms do
not improve the accuracy of our results and are a
potential source of noise.

To verify that the choice of terms was actually
important, we reran all of the programs using the three
worst terms: num_turns, sd_slope_full, and
slope_dist_3d. This gave the following results.

Average error was 0.425289
Worst error was 1.00
Standard Deviation was 0.269396

Average error was 0.503153
Worst error was 0.984334
Standard Deviation was 0.254554

Average error was 0.482443
Worst error was 0.979472
Standard Deviation was 0.275635

This showed us that ordering the terms based on
contribution to the χ 2 value does provide a good
method for picking which terms to use in our aggregate
model.

The final task in verifying the accuracy of the
aggregate model was to check our weighting term. As
mentioned in section 2.2, we had to make an educated
guess as to what value to use for σ . The two values we
tried were σ = Τi and σ = Τi . We tried running the

fitting program with σ set to both of these values, and
got consistently better results by setting σ = Τi . To
further confirm that this choice is the better one, we
ran a program to compare the absolute values of the
error between our known time and the calculated time
to the actual time for each data point. The program
found that the proportion between the two was nearly
one. This means that the magnitude of the error varies
very closely to size of the actual time, implying that Τi

is a good value to use for σ , when relatively weighting
the data points.

We have succeeded in creating an aggregate model of
the SIMNET mobility model that gives us around 30%
error and requires only four terms calculated from the
physical attributes of the route.

4. Summary and Future Work

We have presented the derivation of the black box
technique for creating an aggregate model from a
generic high fidelity model. We have also provided a
specific sample use of this technique by creating an
aggregate model from the SIMNET SAF tracked
mobility model.

The aggregate model travel times deviated from the
platform travel times by an average of 30%. It was
also found that this technique is very effective at
identifying the important terms.

We expect that the black box fit technique can easily be
applied to other types of models. The user will need to
create a tool for computing the terms for the linear fit,
analogous to the rdata program we created; after this,
the process should be very easy. The advantage of the
black box technique is that no information is required
about the underlying physics of the high fidelity model,
making the creation of an aggregate model for a
similar high fidelity model extremely simple.

It is likely that further improvements could be made to
the aggregate model that we have demonstrated in this
paper. Experimental data over longer route lengths
would be valuable for developing mobility models for
more aggregated units. More experimental data would
also be useful in determining the linear fit terms more
accurately.

There are other possible applications for this
technique. One application could be to apply these fit
techniques to determine the relative importance of
different terrain features and resolutions to mobility
models.

5. Acknowledgement

The research reported in this paper was sponsored by
the Defense Advanced Research Projects Agency and
the US Army Simulation, Training and
Instrumentation Command. The work was performed

as part of the Advanced Simulation Technology Thrust
program under contract N61339-97-C-0033.

References

1. P. R. Bevington: Data Reduction and Error
Analysis for the physical sciences, McGraw-Hill, New
York, 1969.

2. W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling: Numerical Recipes in C, Cambridge
Univ., New York, 1988.

