
 ORB Interface 4
object

ear to

ar
Contents

This chapter contains the following sections.

4.1 Overview

The ORB interface is the interface to those ORB functions that do not depend on
which object adapter is used. These operations are the same for all ORBs and all
implementations, and can be performed either by clients of the objects or
implementations. Some of these operations appear to be on the ORB, others app
be on the object reference. Because the operations in this section are implemented by
the ORB itself, they are not in fact operations on objects, although they may be
described that way and the language binding will, for consistency, make them appe

Section Title Page

“Overview” 4-1

“Object Reference Operations” 4-4

“ORB and OA Initialization and Initial References” 4-8

“ORB Initialization” 4-8

“Obtaining Initial Object References” 4-10

“Current Object” 4-12

“Policy Object” 4-12

“Management of Policy Domains” 4-14

“Thread-related operations” 4-19
 CORBA V2.2 February 1998 4-1

4

e

 in
that way. The ORB interface also defines operations for creating lists and determining
the default context used in the Dynamic Invocation Interface. Those operations ar
described in the Dynamic Invocation Interface chapter.

module CORBA {
typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;
};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;
};

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create_list (
in long count,
out NVList new_list

);
Status create_operation_list (
in OperationDef oper,
out NVList new_list

);

Status get_default_context (out Context ctx);
boolean get_service_information (
in ServiceType service_type;
out ServiceInformat ion service_information;
);
// get_current deprecated operation - should not be used by new code
// new code should use resolve_initial_reference operation instead
Current get_current();

};
};

All types defined in this chapter are part of the CORBA module. When referenced
OMG IDL, the type names must be prefixed by “CORBA::”.
4-2 CORBA V2.2 February 1998

4

19.

ent
ms

can

 that

B.
ions

A

is
).
The get_current operation is described in “Thread-related operations” on page 4-

4.1.1 Converting Object References to Strings

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persist
storage or communicating references by means other than invocation. Two proble
must be solved: allowing an object reference to be turned into a value that a client
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference,
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid
reference to the same object, if the two operations are performed on the same OR
For all conforming ORB's supporting IOP, this remains true even if the two operat
are performed on different ORBs.

For a description of the create_list and create_operation_list operations, see “List
Operations” on page5-11. The get_default_context operation is described in the
section “get_default_context” on page5-15.

4.1.2 Getting Service Information

get_service_information

boolean get_service_infor mation (
in ServiceType service_type;
out ServiceInformation service_information;

);

The get_service_information operation is used to obtain information about CORB
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type , the
values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parameter service_information , and the
operation returns the value TRUE. If no information for the requested services type
available, the operation returns FALSE (i.e., the service is not supported by this ORB
CORBA V2.2 Overview February 1998 4-3

4

 in
on to
ect
ove,

an
4.2 Object Reference Operations

There are some operations that can be done on any object. These are not operations
the normal sense, in that they are implemented directly by the ORB, not passed
the object implementation. We will describe these as being operations on the obj
reference, although the interfaces actually depend on the language binding. As ab
where we used interface Object to represent the object reference, we will define
interface for Object:

module CORBA {

interface Object { // PIDL
ImplementationDef get_implementation (); //deprecated as of 2.2
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();
void release ();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
unsigned long hash(in unsigned long maximum);

Status create_request (
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags

);
Policy get_policy (
in PolicyType policy_type
);
DomainManagersList get_domain_managers ();
};

};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section5.2, “Request Operations,” on page 5-5.

4.2.1 Determining the Object Interface

Note – The get_implementation operation is deprecated in this version of the
CORBA specification. No new code should make use of this interface and operation,
since they will be eliminated in a future version of the CORBA specification.
4-4 CORBA V2.2 February 1998

4

tory.

ients

t
y
An operation on the object reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See the
Interface Repository chapter for a definition of operations on the Interface Reposi
An operation on the Object called get_implementation will return an object in an
implementation repository that describes the implementation of the object.

InterfaceDef get_interface (); // PIDL
ImplementationDef get_implementation ();

4.2.2 Duplicating and Releasing Copies of Object References

Because object references are opaque and ORB-dependent, it is not possible for cl
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

Object duplicate (); // PIDL
void release ();

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the
duplicate, and that the implementation cannot distinguish whether the original or a
duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is no
involved, and that neither the object itself nor any other references to it are affected b
the release operation.

4.2.3 Nil Object References

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

boolean is_nil (); // PIDL

4.2.4 Equivalence Checking Operation

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

boolean is_a(in RepositoryID logical_type_id); // PIDL

The logical_type_id is a string denoting a shared type identifier (RepositoryId). The
operation returns true if the object is really an instance of that type, including if that
type is an ancestor of the “most derived” type of that object.
CORBA V2.2 Object Reference Operations February 1998 4-5

4

y

ther

joint

h
This operation exposes to application programmers functionality that must alread
exist in ORBs which support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

4.2.5 Probing for Object Non-Existence

boolean non_existent (); // PIDL

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (ra
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively
that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as a
form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

4.2.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

unsigned long hash(in unsigned long maximum); // PIDL
boolean is_equivalent(in Object other_object);

Two identity-related operations are provided. One maps object references into dis
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing: Object Identifiers

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using the hash() operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references has
differently, applications can determine that the two object references are not identical.
4-6 CORBA V2.2 February 1998

4

l use

could
t

can

s

able.

hers

cy
The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typica
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there
be many proxy objects representing a given “real” object. Those proxies would no
necessarily hash to the same value.

Equivalence Testing

The is_equivalent() operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service,
make such determination impractically expensive. This means that a FALSE return
from is_equivalent() should be viewed as only indicating that the object reference
are distinct, and not necessarily an indication that the references indicate distinct
objects.

A typical application use of this operation is to match object references in a hash t
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, ot
during idle time.

4.2.7 Getting Policy Associated with the Object

The get_policy operation returns the policy object of the specified type (see “Poli
Object” on page 4-12), which applies to this object.

Policy get_policy (
in PolicyType poli cy_type

);

Parameters

policy_type The type of policy to be obtained.

Return Value

policy A policy object of the type specified by the poli cy_type
parameter.
CORBA V2.2 Object Reference Operations February 1998 4-7

4

4),

ain
ith at

BA

t the

to the
Exceptions

4.2.8 Getting the Domain Managers Associated with the Object

The get_domain_managers allows administration services (and applications) to
retrieve the domain managers (see “Management of Policy Domains” on page 4-1
and hence the security and other policies applicable to individual objects that are
members of the domain.

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one dom
manager is always returned in the list since by default each object is associated w
least one domain manager at creation.

4.3 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter environments.

• Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including some Object Adapter objects).

CORBA V2.2 provides operations, specified in PIDL, to initialize applications and
obtain the appropriate object references. The following is provided:

• Operations providing access to the ORB. These operations reside in the COR
module, but not in the ORB interface and are described in “ORB Initialization” on
page 4-8.

• Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in “Obtaining Initial Object References” on page 4-10.

In addition, this manual provides a mapping of the PIDL initialization and object
reference operations to several languages.

4.4 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to ge
ORB pseudo-object reference and possibly an OA object reference. This serves two
purposes. First, it initializes an application into the ORB and OA environments.
Second, it returns the ORB pseudo-object reference and the OA object reference
application for use in future ORB and OA operations.

CORBA::BAD_PARAM raised when the value of policy type is not valid either
because the specified type is not supported by this ORB
or because a policy object of that type is not associated
with this Object.
4-8 CORBA V2.2 February 1998

4

 is

ld.

is
ces

ed

 This

e

all be
The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. This
because applications do not initially have an object on which to invoke operations.The
ORB initialization operation is an application’s bootstrap call into the CORBA wor
The PIDL for the call (Figure 7-1) shows that the ORB_init call is part of the CORBA
module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization
complete, its pseudo reference is returned and can be used to obtain other referen
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, and an arg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

Figure 7-1

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings
other than the empty string are allocated by ORB administrators and are not manag
by the OMG. ORBid strings other than the empty string are intended to be used to
uniquely identify each ORB used within the same address space in a multi-ORB
application. These special ORBid strings are specific to each ORB implementation
and the ORB administrator is responsible for ensuring that the names are
unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned.
is achieved by searching the arg_list parameters for one preceded by "-ORBid," for
example, "-ORBid example_orb" (the whitespace after the "-ORBid" tag is ignored) or
"-ORBidMyFavoriteORB" (with no whitespace following the "-ORBid" tag).
Alternatively, two sequential parameters with the first being the string "-ORBid"
indicates that the second is to be treated as an ORBid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, th
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for
example, "Hostname," "SpawnedServer," and so forth. To allow for other parameters
to be specified without causing applications to be re-written, it is necessary to specify
the parameter format that ORB parameters may take. In general, parameters sh
formatted as either one single arg_list parameter:
CORBA V2.2 ORB Initialization February 1998 4-9

4

t, the

nce

t
list

ces.

nual;
s are

bject
f

–ORB<suffix><optional whitespace> <value>

or as two sequential arg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB_ini
arg_list arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBid string is passed to ORB_init, all ORBid parameters in the arg_list
are ignored. All other -ORB<suffix> parameters in the arg_list may be of significa
during the ORB initialization process.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the same ORBid string is passed, either explicitly as an argumen
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the arg_
may be considered on subsequent calls to ORB_init.

4.5 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object referen
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in Chapter 9 of this ma
The Interface Repository is described in Chapter 8 of this manual; Object Service
described in CORBAservices: Common Object Services Specification.) The
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service be
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local version
of the Naming Service that applications can use to obtain a small, defined set of o
references which are essential to its operation. Because only a small well defined set o
objects are expected with this mechanism, the naming context can be flattened to be a
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are obtained via operations on the ORB pseudo-object interface,
providing facilities to list and resolve initial object references. The PIDL for these
operations is shown below.

// PIDL interface for getting initial object references

module CORBA {
interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};
4-10 CORBA V2.2 February 1998

4

e

 the

tain

is.
ugh

the

urns
ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId identifier)
 raises (InvalidName);
 }

}

The resolve_initial_references operation is an operation on the ORB rather than th
Naming Service’s NamingContext. The interface differs from the Naming Service’s
resolve in that ObjectId (a string) replaces the more complex Naming Service
construct (a sequence of structures containing string pairs for the components of
name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To main
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, the ObjectId name space requires careful management. To achieve th
the OMG may, in the future, define which services are required by applications thro
this interface and specify names for those services.

Currently, reserved ObjectIds for CORBA Core are RootPOA, POACurrent , and
InterfaceRepository; for CORBA Services, they are NameService,
TradingService, SecurityCurrent , and TransactionCurrent .

To allow an application to determine which objects have references available via
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectIdList, which is a sequence of ObjectIds.
ObjectIds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined, i.e. "InterfaceRepository" ret
a object of type Repository, and “NameService" returns a CosNamingContext
object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the ObjectId. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services (in CORBAservices: Common Object
Services Specification) will state whether it is expected that a service’s initial reference
be made available via the resolve_initial_references operation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).
CORBA V2.2 Obtaining Initial Object References February 1998 4-11

4

oose

d

.

ill

t
s

 do

4.6 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module's Current . Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references .
For example the Security service obtains the Current relevant to it by invoking

ORB::resolve_i niti al_references("SecurityCurrent")

A CORBA service does not have to use this method of keeping context but may ch
to do so.

module CORBA {
// interface for the Current object
interface Current {
};

};

Operations on interfaces derived from Current access state associated with the threa
in which they are invoked, not state associated with the thread from which the Current
was obtained. This prevents one thread from manipulating another thread's state, and
avoids the need to obtain and narrow a new Current in each method's thread context

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. Current s are per-process singleton objects, so
no destroy operation is needed.

4.7 Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affec
its operation. This information is accessed in a structured manner using interface
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to
so. As examples, in CORBA Core the PortableServer module uses this technique to
specify how the POA operates and The Security Service uses this technique for
associating Security Policy with objects in the system.
4-12 CORBA V2.2 February 1998

4

d are

n
module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy
{

readonly attri bute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Pol icy> PolicyList;
};

PolicyType defines the type of Policy object. The values of PolicyType s are
allocated by OMG. New values for PolicyType should be obtained from OMG by
sending mail to request@omg.org. In general the constant values that are allocate
defined in conjunction with the definition of the corresponding Policy object.

Copy

Policy copy();

Return Value

This operation copies the policy object. The copy does not retai
any relationships that the policy had with any domain, or object.

Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of
the policy object to determine whether it can be destroyed.

Exceptions

Policy_type

readonly attri bute policy_type

Return Value

This readonly attribute returns the constant value of type
PolicyType that corresponds to the type of the Policy object.

CORBA::NO_PERMISSION raised when the policy object determines that it
cannot be destroyed.
CORBA V2.2 Policy Object February 1998 4-13

4

h

ribing

s) the

ain
add

in a
he

ach.

icy,

at

This
s to
4.8 Management of Policy Domains

4.8.1 Basic Concepts

This section describes how policies, such as security policies, are associated wit
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section desc
Policy Objects.

Policy Domain

A policy domain is a set of objects to which the policy(ies) associated with that
domain applies. The objects are the domain members. The policy(ies) represent(
rules and criteria that constrain activities of the objects which belong to the domain.
On object creation, the ORB implicitly associates the object with one or more policy
domains. Policy domains provide leverage for dealing with the problem of scale in
policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The dom
manager also records the membership of the domain and provides the means to
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated
policy object is associated with the domain by associating the policy object with t
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for e
There is at most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individual pol
then must be a singleton member of a domain.

Object Membership of Policy Domains

An object can simultaneously be a member of more than one policy domain. In th
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies).
would require conflicts among policies defined by the multiple overlapping domain
4-14 CORBA V2.2 February 1998

4

g

licy
in

 of

d to

never
be resolved. The specification does not include explicit support for such overlappin
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a po
and then enforcing it does not see the domain manager objects and the doma
structure.

• The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so is aware of the scope
what he is administering.

Note that this specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing and removing policies applie
the domains. Such interfaces are expected to be the province of other object services
and facilities such as Management Facilities and/or Collection Service in the future.

Domains Association at Object Creation

When a new object is created, the ORB implicitly associates the object with the
following elements forming its environment:

• One or more Policy Domains, defining all the policies to which the object is subject.

• The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when the creating object calls
CORBA::BOA::create or an equivalent. Some or all of these associations may
subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a side-
effect of some other activity, such as moving an object to another host machine.

In some cases, when a new object is created, it needs to be created in a new domain.
Within a given domain a construction policy can be associated with a specific object
type thus causing a new domain (i.e., a domain manager object) to be created whe
an object of that type is created and the new object associated with the new domain
manager. This construction policy is enforced at the same time as the domain
membership (i.e., by BOA::create or equivalent).
CORBA V2.2 Management of Policy Domains February 1998 4-15

4

h the

he
m.

is

ested

, the

 no
ns.

d

re.
Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) object
calls BOA::create or equivalent to create the new object reference. The ORB
obtains the construction policy associated with the creating object, or the default
domain absent a creating object.

By default, the new object that is created is made a member of the domain to whic
parent object belongs. Non object applications on the client side are associated with a
default, per process policy domain by the ORB. Thus, when they create objects t
new objects are by default associated with the default domain associated with the

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object, a new domain manager
created with it. This object provides a single operation make_domain_manager
which can be invoked with the constr_policy parameter set to TRUE to indicate to
the ORB that new objects of the specified type are to be created within their own
separate domains. Once such a construction policy is set, it can be reversed by
invoking make_domain_manager again with the constr_policy parameter set to
FALSE .

When creating an object of the type specified in the make_domain_manager call
with constr_policy set to TRUE, the ORB must also create a new domain for the
newly created object. If a new domain is needed, the ORB creates both the requ
object and a domain manager object. A reference to this domain manager can be found
by calling get_domain_managers on the newly created object’s reference.

While the management interface to the construction policy object is standardized
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain. The ORB will always arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be
such domain as in the case of a non-object client invoking object creation operatio

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

4.8.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain managers an
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, and manage which policies are
associated with domains, as these are expected to be developed in a future
Management Facility specification (for example, one based on the X/Open Systems
Management Preliminary Specification); the Collection Service is also relevant he
4-16 CORBA V2.2 February 1998

4

s

This section also includes the interface to the construction policy object, as that i
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA
{

interface DomainManager {
Policy get_domain_policy (

in PolicyType policy_type
);

};

const PolicyType SecConstruct ion = 11;

interface ConstructionPol icy: Policy{
void make_domain_manager(

in CORBA::Inter faceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagerList;
};

Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required.

All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-7 and “Getting the Domain Managers
Associated with the Object” on page 4-8).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);
CORBA V2.2 Management of Policy Domains February 1998 4-17

4

a

ffect

d
 the

in.
Parameters

policy_type The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are
described in CORBAservices: Common Object Services
Specification, Security chapter, Security Policies Introduction
section.

Return Value

A reference to the policy object for the specified type of policy in
this domain.

Exceptions

Construction Policy

The construction policy object allows callers to specify that when instances of a
particular interface are created, they should be automatically assigned membership in
newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in e
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an instance of the interface specified by the input
parameter is created, a new domain manager will be created and the newly created
object will respond to get_domain_managers by returning a reference to this
domain manager. Alternatively the policy can be set to associate the newly create
object with the domain associated with the creator. This policy is implemented by
ORB during execution of BOA::create (or equivalent) and results in the
construction of the application-specified object and a Domain Manager object if so
dictated by the policy in effect at the time of the creation of the object.

void make_domain_manager (
in Inter faceDef object_type,
in boolean constr_policy

);

Parameters

object_type The type of the objects for which Domain Managers will be
created. If this is nil, the policy applies to all objects in the doma

CORBA::BAD_PARAM raised when the value of policy type is not valid
either because the specified type is not supported
by this ORB or because a policy object of that
type is not associated with this Object.
4-18 CORBA V2.2 February 1998

4

h the

r to
RB.

o

it of
constr_policy If TRUE the construction policy is set to create a new domain
manager associated with the newly created object of this type in
this domain. If FALSE construction policy is set to associate the
newly created object with the domain of the creator or a default
domain as described above.

4.9 Thread-related operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Bot
ORB::run() and ORB::shutdown() are useful in fully multi-threaded programs.

Note – These operations are defined on the ORB rather than on an object adapte
allow the main thread to be used for all kinds of asynchronous processing by the O
Defining these operations on the ORB also allows the ORB to support multiple object
adapters, without requiring the application main to know about all the object adapters.
The interface between the ORB and an object adapter is not standardized.

module CORBA
{

…
interface ORB {

...
boolean work_pending();
void perform_work();
void shutdown(in boolean w ait_for_compl etion);
void run();

4.9.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread t
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and a result of FALSE indicates that the ORB does not need the main thread.

4.9.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined un
work. Otherwise, it does nothing.
CORBA V2.2 Thread-related operations February 1998 4-19

4

e
It is platform specific how the application and ORB arrange to use compatible
threading primitives.

The work_pending() and perform_work() operations can be used to write a
simple polling loop that multiplexes the main thread among the ORB and other
activities. Such a loop would most likely be needed in a single-threaded server. A
multi-threaded server would need a polling loop only if there were both ORB and other
code that required use of the main thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

}
// do other things
// sleep?

}

4.9.3 run

void run();

This operation returns when the ORB has shut down. If called by the main thread, it
enables the ORB to perform work using the main thread. Otherwise, it simply waits
until the ORB has shut down.

This operation can be used instead of perform_work() to give the main thread to
the ORB if there are no other activities that need to share the main thread. Even in a
pure multi-threaded server, calling run() in the main thread is useful to ensure that th
process does not exit until the ORB has been shut down.

4.9.4 shutdown

 void shutdown(in boolean wait_for_completion);

This operation instructs the ORB to shut down. Shutting down the ORB causes all
object adapters to be shut down. If the wait_for_completion parameter is TRUE,
this operation blocks until all ORB processing (including request processing and object
deactivation or other operations associated with object adapters) has completed.
4-20 CORBA V2.2 February 1998

	ORB Interface
	4.1 Overview
	4.1.1 Converting Object References to Strings
	4.1.2 Getting Service Information

	4.2 Object Reference Operations
	4.2.1 Determining the Object Interface
	4.2.2 Duplicating and Releasing Copies of Object References
	4.2.3 Nil Object References
	4.2.4 Equivalence Checking Operation
	4.2.5 Probing for Object Non-Existence
	4.2.6 Object Reference Identity
	4.2.7 Getting Policy Associated with the Object
	4.2.8 Getting the Domain Managers Associated with the Object

	4.3 ORB and OA Initialization and Initial References
	4.4 ORB Initialization
	4.5 Obtaining Initial Object References
	4.6 Current Object
	4.7 Policy Object
	4.8 Management of Policy Domains
	4.8.1 Basic Concepts
	4.8.2 Domain Management Operations

	4.9 Thread-related operations
	4.9.1 work_pending
	4.9.2 perform_work
	4.9.3 run
	4.9.4 shutdown

