4.1 Overview

ORB Interface 4

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 4-1
“Object Reference Operations” 4-4
“ORB and OA Initialization and Initial Bferences” 4-8
“ORB Initialization” 4-8
“Obtaining Initial ObjectReferences” 4-10
“Current Object” 4-12
“Policy Object” 4-12
“Management of Policy Domains” 4-14
“Thread-related operations” 4-19

The ORB interface is the interface to those ORB functions that ddepeind on

which object adapter is used. These operations are the same for all ORBs and all object
implementations, andan be performed either by clients of the objects or
implementations. Some of these operations appear to be on the ORB, others appear tc
be on the object reference. Because the operatiothgsirsection are implemented by

the ORB itself, they are not in fact operations on objects, wdfhahey may be

described that wagnd the language binding will, for consistency, make them appear

CORBA V2.2 Febloag/ 4-1

4-2

that way. The ORB interface also defines operations for creligiisgand determining
the default context used in the Dynamic Invocation Interface. Those operations are
described in the Dynamic Invocation Interfadtepter.

module CORBA {

typedef unsigned short Serviceype;
typedef unsigned long Service@tion;
typedef unsigned long ServiceDetailpe;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service detl type;
sequence <octet> service_detail;

h

struct Servicelnformation {
sequence <ServieOption> service_options;
sequence <ServiceDetail> service_details;

h

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create_list (
in long count,
out NVList new_list

Status create_operation_list (
in OperationDef oper,
out NVList new_list

)i

Statusget_default_context (out Context ctx);
boolean get_service_information (
in ServiceType servie_type;
out Servicelnformation service_nformation;
);
/l get_current deprecated operation - should not besed by new code
/I new code should use resadv initial_reference operation instead
Current get_current();
%
%

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::".

CORBAV2.2 February 1998

4

The get_current operation is described in “Thread-related operations” on page 4-19.

4.1.1 Converting Object Refarces tdstrings

Because anlgect reference is opaque and naliffer from ORB to ORB, the object
referenceitself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: alloiwg an object reference to be turned into a value that a client can
store in some other medium, andsaring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may bstored or communicated in whatever ways
strings may be manipulated. Subsequently, giing_to_object operation will
accept a string produced bgbject_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB's object_to_string operation must based to produce the string. For all
conforming ORBSs, if obj is a valid reference to an object, then
string_to_object(object _to_string(obj)) will return a valid

reference to the same object, if the two operations are performed on the same ORB.
For all conforming ORB's supporting IOP, this remains true even if the two operations
are performed on different ORBs.

For a daecription of thecreate_listandcreate_operation_listoperations, see “List
Operations” on pags-11. Theget default_contextoperation is described in the
section “get_default_context” on pag€ls.

4.1.2 Getting Service Information

get_service_information

boolean get_service_infor mation (
in ServiceType service_type;
out Servicelnformation service_information;

)i

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supportedthig ORB. The service type for which
information is being requested is passed in as thaiameteiservice_type , the
values defined by constants in tB®RBA module. If service information is available
for that type, that is returned in the out parame&vice_information , and the
operation returns the vald&RUE. If no information for the requested services type is
available, the operation returRALSE (i.e., the service is not supported by this ORB).

CORBAV2.2 Overview February 1998 4-3

4

4.2 Object Referend@perations

There are some @pations thatan be done on any object. These are not operations in
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interface Object to represent the object reference, we will define an
interface for Object:

module CORBA {

interface Object { /[PIDL
ImplementationDef get_implementation (); /deprecated as of 2.2
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();

void release ();

boolean is_a (in string logial_type_id);
boolean non_existent();

boolean is_equivalent (in Object other_object);
unsigned long hash(in unsigned long marium);

Status create_request (

in Context ctx,

in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags

);
Policy get_policy (
in PolicyType policy type
)i
omainManagersListget_domain_managers ();
%
%

The create_requestoperation is part of the Object intece because it creates a
pseudo-bject (a Request) for an object. It is described with the dReguest
operations in the section Sectibr2, “Request Operans,” on page 5-5.

4.2.1 Determming the Object Interface

Note —Theget_implementationoperation is deprecated in this version of the
CORBA specification. Namew code sbuld make use of thisiterface and peration,
since they will be eliminated in a future version of the CORBA $jpatibn.

4-4 CORBAV2.2 February 1998

4

An operation on the object referenggt_interface returns an object in the Interface
Repository, which provides type information that may be useful to a pro§eenthe
Interface Repository chapter for a definition of operations on the Interface Repository.
An operation on the Object callg®et_implementationwill return an object in an
implementation repository that describes the implementation of the object.

InterfaceDef get_interface (); /I PIDL
ImplementationDef get_implementation ();

4.2.2 Duplicating and Releasing CopiesQifject References

Because olgict references are opaque and ORB-dependent, it is not possible for clients
or implemenations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

Object duplicate (); /[PIDL
void release ();

If more than one copy of an objaefferance is needed, theieht may create a
duplicate. Note that the object implementation is not involvedrieating the
duplicate, and that the implementaticannot distinguish whether the original or a
duplicate was used in a particular request.

When an object reference is no longer needed by a progeasigrage may be
reclaimed by use of theeleaseoperation. Note that the object implementation is not
involved, and that neither thabject itself norany other references to it are affected by
the releaseoperation.

4.2.3 Nil Object References

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by ilenil operation. The object
implementation is not involved in the nil test.

boolean is_nil (); /[PIDL

4.2.4 Equivalence Checking Operation

An operation is defined to facilitate maintaining type-safety for object refeseover
the scope of an ORB.

boolean is_a(inRepositoryID logical_type_id); /I PIDL

Thelogical_type_idis a stringdenoting a shared typdentifier (Repositoryld). The
operation returns true if the object is really an instance otypat including if that
type is an ancestor of the “most ded” type of that object.

CORBAV2.2 Object Reference Operations February 1998 4-5

This operation exposes to application programmers functionality that must already
exist in ORBs which support “type safe narrow” and allowgpmmers working in
environments that do not have compile time tghecking to explicitly maintain type
safety.

4.2.5 Probing for Object Non-Existence

boolean non_existent (); // PIDL

The non_existentoperation may be used test whether an object (e.g.peoxy

object) has been destroyed. It does this without invokimgapplication level

operation on the object, and so will never affect the object itself. It returns true (rather
than raisingCORBA::OBJECT_NOT_EXIST) if the ORB knowsauthoritatively

that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object nefer® such as bridges, event
channels, and base relationship services, might useparation in their “idle time” to
sift through object tables fabjects that no longer exist, deleting them as tqwyas a
form of garbage collection. In the case of proxies, this kindativity can cascade,
such that cleaning up one table allows others then to be cleaned up.

4.2.6 Object Reference ldentity

In order to efficiently managstate thainclude large numbers of object references,
services need to support a notion of object refererestityf. Such services include not
just bridges, but relationship services and other layéaedities.

unsigned long hash(in unsigned long maxiom); // PIDL
boolean is_equivalent(in Object other_object);

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent referencasd the other supports more expensive
pairwise equivalence testing. Together, these operatiomgort efficient maintenance

and search of tables keyed by object references.

Hashing: Object Identifiers

Object references are assated with ORB-internal identifienshich may indirectly be
accessed by applications using trash() operation. The value of this id€fidir does
not change during the lifee of the object reference, and so neither anly hash
function of that identifier.

The value othis operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the object references armt identical.

CORBAV2.2 February 1998

4

The maximum parameter to theashoperation specifies an uppeound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construand access a Bision chained hash table of object
references, the more randomdistributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

Equivalence Testing

Theis_equivalent() operation is used to determinetifo object references are
equivalent, so far as the ORB can eadiyermine. It return§RUEiIf the target object
reference isknown to beequivalent to the other object reference passed as its
parameter, anéALSE otherwise.

If two object references are idésdl, they are equivalent. Twdifferent object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whethetistirct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make suchdetermination impractically expensive. This means thaABSE return

from is_equivalent()should be viewed as only indicating that the object references
are distinctand not necessarily anditation that the references indicate distinct
objects.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idletime.

4.2.7 Getting Policy Associated with tdject

The get_policy operation returns the policy object of the specified type (see “Policy
Object” on page 4-12), which appliesttds object.

Policy get_policy (
in PolicyType poli cy_type
);

Parameters

policy type The type of policy to be obtained.

Return Value

policy A policy object of the type specified by tpelicy type
parameter.

CORBAV2.2 Object Reference Operations February 1998 4-7

Exceptions
CORBA::BAD_PARAM raised when the value of policy type is not valid either
because the specified type is not supported by this ORB
or because a policy object thiat type is not associated
with this Object.

4.2.8 Getting the Domain Managers Associated with the Object

Theget_domain_managers allows administration services (and applications) to
retrieve the domain managers (see “Management of Policy Domains” on page 4-14),
and hence the security and otlpeticies applicable to individual objects that are
members of the domain.

DomainManagersList get_domain_managers ();
Return Value

The list of inmediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
leastone domain manager at creation.

4.3 ORB and OMnitializationandInitial References

Before an application can enter the CORBA environment, it mst fir
® Be initializedinto the ORB and possibly the objectapter environments.

®* Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including some Object Adapter objects).

CORBA V2.2 provides operationspecified inPIDL, to initialize applicationand
obtain the appropriate object referencise following is provided:

® QOperations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in “ORialization” on
page 4-8.

® Operations providing access to Object Adapters, Interfacediepy, Naming
Service, and other Object Services. Theserajonsreside in the ORB interface
and are described in “Obtainingitial Object References” opage 4-10.

In addition, this manual provides a mapping of HBL initialization andobject
reference operations to several languages.

4.4 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-bject referencand possibly an OA object reference. This setwes
purposes. First, it initializes an application into the ORB and OA environments.
Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORBnd OA @erations.

CORBAV2.2 February 1998

4

The ORB and OAriitialization operations must lrdered with ORB ocurring before

OA: anapplication cannotall OA initialization routines until ORB initialization
routines have been called for the given ORB. Therafion to initialize ampplication

in the ORB and get itgseudo-object reference is not performed on an object. This is
because applications do not initially have an object on which to invoke operdtiens.
ORB initialization operation is an application’s bootstrap call into the CORBA world.
The PIDLfor the call(Figure 7-1) shows that the ORB_iill is part of the CORBA
module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, itpseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications c&IRE: init
operation. The parameters to ttedl comprise an identifier for the ORB fohieh the
pseudo-bject referace is required, and aarg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the iBR&ization is
as follows:

// PIDL
module CORBA {
typedef string ORBId;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBId orb_identifier);
I
Figure 7-1

The identifier for the ORB will be a name of type CORBA::Oi@B All ORBId strings
other than the emptstringare allocated by ORB administrators and are not managed
by the OMG. ORBIdstringsother than the empty string are intended to be used to
uniquely identify each ORB used within the same address space in a multi-ORB
application. These special BRI strings are specific to each ORBplemenation

and the ORBadministrator is responsible for ensuring that the names are
unambiguous.

If an empty ORBId string is passed to ORB_init, then the mtgatguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching the arg_list parametersrierpreceded b{*ORBId," for

example, "-ORBid example_orb" (the whitespace aftet'{®®Bid" tag is ignored) or
"-ORBidMyFavoriteORB" (with no whitespace following the "-ORBid" tag).
Alternatively, two sequential parameters with the fireing the string "-ORBid"

indicates that the second is to be treated as an ORBater. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can alsdéwified in arg_list, for

example, "Hostname," "SpawnedServer," andesth. To alow for otherparameters

to be specified without causing applications to be re-written, it is necessargcify sp

the parameter format that ORB parameters may take. In general, parameters shall be
formatted as eithesne single argidt parameter:

CORBAV2.2 ORBitialization February 1998 4-9

—ORB<suffix><optional whitespace> <value>

or as two sequeial arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBId string is passed to ORB _init, the
arg_list arguments are examined to determirenif ORB parameters are given. If a
non-empty ORBId string is passed to ORB_init, ORBid parameters in the arg_list

are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance
during the ORB initialization process.

The ORB_init operatiomay be called any number ofnies and shall return the same
ORB reference when the same ORBIidng is @mssed, either explicitly as an argument
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the arg_list
may be considered on subsequent calls to ORB _init.

4.5 Obtaining Initial Object References

4-10

Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in Chapter 9 of this manual,
The Interface Repository is described in Chapter 8 of this manual; Object Services are
described inCORBAserges: Common Object Services Specificajidine

functionality required by the application is similar to that provided byNaming

Service. However, the OMG does noant to mandate that the Naming Service be

made available to all applications in order that they may be portably initialized.
Consequently, the operatioaBown inthis section provide a simplified, local version

of the Naming Service that applications can use to obtain a small, defined set of object
references which are essential to itsepption. Because only a small well defined set of
objects are expected with this menlsmn, the naming contextn be flattened to be a
single-level name space. Thisngilification results in onlywo operations being

defined to achieve the functionality required.

Initial references are obtained via operations on the ORB pseudo-mitggéice,
providing facilities to listand resolvenitial object referencesihe PIDL for these
operations ishown below.

/ PIDL interface for getting initial object references
module CORBA {

interface ORB {

typedef string Objectld;

typedef sequence <Objectld> ObjectldList;

exception InvalidName {};

CORBAV2.2 February 1998

ObjectldList list_initial_services ();

Object resolve_initial_references (in Objectldidentifier)
raises (InvalidName);

}

Theresolve _initial_referencesoperation is an operation on the ORB rather than the
Naming Service’dNamingContext. The interface differs from the Naming Service’s
resolve in thaObjectld (a string) replaces the more complex Naming Service
construct (a sequence of structures containing string pairs for the components of the
name). This snplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtainingitial references, only a limited set of
objects are expected to have their references founthigiaoute. Unlike the ORB
identifiers, theObjectld name space requires careful management. To achieve this.
the OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

Currently, reserve@bjectlds for CORBA Core ardRootPOA, POACurrent, and
InterfaceRepository, for CORBA Services, they aidameService,
TradingService, SecurityCurrent, and TransactionCurrent.

To allow an application to determine which objects have references available via the
initial references mechanism, thist_initial_servicesoperation (also a call on the

ORB) is provided. It returns a@bjectldList, which is a sequence @bjectlds.
Objectlds are typed as strings. Each object, which may need to be anadable at
initialization time, is allocated a stringalue to represent it. In addition to defining the

id, the type of object being returned must be defined, i.e. "InterfaceRepository" returns
a object of type Repository, and “Nanme@ice” returns &£0sNamingContext

object.

The application is responsible for narrowing the object refegereturned from
resolve_initial_referencego the type whiclwas requested ithe Objectld. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services @D RBAservices: Common Object
Services Specificatignvill state whether it is expected that a servideiSal reference
be made available via tlresolve_initial_referencesoperation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).

CORBAV2.2 Obtaining Initial Object References February 1998 4-11

4

4.6 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running.infbisnation is
accessed in a structured manner using interfacegedeiiom theCurrent interface
defined in theCORBA module.

Each ORB or CORBA service that needs its own cordexives arinterface from the
CORBA module'sCurrent . Users of the service can obtain an instance of the
appropriateCurrent interface by imoking ORB::resolve_initial_references

For example the &urity service obtains théurrent relevant to it by invoking

ORB::resolve_i nitial_references('SecurityCurrent")

A CORBA service does not have to use this method of keeping context but may choose
to do so.

module CORBA {
Il interface for the Current object
interface Current {
|3

|3

Operations on interfaces derived fr@@arrent access state associated with the thread
in which they are invoked, not state associated with the thread from whiClutient

was dtained. This prevents one thread from mandgting another thread's stasnd
avoids the need to obtaand narrow a newurrent in each method's thread context.

Current objects must not bexported to other processes, or externalized with
ORB::object to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exceptiorCurrent s are per-process singleton objects, so
no destroy operation is needed.

4.7 Policy Object

An ORB or CORBA service may choosedlow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived fom thePolicy interface defined in th€EORBA module. A CORBA service
does not have to ugkis method of accessing operating options, but may choose to do
so. As examples, in CORBA Core tRertableServer module uses this technique to
specify how the POA operatesd TheSecurity Serviceises this technique for
associatingsecurity Policywith objects in the system.

4-12 CORBAV2.2 February 1998

module CORBA {
typedef unsigned long PolicyType;

/I Basic IDL definition
interface Policy

{
readonly attri bute PolicyType policy_type;
Policy copy();
void destroy();

|3

typedef sequence <Pol icy> PolicyList;

k

PolicyType defines the type dPolicy object. The values d?olicyType s are

allocated by OMG. New values for PolicyType should be obtained from OMG by
sending mail to request@omg.org. In general the constant values that are allocated are
defined in conjunction with the definition of the correspondiadicy object.

Copy

Policy copy();
Return Value

This operation copies the policy object. The copy does not retain
any relationships that the polibad with anydomain, or object.
Destroy

void destroy();

This operation destroys the policy object. It is the respditgiof
the policy object to determine whether it can be destroyed.

Exceptions
CORBA::NO_PERMISSION raised when the policy object determines that it

cannot be destroyed.
Policy_type
readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type
PolicyType that corresponds to the type of the Policy object.

CORBAV2.2 Poligybject February 1998 4-13

4

4.8 Management of Policy Domains

4-14

4.8.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfandsperations that facilitate this
aspect of management is described in this section together with the section describing
Policy Objects.

PolicyDomain

A policy domain is a set of objects to which the policy(ies) associated with that
domain applies. The objects are the domain members. The policy(ies) represent(s) the
rules and dteria that constrain agities of theobjects which belong to the domain.

On object creation, the ORBplicitly associateshe object withone or more policy
domains. Policy domains provide leverage for dealing with the problem of scale in
policy management by allowing application of policy at a domaindeaity rather

than at an individual object instance granularity.

PolicyDomain Manager

A policy domain includes a unique object, one per poliogndin, called thelomain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain managésédf a member of a domaippssibly

the domain it manages.

PolicyObjects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is at most one policy of each type associated with a policy doTepolicy

objects are thus shared betwedsjeats in the domain, rather than being associated

with individual objects. Consequently, if an object needs to have an individual policy,
then must be a singleton member of a domain.

Object Membership of Policy Domains

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing donEiesreference

model allows an object to be a membemnufltiple domains, which may overlap for

the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domains to

CORBAV2.2 February 1998

4

be resolved. Thepecification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers amablicy objectshave two types of interfaces:

®* The operational interfaces used when enforcing the policies. These are the
interfacesused by the ORB during an object invocation. Sqrokicy objects may
also be used by applications, which enfotteeir own policies.

The caller asks for the policy of a particular typey(ethedelegation policy), and

then uses the policy object returned to enforce the policy. The caller finding a policy
and then enforcing it does not see the domain manager objects and the domain
structure.

®* The administrativénterfaces used to set policies (e.g., specifyirfgch events to
audit or who can access objects of a specified type in this domain). The
administrator seeand navigates the domain structure, so is aware of the scope of
what he is administering.

Note that this specification does not include arplicit interfaces for managing the
policy domains themselves: creating and deleting theaving objects between them;
changing the domain structure and adding, changing and removing policies applied to
the domains. Such interfaces are expected to be the province of othetr sshyices

and fadlities such as Maagement Facilities and/or Collection Service in the future.

Domains Association at Object Creation

When a new bject is created, the ORiBplicitly associates thebject with the
following elements forming its environment:

®* One or mordPolicy Domains defining all the policies tavhich the object is subject.

®* TheTechnologypomains,characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORBwill establish these associationfi@n thecreating object calls
CORBA::BOA:.create or an equivalent. Some or all of these a&sions may
subseqgently be explicitly refemced andnodified by adminisative or application
activity, which might be specifically security-related lmauld also occur as a side-
effect of some other activitguch as moving an object to another host machine.

In some cases, when a new object is created, it needs to be createsividamain.

Within agiven domain a construction policy can be assed vith a specific object

type thus causing a new domain (i.e., a domain manager object) to be created wheneve
an object of that type is created and the new object associated witbwh@main

manager. This construction policy is enforced at the same time as the domain
membership (i.e., biBOA:.create or equivalent).

CORBAV2.2 Management of Policy Domains February 1998 4-15

4-16

Implementor’s View of Object Creation

For policy domains, the construction policy of the application or faatoegting the
object proceeds as follow$he application (which may be a gendactory) object
calls BOA:.create or equivalent to create the new object referefite. ORB
obtains the construction policy associated with the creating object, or the default
domain absent a creating object.

By default, the new object that is created is made a member of the domain to which the
parent object belongs. Non object applications on the client side amadsdonth a
default, per process policy domain by the ORB. Thus, when they create objects the
new dojects are by default associated with the default domain associated with them.

Each domain manager has anstiuction policy associated with it, which controls
whether, in addition to creating the specified new object, a new domain manager is
created with it. This object provides a single operati@ke domain_manager

which can be invoked with theonstr_policy parameter set tdRUE to indicate to

the ORB thanhew objects of the specified type are to be created within their own
separate domains. Once such a construction policy is set, it can be reversed by
invoking make_domain_manager again with the constr_policy parameter set to
FALSE.

When creating an object of the type specified inrtteke_domain_manager call

with constr_policy set toTRUE, the ORB must also create a new domain for the
newly created object. If a new domain is needed, the ORB creates both the requested
object and a domain manager object. A reference to this domain managerfeancbe

by callingget domain_managers on the newlycreated object’s reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a privatevbith, may
be optimized for different implementations.

If a new domain is createthe policiesinitially applicable to it are the policies of the
enclosing domain. The ORB will always arranggtovide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no
such @main as in the case of a non-object client invoking object creation operations.

The caling application, or an administrative application latan change the domains
to which this object belongs, using the domain managem#taces, which will be
defined in the future.

4.8.2 Domain Management Operations

This section defines the intedas and oprationsneeded to find domain managers and
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, and manage whdtaspaie
associated with domains, as these are expected to be developed in a future
Management Facility specification (for exampdee based on the X/Open Systems
Management Preliminary Specification); the Collection Service is also relevant here.

CORBAV2.2 February 1998

4

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfacesoperations related to
these are part of theORBA module, since other definitions in tAEORBA module
depend on these.

module CORBA
{

interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
);
|3

const Policy Type SecConstruct ion =11;

interface ConstructionPol icy: Policy{
void make_domain_manager(
in CORBA::Inter faceDef object_type,
in boolean constr_policy
);
|3

typedef sequence <DomainManager> DomainManagerList;

ki

Domain Manager

The domain manager providesechanisms for:
® Establishing and navigating relationships to superiat subordinate domains.

® Creating and a@ssing policies.

There should be no unnecessary constraints on the ordering oftitestes, for
example, it must be possible &ld new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required.

All domain managers provide tlgeet_ domain_policy operation. By virtue of being
an object, the Domain Managers alsve theget_policy and

get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-7 and “Getting thm@n Managers
Associated with the Object” on page 4-8).

CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.

Policy get_ domain_policy (

in PolicyType policy_type
);

CORBAV2.2 Management of Policy Domains February 1998 4-17

4-18

Parameters

policy type The type of policy for objects in the domain which the egtidin
wants to administer. For securitile posible policy ypes are
described irCORBAserges: Common Obje&ervices
Specification Securitychapter, Security Policies Introduction
section.

Return Value

A reference to the policy object for the specified type of policy in
this domain.

Exceptions

CORBA::BAD_PARAM raised when the value of policy type is not valid
either because the specified type is not supported
by this ORB or because a policy object of that
type is not associated with this Object.

Construction Policy

The construction policy object allowsallers to specify that aen instances of a
particular interface are created, theyddddbe automatically assigned membership in a
newly created domain at creatiime.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which thi€onstructionPolicy object is associated. Construction
Policy can either be set so that when an instance of theaiegespecified by the input
parameter is created, a new domain manager will be craatbthe newly created

object will respond tget _domain_managers by returning a reference to this

domain manager. Alternatively the policy can be set to associate the newly created
object with the domain associated with the creator. This policy is implemented by the
ORB during execution oBOA::create (or equivalent) andesults in the

construction of the application-specified objantd a Domain Manager object if so
dictated by the policy in effect at the time of the creation of the object.

void make_domain_manager (
in Inter faceDef object_type,
in boolean constr_policy

Parameters

object_type The type of the objects for which Domain Managers will be
created. If this is nil, the policy applies to all objects in the domain.

CORBAV2.2 February 1998

constr_policy IfTRUE the consuction policy is set to createnew domain
manager associated with the newly created object of this type in
this domain. IfFFALSE construction policy is set @ssociate the
newly created object with the domain of the creator or a default
domain as described above.

4.9 Thread-related operations

To support single-threaded ORBs, aslivas multithreaded ORBs that runulti-
thread-unaware code, several operations are included in their@®tce.These
operations can be used by single-threaded amti-threaded applications. An

application that is a pure ORB client would not need to use these operations. Both the
ORB::run()and ORB:shutdown() are useful in fully multi-thréad programs.

Note —These operations are defined on the ORB rather than on an object adapter to
allow the main thread to be used for all kinds of asynchronous processing by the ORB.
Defining these oerations on the ORB also allows the ORBstpportmultiple object
adapters, without requiring the application mairktow about all the object adapters.

The inerface between the ORB and an object adapter is not standardized.

module CORBA
{

interface ORB {

boolean work_pending();

void perform_work();

void shutdown(in boolean w ait_for_compl etion);
void run();

4.9.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform worke
and aresult of FALSE indicates that the ORB does not need the main thread.

4.9.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work. Otherwise, it does nothing.

CORBAV2.2 Thread-related operations February 1998 4-19

It is platform specifichow theapplication and ORB arrange to use compatible
threadingprimitives.

Thework_pending() andperform_work() operations can be used to write a
simple polling loop that multiples the main thread among the ORB and other
activities. Such a loop wouldnost likely beneeded in a single-threaded server. A
multi-threaded server would need a polling loop only if there wetle ®RB and other
code that required use of the main thread.

Here is an example of such a polling loop:

/I C++
for (;;) {
if (orb->work_pending()) {
orb->perform_work();

}
// do other things
/I sleep?
}
4.9.3 run
void run();

This operation returns ren the ORB has shut down. If called by thaimthread, it
enables the ORB to performork using the rain thread. Otherwise, it simply waits
until the ORB has shut down.

This operation can be used insteadpefform_work() to give the main thread to
the ORB if there are no other activities thaed to share the main thread. Even in a
pure multi-threaded server, callingn() in the main thread is useful to ensure that the
process does not exit until the ORB has been dbwn.

4.9.4 shutdown

void shutdown(in boolean wait_for_completion);

This operatiorinstructs the ORB to shut dowBhutting down the ORB causes all
object adapters to be shut down. If thait_for_completion parameter iSRUE,
this operation blocks until all ORB processing (including request procemsihgbject
deactivation or other operations associated with object adaptexr€omleted.

4-20 CORBAV2.2 February 1998

	ORB Interface
	4.1 Overview
	4.1.1 Converting Object References to Strings
	4.1.2 Getting Service Information

	4.2 Object Reference Operations
	4.2.1 Determining the Object Interface
	4.2.2 Duplicating and Releasing Copies of Object References
	4.2.3 Nil Object References
	4.2.4 Equivalence Checking Operation
	4.2.5 Probing for Object Non-Existence
	4.2.6 Object Reference Identity
	4.2.7 Getting Policy Associated with the Object
	4.2.8 Getting the Domain Managers Associated with the Object

	4.3 ORB and OA Initialization and Initial References
	4.4 ORB Initialization
	4.5 Obtaining Initial Object References
	4.6 Current Object
	4.7 Policy Object
	4.8 Management of Policy Domains
	4.8.1 Basic Concepts
	4.8.2 Domain Management Operations

	4.9 Thread-related operations
	4.9.1 work_pending
	4.9.2 perform_work
	4.9.3 run
	4.9.4 shutdown

