Dynamic Invocation Interface 5

The Dynamic Invocation Interface (DII) describes the client’s side of the interface that
allows dynamic creatioand invocation of request to objects. All types defined in this
chapter are part of the CORBA module. When referenced in OMG IDL, the type
names must be prefixed by “CGBR.:.".

Contents

This chapter contains thellowing sections.

Section Title Page
“Overview” 5-2
“Request Operations” 5-5
“Deferred Synchronous izrations” 5-8
“List Operations” 5-11
“Context Objects” 5-13
“Context Object Operations” 5-14
“Native Data Manipulation” 5-17

CORBA V2.2 Febloag/ 5-1



5-2

5.1 Overview

The Dynamic mvocation Interface (DIl) allows dynamic creation and invocation of
requests to objects. A client using this irded to send a request to an object obtains
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operatiahalist of parameters. The
ORB applies the implementation-hidifjgncapsulation) principle to requests.

In the Dynamic Invocatiomnterface, parameters in a request are suppliedeasents
of a list. Each element is an instance damedValue (see “Common Data
Structures” on page 5-2). Each parameter is passed ratite data form.

Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the parameters
defined for the operation in the Interface Repository.

The user exceptiowrongTransaction is defined in the CORBA module, prior to the
definitions of the ORB and Request interfacesfoliews:

exception WrongTransaction {};

This exception can be raised only if the requegsnhidicitly associated with a
transaction (the current transaction at the time that the reguassissued).

5.1.1 Common Data Structures

The typeNamedValue is a well-known data type in OMG IDL. It can be used either

as a parameter type directly or as a mechanism for describing arguments to a request.
The typeNVList is a pseudo-object useful formstructing parameter lists. The types

are described in OMG IDL and C, respectively, as:

typedef unsigned long Flags;

struct NamedValue {

Identifier name; /l ar gument name
any argument; // argument
long len; /I length/count of argument value
Flags arg_modes;// argument mode flags
|3
CORBA_NamedValue * CORBA_NVList; [*C*

NamedValue andFlags are defined in the CORBA module.

The NamedValue andNVList structures are used in the requestraions to

describe arguments and return values. They are also used in the context object routines
to pass lists of property names and values. Despitaltbee declaration falVList ,

the NVList structure is partialjopaque and may only be created by using the ORB
create_listoperation.

CORBAV2.2 February 1998



3

For out mrameters, applicatiorcan set theargument member of thd&NamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If a
non-null storage pointer is provided for an out parameter, the ORB teifhpt to use

the storage pointed to for holding the value of the out parameter. If the storage pointed
to is not sufficient to hold the value of the out parameter, the behavior is undefined.

A named value includes an argument name, argument value éay griength of the
argument, and a set of argument mode flags. When named value structures are used t
describe arguments to a request, the names are the argument identifiers specified in the
OMG IDL definition for a specific operation.

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-Adyan
consists of &ypeCodeand a pointer to the data value. ThgdCode is a @ll-known
opaque type that can encode a description of any type specifiable in OMG IDL. See
this section for a full description ofyfpeCodes.

For most data typegn is the actual number of bytes that the value occupies. For
object referenceden is 1. Table 5-1 shows the length of data valoeeghe C
language binding. The behavior of a NamedValue is undefintge [En value is
inconsistent with the ypeCode.

Table 5-1 C Type Lengths

Data type: X

Length (X)

short

unsigned short
long

unsigned long
long long
unsigned long long

sizeof (CORBA_short)

sizeof (CORBA_unsigned_short)
sizeof (CORBA_long)

sizeof (CORBA_unsigned_long)
sizeof (CORBA_long_long)

sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include \O’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

CORBAV2.2 Overview February 1998 5-3



Table 5-1 C Type Lengths(Continued)

Data type: X Length (X)

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) *V [*V is the actual, dynamic, number of
elements */

Thearg_modes field is defined as a bitmask (long) and may contain the following

flag values:
CORBA:ARG_IN The associated value is an input oalgument.
CORBA:ARG_OUT The associated value is an output only argument.

CORBA:ARG_INOUT  The associated value is arout argument.

These flag valueglentify the parameter passing mode for arguments. Additional flag
values have specific meanings for request lestdoutines, and are documented with
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementation-
specific flags.

5.1.2 Memory Usage

The \alues for output argument data types that an@oundedstrings or mbounded
sequences are returned as pointers tadhcally allocated memory. In order to

facilitate thefreeing of all “out-arg memory,” the request routines provide a

mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine. When
thelist is deletedthe associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an ardisthenée
programmer is responsible for freeing each out parameter GSIRBA_free()
which is discussed in Section 19.9, “Mappiiog Structure Types,” on page 19-12.

5.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus, the
return type of these routines is void.

Previous versions of CORBA allowed implementationstioose the type they

returned from these routines by specifying the return type as a typedef named
CORBA::Status. Implementations were allowed to define this typedef as either type
void or asunsigned long . Due to the portabilitproblems resulting from this
approach, the unsigned lodgfinition of Status is deprecated. Use ahsigned

long status, while legal, is not portable.

CORBAV2.2 February 1998



The Statustype has beeleft in the CORBA module for reasons leickwards
compatibility. In the next major revision of CORBA it will be removed entiselg
all instances oftatus will be replaced withvoid.

5.2 Request Operations

Therequest operations are defined in terms ofReguest pseudo-object. The Request
routines use th&lVList definition defined in the preceding section.

module CORBA {

interface Request { /I PIDL
Statusadd_arg (
in Identifier name, /[l argument name
in TypeCode arg_type, /argument datatype
in void * value, /I argument value to be added
in long len, I/ lergth/count of argument
value
in Flags arg_flags /I argument flags
);
Status invoke (
in Flags invoke_flags // invocation flags
);

Statusdelete ();
Status send (

in Flags invoke_flags// invocation flags
)i
Statusget_response (
in Flags response_flags // response flags

) raises (WrongTransaction);
%
|3

5.2.1 create_request
Because it creates a pseudo-object, this operation is defintbe iBbject interface (see

“Object Reference Operations” @age 4-5 for the complete interfadefinition). The
create_request operation is performed on the Object which is to be invoked.

CORBAV2.2 Request Operations February 1998 5-5



5-6

Status create_request ( /I PIDL
in Context ctx, I/ context objectfor operation
in Identifier operation, /l intended operation on object
in NVList arg_list, /I args to operation
inout NamedValue result, // operation result
out Request request, /I newly created request
in Flags req_flags /I request flags

)i

This operationcreates an ORB request. The actual @atmnoccurs bycalling invoke
or by using thesend / get_re sponse calls.

The operation namgpecified orcreate_request is the same operation identifier that
is specified in the OMG IDL definitiofor this operation. In the case of attributes, it is
the name as constructéallowing the rules specified in the ServerRequest interface as
described in the DSI in “ServerRequestPseudo-Object” on page 6-3.

The arg_list , if specified, contains a list of arguments (inpautfput, and/or
input/output) which become associated with the requeatglflist is omitted
(specified as NUL), the arguments (if anyhust be specifiedsing theadd_arg call
below.

Arguments may be associated with a requestdsgipg in an argument list or bging
repetitive calls taadd_arg . One mechanism or the other may be useddpplying
arguments to a given request; a mixture oftthe approaches is not supported.

If specified, thearg_list becomes associated with the request; untilitkieke call
has completed (or the request has béeleted), the ORB assumes thag list (and
any values it pointo) remains unchanged.

When sgcifying an argument list, thealue andlen for each argument must be
specified. An argument's datatype, name, and usage flags (i.e., in, out, inout) may also
be specified; if so indicated, arguments are validated for data type, order, name, and
usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering basad argument name.

The contexiproperties associated with the operation are passed to the object
implementation. The object implementation may not modify the context information
passed to it.

The operationesult is placed in theesult argument after the invocation completes.

The req_flags argument is defined as a bitmadbng ) that may contain the
following flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with
the argument listNVList).

Settingthe OUT_LIST_MEMORY flag combls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY isspecified, an argument list must also have been specified on

CORBAV2.2 February 1998



3

thecreate_request call. When output arguments tfis type are allocated, they are
associated with the list structure. When ftisé dtructure is freed (see belovapy
associated out-arg memory is also freed.

If OUT_LIST_MEMORY isnotspecified, then each piece of out-arg memory remains
available until the programmer explicitly frees it with procedures provided by the
language mappings (See Section 19.19, “Argument Passing Considerations,” on
page 19-21; Section 20.27, “NVList,” on page 20-71; and Section 22.24, “Argument
Passing Considerations,” on page 21-17.

5.2.2 add_arg

Statusadd_arg ( /[ PIDL
in ldentifier name, /[ argument name
in TypeCode arg_type, /argument datatype
in void * value, /l argument value to be added
in long len, /l length/count of argument value
in Flags arg_flags /l argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally #slue andlen must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may alsodwified. If so indicated,
arguments are validated for data type, order, name, and usage correctness against the
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering baged argument name.

The arguments added the request become associated with the recarestre
assumed to be unchangedtil the hnvoke hascompleted (or the request has been
deleted).

Arguments may be associated with a request by specifying them on the
create_request call or by adding them via calls smld_arg . Using both methods for
specifying arguments, for the same request, is not currently supported.

In addition to the argument modes defined in “Common Data Structurgsigm5-2,
arg_flags may also take the flag value:IN_COPY_VALUE. The argument passing
flags defined in “Common Data Structures” may be used here to indicate the intended
parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead. This flag is ignored for inout and out arguments.

CORBAV2.2 Request Operations February 1998 5-7



5-8

5.2.3 invoke

Status invoke ( /I PIDL
in Flags invoke_flags /l invocation flags
)i

This operatiorcalls the ORB, which performs method resolutaord invokes an
appropriate method. If the method returns successfully, its result is placedésuhe
argument specified ocreate_request . The behavior is undefined tiie Request
pseudo-bject has alreadpeen used with a previoasll to invoke, send or
send_multiple_requests

5.2.4 delete

Statusdelete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e., by
using thelN_COPY_VALUE flag) is also freed.

5.3 Deferred Synchronous Operations

5.3.1 send

Status send ( // PIDL
in Flags invoke_flags Il invocation flags

send initiates anoperation according to theformation in the Rquest. Unlike

invoke, send returns control to the caller without waiting for the operation to finish.
To determine \wen the operation is done, theleaimust use thget_response or
get_next_response operations describdgkelow. The out parameters and return value
mustnot be used until theperation isdone.

Although it is possible for some standard exceptions to be raised Isgrile

operation, there is no guarantee that all possible errors will be detEotegixample,

if the object reference is not validend might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception will
be raised wheget_response is called.

If the operation is defined to lmmeway or if INV_NO_RESPONSE is specified, then
get_response does not need to bmalled. In sucltases, some errors might go
unreported, since if they are not detected be$erel returns there is no way to
inform the caller of the error.

The following invocatiorflags are currently defined f@end:

CORBAV2.2 February 1998



3

CORBA::IINV_NO_RESPONSE indicates that the invoker does not intend to wait for a
response, nor does it expect any of the output arguments (in/out and out) to be updated.
This option may be specified even if the operation has not been define dneway.

5.3.2 send_multiple_requests

*C*

CORBA _Status CORBA _send_multi ple_requests (
CORBA_Requestregs], [* array of Re quests *
CORBA_Enviro nment*env,

CORBA_long count, /* number of Requ ests */

CORBA_Flagsinvoke f lags
);

/I C++

class ORB

{
public:
typedef sequence<R equest_ptr> RequestSeq;

Status send_mul tiple_req uests_oneway(const R equestSeq &);
Status send_mul tiple_req uests_deferred(const R equestSeq &);

|

The Smalltalkmapping of sendnultiple requests is as follows:

sendMultipleRequests: aCol lection
sendMultipleRequestOne way: aCollection

send_multiple_requests initiates morehan one request in parallel. Likend,
send_multiple_requests returns to the caller without waiting for thearations to
finish. To determine when each operation is@cthe cdér must use the
get_response orget_next_response operations described below.

The degree of patfalism in theinitiation and execution of the requests is system
dependent. There are no guarantees about the order in which the requegtiataict in
If INV_TERM_ON_ERR is specified, and the ORB detects an énitinting one of
the requests, it will nanitiate any further requestsom this list. If
INV_NO_RESPONSE is specified, it applies to all of the requests in the list.

The following invocatiorflags are currently defined faend_multiple_requests

CORBA::IINV_NO_RESPONSE indicates that the invoker does not intend to wait for a
response, nor does it expect any of the output arguments (inout and out) to be updated.
This option may be specified even if the operation has een ldefined to beneway .

CORBA:INV_TERM_ON_ERRmeans that if one of the requests causes an error, the
remaining requests are not sent.

CORBAV2.2 Deferred Synchronous Operations February 1998 5-9



5-10

5.3.3 get_response

Statusget_response ( /I PIDL
in Flags response_flags /I response flags
) raises (WrongTransaction);

get_response determines whether a request has completegktlfresponse
indicates that the operation is done, the arameterand return values defined in the
Request are valilgnd they may be treated as if the Requeaike operationhad
been used to perform the request.

If the RESP_NO_WAIT flag is segiet_re sponse returns immediately even if the
request isstill in progress. Otherwisget_response waits until the request is done
before returning.

The following response flag idefined forget_response:

CORBA::RESP_NO_WAIT indicates that the caltkyes not want to wait for a
response.

A request has an associated transaction context if the thread originating the request hac
a non-null transaction conteahd the target object is a transactional obj€be
get_responseperation may raise th&/rongTransaction exception if the request

has an associated transaction context, and the thread ilgaingesponsesither has

a null transaction context or a non-null transaction context that differs from that of the
request.

5.3.4 get_next_response

CH

CORBA _Status CORBA_get _next_response (
CORBA_Enviro nment*eny,

CORBA_Flags response_f lags,
CORBA_Request *req

)

/I C++
class ORB
{
public:
Boolean poll_next_response();
Status get_next_res ponse(RequestSeq*&);

h

CORBAV2.2 February 1998



The Smalltalkmapping of get_next_response is as follows:

polINextR esponse
getNextResponse

get_next_response returns the next request that completes. Despite the name, there
is no guaranteed ordering among the completed requests, so the order in which they are
returned from successiget _next_response calls is not necessarily related to the

order in which they finish.

If the RESP_NO_WAITlag is set, and there are no completed requests pending, then
get_next_response returns immediately. Otherwisget _next_response waits
until some request finishes.

The following response flag idefined forget _next_response:

CORBA:RESP_NO_WAIlTindicates that the caller does not want to wait for paese.

A request has an associated transaction context if the thread originating the request hac
a non-null transaction conteahd the target object is a transactional obj€be
get_next_responseperation may raise th&/rongTransaction exception if the

request has an associated transaction context, and the thread invoking
get_next_responsdas a non-null transaction context thdfeds from that of the

request.

5.4 List Operations

The Ist operations use the named-value structure defined abovissTbperations that
createNVList objects are defined in the ORB interface described in the ORB Interface
chapter, but are described in this section. MW&ist interface isshown below.

interface NVList { /[ PIDL
Status add_item (
in Identifier item_name, / name ofitem
in TypeCode item_type, I/ item datatype
in void *value, /l item value
in long value_len, /I length of item value
in Flags item_1lags Il item flags
);

Status free ();
Status free_memory ();
Statusget_count (
out long count /I number of enties in thelist
);
%

Interface NVList is defined in the CORBA module.

CORBAV2.2 List Operations February 1998 5-11



5.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

Status create_list ( //PIDL
in long count, / number of items to allocate for list
out NVList new_list /I newly created list

);

This operation allocateslst of the specified size, and clears it faitial use. List
items may beadded to the list using tteeld_item routine. Alternativelythey may be
added by indexing directly into tHist structure. A mixture of the two approaches for
initializing a list, however, is10t supported.

An NVList is a partially opque structure. It may only be allocated via a call to

create_|ist.
5.4.2 add_item

Status add_item ( // PIDL
in Identifier item_name, /l name ofitem
in TypeCode item_type, /l item datatype
in void *value, /l item value
in long value_len, /l'length of item value
in Flags item_flags Il item flags

);

This operation adds rmewitem to the indicated lisfTheitem isadded after the
previously added item.

In addition to the argument modes defined in SectiérStem_flags may also take

the following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument
passing flags defined in “Common Data Structures” on page 5-2 may be used here to
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead.

If a list structure is added as @am (e.g., a “sublist”), the DEPENDENTIST flag
may be specified to indicate that the sublist should be fréeshuvhe parenist is
freed.

5.4.3 free
Status free (); /I PIDL

This operation frees thést structire and any associated memory (aplicit call to
thelist free_memory operation is done).

5-12 CORBAV2.2 February 1998



5.4.4 free_memory

Status free_memory (); /I PIDL

This operation freeany dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.

5.4.5 get_count

Statusget _count ( /I PIDL
out long count /I number of entres in thelist
);

This operation returns the total number of items allocated forighis |

5.4.6 create_opation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list ( // PIDL
in OperationDef oper, /I operation
out NVList new_list /I argument definitions

);

This gperation returns aNVList initialized with the argument descriptions for a given
operation. The information is returned in a form that may be us&ynmamic
Invocationrequests. The arguments are returned in the same order as they were defined
for the operation.

The [st free operation is used to free the returned information.

5.5 Context Objects

A context object contains a list of properties, each consisting of a aatha string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context propertiegan represent a portion of a client's or application’s environment

that is meant to be propagated to (and mag#icitly part of) a server’s environment

(for example, a /mdow identifier, or usepreference information). Once a server has
been invoked (i.e., after the properties are propagated), the server may query its context
object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter,@king particular ORBs to takadvantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, activation policy.

CORBAV2.2 Context Objects February 1998 5-13



An operation defition may contain a clause specifying those context properties that
may be of interest to a particular operatidhese context properties comprise the
minimum set of properties that will be propagated to the servers environment
(although aspecified property may have no value associated with it). The ORB may
choose to pass more properties than thoseifspd in the operation declaration.

When a context clause is present on an operation declaratiaddéional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via
either the stub or Dynamic Invocation interface, the ORB causqwdperties which
were named in the operatidefinition in OMG IDL and which are present in the
client's context object, to be provided in the context object parameter to the invoked
method.

Context property names (which are strings) typically have the form of an OMG IDL
identifier, or aseries of OMG IDL identifiers separated by pdgoA context property
name pattern is either a property name, or a property hame followed by a single “*.”
Property nameatterns areised in the&ontext clause of an operation definition and in
the get_values operation (describedelow).

A property name pattern withouttailing “*” is said to match onlyitself. A property
name pattern of the forfikname>*" matches any property name that staiith w
<name> and continuesithr zero or more additional characters.

Context objects may be creatadd deleted, and individual context properties may be
setandretrieved. There will often be context objects associatill particular
processes, users, or other things depending on the opeswsitegn,and there may be
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while otheimplementaibns may be transientThe creation andhodification
of persistent context objects, however, is not addressed in thigictéam.

Context objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context objet¢atively override those properties in
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and threestrict scge” option on the Contexget values call.

Context objects may be named for purposes of specifystgringsearch scope.

5.6 Context Object Operations

5-14

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named it@ién the list.

A property name is represented by a string of characters (see “ldentifiers” on page 3-6
for the valid set of characters that are alolu Property names are stored preserving
their case, however names cannot differ simply by their case.

The Conéxt interface isshown below.

CORBAV2.2 February 1998



module CORBA {

interface Context { // PIDL
Status set_onevalue (
in ldentifier prop_name, I/ property name to add
in string value I/l property value to add
);
Status set_values (
in NVList values // property values to be
changed
);
Statusget_values (
in Identifier start_scope, I/l search scope
in Flags op_flags, /I operation flags
in Identifier prop_name, /l name of property(s) to
retrieve
out NVList values Il requested property(s)
);
Statusdelete_values (
in Identifier prop_name /I name of property(s) to
delete
);
Status create_child (
in Identifier ctx_name, /I name of context object
out Context child_ctx /I navly created context
object
);
Statusdelete (
in Flags del flags I flags controlling deletion
);
¢

h

5.6.1 get_default context

This operation, which creates a Context pseudo-object, is definkd @RB interface
(see “Converting Object References to Strings” on page 4-3 for the complete ORB

definition).

Statusget_default_context ( /I PIDL
out Context Cctx // context object
);

This operation returns a reference to the default process context object. The default
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its Wenip, and System
context objects.

CORBAV2.2 Context Object Operations February 1998 5-15



5-16

5.6.2 set_one value

Status set_onevalue ( /I PIDL
in Identifier prop_name, /l property name to add
in string value I/ property value to add

);

This operation sets a single context object property. Currently, only string values are
supported by the contexbject.

5.6.3 set values

Status set_values ( /[ PIDL
in NVList values Il property values to be changed

)i

This operation setsne or more property values in the context object. In the NVList,
the flags field must be set to zero, and tgpelCodefield associated with an attribute
value must be T_string. Currently, only string values are supported by the context
object.

5.6.4 get values

Statusget_values ( /I PIDL
in ldentifier start_scope, /[search scope
in Flags op_flags, /l operation flags
in ldentifier prop_name, / name of property(s) to retrieve
out NVList values /I requested propery(s)

);

This operatiorretieves the specified context property value(sprtfip_name has a
trailing wildcard character (“*”), then all matching propert@sdtheir values are
returned. The values returned may be freed by a call to thieekstoperation.

If no properties aréound, an error is returned and no propeisy ik returned.

Scope indicates the context object level at which tiaiei the search for the specified
properties (e.g., “_USER”, “*_SYSTEM"). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

Valid scope names are implementation-specific.

If scope name is omitted, the search begins with the specified context object. If the
specified scope name is not found, an exception is returned.

The following operatiorilags may be specified:

CORBA:CTX_RESTRICT_SCOPE - Searching idsimited to the specified search
scope or context object.

CORBAV2.2 February 1998



5.6.5 delete_ values

Statusdelete_values ( /I PIDL
in Identifier prop_name /I name of property(s) to delete
);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailingwildcard character (“*"), then all property names that
match will be deleted.

Search scope is alwaysniited to the specified context object.

If no matching property is found, an exception is returned.

5.6.6 create_child

Status create_child ( // PIDL
in ldentifier ctx_name, / name of context object
out Context child_ctx I nevly created context object

);

This operation creates a child context object.

The returned coekt object is chained intiss parent context. That is, searches on the
child context object will look in the parent context (and so on, up the context tree), if
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see “Identifiers” on

page 3-6).
5.6.7 delete
Statusdelete ( /I PIDL
in Flags del flags / flags controlling deletion
)i

This operation deletes the indicated context object.
The following optionflags may be specified:

CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object and all
of its descendent context objects, as well.

An exception is returned if there are one or more child contagrctsand the
CTX _DELETE _DESCENDENTS flag was not set.

5.7 Native Data Manipulation

A future version of this specification will define routines to facilitatedbeversion of
data between the list layout foundN¥VList structures and the compiler native layout.

CORBAV2.2 Native Data Manipulation February 1998 5-17



5-18 CORBAV2.2 February 1998



	Dynamic Invocation Interface
	5.1 Overview
	5.1.1 Common Data Structures
	5.1.2 Memory Usage
	5.1.3 Return Status and Exceptions

	5.2 Request Operations
	5.2.1 create_request
	5.2.2 add_arg
	5.2.3 invoke
	5.2.4 delete

	5.3 Deferred Synchronous Operations
	5.3.1 send
	5.3.2 send_multiple_requests
	5.3.3 get_response
	5.3.4 get_next_response

	5.4 List Operations
	5.4.1 create_list
	5.4.2 add_item
	5.4.3 free
	5.4.4 free_memory
	5.4.5 get_count
	5.4.6 create_operation_list

	5.5 Context Objects
	5.6 Context Object Operations
	5.6.1 get_default_context
	5.6.2 set_one_value
	5.6.3 set_values
	5.6.4 get_values
	5.6.5 delete_values
	5.6.6 create_child
	5.6.7 delete

	5.7 Native Data Manipulation


