
 Dynamic Skeleton Interface 6
ns.

s

e

t
t
but
The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocatio
That is, rather than being accessed through a skeleton that is specific to a particular
operation, an object’s implementation is reached through an interface that provide
access to the operation name and parameters in a manner analogous to the client side’s
Dynamic Invocation Interface. Purely static knowledge of those parameters may b
used, or dynamic knowledge (perhaps determined through an Interface Repository)
may be also used, to determine the parameters.

Contents

This chapter contains the following sections.

6.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an objec
implementation that does not have compile-time knowledge of the type of the object i
is implementing. This contrasts with the type-specific, OMG IDL-based skeletons,
serves the same architectural role.

Section Title Page

“Introduction” 6-1

“Overview” 6-2

“ServerRequestPseudo-Object” 6-3

“DSI: Language Mapping” 6-4
 CORBA V2.2 February 1998 6-1

6

ine
he

itors

ing

ld be

nd the

ters
DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DII). Just as the implementation of an object cannot distinguish whether its client is
using type-specific stubs or the DII, the client who invokes an object cannot determ
whether the implementation is using a type-specific skeleton or the DSI to connect t
implementation to the ORB.

.

Figure 6-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses include
interactive software development tools based on interpreters, debuggers and mon
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

6.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by hav
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR).
Since in any language binding all DIRs have the same signature, a single DIR cou
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object
that was invoked and the operation that was requested. The information is encoded in
the request parameters. The DIR can use the invoked object, its object adapter, a
Interface Repository to learn more about the particular object and invocation. It can
access and operate on individual parameters. It can make the same use of an object
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adap
that provide a DSI. See “Single Servant, many objects and types, using DSI” on
page 9-57 for the specification of the DSI for the Portable Object Adapter.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
6-2 CORBA V2.2 February 1998

6

e
ct will

l
6.3 ServerRequestPseudo-Object

6.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI,
analogous to the Request pseudo-object in the DII. The object adapter dispatches an
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {
...
pseudo interface ServerRequest {

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

};
};

The identity and/or reference of the target object of the invocation is provided by th
object adapter and its language mapping. In the context of a bridge, the target obje
typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked;
according to OMG IDL's rules, these names must be unique among all operations
supported by the object's "most-derived" interface. Note that the operation names for
getting and setting attributes are _get_<attribute_name> and
set<attribute_name>, respectively. The operation attribute can be accessed by the
DIR at any time.

Operation parameter types will be specified, and "in" and "inout" argument values wil
be retrieved, with arguments. Unless it calls set_exception, the DIR must call
arguments exactly once, even if the operation signature contains no parameters. Once
arguments or set_exception has been called, calling arguments on the same
ServerRequest will result in a BAD_INV_ORDER system exception. The DIR
must pass in to arguments an NVList initialized with TypeCodes and Flags
describing the parameter types for the operation, in the order in which they appear in the
IDL specification (left to right). A potentially-different NVList will be returned from
arguments, with the "in" and "inout" argument values supplied. If it does not call
set_exception, the DIR must supply the returned NVList with return values for any
"out" arguments before returning, and may also change the return values for any "inout"
arguments.
CORBA V2.2 ServerRequestPseudo-Object February 1998 6-3

6

 the

e

l

ot

ed to
When the operation is not an attribute access, and the operation's IDL definition contains
a context expression, ctx will return the context information specified in IDL for the
operation. Otherwise it will return a nil Context reference. Calling ctx before
arguments has been called or after ctx, set_result or set_exception has been called
will result in a BAD_INV_ORDER system exception.

The set_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type, set_result
must be called exactly once before the DIR returns. If the operation has a void result
type, set_result may optionally be called once with an Any whose type is tk_void.
Calling set_result before arguments has been called or after set_result or
set_exception has been called will result in a BAD_INV_ORDER system exception.
Calling set_result without having previously called ctx when the operation IDL
contains a context expression, or when the NVList passed to arguments did not
describe all parameters passed by the client, may result in a MARSHAL system
exception.

The DIR may call set_exception at any time to return an exception to the client. The
Any passed to set_exception must contain either a system exception or one of the user
exceptions specified in the raises expression of the invoked operation’s IDL definition.
Passing in an Any that does not contain an exception will result in a BAD_PARAM
system exception. Passing in an unlisted user exception will result in either the DIR
receiving a BAD_PARAM system exception or in the client receiving an
UNKNOWN_EXCEPTION system exception.

See each language mapping for a description of the memory management aspects of
parameters to the ServerRequest operations.

6.4 DSI: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid to it
in the language mapping. This section provides general information about mapping th
Dynamic Skeleton Interface to programming languages.

Each language provides its own mapping for DSI.

6.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a genera
argument in OMG IDL operations, or listed in “orb.idl.”

The client side memory management rules normally applied to pseudo-objects do n
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules appli
data passed from skeletons into statically typed implementation routines, and vice
versa.
6-4 CORBA V2.2 February 1998

6

eton
6.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through
the Object Adapter. An Object Adapter does not have to support the Dynamic Skel
Interface but, if it does, the Object Adapter is responsible for the details.
CORBA V2.2 DSI: Language Mapping February 1998 6-5

6

6-6 CORBA V2.2 February 1998

	Dynamic Skeleton Interface
	6.1 Introduction
	6.2 Overview
	6.3 ServerRequestPseudo-Object
	6.3.1 ExplicitRequest State: ServerRequestPseudo-Object

	6.4 DSI: Language Mapping
	6.4.1 ServerRequest’s Handling of Operation Parameters
	6.4.2 Registering Dynamic Implementation Routines

