6.1

Introduction

Dynamic Skeleton Interface 6

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations.
That is, rather than being accessed through a skeleton that is specifiarticalar
operation, an object’s implementation is reached through an interface that provides
access to the operation naamd parameters in a manner analogous to the clidat
Dynamic Invocation Interface. Purely static knowledge of those parameters may be
used, or dynamiknowledge (perhaps determined through an Interface Repository)
may be also used, to determine the parameters.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Introduction” 6-1
“Overview” 6-2
“ServerRequestPseudobf@ct” 6-3
“DSI: Language Mapping” 6-4

The Dynamic Skeleton Interface isvay to deliverrequests from an ORB to an object
implementation thatloes not haveompile-time knowledge of the type of the object it
is implemening. This contrasts with the type-specific, OMG IDL-based skeletons, but
serves the same architectural role.

CORBA V2.2 ebruary 1998 6-1

6-2

DSl is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DI1). Just as the implementation of an object cannot distinguish whigthaient is

using type-specific stubs or the DII, the client who invokes an object cannot determine
whether the implementat is using a type-specific skeleton or the DSI to connect the
implementation to the ORB.

Dynamic Object Implementation

Dynany€ Skeleton Skeleton

/ Object Adapter

/ ORB Core

6.2 Overview

Figure 6-1 Requests are delivered through skates, hcluding dynamic ones

DSlI, like DI, has many applications bayd interoperaliity solutions. es include
interactive software development tools based on interpreters, debuggers and monitors
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

The basic idea athe DSl is to implement all requests on a particular object by having
the ORB invoke the same upcall routine, anBgnic Implementation Routine (R).

Since in any language binding all DIRs have the same signature, a single DIR could be
used as the implementation for many objects, with differgetfaces.

The DIR is passed dlhe explicit operation parameteesd an indication of the object

that was invoked anthe operation thavas requested. THaformation isencoded in

the request parameters. The DIR can use the invoked object, its object adapter, and the
InterfaceRepostiory to learn more about the particular object and invocation. It can
access and operate on individual parametearitmake the same use of an object
adapter as other objeichplementations.

This chapter describes the elements of the DSI that are common to all object adapters
that provide @SI. See “Single Servant, manpjects and types, using DSI” on
page 9-57 for the spdication of the DSI for the Portable Object Adapter.

CORBAV2.2 February 1998

6.3 ServerRequestPseudo-Object

6.3.1 ExplicitRequest State: ServerRequestPs@lnjiect

The ServerRequest pseudoadttjcaptures the explicit state of a request for the DSI,
analogous to the Request pseudo-object in the THe dject adapter dispatches an
invocation to a DSl-based object imapientation by passing an instance of
ServerRequest to the DIR associated with the object implenmmtafhe following
shows how iprovides access to the request information:

module CORBA {

pseudo interface ServerRequest {
readonly attribute Identifier operation;

void arguments(inoutNVList nv);
Context ctx();

void set_resut(in Any val);

void set_exception(in Any val);

h
h

The identity and/or reference of the target object of the invocation is provided by the
object adapter and its language mapping. In the context of a bridge, the target object will
typically be a proxy for an object in some other ORB.

The operation attribute provides the idéfier namingthe operation being invoked,;
according to OMG IDL's rules, these names musirigue among all operations
supported by the object's "most-derived" interfaceteNhat the operation names for
getting and setting aithutes are_get <attribute_name>and
set<attribute_name> respectively. The op&tion attributecan be accessed by the
DIR at any time.

Operation pameter ypes will be specified, and "in" and "inout" argument values will
be retrieved, wittarguments Unless it callset_exceptiontheDIR must call
argumentsexactly once, even if the operation signature contains rzongters. @ce
argumentsor set_excegion has been calledtaling argumentson the same
ServerRequestwill resultin aBAD_INV_ORDER system exceptionThe DIR
must pass in targumentsanNVList initialized with TypeCodesandFlags
describing the paraster types for the operation, in the ordewinich they appear in the
IDL specification (left to right). A potentially-differerdVList will be returned from
arguments with the "in" and "inout" argument values supplied. If it does not call
set_exceptiontheDIR must supply the returnedVList with return values for any
"out" arguments before returning, and may also changethmvalues foany "inout"
arguments.

CORBAV2.2 3$eerRequestPseudo-Object February 1998 6-3

When the operation is not an attributeess, and the opaion's IDL definition contains
a context expressiotX will return the context information specified lidL for the
operation. Otherwise it willeturn a nilContext refeence. Callingctx before
arguments has been called or aftetx, set_resultor set_exceptiorhas been called
will resultin aBAD_INV_ORDER system exception.

The set_resultoperation is used to specify amgturn value for theall. Unless
set_exceptions called, if the invoked operation has a non-void result typk, result
must be called exactignce before the DIRetuns. If the operation has a void result
type,set_resultmay optionally be called once with &my whose type i¢k_void.
Calling set_resultbeforeargumentshas beeralled or afteset_resultor
set_exceptiorhas been called will result inBAD_INV_ORDER system excepin.
Calling set_resultwithout having previously calleetx when theoperation IDL
contains a context expression, drem theNVList passed t@rgumentsdid not
describe all parameters passed by the client, may resuMiARSHAL system
exception.

The DIRmay callset_excefion at any time toeturn an exception to the client. The
Any passed t@et_exceptionmust contain either a system exception or one afisee
exceptions specified ieraises expession of thenvoked operation’s IDL definibin.
Passing in a\ny that does not contain an exception will result BAD PARAM
system exception. Passing in an unlisted user exception suilt ie either theDIR

receiving aBAD_PARAM system exception or in the client receiving an
UNKNOWN_EXCEPTION system exception.

See each languageapping for a description of the memory management aspects of the
parameters to thBerverRequestoperations.

6.4 DSI: Language Mapping

Because DSl is defined tarms of a pseudo-object,espal attention must be paid to it
in the language mapping. Theectionprovides general information about mapping the
Dynamic Skeleton Interface to programming ¢arages.

Each language providéts own magping for DSI.

6.4.1 ServerRequestHandling of Operation Parameters

There is no requirement thatServerRequest pseudo-object be usable as a general
argument in OMG IDL operations, or listed in “orb.idl.”

The client side memorngnanagement rules normally applied to pseudo-objects do not
strictly apply to a ServerRequest's handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applied to
data passeffom skeletons into statically typed implemeidatroutines, and vice

versa.

CORBAV2.2 February 1998

6.4.2 Registering Dynamic Implentation Routines

In an ORB implementatiothe Dynamic Skeleton Interface is supported entitelyugh
the Object Adapter. An Object Adapter does not have to support the Dynamic Skeleton
Interface but, if it does, th@bject Adapter is responsible for thetails.

CORBAV2.2 DSI:Languatytapping February 1998 6-5

6-6

CORBAV2.2

February 1998

	Dynamic Skeleton Interface
	6.1 Introduction
	6.2 Overview
	6.3 ServerRequestPseudo-Object
	6.3.1 ExplicitRequest State: ServerRequestPseudo-Object

	6.4 DSI: Language Mapping
	6.4.1 ServerRequest’s Handling of Operation Parameters
	6.4.2 Registering Dynamic Implementation Routines

