Dynamic management of Anyvalues /

An any can be passed to a program that doesn’t havestaig infornation for the
type of theany (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receivingnthe
does not have a portable method of using it.

The facility presented here enables traversal of the data value associatedamighadn
runtime and extraction of the pritive consituents of the data value. This is especially

helpful for writing powerful generic servers (bridges, event channels supporting
filtering, etc.).

Similarly, this facility enables the construction of any at runtime, without having
staticknowledge of itsype. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, usgerface tools, etc.).

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 7-2
“DynAny API” 7-3
“Usage in C++ language” 7-14

CORBA V2.2 ebruary 1998 7-1

7.1 Overview

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. ADynAny object is associated with a data value which may
correspond to a copy of the value inserted intaay TheDynAny object may be

seen as owning a pointer to an external buffer which holds some representation of the
data value.

A constructeddynAny object is aDynAny object associated with a constructefddy
There is a different interface, inheriting from thgnAny interface, associated with

each kind of constructed type in IDL (struct, sequence, union, or array). A constructed
DynAny object exports operations that enable the creation oflhavAny objects,

each of them associated with a component of tmstaocted data value.

As an example, ®ynStruct is associated with a struct value. This means that the
object may be seen as owning a pointer to a external buffer which holds a
representation of struct. THeynStruct object exports perations thaenable the

creation of newDynAny objects, each of them associated with a member of the struct.

If a DynAny object has been created from another (a construbygdny object
then the buffer pointed to by thiest DynAny object is logically contained within the
buffer pointed by the secordynAny object.

Destroying éDynAny object implies deleting the buffer it points to and also
destroying allDynAny objects obtained from it. Invoking operatiamsing references

to descendants of a destroy@gnAny object leads to unpredictable results. Note that
releasing a reference toDynAny object will not delete the buffer pointed by the
object, since the object indeed exi@tshas not been explicitly destroyed).

If the programmer wants to destroypgnAny object butstill wants to manipulate
some component of the data value associated with it, then he or she steburbéite
aDynAny for the component and, after that, make a copy of the cr&atediny
object.

The behavior oDynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory spacesapeeéd of accesRynAny
objects are intended to be used for traversing values extractedrfiysror
constructing values ainy s at runtime. Their use for otheuyposes is not
recommaded.

CORBAV2.2 February 1998

7.2 DynAny API

The DynAny API comprises the following IDL definitions to be included in the
CORBA module:

/I DL

interface DynAny {
exception Invalid {};
exception Invali dValue {};
exception TypeMismatch {};
exception InvalidSeq {};

typedef sequence<oct et> OctetSeq;
TypeC ode type ();

void assign (in DynAny dyn_any) raises (Inval id);
void from_any (in any value) raises (Inval id);
any to_any() raises (In valid);

void destroy();

DynAny copy();

void insert_boolean(inb oolean value) raises (In validValue);

void insert_octet(in octet value) raises (Invalidvalue);

void insert_char(in char value) raises (Invali dValue);

void insert_short(in short value) raises (Invalidvalue);

void in sert_ushort (in unsig ned short value) raises (InvalidValue);
void insert_long(in long value) raises (InvalidValue);

void insert_ulong(in unsigned long value) raises (Invalidvalue);

void insert_float(in float value) raises (InvalidValue);

void insert_double(in double value) raises (I nvalidValue);

void insert_string(in string value) raises (Invali dVvalue);

void insert_ref erence (in Object value) raises (Invalidv alue);

void insert_ty pecode (in TypeC ode value) raises (Invalidvalue);
void insert_longlong(in long long value) raises(Invalidvalue);

void insert_ulonglong(in unsigned long long value) raises(InvalidValue);
void insert_lo ngdouble(in long double value) raises(In validValue);
void insert_wchar (in wchar value) raises(Invalidvalue);

void insert_wstring(in wstring value) raises(I nvalidValue);

void insert_any(in any value) raises(InvalidVvalue);

boolean get_boolean() raises (TypeMismatch);

octet get_octet() raises (T ypeMismatch);

char get_char() raises (TypeMismatch);

short get_short() raises (TypeMismatch);

unsigned short get u short () raises (TypeMismatch);
long get_long() raises (TypeMismatch);

unsigned long get_ulong() raises (TypeMismatch);
float get_float() raises (TypeMismatch);

CORBAV2.2 DynAmPI February 1998 7-3

double get_doubl e() raises (TypeMismatch);

string get_string() raises (TypeMismatch);

Object get_reference() raises (TypeMismatch);

TypeC ode get_typecode () raises (TypeMismatch);

long long get_longlong() raises(TypeMismatch);

unsigned long long get_ulonglong() raises(TypeMismatch);
long double get_lon gdoubl e() raises(TypeMismatch);
wchar get_wchar() raises(TypeMismatch);

wstring get_wstring() rai ses(TypeMismatch);

any get_any() raises (TypeMismatch);

DynAny current_component ();
boolean next ();

boolean seek (in long index);
void rewind ();

k

interface DynFixed : D ynAny {
OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

k

interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

|3
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

|3
typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

CORBAV2.2 February 1998

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

|3
typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_elements ();
void set_elements (in AnySeq v alue)
raises (InvalidSeq);

k

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)
raises (InvalidSeq);

k

7.2.1 Locality and usage constraints

DynAny objects are intended to be local to the process in which they are created and
used. This means that reference®ymAny objects cannot be exported to other
processes, or externalized wWittiRB::object_to_string . If any attempt is made to do

so, the offending operation will raiseMARSHAL system exception.

Since theilinterfaces are specified in IDDynAny objects export operations defined
in the standar@ ORBA:: Object interface. However, anytampt to ivoke gerations
exported through th®bject interface may raise the standad® IMPLEMENT
exception.

An attempt to use BynAny object with the DIl may raise ttéO_IMPLEMENT
exception.

7.2.2 Creating a DynAny object
A DynAny object can be created as a result of:
® invoking an operation on aexisting DynAny object
® invoking an operation exported by the ORB

Actually, a constructe@ynAny object support perations thaenable thecreation of
newDynAny objects encapsulating access to the value of some constifDygmAny
objects also support tleopy operation for creating ne@ynAny objects.

CORBAV2.2 DynAmPI February 1998 7-5

7-6

In addition, the ORB can act as a factoryDyhAny objects in the sameay as vith
TypeCode objects. Therefore, the standd®@iRB interface includes th#llowing
operations:

interface ORB {

DynAny create_dyn_any (in any value);
DynAny create_basic_dyn_any(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynStruct create_dyn_struct(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynSequence create_dyn_sequ ence(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynArray create_dyn_array(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynUnion create_dyn_union(in Ty peCode type)
raises (Inconsistent TypeCo de);
DynEnum create_dyn _enum(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynFixed create_dyn_fixed(in T ypeC ode type)
raises (Inconsistent TypeCo de);

>

The create_dyn_any operation creates a nddynAny object from arany value. A
duplicate of theTypeCode associated with thany value is assiged to theresulting
DynAny object. The valuassociated with thBynAny object is a copy of the value
in the original any.

The rest of the operains used to creat®ynAny objects receive @aypeCode input
parameter and throw tHeconsistentT ypeCode exception if theTypeCode passed
as a parameter is not consistent with the operation.

Dynamic interpretation of aany usually involves creating BynAny object using
create_dyn_any as the first step. 8pending on the type of tlamy, the resulting
DynAny object reference can be narrowed DymStruct , DynSequence ,
DynArray , DynUnion or DynEnum object reference.

Dynamic creation of aany containing a struct data value typically involves creating a
DynStruct object usingcreate_dyn_struct , passing th@8ypeCode associated with

the struct data value to be creatétden, components of thersgtt can be initialized by
means of invoking operations on the resulti?iynStruct object orDynAny objects
generated for each member of the struct. Finally, once the data value pointed by the
DynStruct object has been propeiilyitialized, theto_any operation can be invek.

The same approach would be followfed dynamic creation of sequences, unions, etc.

Dynamic creation of aany containing a value of a basic data type typically involves
creating aDynAny object usingcreate_basic_dyn_any , passing th&@ypeCode
associated with the basic data type value to be created. Then, the value can be

CORBAV2.2 February 1998

initialized by means of invoking operations on the resulidlygAny object
(insert_boolean if the DynAny is of typeboolean , etc.). Finally, theéo_any
operation can be invoked.

7.2.3 The DynAny interface

The following operations can be applied t®ynAny object:

® Obtaining theTypeCode associated with thBynAny object

® Generating amny value from theDynAny object

® Destroying theDynAny object

® Creating aDynAny object as copy of thBynAny object

® |nserting/getting a value of some basic type into/fromDgeAny object
® |[teraing through the components oDynAny

® Obtaining the yYpeCodeassociated to the Dymy object

® |nitializing a DynAny object from anothebynAny object

® |Initializing a DynAny object from arany value

® Generating amny value from theDynAny object

® Destroying theDynAny object

® Creating aDynAny object as copy of thBynAny object

® Inserting/Getting a value of some basic type into/fromRigeAny object

® lteraing through the components oDy/nAny

Obtaining the TypeCode associated with a DynAny object

A DynAny object is created with 8ypeCode value assigned to it. Thig/peCode
value determines the type of the value handled througbyhé&ny object. Theype
operation returns th&ypeCode associated with ®ynAny object:

TypeC ode type();

Note that thelTypeCode associated with BynAny object is initialized at the time the
DynAny is created and cannot be changed dulifiegme of theDynAny obiject.
Initializing a DynAny object froranother DynAny object

The assign operation initializes the value associated ©yaAny object with the
value associated to anothHeynAny object:

void assign(in DynAny dyn_any) raises(Inval id);

If an invalid DynAny object is passed (it has a different typecode or doesn't contain a
meaningful value), thénvalid exception is returned.

CORBAV2.2 DynAmPI February 1998 7-7

Initializing a DynAny object from an any value

Thefrom_any operation initializes the value associated @yaAny object with the
value contained in aany:

void from_any(in any value) raises(Inval id);

If an invalidany is passed (it has a different typecode or hasn't been assigned a value)
thelnvalid exception is returned.

Generating an any value from a DynAny object

Theto_any operation creates amy value from aDynAny object:

any to_any() raises(Inv alid);

If the DynAny object has not been correctly created or doesn’t contain a meaningful
value (it hasn’t been properly initialized, for example), linalid exception is
returned.

A duplicate of theTypeCode associated with thBynAny object is assigned to the
resultingany. The value associated with tBynAny object is copied into thany.

Destroying a DynAny object

Thedestroy operation destroys RynAny object. This operation frees any resources
used to represent the data value associated wiynany object.

void destroy();

Destruction of @DynAny object implies destruction of dllynAny objects obtained
from it.

Destruction ofDynAny objects should be handle with care taking into account issues
dealing with representation of data values associatedDyittAny objects.

If the programmer wants to destroyDgnAny object butstill wants to manipulate
some component of the data value associated with it, he or she shsiuddefate a
DynAny for the component and then make a copy of the crdayedny object.

Creating a copy of ®BynAny object

The copy operation enables the creation of a rigynAny object whose value is a
deep copy of the value pointed by thgnAny obiject:

CORBAV2.2 February 1998

DynAny copy();

Accessing a value of some basic type in a DynApgcbb

Theinsert and get operations have been defined to enable insertion/extraction of basic
data type values into/fromBynAny object.

Insert operations raise thevalidValue exception if the value inserted is not
consistent with the type of the accessed component iDyhény object.

Get qperations raise th€ypeMismatch exception if the accessed component in the
DynAny is of a type that is not consistent with the requested type.

These operations are necessary to handle Dgsidny objects but are also helpful to
handle constructeBynAny objects. Inserting a basic data type value into a
constructeddynAny object impliesnitializing the next component of the constructed
data value associated with tbenAny object. For example, invoking

insert_boolean in aDynStruct implies inserting a boolean data value as the next
member of the associated struct data value.

In addition, availability of these operations enable the traversalyd associated with
sequences of basic data types without the need ®rgenaDynAny object for each
element in thesequence.

Iterating through components oDynAny

The DynAny interface allows a client to iteraterough the components of the struct
data value pointed by BynStruct object.

As mentined above, ®ynAny object may be seen as owning a pointer to an external
buffer that holds some representation of a data value. In additioDyttfeny object
holds a pointer to a buffer offset where the current component is being represented.

The buffer pointer effectiely points to the space used to representiteiedompnent
of the data value when the programmer create®tm&\ny object. It also points to
the firstcomponent eachine rewind is invoked.

void rewind();

The next operation logically advances the pointer and returns TRUE if the resulting
pointer points to a component, or FALSE if there are no more components. Invoking
next on aDynAny associated with a basic data type value is allowed, but it always
returns FALSE.

boolean next();

The programmer is able to inspéaitialize the component of the data value associated
with the DynAny object by means of invokingurrent_component at each step
during the iteration.

CORBAV2.2 DynAmPI February 1998 7-9

DynAny current_component();

The resultingDynAny object reference would be used to get/set the value of the
component currently accessed. In order to get access to specific oyse o
resultingDynAny object reference may be narrowed based omyigeCode .

In order to construct aany associated with a sequence data value, for example, the
programmer may first create tiynAny object invokingcreate_dyn_sequence .

After doing so, the programmer mégrate thraigh theelements of thsequence. At
each step, an element in the sequence woulditigized by means ofnivoking
current_component and using the returnddynAny . After that,next will be
invoked. The end of thimitialization process would be detected wheext returns
FALSE. At that point, the programmemould invoketo_any to create amny.

Operationseek logically sets anew ofset for this pointer, returning TRUE if the
resulting pointer points to @mponent or FALSE if there is no component at the
designated offset. Invokingeek on aDynAny associated to a basic data type value is
allowed but it only return§RUE if the value passed as argument equals to zero.

boolean seek(in long index);

7.2.4 The DynFixed interface

DynFixed objects are associated with values of the fided type.

typedef sequence<oct et> OctetSeq;
interface DynFixed : D ynAny {
OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

k

The get_value operation returns the value of tBgnFixed as a sequence of octet.
Eachoctet contains either one or two decimal digits. If the fixed type has an odd
number of decimal digits (which can be determined from the

TypeCode:: fixed_digits operation), then the representation begins with the first
(most significant) digitOtherwise, the first half-octet is all zero, and thstfdigit is in

the second half-octet. The sign of the value, which is stored in the last half-octet of the
sequence, shall be 0xD for negative numbers and Ox@ofitive and zero values.

The set_value operation sets the value of tBgnFixed with anOctetSeq having
the same format as that descritsabve. If theOctetSeq does not conform to the
expected number of digits as determined byTyeCode , thelnvalidvalue
exception is raised.

7.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.

7-10 CORBAV2.2 February 1998

interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

|3
The DynEnum interface consists of two attributes: tveue _as_string attibute

which contains the value of the enum value as a string arndathe as_ulong
which contains the value of the enum value as an unsigned long:

attribute string value_as_string;
attribute unsigned long value_as_ulong;

7.2.6 The DynStruct interface

DynStruct objects are associated with struct valaed exeption values.
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

|3
typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

h

The current_member_name operation returns the name of the member currently
being accessed.

FieldName current _member_name ();

This operation may return an emgtying since theTypeCode of the struct being
manipulated may not contain the names of members in the struct.

current_member_kind returns the TCKind associated with the current member
being accessed.

TCKind current_member_kind ();

It is possible to obtain a sequence of name/value pairs describing the name and the
value of each member in the struct associated widlyreStruct object using the
get_members operation:

CORBAV2.2 DynAmPI February 1998 7-11

NameValuePairSeq get_members();

The set_members operation initializeshe struct data value associated with a
DynStruct object from a sequence of name vahars:

void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

Members must appear in thameValuePairSeq in the order in which they appear in
the IDL specification of the struct. This operation raiseslitialidSeq exception if

an inconsistent name or value is passed as argument (for example, the
NameValuePairSeq does not match the members of the struct, it’s too long/short, or
member values are passed in the wrong order).

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as membaeaisuct.a

7.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

>

The DynU nion interface allows for the insertion/extraction of an OMG IDiiam
type into/from aDynUnion object.

Thediscriminator operation returnsCynAny object reference that must be narrowed
to the type of the discriminator in order to insert/get thsenitninator value:

DynAny di scriminator ();
Note that the type of the discriminator is contained inTyeCode of the union.

The member operation returns BynAny object reference that is used in order to
insert/get the member of the union:

DynAny member ();

discriminator_kind andmember_kind return the TCKind associated with the
discriminator and member of thaion, respectely:

7-12 CORBAV2.2 February 1998

TCKind discriminator_kind ();
TCKind member_kind ();

The member_name attribute allows for the inspection/assignment of the name of the
union member without checking the value of thgcriminator.

The set_as_default attribute determines whether the discriminator associated with
the union has been assignedadid default value.

Union values can be traversed using tperations defined in “Iterating through
components of a DynAny” on page 7-9. In that case,itbecdomponent in the union
corresponds to thdiscriminatorwhile the second corresponds to the actual value of
the union. Operationext should then be called twice.

7.2.8 The DynSequence interface

DynSequence objects are associated with sequences.
typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_element s();
void set_elements(in A nySeq value)
raises (InvalidSeq);

h

Thelength attibute contains the number of elements contained in (or to be contained
in) the sequence; its value is initalized to zero foraumued sequeres:

attribute unsigned long length;

The get_elements andset_elements operations return and receive respectively a
sequence ofinys containingeach of the elements of the sequence:

AnySeq g et_element s();
void set_elements(in A nySeq value);

Theset_elements operation raises thavalidSeq exception if an inconsistent value
is passed in the sequenceanfy values passed as argument (for exampleAthySeq
is too long/short).

7.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)
raises (InvalidSeq);

CORBAV2.2 DynAmPI February 1998 7-13

The get_elements andset_elements operations return and receive respectively a
sequence afinys containingeach of the elements of the array:

AnySeq g et_element s();
void set_elements(in A nySeq value);

Theset_elements operation raises thavalidSeq exception if an inconsistent value
is passed in the sequenceaaf/ values passed as argument (for exampleAtlySeq
is too long/short).

Note that the dimension of the array is containethé@TypeCode which is accessible
through thetype attrbute.

7.3 Usage in C++ language

7-14

7.3.1 Dynamic creation of CORBA::Any values

Creating amany which contains asict

Consider the following IDL dédition:

/I IDL

struct My Struct {
long memberl;
boolean member2;

|

The following exampléllustrates how &£ORBA::Any value may be constructed on
the fly containing a value of typdyStruct :

CORBAV2.2 February 1998

/I C++

CORBA::ORB var orb;
CORBA::StructMemberSeq mems(2);
CORBA::Any result;

long valuel,;

boolean value?;

mems|[0].name = CORBA::string_dup("memberl");
mems[1].type = CORBA:: TypeCode::_duplicate(CORBA::_tc_long);
mems[0].name = CORBA::string_dup("member2");

mems[1].type =
CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc (
"IDL:MyStruct:1.0",
"MyStruct”,
mems

);

/I construct the DynStruct object. Values for members have
/l read in the valuel and value?2 variables

DynStruct_ptr dyn_struct = orb->create_dyn_struct (new_tc);
dyn_struct->insert_long(valuel);
dyn_struct->insert_boolean(value2);

result = dyn_struct->to_any();

dyn_struct->destroy ();

CORBA::release(dyn_struct);

7.3.2 Dynamic interpretation of CORBA::Any values

Filtering of events

Supposedhere is a CORBA object which receives events amtgall those events
which correspond to a data structure containing a member ialladggent whose
value is TRUE.

Thefollowing fragment of code correspds to a method whidfletermines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

CORBAV2.2 Usagein C+ahguage February 1998 7-15

Il C++
CORBA::Boolean Tester::eval_filter(const CORBA::Any &event)

{
CORBA::Boolean success = FALSE;

/I First, typecode is extracted from the event. This
/I is necessary to get struct member names:
CORBA::TypeCode_var event_type = event->type();

/I The filter only returns true if the event is a struct:

if (event_type->kind() == CORBA::tk_struct)

{
DynAny_ptr dyn_any = orb->create_dyn_any(event);
DynStruct_ptr dyn_struct= DynStruct::_narrow(dyn_any);
CORBA::release(dyn_any);

CORBA::Boolean found = FALSE;

do
{
CORBA::String_var member_name =
dyn_struct->current_member_name();

found = (strcmp(member_name, "is_urgent") == 0);
} while (ffound && !dyn_struct->next());

if (found)
{
/' We only create a DynAny object for the member
/I we were looking for:
CORBA::DynAny_var dyn_member =
dyn_struct->current_component ();
success = dyn_member->get_boolean();

h

dyn_struct->destroy();
CORBA::release(dyn_struct);

h

return success;

7-16 CORBAV2.2 February 1998

	Dynamic management of Any values
	7.1 Overview
	7.2 DynAny API
	7.2.1 Locality and usage constraints
	7.2.2 Creating a DynAny object
	7.2.3 The DynAny interface
	7.2.4 The DynFixed interface
	7.2.5 The DynEnum interface
	7.2.6 The DynStruct interface
	7.2.7 The DynUnion interface
	7.2.8 The DynSequence interface
	7.2.9 The DynArray interface

	7.3 Usage in C++ language
	7.3.1 Dynamic creation of CORBA::Any values
	7.3.2 Dynamic interpretation of CORBA::Any values

