
Dynamic management of Any values 7
y
An any can be passed to a program that doesn’t have any static information for the
type of the any (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receiving the any
does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with an any at
runtime and extraction of the primitive constituents of the data value. This is especiall
helpful for writing powerful generic servers (bridges, event channels supporting
filtering, etc.).

Similarly, this facility enables the construction of an any at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools, etc.).

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 7-2

“DynAny API” 7-3

“Usage in C++ language” 7-14
 CORBA V2.2 February 1998 7-1

7

f the

cted

uct.

at
7.1 Overview

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. A DynAny object is associated with a data value which may
correspond to a copy of the value inserted into an any. The DynAny object may be
seen as owning a pointer to an external buffer which holds some representation o
data value.

A constructed DynAny object is a DynAny object associated with a constructed type.
There is a different interface, inheriting from the DynAny interface, associated with
each kind of constructed type in IDL (struct, sequence, union, or array). A constru
DynAny object exports operations that enable the creation of new DynAny objects,
each of them associated with a component of the constructed data value.

As an example, a DynStruct is associated with a struct value. This means that the
object may be seen as owning a pointer to a external buffer which holds a
representation of struct. The DynStruct object exports operations that enable the
creation of new DynAny objects, each of them associated with a member of the str

If a DynAny object has been created from another (a constructed) DynAny object
then the buffer pointed to by the first DynAny object is logically contained within the
buffer pointed by the second DynAny object.

Destroying a DynAny object implies deleting the buffer it points to and also
destroying all DynAny objects obtained from it. Invoking operations using references
to descendants of a destroyed DynAny object leads to unpredictable results. Note th
releasing a reference to a DynAny object will not delete the buffer pointed by the
object, since the object indeed exists (it has not been explicitly destroyed).

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, then he or she should first create
a DynAny for the component and, after that, make a copy of the created DynAny
object.

The behavior of DynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of access. DynAny
objects are intended to be used for traversing values extracted from anys or
constructing values of any s at runtime. Their use for other purposes is not
recommended.
7-2 CORBA V2.2 February 1998

7

7.2 DynAny API

The DynAny API comprises the following IDL definitions to be included in the
CORBA module:

// IDL
interface DynAny {

exception Invalid {};
exception Invali dValue {};
exception TypeMismatch {};
exception InvalidSeq {};

typedef sequence<oct et> OctetSeq;
TypeC ode type ();

void assign (in DynAny dyn_any) raises (Inval id);
void from_any (in any value) raises (Inval id);
any to_any() raises (In valid);

void destroy();

DynAny copy();

void insert_boolean(in b oolean value) raises (In validValue);
void insert_octet(in octet value) raises (InvalidValue);
void insert_char(in char value) raises (Invali dValue);
void insert_short(in short value) raises (InvalidValue);
void in sert_ushort (in unsig ned short value) raises (InvalidValue);
void insert_long(in long value) raises (InvalidValue);
void insert_ulong(in unsigned long value) raises (InvalidValue);
void insert_float(in float value) raises (InvalidValue);
void insert_double(in double value) raises (I nvalidValue);
void insert_string(in string value) raises (Invali dValue);
void insert_ref erence (in Object value) raises (InvalidV alue);
void insert_ty pecode (in TypeC ode value) raises (InvalidValue);
void insert_longlong(in long long value) raises(InvalidValue);
void insert_ulonglong(in unsigned long long value) raises(InvalidValue);
void insert_lo ngdouble(in long double value) raises(In validValue);
void insert_wchar (in wchar value) raises(InvalidValue);
void insert_wstring(in wstring value) raises(I nvalidValue);
void insert_any(in any value) raises(InvalidValue);

boolean get_boolean() raises (TypeMismatch);
octet get_octet() raises (T ypeMismatch);
char get_char() raises (TypeMismatch);
short get_short() raises (TypeMismatch);
unsigned short get_u short () raises (TypeMismatch);
long get_long() raises (TypeMismatch);
unsigned long get_ulong() raises (TypeMismatch);
float get_float() raises (TypeMismatch);
CORBA V2.2 DynAny API February 1998 7-3

7

double get_doubl e() raises (TypeMismatch);
string get_string() raises (TypeMismatch);
Object get_reference() raises (TypeMismatch);
TypeC ode get_typecode () raises (TypeMismatch);
long long get_longlong() raises(TypeMismatch);
unsigned long long get_ulonglong() raises(TypeMismatch);
long double get_lon gdoubl e() raises(TypeMismatch);
wchar get_wchar() raises(TypeMismatch);
wstring get_wstring() rai ses(TypeMismatch);
any get_any() raises (TypeMismatch);

DynAny current_component ();
boolean next ();
boolean seek (in long index);
void rewind ();

};

interface DynFixed : D ynAny {
OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

};

interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

};

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)

raises (InvalidSeq);
};
7-4 CORBA V2.2 February 1998

7

 and

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

};

typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_elements ();
void set_elements (in AnySeq v alue)

raises (InvalidSeq);
};

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)

raises (InvalidSeq);
};

7.2.1 Locality and usage constraints

DynAny objects are intended to be local to the process in which they are created
used. This means that references to DynAny objects cannot be exported to other
processes, or externalized with ORB::object_to_string . If any attempt is made to do
so, the offending operation will raise a MARSHAL system exception.

Since their interfaces are specified in IDL, DynAny objects export operations defined
in the standard CORBA:: Object interface. However, any attempt to invoke operations
exported through the Object interface may raise the standard NO_IMPLEMENT
exception.

An attempt to use a DynAny object with the DII may raise the NO_IMPLEMENT
exception.

7.2.2 Creating a DynAny object

A DynAny object can be created as a result of:

• invoking an operation on an existing DynAny object

• invoking an operation exported by the ORB

Actually, a constructed DynAny object support operations that enable the creation of
new DynAny objects encapsulating access to the value of some constituent. DynAny
objects also support the copy operation for creating new DynAny objects.
CORBA V2.2 DynAny API February 1998 7-5

7

 a

the

tc.

s
In addition, the ORB can act as a factory of DynAny objects in the same way as with
TypeCode objects. Therefore, the standard ORB interface includes the following
operations:

interface ORB {
...
DynAny create_dyn_any (in any value);
DynAny create_basic_dyn_any(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynStruct create_dyn_struct(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynSequence create_dyn_sequ ence(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynArray create_dyn_array(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynUnion create_dyn_union(in Ty peCode type)

raises (Inconsistent TypeCo de);
DynEnum create_dyn _enum(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynFixed create_dyn_fixed(in T ypeC ode type)

raises (Inconsistent TypeCo de);
...

};

The create_dyn_any operation creates a new DynAny object from an any value. A
duplicate of the TypeCode associated with the any value is assigned to the resulting
DynAny object. The value associated with the DynAny object is a copy of the value
in the original any.

The rest of the operations used to create DynAny objects receive a TypeCode input
parameter and throw the InconsistentT ypeCode exception if the TypeCode passed
as a parameter is not consistent with the operation.

Dynamic interpretation of an any usually involves creating a DynAny object using
create_dyn_any as the first step. Depending on the type of the any, the resulting
DynAny object reference can be narrowed to a DynStruct , DynSequence ,
DynArray , DynUnion or DynEnum object reference.

Dynamic creation of an any containing a struct data value typically involves creating
DynStruct object using create_dyn_struct , passing the TypeCode associated with
the struct data value to be created. Then, components of the struct can be initialized by
means of invoking operations on the resulting DynStruct object or DynAny objects
generated for each member of the struct. Finally, once the data value pointed by
DynStruct object has been properly initiali zed, the to_any operation can be invoked.
The same approach would be followed for dynamic creation of sequences, unions, e

Dynamic creation of an any containing a value of a basic data type typically involve
creating a DynAny object using create_basic_dyn_any , passing the TypeCode
associated with the basic data type value to be created. Then, the value can be
7-6 CORBA V2.2 February 1998

7

in a
initialized by means of invoking operations on the resulting DynAny object
(insert_boolean if the DynAny is of type boolean , etc.). Finally, the to_any
operation can be invoked.

7.2.3 The DynAny interface

The following operations can be applied to a DynAny object:

• Obtaining the TypeCode associated with the DynAny object

• Generating an any value from the DynAny object

• Destroying the DynAny object

• Creating a DynAny object as copy of the DynAny object

• Inserting/getting a value of some basic type into/from the DynAny object

• Iterating through the components of a DynAny

• Obtaining the TypeCode associated to the DynAny object

• Initializing a DynAny object from another DynAny object

• Initializing a DynAny object from an any value

• Generating an any value from the DynAny object

• Destroying the DynAny object

• Creating a DynAny object as copy of the DynAny object

• Inserting/Getting a value of some basic type into/from the DynAny object

• Iterating through the components of a DynAny

Obtaining the TypeCode associated with a DynAny object

A DynAny object is created with a TypeCode value assigned to it. This TypeCode
value determines the type of the value handled through the DynAny object. The type
operation returns the TypeCode associated with a DynAny object:

TypeC ode type();

Note that the TypeCode associated with a DynAny object is initialized at the time the
DynAny is created and cannot be changed during lifetime of the DynAny object.

Initializing a DynAny object from another DynAny object

The assign operation initializes the value associated to a DynAny object with the
value associated to another DynAny object:

void assign(in DynAny dyn_any) raises(Inval id);

If an invalid DynAny object is passed (it has a different typecode or doesn’t conta
meaningful value), the Invalid exception is returned.
CORBA V2.2 DynAny API February 1998 7-7

7

alue)

ful

s

es
Initializing a DynAny object from an any value

The from_any operation initializes the value associated to a DynAny object with the
value contained in an any :

void from_any(in any value) raises(Inval id);

If an invalid any is passed (it has a different typecode or hasn’t been assigned a v
the Invalid exception is returned.

Generating an any value from a DynAny object

The to_any operation creates an any value from a DynAny object:

any to_any() raises(Inv alid);

If the DynAny object has not been correctly created or doesn’t contain a meaning
value (it hasn’t been properly initialized, for example), the Invalid exception is
returned.

A duplicate of the TypeCode associated with the DynAny object is assigned to the
resulting any. The value associated with the DynAny object is copied into the any.

Destroying a DynAny object

The destroy operation destroys a DynAny object. This operation frees any resource
used to represent the data value associated with a DynAny object.

void destroy();

Destruction of a DynAny object implies destruction of all DynAny objects obtained
from it.

Destruction of DynAny objects should be handle with care taking into account issu
dealing with representation of data values associated with DynAny objects.

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, he or she should first create a
DynAny for the component and then make a copy of the created DynAny object.

Creating a copy of a DynAny object

The copy operation enables the creation of a new DynAny object whose value is a
deep copy of the value pointed by the DynAny object:
7-8 CORBA V2.2 February 1998

7

basic

t

nal

ed.

g
ing
s

ed
DynAny copy();

Accessing a value of some basic type in a DynAny object

The insert and get operations have been defined to enable insertion/extraction of
data type values into/from a DynAny object.

Insert operations raise the InvalidValue exception if the value inserted is not
consistent with the type of the accessed component in the DynAny object.

Get operations raise the TypeMismatch exception if the accessed component in the
DynAny is of a type that is not consistent with the requested type.

These operations are necessary to handle basic DynAny objects but are also helpful to
handle constructed DynAny objects. Inserting a basic data type value into a
constructed DynAny object implies initializing the next component of the constructed
data value associated with the DynAny object. For example, invoking
insert_boolean in a DynStruct implies inserting a boolean data value as the nex
member of the associated struct data value.

In addition, availability of these operations enable the traversal of anys associated with
sequences of basic data types without the need to generate a DynAny object for each
element in the sequence.

Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the struct
data value pointed by a DynStruct object.

As mentioned above, a DynAny object may be seen as owning a pointer to an exter
buffer that holds some representation of a data value. In addition, the DynAny object
holds a pointer to a buffer offset where the current component is being represent

The buffer pointer effectively points to the space used to represent the first component
of the data value when the programmer creates the DynAny object. It also points to
the first component each time rewind is invoked.

void rewind();

The next operation logically advances the pointer and returns TRUE if the resultin
pointer points to a component, or FALSE if there are no more components. Invok
next on a DynAny associated with a basic data type value is allowed, but it alway
returns FALSE.

boolean next();

The programmer is able to inspect/initialize the component of the data value associat
with the DynAny object by means of invoking current_component at each step
during the iteration.
CORBA V2.2 DynAny API February 1998 7-9

7

e

is

f the
DynAny current_component();

The resulting DynAny object reference would be used to get/set the value of the
component currently accessed. In order to get access to specific operations, the
resulting DynAny object reference may be narrowed based on its TypeCode .

In order to construct an any associated with a sequence data value, for example, th
programmer may first create the DynAny object invoking create_dyn_sequence .
After doing so, the programmer may iterate through the elements of the sequence. At
each step, an element in the sequence would be initialized by means of invoking
current_component and using the returned DynAny . After that, next will be
invoked. The end of the initialization process would be detected when next returns
FALSE. At that point, the programmer would invoke to_any to create an any.

Operation seek logically sets a new offset for this pointer, returning TRUE if the
resulting pointer points to a component or FALSE if there is no component at the
designated offset. Invoking seek on a DynAny associated to a basic data type value
allowed but it only returns TRUE if the value passed as argument equals to zero.

boolean seek(in long index);

7.2.4 The DynFixed interface

DynFixed objects are associated with values of the IDL fixed type.

typedef sequence<oct et> OctetSeq;
interface DynFixed : D ynAny {

OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

};

The get_value operation returns the value of the DynFixed as a sequence of octet.
Each octet contains either one or two decimal digits. If the fixed type has an odd
number of decimal digits (which can be determined from the
TypeCode:: fixed_digits operation), then the representation begins with the first
(most significant) digit. Otherwise, the first half-octet is all zero, and the first digit is in
the second half-octet. The sign of the value, which is stored in the last half-octet o
sequence, shall be 0xD for negative numbers and 0xC for positive and zero values.

The set_value operation sets the value of the DynFixed with an OctetSeq having
the same format as that described above. If the OctetSeq does not conform to the
expected number of digits as determined by the TypeCode , the InvalidValue
exception is raised.

7.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.
7-10 CORBA V2.2 February 1998

7

the
interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

};

The DynEnum interface consists of two attributes: the value_as_string attribute
which contains the value of the enum value as a string and the value_as_ulong
which contains the value of the enum value as an unsigned long:

attribute string value_as_string;
attribute unsigned long value_as_ulong;

7.2.6 The DynStruct interface

DynStruct objects are associated with struct values and exception values.

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)

raises (InvalidSeq);
};

The current_member_name operation returns the name of the member currently
being accessed.

FieldName current _member_name ();

This operation may return an empty string since the TypeCode of the struct being
manipulated may not contain the names of members in the struct.

current_member_kind returns the TCKind associated with the current member
being accessed.

TCKind current_member_kind ();

It is possible to obtain a sequence of name/value pairs describing the name and
value of each member in the struct associated with a DynStruct object using the
get_members operation:
CORBA V2.2 DynAny API February 1998 7-11

7

 or

d
NameValuePairSeq get_members();

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs:

void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

Members must appear in the NameValuePairSeq in the order in which they appear in
the IDL specification of the struct. This operation raises the InvalidSeq exception if
an inconsistent name or value is passed as argument (for example, the
NameValuePairSeq does not match the members of the struct, it’s too long/short,
member values are passed in the wrong order).

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct.

7.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

};

The DynU nion interface allows for the insertion/extraction of an OMG IDL union
type into/from a DynUnion object.

The discriminator operation returns a DynAny object reference that must be narrowe
to the type of the discriminator in order to insert/get the discriminator value:

DynAny di scriminator ();

Note that the type of the discriminator is contained in the TypeCode of the union.

The member operation returns a DynAny object reference that is used in order to
insert/get the member of the union:

DynAny member ();

discriminator_kind and member_kind return the TCKind associated with the
discriminator and member of the union, respectively:
7-12 CORBA V2.2 February 1998

7

the

f

ned

TCKind discriminator_kind ();
TCKind member_kind ();

The member_name attribute allows for the inspection/assignment of the name of
union member without checking the value of the discriminator.

The set_as_default attribute determines whether the discriminator associated with
the union has been assigned a valid default value.

Union values can be traversed using the operations defined in “Iterating through
components of a DynAny” on page 7-9. In that case, the first component in the union
corresponds to the discriminator while the second corresponds to the actual value o
the union. Operation next should then be called twice.

7.2.8 The DynSequence interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_element s();
void set_elements(in A nySeq value)

raises (InvalidSeq);
};

The length attribute contains the number of elements contained in (or to be contai
in) the sequence; its value is initalized to zero for unbounded sequences:

attribute unsigned long length;

The get_elements and set_elements operations return and receive respectively a
sequence of anys containing each of the elements of the sequence:

AnySeq g et_element s();
void set_elements(in A nySeq value);

The set_elements operation raises the InvalidSeq exception if an inconsistent value
is passed in the sequence of any values passed as argument (for example, the AnySeq
is too long/short).

7.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)

raises (InvalidSeq);
};
CORBA V2.2 DynAny API February 1998 7-13

7

The get_elements and set_elements operations return and receive respectively a
sequence of anys containing each of the elements of the array:

AnySeq g et_element s();
void set_elements(in A nySeq value);

The set_elements operation raises the InvalidSeq exception if an inconsistent value
is passed in the sequence of any values passed as argument (for example, the AnySeq
is too long/short).

Note that the dimension of the array is contained in the TypeCode which is accessible
through the type attribute.

7.3 Usage in C++ language

7.3.1 Dynamic creation of CORBA::Any values

Creating an any which contains a struct

Consider the following IDL definition:

// IDL
struct MyStruct {

long member1;
boolean member2;

};

The following example illustrates how a CORBA::Any value may be constructed on
the fly containing a value of type MyStruct :
7-14 CORBA V2.2 February 1998

7

// C++
CORBA::ORB_var orb;
CORBA::StructMemberSeq mems(2);
CORBA::Any result;
long value1;
boolean value2;

mems[0].name = CORBA::string_dup(" member1");
mems[1].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[0].name = CORBA::string_dup(" member2");
mems[1].type =

CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc (
" IDL:MyStruct:1.0",
"MyStruct",
mems

);

// construct the DynStruct object. Values for members have
// read in the value1 and value2 variables

DynStruct_ptr dyn_struct = orb->create_dyn_struct (new_tc);
dyn_struct->insert_long(value1);
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy ();
CORBA::release(dyn_struct);

7.3.2 Dynamic interpretation of CORBA::Any values

Filtering of events

Suppose there is a CORBA object which receives events and prints all those events
which correspond to a data structure containing a member called is_urgent whose
value is TRUE.

The following fragment of code corresponds to a method which determines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.
CORBA V2.2 Usage in C++ language February 1998 7-15

7

// C++
CORBA::Boolean Tester::eval_filter(const CORBA::Any &event)
{

CORBA::Boolean success = FALSE;

// First, typecode is extracted from the event. This
// is necessary to get struct member names:
CORBA::TypeCode_var event_type = event->type();

// The filter only returns true if the event is a struct:
if (event_type->kind() == CORBA::tk_struct)
{

DynAny_ptr dyn_any = orb->create_dyn_any(event);
DynStruct_ptr dyn_struct= DynStruct::_narrow(dyn_any);
CORBA::release(dyn_any);

CORBA::Boolean found = FALSE;

do
{

CORBA::String_var member_name =
dyn_struct->current_member_name();

found = (strcmp(member_name, " is_urgent") == 0);
} while (!found && !dyn_struct->next());

if (found)
{

// We only create a DynAny object for the member
// we were looking for:
CORBA::DynAny_var dyn_member =

dyn_struct->current_component ();
success = dyn_member->get_boolean();

};

dyn_struct->destroy();
CORBA::release(dyn_struct);

};

return success;
};
7-16 CORBA V2.2 February 1998

	Dynamic management of Any values
	7.1 Overview
	7.2 DynAny API
	7.2.1 Locality and usage constraints
	7.2.2 Creating a DynAny object
	7.2.3 The DynAny interface
	7.2.4 The DynFixed interface
	7.2.5 The DynEnum interface
	7.2.6 The DynStruct interface
	7.2.7 The DynUnion interface
	7.2.8 The DynSequence interface
	7.2.9 The DynArray interface

	7.3 Usage in C++ language
	7.3.1 Dynamic creation of CORBA::Any values
	7.3.2 Dynamic interpretation of CORBA::Any values

