The Portable Object Adaptor 9

This chapter describes the Portable Object Adapter, or POA. It presents the design goals,
a description of the abstract model of the POA and its interfaces, followed by a detailed
description of the interfaces theeves.

Contents

This chapter contains ttHellowing sections.

Section Title Page
“Overview” 9-1
“Abstract Model Description” 9-2
“Interfaces” 9-13
“IDL for PortableServer module” 9-38
“UML Description of PortableServer” 9-46
“Usage Scenarios” 9-47

9.1 Overview

The POA is designed toeet the following goals:

® Allow programmers to construct objeatplementations that are portalidetween
different ORB products.

® Provide support for objects withersistent identities. More precisely, the POA is
designed to allow programmers to build object implementations#maprovide
consistent service for objects whoffetimes (from theperspective of a client
holding a reference for such an object) sparitiple server ifetimes.

CORBA V2.2 ebruary 1998 9-1

® Provide support for transparent activation of objects.
® Allow a single servant to suppartultiple object identities simultaneously.
® Allow multiple distinct instances of the POA to exist in a server.

® Provide support for transient objects with miai programming efforand
overhead.

® Provide support foimplicit activation of servants with POAllocated Objeclds.

* Allow object implementations to be maximally responsible for an object’s behavior.
Specifically, an implementatiocan control an lbject’s behavior by establishing the
datum that defines an object’s identity, determining the relatioristipeen the
object’s identityand the object'state,managing the storage anetrieval ofthe
object’s state, providing the code that will be executed in response to requests, and
determining whether or not the object existaua pint in time.

® Avoid requiring the ORB to maintain persistent state describing individual objects,
their identities, where their state is stored, whether certain identity values have been
previously used or not, whether an object has ceased to exist or not, and so on.

®* Provide an extensible mechanism for associating policy information with objects
implemented in the POA.

® Allow programmers to construct object implementations that inherit &taitic
skeleton clagss, generated bMG IDL compilers, or a DSI iplementation.

9.2 Abstract Model Description

The POA nterfaces desdred in this chapter imply a paniiar abstract computational
model. This section presents that model and defines terminology and basic concepts that
will be used in subsequent sections.

This section provides the rationale for the POA design, describes some daritetht
uses, and provides a background for understanding the interface descriptions.

9.2.1 Model Components

The model suppted by the POA is a specialization of @peneral object model
described in the OMA guideMost of the elements of the CORBA object model are
present in the model dedwed here, but there are some new componentss@né of
the names of existing components arergefimoreprecisely thanhey are in the
CORBA object model. The abstract model supported by the POA hasltwirigl
components:

® Client—A client is a computational context that makes requests on an object
through one of its references.

® Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Notdieiand
serverare roles that programs play with respect tovargiobject. A program that
is a client for one object may be the server for another. The same process may be
both client and server for a single object.

CORBAV2.2 February 1998

® Object—In this discussion, we ussbjectto indicate a CORBA object in the
abstract sense, that is, a programming entity with an identitptariace,and an
implementation. From a client’s perspeetithe obgct’s identity is encapsulated in
the object's reference. This specification defines the server’s view of object
identity, which is explicitly managed by object implementations through the POA
interface.

® Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context of a
server process. Requests made on an object’s references are mediated by the ORE
and transformed into invocations on a particular servant. In the course of an
object’s lifetime it may bessociated with (that is, requests on its references will be
targeted at) multiple servants.

® Object I&—An Object Id is a value that is used g POA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id values
may be assiged and managed by the POA, or they may be assigned and managed
by the implementation. Object Id values are hidden from clients, encapsulated by
references. Object Ids have no standarth; they arenanaged by the POA as
uninterpreted octet sequences.

Note —The Object Id defined in this spécation is amechanical device used by an
object implementation to correlate incoming requests with references it has previously
created and exposed to clients. It does not constitute a unique logical identity for an
object in any larger sens@heassignmenand inerpretaibn of Object Id values is
primarily the responsibility of the appitiondeveloper, although tHeYSTEM_ID

policy enables the POA to generate Object Id values for the application.

®* Object Referenee-An object reference in this model is the same as in the CORBA
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note —A concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example, it
might contain the full name of the POA (the names of all P&Aging from the root

and ending with thepecific POA). The reference might not, in fact, actually contain
the Object Id, but instead contain more compact values managed by the ORB which
can be mapped to the Object Id. This is a description of the abstract information model
implied by the POA. Whatever encoding is used to represerR@#fename andhe

Object Id must notestrict the ability tause any legal character in a POA name or any
legal octet in an Object Id.

®* POA—A POA is an identifiable entity within the context of a serveactitPOA
provides a namespace for Object Ids and a namespace for other (nested or child)
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that BA. Nested POAs form a hierarchical name space lijecis
within a server.

CORBAV2.2 Abstrabtodel Description February 1998 9-3

9-4

® Policy—A Policy is an object associated with a POA by an application in order to
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA's threading model as well as a
variety of other options related to the management of objects. Otheficqt®ais
may define other policies that affect how an ORB processes requests on objects
implemented in the POA.

* POAManager—A POA manager is an object that encapsulates the processing state
of one or more POAs. Using operations on a POA manager, the developer can cause
requests for the associated POAs to be queued or discarded. The developer can als
use the POA manager to deactivate the POAs.

® Servant ManagerA servant manager is an object that the application developer
can associate with a POA. The ORB will invokeemgtions on servant managers to
activate servants on den@, and to deactate servants. Servant managers are
responsible for managing the association of an object (as characterized by its Object
Id value) with a particular servant, and fitetermining whether an object exists or
not. There are two kinds of servant managers, c8lsgantActivator and
ServantLocator ; the type used in a particular situatbepends on policies in the
POA.

* Adapter Activator—An adapter activator is an object that the application developer
can associate with BOA. The ORBuwill invoke an operation on an adapter
activator vhen a request ieceved for a child POA that does notirrently exist.

The adapteactivator carthen create the required POA on demand.

9.2.2 Model Architecture

This section describes the atelsiture of the abstract modeiplied bythe POA, and the
interactons between various componeritae ORB is arabstraction visible to both the
clientand server. The POA is an objedilile to the serverlUser-supplied
implementations areegistered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make requests.
The ORB, POA, and impmentation all cooperate to deténe which servant the

operation should be invoked on, andtrform the invocation.

CORBAV2.2 February 1998

Object Reference .
/ Object Id

/O:QB I

POA 6
-, O
O
User-supplied
servants
POA
O

N J

Server

Client

Figure 9-1 Abstract POA model

Figure 9-2 shows the detail of the relationship between the POA andptegriemtation.
Ultimately, a POA deals with a@bject Id and amctive serant. Byactive servantwe

mean a programming object thxisss in memonand has been presented to the POA

with one or more associated object identities. There are several ways for this association
to be made.

If the POA supports thRETAIN policy, it mantains a map, labeleiictive Object Map
that associates Object Ids with active servants, each assocatigtituting an active
object. If the POA has thdSE_DEFAULT_SERVANT policy, a default servant may
be registered with the®A. Altematiely, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives for an
object not present in the Active Object Map, the POA either uses theltdsdrvant to
perform the request oriitvokes the servant manager to obtain a servant forpethe
request. If theRETAIN policy is used, the servardtuned by a servant manager is
retaned in the Ative Object Map. Otherwise, the servant is used only to process the
one request.

In this specificatin, the termactiveis applied equally to servants, Object ldad
objects. An object is active in a POAtfe POA’s Active Object Map caaihs an entry
that associates d@dbject Id with an existing servant. When thiesificaton refers to
active Object Idsandactive servantsit means that the Object Id value or servant in
guestion is part of an entry in the Acti@bject Map.

CORBA V2.2 Abstrabtodel Description February 1998 9-5

/ root "\
POA

Object Id?

-0 ~T Q>

U'ser—supplied
servant

/

POA A

~

default servant

L —1

Object Id O]

Active Object Map
/

Object Id O——
Object Id O——

User-supplied
servant

User-supplied
servant

Object Id

User-supplied
servant

~?,F’OA B

servant mgr.

C

Obiject Id O
Obiject Id O

POAC

- A
Object1d O |

User-supplied
servant

User-supplied
ServantManagef.
.7

.

.

User-supplied
 servant

User-supplied
servant

/

|Object Id gi

AdapterActivato

Figure 9-2 POA Architecture

9.2.3 POA Creation

To implement an object using the POA requires that the servecafigii obain a POA
object. A distinguished POA objectlled theroot POA is managed by the ORB and

provided to the apaion using the ORB initi#aion interface under the initial object

h
servant

User-supplied

> Object réerence

—> Servant pointer

name “RootPOA.” Thapplication developer can createais using the root POA if
those dedult policies are suitabl@heroot POA has the following policies.

» Thread PolicyORB_CTRL_MODEL

« LifespanPolicy: TRANSIENT

CORBAV2.2

Object Id Uniqueness Hoy: UNIQUE_ID
¢ Id Assignment PolicySYSTEM_ID

» Servant Retention Polic\RETAIN
Request Processing PolicySE_ACTIVE_OBJECT_MAP_ONLY
Implicit Activation Policy:IMPLICIT_ACTIVATION

February 1998

9

Thedeveloper can alsa@ate new POAs. Creatingnaw POA allows tha@pplicaion
developer to declare sgéic policy choices for the new POA and to provide dediént
adapter activator and servant manager (these are callback olkjedtby the POA to

activate objects and neste@Rs ondemand). Creatingew POAs also allowthe

application developer to partition the name space of objects, as Object Ids are interpreted
relative to a POA. Finbl, by creatingnew POAsthe developer can independently

control request processing fouttiple sets of objects.

A POA is created as a child of an existing POA usincgctieate POA operation on
the parent POA. When a POA is created, the POA is given a name that must be unique
with respect to all othePOAs with the samparent.

POA objects are not persistent. No P&tAtecan be assumed to beved by the ORB.
It is the responsibility of the server apliion to create aniditialize the appropriate
POA objects during server initialization or to setfatapterActiater to create POA
objectsneeded lger.

Creating the appropriate POA objects is paltidy important for persistent objects,
objects whose existen@an span multiple server lifetimes. To support an object
reference created in a previous server process, thieajgyl must recreathe POA hat
created the object reference as well as all of its ancestor POAs. To ensaibdifyort

each POA must be created with the same name as the corresponding th@ Ariginal
server process and with the same policies. (It is the user’s responsibility to create the
POA with these conditions.)

A portable server applicatioran presume that there is no conflict between its POA
names and the POA names chosen by other applicalt is the responsibility of the
ORB implementation to providewsay to supprt this behavior.

9.2.4 Reference Creation

Object references amreated in servers.r@e theyare created, they may be exported to
clients.

From this model’'s perspeet, object eferences encapsulate object identity information
and information required by the ORB ttentify and locate the server and POA with
which the object is associatétthat is, inwhose scope theference was created.)
References are created in the following ways:

®* The server application may directly create a refegewith thecreate reference
andcreate_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object into
existerce, but do not associate it with aotive servant.

®* The server application may explicitly activate a servant, associating it with an object
identity using theactivate_object or activate_object_with_id operations. @ce
a servant is actated, the server application can map the servaits to
corresponding reference using #ervant_to_reference orid_to_reference
operations.

CORBAV2.2 Abstrabtodel Description February 1998 9-7

® The server application may cause a servaimhicitly activate itself. This
behavior can only occur if the POA has beseated with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object
reference corresponding to an inactive servant, the POA may automatically assign a
generated unique Object Id to the servant and activateegudting object. The
reference may be obtained by invokiR@A::servant_to_reference with an
inactive servant, or by performing an explicitimplicit type conversionfrom the
servant to a reference type in programmingyleage mappings thaermit this
conversion.

Once aeference is created in the server, it can be mad&hbleaio clients in a variety
of ways. It can be advertised through @&IG Naning and Trading Services. It can be
converted to a string vi@RB::object_to_string and published isome way that
allows the client to discover the string and convert it tefarence using
ORB::string_to_object . It can be returned as the result of an operation invocation.

Once aeference becomes aladile to a client, that reference constitutes the identity of
the object from the client’s perspwet As long as the igint program holdand uses that
refeence, requas nade on the reference should be sent to the “same” object.

Note —It should be noted here that the meaning of object idemiti’sameness” is at
present the subject of heated debate in the OMG. This specification does not attempt
to resolve that debate in any way, tgadarly by defining a concrete notion of identity

that is exposed to clients, beyond thésting notions of identity described in the

CORBA specificationsand the OMA guide.

The states of servers and implementation objects are opaque to clients. Thisaspaci
deals primarily with the view of the ORIBom the server's perspective.

9.2.5 Object Activation States

At any point in time, a CORBAgect may or may not be associated with an active
servant.

If the POA has th&®ETAIN policy, the servant and itssaxiated Object Id are entered
into the Active Object Map of the appropriate POA. This type oVatidn can be
accomplished ione of the following ways.

® The serveapplicaton itself explicitly activates individual objects (via the
activate_object or activate_object with_id operations).

®* The serveapplication instructs the POA to activate objects anated by having the
POA invoke auser-supplied servant manager. The serveregtfh registers this
servant manager witket_servant_manager .

® Under some caumstanceéwhen thelMPLICIT_ACTIVATION policy is also in
effectand the language binding allows such an operation), the POA may implicitly
activate an objeavhenthe server application attempts to obtain areafee for a
servant that is not alreadgctive (that isnot associated with an Object Id).

CORBAV2.2 February 1998

9

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activatenknownobjects by having the POA invoke a single
servant no matter what the Object Id is. The serveicgtion registers this servant with
set_servant .

If the POA has th&lON_RETAIN policy, for every request, the POA may use either a
default servant or a servant manager to locate an active servant. FronmAfsepBidt of
view, the servant is active only for the duration of thra¢ request. The POA does not
enter the servant-object association into the Active Object Map.

9.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the
identification of the POA that created the target objeetresice. When aiehnt issies a
request, the ORB first locates an appropriate server (perhaps sterdinigneeded) and

then itlocates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity to re-
create the required POA by using an adaattivator. An adapter activator is a user-
implemented object that can be associated with a POA.nvdaked by the ORB when a
request is received for a non-existent chi@A? The aapter activatohas the

oppotunity to create the required POA. Ifdbes not, the client receives the
OBJECT_NOT_EXIST exception.

Once the ORB has located the aypiate POA, it divers the request to that POAhe
further processing of that requegtpends both upon tipelicies associated with that
POA as well as the object's current state of adtimat

If the POA has th®ETAIN policy, the POA looks in the Active Object Map to find if
there is a servant associated with the Object Id value from the request. If such a servant
exists, the POA invokes the appropriate method on the servant.

If the POA has th&lON_RETAIN policy or has th&RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the folloveiatipns:

* |f the POA has th&JSE_DEFAULT_SERVANT policy, a default servartas been
associated with the POA so the POA will invoke the appropriataadetnthat
servant. If no servant has beencasated with the POA, the POA raises the
OBJ_ADAPTER system exception.

* |fthe POA has th&JSE_SERVANT MANAGER policy, a servant manager has
been associated with the POA so the POA will invioicarnate orpreinvoke on it
to find a servant that may handle the requ@ste choice of method depends on the
NON_RETAIN or RETAIN policy of the P@\.) If no servant manager has been
associated with the POA, the POA raises@f)_ ADAPTER system exception.

* |f the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception.

If a servant manager is located and invoked, but the servant manager igcttyt dir
capable of incarnating the object, it (the servant manager) may deal with the
circumstace in a variety of ways, all of which are the aggion’s responsibility. Any

CORBAV2.2 Abstrabtodel Description February 1998 9-9

9-10

system exception raised by the servant manager will be returned teetitercthe eply.

In addition to standard CORBA exceptions, a servant manager is capable of raising a
ForwardRequest exception. This exception includes arnjeat refeence. The ORB

will process this exception as stated below.

9.2.7 Implicit Activation

A POA can be created with a policy that indicates that itsotdjmay be implicitly
activated. This policyiMPLICIT_ACTIVATION, also requires th8 YSTEM_ID and
RETAIN policies. When a POA supports impliciti@etion, an inactive servant may be
implicitly activated in thaPOA by certain operations that logically require an Object Id

to be asgjned to that servant. pticit activation of an object involves allocating a
system-generated Object Id aradjistering the servant with th@tject Id in the Active
Object Map. Thenterface associated with the implicitly activated object is determined
from the servant (using static information from the skeleton, or, in the case of a dynamic
servant, using theprimary_interface() operatbn).

The operationshatsupport implicitactivation include:

®* ThePOA:servant_to_reference operation, whichiakes a servant paneterand
returns a reference.

®* ThePOA:servant_to_id operation, which takes a servantgmaeterand returns an
Object Id.

® QOperations supported by a language mapping to obtain an object reference or an
Object Id for a servant. For example, ththis() servant member function in C++
returns an object reference for the servant.

® |mplicit conversions supported by a language mapping that convert a servant to an
object reference or an Object Id.

The kst two categories of operations are language mapping dependent.

If the POA has th&NIQUE_ID policy, then implicit activation wilbccur when any of
these operations are performed on a semaitis not currently active (that is, itis
associated with no Obiject Id in the POA's Active Object Map).

If the POA has th&ULTIPLE_ID policy, theservant_to_reference and
servant_to_id operations willalwaysperform implicit activatin, even if the servant is
already associated with an Object Tdhe behavior of language mapping operations in
the MULTIPLE_ID case is specified by the language mapping. Fanpbe in C++, the
_this() servant member function will not implicitly activateV&JLTIPLE_ID

servant if the invocation ofthis() is immediately within the dynamic context of a
request invocation directed by the POA to that sentaskad, it returns the object
referenceused to issue the request.

Note —The exact timing of implicitactivation is ORB implementatiatependent. For
example, ingad of ativating the object immediatelypon ceation of a local object
refeence, the ORB could defer thetivation until the Object Id is actualheeded (for
example, vaen the object reference is exportedsimld the process).

CORBAV2.2 February 1998

9.2.8 Multi-threading

The POA does noequire the use of threads and does not specify what support is needed
from a threads package. However, in order to allow the developmentalflpaservers

that utilize threads, the behavior of the POA agldted intericeswhen used witin a

multiple thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a
threaded environment, nor does it require that an ORB milize threads in the

processing of requests. The only requirement given here is that if an ORB does provide
support for multi-threadinghese are the behaviors that will be supported by that ORB.
This allows a programmer to take advantage of multiphB&that support tleads in a
portable manner across thos&Bx.

The POA's processing is affted by the thread-related calls available in the ORB:
work_pending , perform_work , run, andshutdown .

POA Threading Models

The POA supports two odels of threading when used in aomjtion with multi-
threaded ORB implementations; ORB controlled and single thread behabertwo
models can be used together or independently. Either model can be used in
environmentsvhere asingle-hreaded ORB is used.

The treading model associated with a POA is indicateémthe POA isreated by
including aThreadP olicy object in the policies parameter of theA®create POA
operaton. Once a POA isreated with one model, it cannot be changed to the other. All
uses of the POA within theesver must conform to that threading model associated with
the POA.

Using the Single Threadodel

Requests for a single-thasd POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementatoate (servants, servant
managers, and adapteriaators) are made in@anner that is safe for code that igltia
threadunawatre.

Using the ORE ontrolledModel

The ORBcontolled model of threading is used in environments where the developer
wants the ORB/POA to control the usetlmfeads in the manner prded by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the camgtmanag®aent,anddestruction of
threads used with one or more RO

CORBAV2.2 Abstrabtodel Description February 1998 9-11

9-12

Limitations Whetusing Multiple Threads

There are no guarantettst the ORBand POA will do anythingpecific about

dispatching requests across threads with a single POA. Therefore, a server programmer
who wants to use one or more POAs withirultiple theads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same timEhe programmer must be aware of this possibility and code
with it in mind.

9.2.9 Dynamic Sketen Interface

The POA isdesgned to enable programmers to connect servants to:
® type-specific skeletons, typically generated by OMG IDL compilers; or

® dynamic skeletons

Servants that are members of type-specific skeleton classes are referred to as type-
specific servants. Servants connected to dynamic skeletons are used to implement the
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarmnated by a DSI servant or a type-specific servant
is transparent to its clientfwo CORBAobjects supporting the same interface may be
incarnated one by a DSI servant and the other with a type-specific servamtrifore,

a CORBA object may be incarnated b¥p&l sevant only during some period of time,
while the rest of the time is incarnated bgtatic servant.

The mapping for POA DSI servants is languageigipewith each language providing a
set of interfaces to the POAhese interfaces are used only by the PDe nterfaces
required are the following.

®* Take aCORBA::ServerRequest object from the POA and perform the processing
necessary to execute the request.

® Return the Interface Repository Id identifying the mostwéetinterface supported
by the target CORBA object in a request.

The reason fothe first interface is the entireason for existence of the DSI: to be able
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason fothe second ietrfacecan be understood by comparing DSI servants to
type-speific sevants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the samiDL interface as the most-derived IDL interface. In C++, for example,
an IDL interfaceWindow in moduleGraphicalSystem will generate a type-
specific skeleton class call®lindow in namespacOA_GraphicalSystem . A
type-speific sewant which is diectly derived from the

CORBAV2.2 February 1998

POA_GraphicalSystem::Window skeleton class may incarnate several
CORBA objects at a time, but all those CORBAealt§ will support the
GraphicalSystem::Window interface as the most-derivatterface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting the
same IDL interface as the most-derived IDL interface.

In both cases (type-sgiéic and DSI) the POA may need to determineauatime, the
InterfaceRepository Id identifying thenost-deived interface supported by the target
CORBA object in a request. The POA should be able to deterimis by asking the
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the type-
specific skeleton clagsom which the servant is a directly derived. In thsecofDSI
servants, the POA obtains that information by usingsdtend language-spéc
interfaceabove.

9.2.10 Location Transparency

The POA supportication transparency for objectaplemented usg the POA. Uless
explicitly stated to the contrary, all POA behavior describathimispecification applies
regardless of whether the client is local (same process) or refmtexample, like a
request from a remote client, a request from a local client may: cause object activation if
the object is not active; may block indefely if the target object's POA is in the tiolg

state; may be rejected if the target object's POA is in the discarding or irdet®s;

may be delivered to a threadawareobject implementation; or may be delivered to a
different object if the target object's servant manager raisdsatwardRequest

excepton. The Object Id and POA of the targeteaitjwill also be available to the server

via theCurrent object, regardless of whether the client is local or remote.

Note —The implcation of these requirements on the ORB implementation is to require
the ORB to mediate all requests to POA based obijects, even if the cliemeggdmit in

the same process. This spaafon is not intended to change CORBAServices
specifications that allow fdvehaviors that are not location transparent. This spatii

does not prohibit (nonstandard) POA extensions to support object behavior that is not
location transparent.

9.3 Interfaces

The POA-redted interfaces are defined in a module separate fro@@RBA module,
the PortableServer module. It consists of several interfaces:

« POA

* POAManager

« ServantManager

« ServantActivator

e ServantLocator

» AdapterActivator
ThreadPolicy

CORBAV2.2 lerfaces February 1998 9-13

9-14

* LifespanPolicy

* IdUniguenessPolicy

* IdAssignmentPolicy
 ImplicitActivatio nPolicy
» ServantRetentionPolicy

* RequestProcessingPolicy
» Current

In addition, the POA defines tfgervant native type.

9.3.1 The Servant IDL Type

This specification defines a native typPertableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORB&faces.
Each language mappingust specify howServant is mapped to the programming
language data type that corresponds to amcbljnplement#on. TheServant type has
the following characteristicand constraints.

® Values of typeServant are opagquérom the perspective of CORBA application
programmers. There are no operations that can be perfainsady on them by
user programs. fiey can be passed as parameterettain POA operations. Some
language mappings may alldervant values to be implicitly converted to object
references under appropriate conditions.

® Values of typeServant support a language-specific programming interface that can
be used by the ORB to obtain a default POA for that servant. This interface is used
only to supporimplicit activation. A hnguage mapping may provide a default
implementation of this inteate that returns the root POA of a default ORB.

® Values of typeServant must be testable for identity.

® Values of typeServant have no meaning outside of the process context or address
space in which they are generated.

9.3.2 POAManager Interface

Each POA olgct has an associattdDAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the processing
state of the POAs it is s@ciated with. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded, and can caus
the POAs to be deactivated.

POA managers are createdddestroyed implicitly. Unless an explicit POA manager
object is provided at POAreation time, a POA manager is creatdten a POA is
createdand is automatically associated witlat POA. A POA manager object is
implicitly destoyed when all of its aesiated POAdave beerestoyed.

CORBAV2.2 February 1998

deactivate

Processing States

A POA manager has four pdsie processing stateartive inactive holding and

discarding The pocessing state determines the capabilities of the associated POAs and
the disposition of requests reeed by those PBs. Figure9-3 illustrates the processing
states and theansitions betweethem.For sinplicity of presentatin, this speification
sometimes describes these states as POA states, referring to the POA or P@#&ðat
been associated with a particular POA manager. A P@Aager is created in the

holding state. The root POA is therefore initially in thelding state.

?

destroy
inactil.',le dEﬁEftiVEﬂE
deactivate
dizcard_requests
active dizcarding

activate

activate hald_requests

hold_requests

halding 1

dizcard_requests

create_POA

Figure 9-3 Processing States

Active State

When a POA manager is in thetive state, the associated POAs will receavel start
processing requests (assuming that appropriate thread resources areepvditddblthat
even in the active state, a POA maed to queue regsts dpending upon the ORB
implementatiorand resource limits. Theumber of requests that can be received and/or
gueued is an impmentation limit. If this limit is reaehl, the POA should return a
TRANSIENT system exception to indicate that the client shoel@&sue the request.

A user program can legally trsifon a POA manager from ttectivestate to either the
discarding holding or inactive state by calling théiscard_requests

hold_requests , or deactivate operations, rgectively. The POA enterthe active
state through the use of thetivate operationwhen inthe discardingor holding state.

CORBAV2.2 lerfaces February 1998 9-15

9-16

Discarding State

When a POA manager is in tHescardingstate, the associated POAs will discard all
incoming requests (whose processing has not yet begun). When a request is discarded,
the TRANSIENT system exception must be reted to the cént-side to indicate that

the request should be re-issued. (Of course, an ORB may always reject a request for
other reasons and raise some otlystesn exception.)

In addition, when a POA manager is in thiscardingstate, the adapter activators
regisered with the associated POAs will not get calledtehd, requests that require the
invocation of an adapter activator will be digted, as decrbed in the previous
paragraph.

The primary purpose of thdiscardingstate is to provide an apgdition with fow-
control capabilities when it determines that an object'semphtation or POA is being
flooded with requests. It is expected that theiapfbn will restore the POA amager to
the active state after correctinthe problem thataused flow-control to be needed.

A POA manager can legallyammsition from thediscardingstate to eithetheactive
holding orinactivestate by calhg theactivate , hold_requests , or deactivate
operations, rgeectively. The POA enterthe discardingstate though the use of the
discard_requests operationwhen in theactive or holding state.

Holding State

When a POA manager is in thelding state the associated POAs will queue incoming
requestsThe number of requests that candpgeued is an iplementation limit. If this

limit is reached, the ®BAs may discard requestnd eturn theTRANSIENT system
exception tahe client to indicate that the client should reissue the request. (Of course, an
ORB may always reject a request for other reaamisrise some other system

exceptdn.)

In addition, when a POA manager is in ttading state, the adapter actors registred
with the associated®As will notget called. Instead, requests that require the invocation
of an adapter activator will bgueued, as described in the previous paragraph.

A POA manager can legallyammsition from thenolding state to either thactive
discarding or inactive state by calling thactivate , discard_requests , or

deactivate operations, respectively. The POA entershbkling state through the use
of thehold_requests operation when in thactive or discardingstate. A POA manager
is created in the holding state.

Inactive State

Theinactive state is enteredthenthe associated POAs are to be sthawvn. Unlikethe
discardingstate, thénactivestate is not a temporary state. When a POA manager is in
theinactivestate, the assated POAs will reject new requests. Thgction mechanism
used is specific to the vendor. Th#OP locationforwarding mechanisrand
CloseConnection message are eplasiof mechanisms that could be used to indicate the
rejection. If the client is co-resident in the same process, the ORB could raise the
OBJ_ADAPTER exception to indicate that the object implementation is unavailable.

CORBAV2.2 February 1998

9

In additon, when a POA manager is in thactive state, the adapter activators registered
with the associated®As will notget called. Instead, requests that require the invocation
of an adapter activator will be rejedt as described in the previous paragraph.

Theinactive state is entered using tdeactivate operation. It is legal to enter the
inactive state from either thactive holding or discardingstates.

If the transition into thénactive state is a result of callindeactivate with an
etherealize_objects parameter of

®* TRUE - the associatedJAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed procétsing
the POAs have thRETAIN andUSE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the object.
If there are any queued requests that have not yet started executing, they will be
treated as ithey were new requests and rejected.

® FALSE - No deactivations or etlealizatons will be attempted.

Locality Constraints

A POAManager object must not be exported to other processes, or externalized with
ORB::object to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception. An attempt to usP@AManager object with

the DIl may raise th&lO_IMPLEMENT exception.

activate

void activate()
raises (Adapt erlnactive);

This operation changes the state of the POA managatite If issued while the POA
manager is in thnactive state, theAdapterlnactive exception is raised. Entering the
activestateenables the associated POAs to process requests.

hold_requests

void hold_requests(in boolean wait_for_completion)
raises(Adapterinactive);

This operation changes the state of the POA manageldimg If issued while the POA
manager is in thactive state, theAdapterinactive exception is raised. Entering the
holding state causes the associated POAs to queue incoming requests. Any requests tha
have been queued but have ratted executing wiltontinue to be queued while in the
holding state.

CORBAV2.2 lerfaces February 1998 9-17

9-18

If thewait_for_completion parameter i$ALSE, his operation returns immediately
after changing the state. If the pasdar is TRUE, this operatiaiioes noteturn until
either there are no actively executing requestmiy of the POAs associated with this
POA managertbat is, all requests thatere started prior to the state change have
completed) or the state of the POA manageh@&nged to a state other thiaolding

discard_requests

void discard_requests(in boolean wait_for_completion)
raises (Adapt erlnactive);

This operation changes the state of the POA managisdarding If issued while the
POA manager is in th@activestate, theAdapterinactive exception is raised. Entering
the discardingstate causes the associated POAs to discard incoming requests. In
addition, any requests that have been queued but have not started executing are
discaretd. When a request issdarded, ZRANSIENT system exception is rehed to
the client.

If thewait_for_completion parameter i$ALSE, his operation returns immediately
after changing the state. If the pagdar is TRUE, this operatiatoes noteturn until
either there are no actively executing requestmniyn of the POAs associated with this
POA managertat is, all requests thatere started prior to the state change have
completed) or the state of the POA manageh&nged to a state other thadiscarding

deactivate

void deactivate(in boolean etherealize _objects,
in boolean wait_for_completion);
raises (Adapt erlnactive);

This operation changes the state of the POA manageadtve If issued while the
POA manager is in thi@activestate, theAdapterinactive exception is raised. Entering
the inactive state causes the associated POAs to reject regaeb@ve not begun to be
executed as well as any new requests.

After changing the state, if thethereali ze_objects parameter is

®* TRUE - the POA manager will cause all associated POAs that haRET&IN and
USE_SERVANT_MANAGER policies to perform thetherealize operation on the
associated servant manager for all active objects.

® FALSE - theetherealize operation is not called. Theaupose is to provide
developers with a means to shiotvn POAs in arisis (for example, unrecoverable
error) situation.

If the wait_for_completion parameter i$ALSE, tis operation will return
immediately after changing the state. If the parameter SE[Rhisoperation does not
return until there are no ae#lly executing requests in any of th@/&s associated with
this POA manager (that is, all requests thate sarted prior tathe state change have

CORBAV2.2 February 1998

completed) and, in the case of a TRElEerealize_objects , all invocations of
etherealize have comleted for POAdaving theRETAIN and
USE_SERVANT_MANAGER policies.

If the ORB::shutdown operation is called, it makes a call d@activate with a TRUE
etherealize_objects parameter for each POA manageown in theprocess; the
wait_for_completion parameter taleactivate will be the same as the similarly
named parameter @RB::shutdown .

9.3.3 AdapterActivator Interface

Adapter advators are associated with POAs. An adapter activator supplies a POA with
the ability to create child®As ondemand, as a sidefeft of receiving a request that
names the child POA (ane of its cHdren), orwhenfind_POA is called with an

activate parameter value of TRUE. Applicationserver that creates all teeded POAs

at the beginning of execution does not need to use or provide an adAjvegor; it is
necessary only for the casevitnich POAs need to be created during request processing.

While a request from the POA to an adapter activator is in progressgadsts to
objects managed by timeew POA(or any descendant POAs) will be queued. This
serialization allows the adapter activator to compdetg initialization of thenew POA
before requests are delivered to that POA.

Locality Constraints

An AdapterActivator object must be local to the process containing the POA objects it
is registered with.

unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invokedhen the ORBeceives a request for an object reference that
identifies a target POA that does not exist. The ORB invokes thiata@peonce for each
POA that must be created in order for the target POA to estatifigwith the ancestor
POA closest to the root FX). The opertion is invoked on the ageer activator
associated with POA that is the parent of the POArnb&atls to be created. That parent
POA is passed as thparent parameer. The name of the POA to be created (relative to
the parent) is passed as th@me parameter.

The impementation of this operation should either create the specifieddp@Aeturn
TRUE, or it should return FIASE. If the operation returns TRUE, the ORB will proceed
with processing the request. If the operation retihisSE, the ORB will rairn
OBJECT_NOT_EXIST to the client. If multiple POAgreed to be eatedthe ORB will
invokeunknown_adapter once for each POA that needs to be created. If the parent of
a nonexistent POA does not have aspamted adapter acator, the ORB will return the
OBJECT_NOT_EXIST exception.

CORBAV2.2 lerfaces February 1998 9-19

If unknown_adapter raises a system excapti the ORB will report an
OBJ_ADAPTER exception.

For example, if the target object referemeas created by a POA whose full name is
“A”, “B”, “C”, “D” and only POAs “A” and “B” c urrently exist, the

unknown_ad apter operation will be ingked on the adapter activat@saciated with
POA “B” passing POAB” as the pagnt parameter antC” as the name of the missing
POA. Assuminghat the adapter activator creates POA “C” and retliRISE, the ORB
will then invokeunknown_adapter on the adapter aeator associated with POA “C”,
passing POA “C” athe parent parametand “D” as the name.

Theunknown_adapter operation is also invoked whénd_POA is called on the

POA with which theAdapterActivator is associated, the specified child does not exist,
and theactivate_it parameter tdind_POA is TRUE. Ifunknown_adapter creates
the specified POA and returns TRUE, that POA is returrad find_POA .

Note —This allows the same code, theknown_adapter implementatn, to be used
to initialize a POA whether that POA is created explicitly by the eafidin or as a side-
effect of processing a request. Furthere) it makes this initialization @nic with
respect to delivery of requests to the POA.

9.3.4 ServantManager Interface

Servant managers are associated WiliAR. A ®rvant manager supplies a POA with

the ability to activate objects on demamben the POAeceives a request targeted at an
inactive object. A servant manager is registered with a POA as a callback object, to be
invoked by the POAvhen necessary. Aapplicaton server that activates all its needed
objects at the beginning of execution does not need to use a servant managsedit is
only for the case in which an object mustdwmtivatedduring request processing.

The ServantManager interface is itself empty. It is inherited byo other interfaces,
ServantAct ivator andServantLocator .

The two types ofeyvant managers correspond to the PGRETAIN policy
(ServantActivator) and to theNON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that ardéataifor POAs using each policy
are listed under the two typesasrived interfaces.

Each servant manager type @nstwo operations, the first called to find and return a
servant and the second to deste a servant. The operation§feli accoding to the
amount of information usable for their situation.

Common information for servant manager types

The two types ofervant managers havertan semanticshiat are identical.

Theincarnate andpreinvoke operation may raise any system exception deemed
appropriate (for exampl©BJECT_NOT_EXIST if the object corresponding to the
Object Id value has beatestroyed).

9-20 CORBAV2.2 February 1998

Note —If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exception.
It is the user’s responsibility to deactivate the object if it had been previously activated.

Theincarnate andpreinvoke operation may also raiseFarwardRequest

excepton. If this occurs, the ORB is responsible for delivering the current regnest
subsequent requests to the object denoted ifotherd reference member of the
excepton. The behavior of this rmkanism must be the functional equivalent of the
GIOP location forwarding mechanism. If the current requess delvered via an
implementation of the GIOP protocol (such as IIOP),réference in the exception
should be returned to the client in a reply message MGBATION _FORWARD reply
status. If some other protocol or deliy mechanism was usdtie ORB is responsible
for providing equivalent behavior, from the perspectives of the client and the object
denoted by the new reference.

Locality Constraints

A ServantManager object must be local to the process containing the POA obijects it
is registered with.

9.3.5 ServantActivator Interface

When the POA has tHRETAIN policy it uses servant managers that are
ServantAct ivator s. When using such servant managers, the followatgrsentapply
for a givenObjectld used in thencarnate andetherealize operations:

® Servants incarnated by the servant manager will be placed in the Stijget Map
with objects they havactivated.

® |nvocations ofincarnate on the servant manager are serialized.
® |nvocations ofetherealize on the servant manager are serialized.

® |nvocations ofincarnate andetherealize on the servant manager are mutually
exclusive.

® |ncarnations of a particular servant may not overlap; that is, if a servant is incarnated
by a servant manageéncarnate shall not be invoked using that same Object Id until
that servant is etherealized.

It should be noted that there may be a period of time between an objactisad®n

and the etherealization (during which outstanding requests are being procesgad) in
arriving requests on that object should not be passed to its servant. During tus peri
requests targeted for such an object act as if the POA wlrddimg state until
etherealize complegs. If etherealize is called as a consequence afemctivate call
with a etherealize_objects parameter of TRE, incoming requests are rejected.

It should also be noted that a similauation occurs withncarnate .There may be a
period of time after the POA invokegarnate and before that method returns in which
arriving request®ound for that olgict should not be passed to the servant.

CORBAV2.2 lerfaces February 1998 9-21

9-22

A single servant manager object may be concurrently registered with multiple POAs.
Invocations ofincamate andetherealize on a servant manager in the context of
different POAs are not necessy serialized or mutuallgxclusive. There are no
assumptions made about the thread in whitterealize is invoked.

incarnate
Servantincarnate (
in Objectld oid,
in POA adapter)

raises (Forward Request);

This operation is invoked by the POA whenether POA receives &quest for an object
that is not currently active, assuming the POA hadtJtBE_ SERVANT_MANAGER
andRETAIN policies.

Theoid parameter contains ti@bjectld value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager impleta#on is responsible for locating or creating
an appropriate servant that capends to th®bjectld value if possibleincarnate
returns a value of typgervant, which is the servant that will be used to process the
incoming request (and femtially subsguent requests, since the POA hasREFAIN

policy).

The POA erdrs the returne@ervant value into the Active Object Map sbat
subsequent requests with the sadimgectld value will be delrered diectly to that
servant without invoking the servant manager.

If theincarnate operation returns a servant that is already active for a different Object
Id and if the POA also has thiNIQUE_ID policy, theincarnate has violatedhe POA
policy and is considered to be in error. The POA will rais©®Bd ADAPTER system
exception for the request.

Note —If the same servant is used in two different POAS, it is legal for the POAs to use
that servant even if the POAs havdeliént Object Id uniqueness podisi The PAs do
not interact with each other in this regard.

etherealize
void ethereal ize (
in Objectld oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_act ivations);

CORBAV2.2 February 1998

9

This operation is invoked whenever a servant for an object isiviadt assuming the
POA has th&JSE_SERVANT_MAN AGER andRETAIN policies. Note that an active
servant may be deactivated by the servant managethésealize even if it was not
incarnated by the servant manager.

Theoid parameter contains ti@bject Id value of the object being deactivated. The
adapter parameter is an object refeoe for the POA in whose scope the object was
active. Theserv parameter contains a referencéte servant that is associated with the
object being dediwated. If the servant denoted by terv parameter is associated with
other objects in the POdenoted by thadapter parameter (that is, ithe POA's Active
Object Map) at the time thatherealize is called, theemaining_activations

parameter has the value OE. Otherwise, it has the value FAE.

If the cleanup_in_progress parameter is TRUE, the reason for #iberealize
operation is that either thieactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter BUSE, theetherealize
operation is called for other reasons.

Deacivation occurs in the ftdwing crcumstances:

® When an object is deactivated exgliciby an irvocation of
POA::deactivate_object .

®* When the ORB or POA determines internally that an objacit be deactivated.
For example, an ORB implementation may provide policiesatat objects to be
deactivated after some period of quiersce, or when the number aétive objects
reaches some limit.

* |f POAManager ::.deactivate is invoked on a POA manager associated with a
POA that has currentlgctive objects.

Destroying a servarthat is in the Active Object Map or is otherwlsgown to the POA
can lead to undefinesults.

In a multi-theaded environment, the POA makestain guarantees that allow servant
managers to safely destroy servants. Spadifi the servant's entry in the At Object
Map corresponding to the target object isoged beforeetherealize () is calkd.
Becausecalls toincarnate () andetherealize () are serialized, this prevernisw
requests for the target object frdmaing invoked on the servamtiring etherealization.
After removing the entry from the Active Object Map, if the POA determines before
invoking etherealize () that other requests for the same target object are already in
progress on the servant, it delays tiad to etherealize () until all active methods for
the target object have completed. Therefoleemetherealize () is called, the servant
manager can safely destroy the servant if it wants to, unless the

remaining_act ivations argumentis TRUE.

CORBAV2.2 lerfaces February 1998 9-23

9.3.6 ServantLocator Interface

When the POA has tHdON_RETAIN policy it uses servant managers that are
ServantLocator s. Because the POA knowlsat the servant retoed by this servant
manager will be used only for a single request, it can supplg mformation to the

servant manager's operations and the servant manager’s pair of operations may be able t
coopeate to do something different tharsarvantActivator .

When the POA uses tt&ervantLocator interface, ifmediately after performing the
operation invocation on the servant returneglsinvoke , the POA will invoke

postinvoke on the servant manager, passing@igectld value and th&ervant

value as parameters (ang others). The next request with t@isjectld value will then
causepreinvoke to be invoked again. This feature may be used to force every request
for objects associated with a POA to be mediated by the servant manager.

When using such ServantLocator , the following sattementsapply for a given
Objectld used in thepreinvoke andpostinvoke operations:

®* The servant returned tpreinvoke is used only to process the single request that
causedpreinvoke to be invoked.

®* No servant incarnated by the servant manager will be placed in the Active Obiject
Map.

® When the invocation of the request on the servant is completénvoke will be
invoked for the object.

®* No serialization of imocations ofpreinvoke or postinvoke may be assumed;
there may be multipleoncurrent invocations gfrein voke for the samebjectid .

®* The same thread will be usedpeeinvoke the object, process the request, and
postinvoke the object.

preinvoke
Servant preinvoke(
in Objectld oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie th e_cookie)

raises (Forward Request);

This operation is invoked by the POA whenether POA receives &quest for an object
that is not currently active, assuming the POA hadJtBeé_ SERVANT_MANAGER
andNON_RETAIN policies.

Theoid parameter contains th@bjectld value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager impleta#on is responsible for locating or creating
an appropriate servant that capends to th®bjectld value if possiblepreinvoke
returns a value of typgervant, which is the servant that will be used to process the
incoming request.

9-24 CORBAV2.2 February 1998

9

9.3.7 POA

TheCookie is a type opaque to the POA that can be set by the servant manager for use
later bypostinvoke . Theoperation is the name of the operation that will be called by
the POA when the servant is returned.

postinvoke

void postinvoke(
in Objectld oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

This operation is invoked whenever a servantgetas a request, assuming the POA
has thetUSE_SERVANT_MANAGER andNON_RETAIN policies.

Theoid parameter contains ti@bject Id value of the object on which the requess
made. Theadapter parameter is an object reference for the POWhose scope the
objectwas ative. Theserv parameter contains a eeénce to the servant that is
associated with the object.

The Cookie is a type opaque to the POA; it contains any viia¢ was set by the
prein voke operation.The operation is the name of the operation that veafled by
the POA for the request.

Destroying a servanhat isknown tothe POA can lead to undefinegsults.

Policy Objects

Interfaces derived frol@ORBA::Policy are used with th®OA:.create POA

operation to specify policies that apply to a POA. Policy objects are created using factory
operations on any prexisting POAsuch as the root POA. Policy objects are specified
when a POA igreaéd. Policies may not be changed on aistng POA. Policies are
notinherited from the parent POA.

Thread Policy

Objects with thelhreadPolicy interface are obtained using the
POA:create_thread_policy operation and passed to R®A::.create POA

operation to specify the threading model used with the created POA. The vaugeattr
of ThreadPolicy contains the value supplied to R®A::create_thread_policy
operationfrom which itwasobtained.The following values can ®upplied.

®* ORB_CTRL_MODEL - The ORB is responde for assigning requests for an ORB
contolled POA to threds. In amulti-threaded environment, concurrent requests
may be deliered usingnultiple threads.

® SINGLE_THREAD_MODEL - Requests for a single-ttaded POA are processed
sequentlly. In a muli-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a thaniser
safe for code thanulti-thread-unaware.

CORBAV2.2 lerfaces February 1998 9-25

If no Thread Policy object is passed treate POA , the thread policy defaults to
ORB_CTRL_MODEL.

Note —In some environments, calling niuthread-unaware code safefthat is, using
the SINGLE_THREAD_MODEL) may mean that the POA will use only the main
thread, in which case the application gn@mmer is responsible to ensure that the main
thread is given to the ORB, usi@RB::perform_work or ORB::run .

POAs using theSINGLE_ THREAD_MODEL may need to cooperate to ensure that
calls are safe evenhen implementation code (such as a servant manager) is shared by
multiple single-threaded POAs.

These models presume that the ORB and fipdiGation are using compatible
threadingprimitives in amulti-threaded environment.

Lifespan Policy

Objects with theLifespanPolicy interface are obtained using the
POA:create_lifespan_policy operation and passed to R®A::.create_ POA
operation to specify théfégpan of the objectsriplemented in the created POAhe
following values can be supplied.

® TRANSIENT - Theobjects implemented in the POA cannot outlive the process in
which they ardirst created. @ce the POA is deactivated, use of any object
references generated from it will result in @BJECT_NOT_EXIST exception.

® PERSISTENT - Theobjects implemented in the POA can outlive the process in
which they ardirst created.

 Persistent objects have a POA associated with tHenPOA which arated them).
When the ORBeceives a request on a persistent object, it first searches for the
matching POA, based on the names of the POA and all of itstarses

» Administrative action beyond the scopethi§ specification may be necessary to
inform the ORB's location service of theeationand eventual terimation of
existence of this POAgndoptionally to arrange for on-demandigation of a
process implementing this POA.

* POA names must henique within their enclosing scope (the parenflPG\
portable program can assume that POA names used in other processes will not
conflict with itsown POAnames. A conforming CORBA implementation will
provide a method fognsuring this property.

If no LifespanPolicy object is passed ttreate POA, the lifespan policy dafilts to
TRANSIENT.

9-26 CORBAV2.2 February 1998

Object Id Unigueness Policy

Objects with thddUniquenessPolicy interface are obtained using the
POA:create_id_uniqu eness_policy operation and passed to the
POA:create_ POA operation to specify whether the servants activated in the created
POA must have unique object identiti@he following values can tmupplied.

®* UNIQUE_ID - Servantactivated with that POA support exactly one Object Id.

® MULTIPLE_ID - a servant activated with that POA may support one or mbjecO©
Ids.

If no IdUniquenessPolicy is specified at POA creati, the defult isSUNIQUE_ID.

Id Assignrent Policy

Objects with thddAssignmentPolicy interface are obtaéd using the
POA:.create_id_assignment policy operation and passed to the
POA:.create_ POA operation to specify whether Object Ids in the created POA are
geneated by the applicain or by the ORB.The following values can baupplied.

® USER_ID - Objects created with that POA are assigned Objectriyshy the
application.

® SYSTEM_ID - Objects created with that POA are assigned Objectriyshy the
POA. If the POA also has ttHRERSISTENT policy, assigned Obiject Idaust be
unique across ailhstantiatons of the same POA.

If no IdAssignmentPolicy is specified at POA creati, the dedult isSYSTEM_ID.

Servant Retention Policy

Objects with theServantRetentionPolicy interface are obtaed using the
POA:.create_servant retention_policy operation and passed to the
POA:.create_ POA operation to specify whether the created POA retaitise
servants in an Active Object Maphe following values can bsupplied.

®* RETAIN - The POAwill retain active servants in it&ctive Object Map.
® NON_RETAIN - Servants are naetained by the POA.

If no ServantR etentionPolicy is specified at POA creation, the defaulRIETAIN.

Note —The NON_RETAIN policy requires either thd SE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.

CORBAV2.2 lerfaces February 1998 9-27

9-28

Request Processing Policy

Objects with theRequestProcessingPolicy interface are obtained using the
POA:create_request_processing_policy operation and passed to the
POA:.create_ POA operation to specify how requests are processed by the created
POA. The following vlues can be supplied.

® USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the Active
Object Map, arOBJECT_NOT_EXIST exception is returned to the cliefihe
RETAIN policy is also required.

® USE _DEFAULT_SERVANT - If the Obiject Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a default servant has been
regisered with the POA using theet servant operation, the request is disgzed
to the default servant. If no defaultsant has been registered,@BJ_ADAPTER
exception is returned to the clienthe MULTIPLE_ID policy is also required.

® USE _SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a servant manager has been
regisered with the POA using thleet servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an ercelftno
servant manager has been regist, arOBJECT_ADAPTER exception is retued
to the client.

If no RequestProcessingPolicy is specified at POA aneathe dedult is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining thdSE_ACTIVE_OBJECT_MA P_ONLY /
USE_DEFAULT_SERVANT /USE_SERVANT_MANAGER policies and the

RETAIN / NON_RETAIN policies, the programmer is able to define a rich number of
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MP_ONLY

This combination represents the situatioimere the POA does rautomatic object
activation (that is, the POA searches only the Active Object Map). The saugér
activate all objects served by the POA explicitly, using eithernttigate _object or
activate_object_with_id operation.

RETAIN and USE_SERVANT_MANAGER

This combination representsvary common sitaton, wherethere is an ActiveDbject
Map and &ervantManager .

BecauseRETAIN is in effect, the applicatiocan callactivate _object or
activate_object_with_id to establistknown sevants in the Active Object Map for
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given objeggsttd
determine the servant by means of invokimgarnate in theServantManager
(specifically aServantActivator) registered withthe POA. If ncServantManager is
available, the POA raises ti@BJE CT_ADAPTER system exception.

CORBAV2.2 February 1998

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined for all
requests involvinginknownobijects.

BecauseRETAIN is in effect, the applicatiocan callactivate_object or
activate_object_with_id to establistknown sevants in the Active Object Map for
use in later requests.

The POA first tries to find a servanttine Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. Ifaatdeervant is available,
the POA raises th®BJE CT_ADAPTER system exception.

NON-RETAIN and USE_SERVANT _MANAGER:
This combination represents the situatigimere one servant is used per methatl

The POA doest try to find a servant in the Active Object Mapcause the
ActiveObjectMap does not exist. In every request, it will pediin voke on the
ServantManager (specifically aServantLocator) registered with the ®A. If no
ServantManager is available, the POA will raise tt@BJE CT_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERWANT:

This combination represents the sitoatwhere there is one single servant defined for all
CORBA objects.

The POA does not try to find argant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the appropriate
operation on the default servangisgered with the POA. If no default servant is
available, the POA will raise theBJECT_ADAPTER system exception.

Implicit Activation Policy

Objects with thdmplicitActivat ionPolicy interface are obtained using the
POA:.create_impl icit_activatio n_policy operation and passed to the
POA:.create_ POA operation to specify whethenplicit activaion of servants is
supported in thereated POA.Thefollowing values can be supplied.

®* |MPLICIT_ACTIVATION - the POA will support implicifictivation ofservants.
IMPLICIT_ACTIVATION also requires th8YSTEM_ID andRETAIN policies.

® NO_IMPLICIT_ACTIVATION - the POA will not suppotimplicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION.

CORBAV2.2 lerfaces February 1998 9-29

9-30

9.3.8 POA Interface

A POA object manages the pementabn of a coléction of objectsThe POA spports
a name space for the objects, which asmiified by Object Ids.

A POA also provides a name space forAB0A POA is crated as a child of an existing
POA, which forms dierarchy starting with the root POA.

Locality Constraints

A POA object mushot be exported to other processes, or extegwhhvith

ORB::object to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception. An athpt to use OA object with the DIl may
raise theNO_IMPLEMENT exception.

create_ POA

POA create_ POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExi sts, Invali dPolicy);

This operation createsreew POA as a child of thertget FOA. The gecified name
identifies the new POA with respect to other POAs with the same parent POA. If the
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If thea_POAManager parameter is null, a neROAManager object is creatednd
associated with theew POA. Ohherwise, the specifieBOAManager object is
associated with theew POA. ThePOAManager object can be obtained using the
attribute namehe_POAManager .

The speified policy objects are associated with the P@Ad used to control its
behavior. The pady objects are effectivelgopied before this operation returns, so the
application is free to destroy them while the POA isse. Policies araot inherited

from the parent POA.

If any of thepolicy objects specified are not valid for the ORBplementation, if
conflicting policy objects are specified, orafiy of the specified policy objects require
prior administrative ain that has not been pemed, aninvalidPolicy exception is
raised containing the index in the policiesgmaeter value of the first offending policy
object.

Note —Creating a POA using a POA manag®t is in the active statan lead to race
conditions if the POA supports mndsting objects, because thew POA mayeceive a
request before its adapteetivator, serant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adaptatoact
registered with a parent of tmew POA, becausequests are queuenhtil the adapter

CORBAV2.2 February 1998

9

activator retuns. To avoid these problems when a P@ést be explicitly initiaked,
the application can initialize the POA by invokifigd_POA with a TRUE activate
parameter.

find_POA

POA find_POA(in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);

If the target POA is the parent of a child POA with the specified name (relative to the
target P@\), that child POA is returned. If a child POA with the dfied namedoes

not existand the value of thactivate_it parameter is RUE, the target PA's
AdapterActivator , if one &ists, is nvoked, and, if it sucesfully activates the child
POA, that child POA is returned. Otherwise, &aapterNonExistent exception is
raised.

destroy

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendaitsPThe POA salestroyedthat

is, the POA with its name) may beaesated later in the same process. (This differs from
the POAManager::deactivate operation that does not allow agesation of its
associated POA in the same process.)

When a POA is destroyed, any requests that htareed execution contie to
completion.Any requests that have not started execution are processed as if they were
newly arrived, that is, the POA will attempt to cause recreation of the POA by invoking
one or more adapter aators.

If the etherealize_objects parameter is TRUBhe POA has theRETAIN policy, and

a servant manager isgistered with the POA, thetherealize operation on the servant
manager will be called for each active object in the Active Object Mdye appagnt
destruction of the POA occurs befany calls toetherealize are made. Thus, for
example, an etherealizeethod that attempts to invoke operations on the POA will
receive thelOBJECT_NOT_EXIST exception.

If thewait_for_completion parameteris TRUE, theeestroy operation will return
only after all requests in process have completed and all invocatietiseoéalize
have completed. Otherwise, testroy operation returns after destroying the POAs.

CORBAV2.2 lerfaces February 1998 9-31

Policy Creation Operations

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);
LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);
IdUniquenessPolicy
create_id_uniqueness_policy(in IdUniquenessPolicyValue value);
IdAssignmentPolicy
create_id_assignment_policy(in IdAssignmentPolicyValue value);
ImplicitActivat ionPolicy
create_implicit_activat ion_policy
(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy
create_servant_retention_policy(in ServantRetentionPolicyValue value);
RequestProcessingPolicy
create_request_processing_policy
(in RequestProcessingPolicyValue value);

These operations eaobturn a reference to a policy object with the specified valine
application is responsible for daly the inherited destroy operation on the returned
reference when it is no longer needed.

the _name

readonly attribute string the_name;

This attribute identies the POA relative to its pare This name is assigd wherthe
POA is created. The name of the root POA is system-dependent and should not be relied
upon by the application.

the_parent

readonly attribute POA the_ parent;
This attribute identies the parent of the POAhe paent of the root POA is null.

the_ POAManager

readonly attribute POAManager the_ POAManager;

This attribute identies the POA ranager associated with the POA.

9-32 CORBAV2.2 February 1998

the_activator

attribute AdapterActivator the_activator;

This attribute identies the adapter activator associated with the POAeWly created
POA has no adapter activator (the attribute is null). It is systg@mndent whether the
root POA hitially has an adaptexctivator; the application is free to assignoisn
adapter activator to the root POA.

get_servant_manager

ServantManager get_servant_manager()
raises(WrongPoli cy);

This operation requires tHdSE_ SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servant
manager has been asimted with the POA, it returns a null reface. It is system-
dependent whether the root POA initially has &a®rmanager; the apgdition is free to
assign itsown sevant manager to the root POA.

set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPoli cy);

This operation requires tHdSE_ SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation sets the default servant manager associated with the POA.

get_servant

Servant get_servant()
raises(NoServant, Wrong Policy);

This operation requires tHéSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no dasant
been associated with the POA, tleServant exception is raised.

CORBAV2.2 lerfaces February 1998 9-33

9-34

set_servant

void set_servant(in Servant p_servant)
raises(WrongPoli cy);

This operation requires tHéSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. This
servant will be used for all requests for which no servant is found in the Active Object
Map.

activate_object

Objectld activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPol icy);

This operation requires tHe®YSTEM_ID andRETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has th&NIQUE_ID policy and the spéfied sevant is already in the Active
Object Map, theéServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Objectalad enters the Object Id and the
specified servant in the Active Object Mdhe Obiject Id is returned.

activate_object_with_id

void activate_object_with_id(in Objectld oid,
in Servant p_servant)
raises (ObjectAlreadyActive, ServantAlre adyActive, WrongPoli cy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

If the CORBA object denoted by the j@ét Id value is alr@dy ative in this POA there

is a servant bound to it in the Active Object Map), @gectAlreadyActive exception

is raised. If the POA has tiiNIQUE_ID policy and the servant is already in the Active
Object Map, theServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Object
Id and the gecified servant in the Active Object Map.

If the POA has th&€YSTEM_ID policy and it detectthat theObject Id valuewvas not
geneated by the system or for this POA, thativate object with_id operation may
raise theBAD_PARAM system exception. An ORB is not required to detectadh
invalid Object Id values, but a portable application musimatke
activate_object_with_id on a POA that has tf&Y STEM_ID policy with anObject
Id value thatwas notpreviously genmted by the system for that POA, or, if the POA
also has th®ERSISTENT policy, for a previous instantiation of the same POA.

CORBAV2.2 February 1998

deactivate_object

void deactivate_object (in Objectld oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th¥VrongPolicy
exception is raised.

This operation causes the association of the Object Id specified big tharameteand

its servant to be removed from the Active Object Map. If a servant manager is associated
with the POA ServantLocator::etherealize will be invoked with theoid and the

servant. (Theleactivate_object operation does not wait for tle¢herealize operation

to complete befordeactivate _object returns.) If there is no active object associated

with the specified Object Id, the operation raise©aijectNotActive exception.

Note —If the servant associated with the& is servingmultiple Object Ids,
ServantLocat or::etherealize may be invoked mtiple times with the same servant
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while &citve wth any Id.

create_reference

Object create_reference (in CORBA::Reposi toryld intf)
raises (WrongPol icy);

This operation requires tH&YSTEM_ID policy; if not present, th&VrongPolicy
exception is raised.

This operation creates an object reference that encapsulates-gelR€rated Object Id
value and the specifigdterface repository id. Ais operation does not cause an
activation to take plac&.he esulting reference may be passed to clients, so that
subsequent requests on those efees will cause the appropriate servant manager to be
invoked, if one is avible. The generated Object Id value may be obtained by invoking
POA:reference_to_id with the created reference.

create_referene_with_id

Object create_reference_with_id (
in Objectld oid,
in CORBA::Reposi toryld intf);

This operation creates an object reference that encapsulates the specified Ginject Id
interface repository Id values. This operation does not cause aatiactiotake place.
The esulting refenrece may be passed to clients,tsatsubsequent requests on those
references will cause the object to bevated if necessy, or the default servant used,
depending on the applicable policies.

If the POA has th&YSTEM_ID policy and it detectthat theObject Id valuevas not
geneated by the system or for this POA, ttreate_reference_with_id operation
may raise th8AD_PARAM system exception. An ORB is not required to detect all

CORBAV2.2 lerfaces February 1998 9-35

9-36

such invalid Object Id values, but a portable eggibn must not invokehis operabn
on a POA that has tf@YSTEM_ID policy with an Object Id value thatas not
previously generated by the system for that POA, or, if the POA also has the
PERSISTENT policy, for a previousnstantiation of the same POA.

servant_to_id

Objectld servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires tHRETAIN and either th&JNIQUE_ID or
IMPLICIT_ACTIVATION policies; if not present, th&/rongPolicy exception is raised.

This operation has three possible behaviors.

* |f the POA has th&NIQUE_ID policy and the specified servant is active, the Object
Id associated with that servant isuraied.

® [f the POA has th&MPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servaattisated
using a POA-generated Object Id and the Interface Id associated with the servant, and
that Object Id is returned.

® Otherwise, th&ervantNotActive exception is raised.

servant_to_reference

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires tHRETAIN and either th&JNIQUE _ID or
IMPLICIT_ACTIVATION policies; if not present, th&/rongPolicy exception is raised.

This operation has three possible behaviors.

* |f the POA has th&NIQUE_ID policy and the spified sevant is active, an object
reference encapsulating the information usedctivate the servant is returned.

® |f the POA has théMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated
using a POA-generated Obiject Id and the Interface Id associated with the servant, and
a corresponding object reference is neéa.

® Otherwise, th&ervantNotActive exception is raised.

Note —The allocation of an Object Id value aimgtallation in the Active Object Map
caused by imdit activation may actually be deferred until an attempt is made to
externalize the referee. The real requirement here is that a reference is produced that
will behave appropriately (that igjeld a consistent Object Id value whasked

politely).

CORBAV2.2 February 1998

reference_to_servant

Servant reference_to_servant (O bject reference)
raises (ObjectNotAct ive, WrongAdapter, WrongPol icy);

This operation requires tiRETAIN policy or theUSE_DEFAULT_SERVANT policy.
If neither policy is present, th&/rongPolicy exception is raised.

If the POA has th&ETAIN policy and the specified object is present in the Active
Object Map, this opation retirns the servant associated with that object in the Active
Object Map. Otherwise, if the POA has th8E_DEFAULT_SERVANT policy and a
default servanhas been regiered with the POA, thigperation returns the default
servant. Otherwise, th@bjectNotActive exception is raised.

If the object referencevas notcreated by this POA, th&/rong Adapter exception is
raised.

reference to_id

Objectld reference_to_id(in Objectref erence)
raises (WrongAdapter, WrongPol icy);

The WrongPolicy exception is declared tolal future extensions.

This operation returns the Object Id value encapsulated by the spesfiiezhce . This
operation is valid only if the reference was createthbyPOA on which the operation is
being performed. If the reference was not created by that P@%&oagAdapter
exception is raisedlhe object denoted by the reference does not have toile fort
this opeation to sicceed.

id_to_servant

Servant id_to_servant (in Objectld oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

This operation returns the active servant assediwith the specified Object Id value. If
the Object Id value is not active in the POA,@injectNotActive exception is raised.

id_to_reference

Object id_to_reference(in Objectld oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires ttHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

CORBAV2.2 lerfaces February 1998 9-37

9.4

9-38

If an object with the specified Object Id value is currently active, a reference
encapsulating the information used toivaate the object is returned. If ti@bject Id
value is not active in the POA, &bjectNotActive exception is raised.

9.3.9 Current operations

The PortableServer::Current interface, derived frol@ORBA::Current , provides
method implementations with access to the identity of the objeathah the method
was invoked. The&urrent interface is pyvided to support servants that implement
multiple objects, but can hesed within the context of POA-dispatched method
invocations on any servant. To provideadtion transpaney, ORBsare required to
support use o€urrent in the context of both locallytvoked and emotelyinvoked
operations.

An instance ofCurrent can be obtaied by theapplication by issing the
CORBA::ORB: resolve_initial_references(* POACurrent") operation.

Theeafter, itcan be used within the context of a method dispatched by the POA to
obtain the POA and Objectld thateintify the object on which that operatiotas
invoked.

get POA

POA get_POA() raises (NoContext);

This operation returns a reference to the POA implementing the object in whose context
it is called. Ifcalled outside the context of ®R-dispatched opation, aNoContext
exception is raised.

get_object_id

Objectld get_object_id() raises (NoContext);

This operation returns the Objectld idéyihg the object in whose context it is called. If
called outside the context of a POA-digjhetd operation, BloContext exception is
raised.

IDL for PorableServer module

#pragma prefix "omg.org"
module PortableServer

{

/I forward reference
interface POA;

native Servant;

typedef sequence<oct et> Objectld;

CORBAV2.2 February 1998

exception ForwardR equest

{
Object forward_reference;
|3
// kkkkkkkkkhkkkkkhhkhkkkhhhkhkkhhkhkkkhhkrhkhdhkkiik
I
/I Policy interfaces
I

// kkkkkkkkkkkkkkkkkhdhhkkkkkkkhkkdhhhkhkkkrrkkkkxk

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

|3
interface ThreadPol icy : CORBA::Policy
{
readonly attribute ThreadPolicyValue value;
|3
enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT
|3
interface LifespanPolicy : CORBA::Policy
{
readonly attribute LifespanPolicyValue value;
|3
enum IdU niquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID
|3
interface 1dU niquenessPolicy : CORBA::Policy
{
readonly attribute IdUniqu enessPolicyValue value;
|3
enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID
|3
interface IdAssignmentPolicy : CORBA::Policy
{
readonly attribute IdAssignmentPolicyValue value;
|3

enum ImplicitActivat ionPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

|3

interface ImplicitActivat ionPolicy : CORBA::Policy

CORBAV2.2 IDLfor PaableServer module February 1998 9-39

{
readonly attribute ImplicitAct ivatio nPolicyValue value;
|3
enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN
|3
interface ServantRetentionPol icy : CORBA::Policy
{
readonly attribute ServantRetentionPolicyValue value;
|3

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

|3
interface RequestProcessingPol icy : CORBA::Policy
{
readonly attribute RequestProcessingPolicyValue value;
|3
” kkkkkkkkkhkhkkkkkhhhkkkhhhkkhkhhhkkkkhhrhkkhhhkkkhhhrk
I
/ POAManager interface
I

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkhkkdkkkkhhkhkrkkkik

interface POAManager

{
exception Adapterinactived};
void activate()
raises(Adapterinactive);
void hold_requests(in boolean wait_for_completion)
raises(Adapterinactive);
void discard_requests(in boolean wait_for_completion)
raises(Adapterinactive);
void deactivate(in boolean etherealize _objects,
in boolean wait_for_completion)
raises(Adapterinactive);
|3
” kkkkkkkkkhkhkkkkkhhhkkkhhhkkhkhhhkkkkhhrhkhdhhkkkhhhrk
I
/I AdapterActivator interface
I

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkhkkdkkkkkkkhkhrkkkik

interface AdapterActivator

9-40 CORBAV2.2 February 1998

{
k

boolean unknown_adapter(in POA parent, in

string name);

” kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkkkdkkkkhhkhkrdkkkik

I
/I ServantManager interface
I

” kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkkkdkkkkkkhkhkrdkkkik

interface ServantManager

{:

interface ServantActivator : ServantManager {

Servant incarnate (
in Objectld
in POA
raises (Forward Request);

void etherealize (
in Objectld
in POA
in Servant
in boolean
in boolean

k

oid,
adapter)

oid,

adapter,

serv,
cleanup_in_progress,
remaining_act ivations);

interface ServantLocator : ServantManager {

native Cookie;

Servant preinvoke(
in Objectld
in POA

in CORBA::Identifier

out Cookie

raises (Forward Request);

void postinvoke(
in Objectld
in POA

in CORBA::Identifier

in Cookie
in Servant

oid,
adapter,

operation,

th e_cookie)

oid,
adapter,

operation,

th e_cookie,
the_servant);

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkhkdkkkkkkkhkrkkkik

/i
/| POA interface
/i

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkkhhkkkkdkkkkhkkhkrkkkrk

CORBAV2.2

IDL for PaableServer module

February 1998 9-41

interface POA

{
exception AdapterAlreadyExists {};
exception Adapterinactive {};
exception AdapterNonExistent {};
exception InvalidPolicy { unsigned short index; };
exception NoServ ant {};
exception ObjectAlreadyAct ive {};
exception ObjectNotAct ive {};
exception ServantAlreadyAct ive {};
exception ServantNotAct ive {};
exception WrongAdapter {};
exception WrongPolicy {};

= e e e e

i
/| POA creation and destruction
i

S —

POA create_ POA(in string adapter_name,
in POAManager a_P OAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, Inval idPolicy);

POA find_POA(in string adapter_name, in booleanact ivate_it)
raises (AdapterNonExistent);

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

” kkkkkkkkkkkkkkkkhhihkkkkkkkdhkhkhhkkkkdkkkkhkkhkrkkkik

I
/I Factories for Policy objects
I

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkkhkhkhhkkhkdkkkkhhkhkrkkkik

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);
LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);
IdUniquenessPolicy
create_id_uniqueness_policy
(in IdUniquenessPolicyValue value);
IdAssignmentPolicy
create_id_assignment_policy
(in IdAssignmentPolicyValue value);
ImplicitActivat ionPolicy
create_implicit_activat ion_policy

9-42 CORBAV2.2 February 1998

(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy
create_servant_retention_policy
(in ServantRetentionPolicyValue value);
RequestProcessingPolicy
create_request_processing_policy
(in RequestProcessingPolicyValue value);

S —

/i
/I POA attr ibutes
/i

S —

readonly attribute string the_name;

readonly attribute POA the_parent;

readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

I
/I Servant Manager registration:
I

S —

ServantManager get_servant_manager()
raises (WrongPol icy);

void set_servant_manager(in ServantManager imgr)
raises (WrongPol icy);

= mm e e e e e

I
/I operations for the USE_DEFA ULT_SERVANT policy
i

S —

Servant get_servant()
raises (NoSer vant, Wro ngPolicy);

void set_servant(in Servant p_servant)
raises (WrongPol icy);

/ kkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkkkdkkkkkhkhkrkkkik

i
/I object activation and deactivation
i

// kkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkkkdkkkkkhkhkrkkkik

CORBAV2.2 IDLfor PaableServer module February 1998 9-43

Objectld activate_object(in Servant p_servant)
raises (ServantAlreadyActi ve, WrongPolicy);

void activate_object_with_id(
in Objectld id,
in Servant p_servant)
raises (ServantAlreadyActi ve, ObjectAlre adyActive,
WrongPol icy);

void deactivate_obj ect(in Objectld oid)
raises (ObjectNotActive, Wrong Policy);

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkkkdkkkkkkkhkrkkkik

I
/I reference creation operations
I

// kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkkhhkkkkdkkkkhhkhkrkkkik

Object create_reference (
in CORBA::Reposi toryld intf)
raises (WrongPol icy);

Object create_reference_with_id (
in Objectld oid,
in CORBA::Reposi toryld intf)
raises (WrongPol icy);

S —

I
/I ldentity mapping operations:
I

= e e e e

Objectld servant_to_id(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises (ObjectNotActive, Wrong Adapt er, WrongPoli cy);

Objectld reference_to_id(in Object reference)
raises (WrongAd apter, Wro ngPol icy);

Servant id_to_servant(in Objectld oid)
raises (ObjectNotActive, Wrong Policy);

9-44 CORBAV2.2 February 1998

CORBAV2.2 IDLfor PaableServer module February 1998

Object id_to_reference(in Objectld oid)
raises (ObjectNotActive, Wrong Policy);

// kkkkkkkkkkkkkkkhhihkkkkkkkdhkkhhkkkkdkkkkkkkhkrkkkik

i
/I Current interface
i

// kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkkkdkkkkkkhkhkrdkkkik

interface Current : CORBA::Current

{
exception NoContext { };
POA get_POA() raises (NoContext);
Objectld get_object_id() raises (NoContext);
|3

9-45

9.5 UMLDescription of PortableServer

9-46

The following dagramswere geneted by an automated tool and then annotated with
the cardinalities of the associatioff$iey are intended to be an aid in comprehension to
thosewho enjoy such representations. They are are not normative.

PortableServer::AdapterActivator PortableServer::POAManager the_parent
(from Portable Server) (from Portable Server) =
unknown_adapter() activate()
hold_requests()
disca_rd_requests() 1.1 0.n
deactivate() PortableServer::POA
(from Portable Server)
the_manager | —thg name : string
PortableServer::ServantManager :Ee_parent : Poétaﬁletﬁeéver::PO;OAM
e_manager : PortableServer: anager
(from Portable Server) the_activator : PortableServer:.:AdapterActivator
< the_servant_manager : PortableServer::ServantManage
create_POA ()
find_POA()
PortableServer::ServantLocator PortableServer::ServantActivator 0.1 destroy() .
(from Portable Server) (from Portable Server) create_ﬂwread_pollqy()
create_lifespan_policy()
preinvoke() incarnate() create_!d_unlqueneSSJJol!cy()
postinvoke() etherealize() create_id_assignment_policy()
create_implicit_activation_policy()
create_servant _retention_policy()
% create_request_processing_policy()
PortableServer.:Cookie PortableServer::Servant get_servant_manager()
(from Portable Server) (from Portable Server) / set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_iwth_id()
PortableServer:Current deactivate_object()
CORBA::Current (from Portable Server) create_reference()
(from CORBA Core) | create_reference_with_id()
get_POA() servant_to_id()
get_object id() servant_to_reference()
reference_to_servant()
reference_to_id()
CORBA::Policy :g—:g—fggﬁeﬁég()
CORBA::PolicyList (from CORBA Core) -
(from CORBA Core) o.n ;)
= policy_type : CORBA::PolicyType %
: CORBA::Policy 1n ;
copy() PortableServer::Objectld
destroy() (from Portable Server)

Figure 9-4 UML for main part of PortableServer

CORBAV2.2 February 1998

IdAssignmentPolicyValue IdUniquenessP olicyValue ImplicitActivationPolicyValue
USER_ID UNIQUE_ID IMPLICIT_ACTIVATION
SYSTEM_ID MULTIPLE_ID NO_IMPLICIT_ACTIVATION
value value 4\value
IdAssignmentPolicy IdUniquessPolicy ImpliciActivationtPolicy
value:ldAssignmentPolicyValue value:ldUniquenessPolicyValue value:ImpliciActivationPolicyValue

v

CORBA::Policy : n
ServantRetentionPolic;
CORBA::PolicyList o.n (from CORBA core) — : e
(from CORBA core) - policy_type - CORBA:PolicyType value:ServantRetentionPolicyValue
. -Poli 1.n —
: CORBA::Policy copy()
destroy() v’alue
ServantRetentionPolicyValue
RETAIN
NON_RETAIN
LifespanPolicy RequestProcessingPolicy ThreadPolicy
value:LifespanPolicyValue value:RequestProcessingPolicyValue value:ThreadPolicyValue
value value value
LifespanPolicyValue RequestProcessingPolicyValue ThreadPolicyP olicyValue
TRANSIENT USE_ACTIVE_OBJECT_MAP_ONLY| ORB_CTRL_MODEL
PERSISTENT USE_DEFAULT_SERVANT SINGLE_THREAD_MODEL
USE_SERVANT_MANAGER

Figure 9-5 UML for PortableServer policies

9.6 Usage Scenarios

This sectionllustrateshow diffelent capabilities of the POA may be used in
applications.

Note —In some of the following C++ exates, PortableServer names are not explicitly
scoped. Itis assumed that all the examples have the Cemetat
using namespace PortableServer;

CORBAV2.2 Usage@&tarios February 1998 9-47

9-48

9.6.1 Getting the root POA

All server applications must obtain a refiece to the root POA, either to use itedily
to manage objects or to createw POAobjects.The following exanple demonstrates
how the application server can obtain a reference to the root POA.

/I C++

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::Object_ptr pfobj =
orb->resolve_initial_references("RootPOA");

PortableServer::POA_ptr rootPOA,

rootPOA = PortableServer::POA::narrow(pfobj);

9.6.2 Creating a POA

For a variety of reasons, a server agadion mightwant to create a new POAhe POA
is created as a child of an existing POA. In this example, it is created as a child of the
root POA.

/I C++

CORBA::PolicyList policies(2);

policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);

policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy:: TRANSIENT);

PortableServer::POA_ptr poa =

rootPOA->create POA("my_little_poa",

PortableServer::POAManager::_nil(), policies);

9.6.3 Explicit Activation with POA-assigné€bject Ids

By specifying theSYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing aarsspecified identitwalue. Using this approach,
objects are activated by performing tetivate object operation on the POA with the
object in question. For this operation, the POA allocatgsgns, and returns a unique

identity value for the object.

Generally this capability isiost useful for transient objects, where the Object Id needs to
be valid only asdng as the servant étive in the seer. The Objectds can remain
completely hilden and no servant manager need be provided. When this is the case, the
identity and lifetime of the servant and thbstract object are essentially equivalent.

When POA-assigned Object Ids are used wélsistent objects or objects that are
activated on demand, the application must be able to associate the generated Obiject Id
value with its corresponding object state.

This example illugates a siple implementation of transient objects using POA-
assigned Object Ids. Itggumes a POA that has tB¥ STEM_ID,
USE_SERVANT_MANAGER, andRETAIN policies.

CORBAV2.2 February 1998

Assume this interface:

/I IDL
interface Foo

{
long doit();

This might reult in the generain of the following skeleton:

class POA_Foo : public ServantBase

{
public:

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{
public:
MyFooServant(POA_ptr poa, Long value)

: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() { CORBA::release(my_poa); }
virtual POA_ptr _default_POA()

{ return POA::_duplicate(my_poa); }
virtual Long doit() { return my_value; }

protected:
POA_ptr my_poa;
Long my_value;

h

Now, somewhere in the program during initialization, probablnain()

MyFooServant* afoo = new MyFooServant(poa,27);

PortableServer::Objectld_var oid =
poa->activate_object(afoo);

Foo_var foo = afoo->_this();

poa->the_POAManager()->activate();

orb->run();

This object isactivated with a generated Object Id.

9.6.4 Explicit activation with user assignédject Ids

An object may be explicitly activated by a server using a user-assigned identity. This
may be done for several reasons. For example, a programmémmwayhat cetain
objects are commonlysed, or act as initial points of contact through which clients

CORBAV2.2 Usage@&tarios February 1998 9-49

access other objects (for example, factories). The seoudd be inplemented to create
and explicitly activatehiese objects during initizkton, avoiding the need for a servant
manager.

If an implementatiorhas a reasonably small number of servants, the server may be
designed to keeghem all active continuously (asrlg as theesver is executing). If this
is the case, the iplementatiomeed not provide a servant manager. When the server
initializes, it could create all available servants, loadirayr state and identities from
some persisht store. The POA supports an explicit activation oerati
activate_object_with_id , that associates a servant with an Object Id. This operation
would be used to aehte all of the existing objectsanaged by the server during server
initialization. Assuming the POA has thiSE_SERVANT_MANAGER policy and no
servant manager is associated with a POA, any request received by the POA for an
Object Id value not present in the Active Object Map will result in an
OBJECT_NOT_EXIST exception.

In simple cases of well-known, long-lived objects, it mayb#ficient to activate them
with well known Object Id values during ser initializaton, before activating the POA.
This approach ensures that the objects are alwaylalleavhen the POA is active, and
doesn’t require writing a servant manager. It has severdgaidanitaions for a large
number of objects, though.

This example lustrates the explicit activation of an objecingsa user chosen Object Id.
This example presumes a POA that hasd8ER_ID, USE_SERVANT_MANAGER,
andRETAIN policies.

The code is like the previous example, but replace the last portion of the example shown
above with thdollowing code:

/I C++

MyFooServant* afoo = new MyFooServant(poa, 27);

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld("myLittleFoo");

poa->activate_object_with_id(oid.in(), afoo);

Foo_var foo = afoo->_this();

9.6.5 Creating references before activation

It is sometimes useful to create references for objects before activating them. This
exampleextends the previous example tostrate this option:

9-50 CORBAV2.2 February 1998

Il C++
PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld("myLittleFoo");
CORBA::Object_var obj = poa->create_reference_with_id(
oid.in(), "IDL:Fo0:1.0");
Foo_var foo = Foo::_narrow(obj);

/I ...|ater...

MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

9.6.6 Servant Manager Definition and Creation

Servant managers are object implemeaoitesti and are required $atsfy all of the
requirements of object implementations necessary for their intended funBmause
servant managers are local objects, and their use is limited to a singie nale, some
simplificaions in their implementation are possible. Note that thespliications are
suggestions, not normative regnrents. They arenterded as exapies of ways to
reduce the programming effort required to define servant managers.

A servant manager implementatiorust provide the following things:

®* implementation code for either
- incarnate() andetherealize(), or
 preinvoke() andpostinvoke()

®* implementation code for the servant operations, as for all servants

The first two are obviougheir content is dictated by the requirements of the
implementation that the servant manager is magagior the thirgoint, the default
servant manager on the root POA already supplies tipementation ade. User
written servant managers will have to provide thisrtbeles.

Since servant managers are objects, they themselves must be activateghdttied that
most servant managers can be activated on the root POA withatdtdedt of policies
(see “POA Creation” on page 9-6). It is for this reatdmat the root POAas the
IMPLICIT_ACTIVATION policy: so that a servant managan easily bactivated.
Users may choose tota@te a servant manager on other POAs.

The following is anexample servant manager to activate objects on demand. This
example presumes a POWat has th&) SER_ID, USE_SERVANT_MANAGER, and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a SenigatctThe
ORB supplies a servant activator skeleton class in a library:

Il C++
namespace POA_PortableServer

{

class ServantActivator : public virtual ServantManager

{

CORBAV2.2 Usage@&tarios February 1998 9-51

public:
virtual ~ServantActivator();
virtual Servant incarnate(
const Objectld& POA_ptr poa) = 0;
virtual void etherealize(
const Objectld&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

%
}
A ServantActivator servant manager migteri look ike:
/I C++
class MyFooServantActivator : public POA_PortableServer::Ser-
vantActivator
{
public:
...
Servant incarnate(
const Objectld& oid, POA_ptr poa)
{
String_var s = PortableServer::Objectld_to_string
(oid);
if (stremp(s, "myLittleFoo0") == 0) {
return new MyFooServant(poa, 27);
}else {
throw CORBA::OBJECT_NOT_EXIST();
}
}
void etherealize(
const Objectld& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)
{
if (remaining_activations == 0)
delete servant;
}
..
I3

9.6.7 Object activation on demand

The pecondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request on the
refeence. It is the responsibility of the ORB, iwlleboration with the POAnd the

server application to find or create an appropriate servanperiorm the requested
operation on it. Such an object is said tartmarnatedwhen it has aactive servant (or,
incarnatior). Note that the client had to obtain the reference in question previously from

9-52 CORBAV2.2 February 1998

9

some source. From the client's perspective, the abstract object exatg as lit holds a
refeence, until it receives a@BJECT_NOT_EXIST system exception in a reply from
an attempted request on the object. Incarnatiatedoes not imply existence or non-
existence of the albysict object.

Note —This specification does not address the issueooifmunication or server
processactivation, as they are immaterial to tROA inerface and operation. It is
assumed that the ORB activates the server if necessary, and can deliver the request tc
the appropriate POA.

To support object aiwlation on denand, the server application must register a servant
manager with the appropriate POA. Upeiteiving the request, if the POA consults the
Active Object Map and discovers that there is no active servant associated with the target
Object Id, the POA invokes thiecarnate operation on theervant manager.

Note —An implication that this mdel has for GIOP is that the object key in the

request message must encapsulate the Object Id value. In addition, it may encapsulate
other values as necessitatedtfoy ORBimplementation.For example, the server must

be able to determine to which POA the request should be directed. It could assign a
different communication endpoint to each POA so that the POA identity is implicit in
the request, or it could use a single endpoint for the entire server and encapsulate POA
identities in objeckey values. Note thahis isnot a concrete requirement; the object

key may not actually contain any of those values. Whatever the comdfeetaation

is, the ORB and POA must be able to use it to find the servant manager, invoke activate
if necessary (which requires the actual Object Id value), and/or find the active servant
in some map.

Theincarnate invocation passes the Object Id value to the servant manager. At this
point, the servant manager may take aogionnecessary to produce a servinat it
considers to be a valid inceation of the object in questioifhe operation returns the
servant to the ®A, whichinvokes the operation on it. Threcarnate operation may
alternatively raise a@BJE CT_NOT_EXIST system exception that will be reted to
the invoking client. In this way, the user-supplied implementation is responsible for
determining object existence and non-existence.

After activation, the POA maintains the association of the searahthe Object Id in
the Active Object Map. (This example presumesREFAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparentwation, the Object Id value could contain a key
for a record in a databa#igat contains the object's stalhe servant manager would
retrieve the state fromhe database, construct a servant of the appropriatenmntation
class (assuming an objemtiented programming language), initialize it with #tate

from the databasand eturn it to thePOA.

The example servant manager in the last section (“Servant ManagjeitiDe and
Credion” on page 9-51) could be used for this scenario. Réleaithe POA would have
the USER_ID, USE_SERVANT_MANAGER , andRETAIN policies.

CORBAV2.2 Usage@&tarios February 1998 9-53

Given such a Servantficator, all that remains is initializatiocode such as the
following.

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld("myLittleFoo");
CORBA::Object_var obj = poa->create_reference_with_id(
oid, "IDL:fo0:1.0");
MyFooServantActivator* foolM = new MyFooServantActivator;
ServantActivator_var IMref = foolM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();

9.6.8 Persistent objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with the
POA:reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id vahaether

it was assigned by the POA or the user. By doing this, atementation may provide

a servant manager that associatesPtBé-allocated Object Id values with petsigly

stored state. It may also pass the POA-allocated Object Id values to Pfiaszesuch
asactivate_object_with_id andcreate_reference_w ith_id .

A POA with thePERSISTENT policy may be destroyed and latensgantiated in the
same or a differergrocess. A POA with both tHfeYSTEM_ID andPERSISTENT
policies generates Object Id values aregquaiacross all itgntiations of the same POA.

9.6.9 MultipleObject Ids Mapping to a Single Servant

Each POA is created withpolicy that indicates whether or not servants #ieevad to
support mulple object identitiesiswultaneously. If a POA allows multiple identities per
servant, the POA's treatment of the servants is affected in flosviiog ways:
» Servants of the type may be explicitlgtivated multiple times with different
identity values without raiisg an exception.
» A servant cannot be mapped onto or converted todinidual object reference
using that POA, since the idliity is potentially ambiguous.

9.6.10 One Servant for all Objects

By using theaUSE_DEFAULT_SERVANT policy, the developer caneate a POA that
will use a single servant to implement all of its objects. Thp@ach is usefuivhen
there is very little data associated with each object, so little that the data eacoded
in the Object Id.

The following example illustrates thagpproach by using a single servant to incarnate all
CORBA objects that exportgiven interface in the context of a server. This example
presumes a POA thhas theUSER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

9-54 CORBAV2.2 February 1998

9

Two interfaces are defined in IDL. TléleDescriptor interface is supported by objects
that will encapsulate access to operations in a file, associated wittsgstien. Global
operations in a file system, such as the ones necessary toRileagscriptor objects,
are supported by objects that export file System interface.

/I DL
interface FileDe scriptor {
typedef sequence<o ctet> DataBuf fer;

long write (in DataBuffer buffer);
DataBuffer read (in long num_bytes);
void destroy ();

|3
interface FileSystem {

FileDescriptor open (in string file_name, in long flags);

ki

Implementation of thesevo IDL interfaces may inherit from static skeleton sks
geneated by an IDL to C++ compiler as follows:

/I C++
class FileDescriptorimpl : public POA_FileDescriptor
{
public:
FileDescriptorimpl(POA_ptr poa);
~FileDescriptorimpl();
POA ptr _default POA();
CORBA::Long write(
const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(
CORBA::Long num_bytes);
void destroy();
private:
POA_ptr my_poa,;

3
class FileSystemImpl : public POA_FileSystem
{
public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA ptr _default POA();
FileDescriptor_ptr open(
const char* file_name, CORBA::Long flags);
private:
POA_ptr my_poa,;
FileDescriptorimpl* fd_servant;
3

CORBAV2.2 Usage@&tarios February 1998 9-55

9-56

A single servant may be used to serve all requests issued-iteBiéscriptor objects
created by &ileSystem object. The following fragment of codéustrates the steps to
perform when &ileSystem servant is created.

/I C++

FileSystemImpl::FileSystemImpl(POA_ptr poa)
: my_poa(POA::_duplicate(poa))

{
fd_servant = new FileDescriptorimpl(poa);
poa->set_servant(fd_servant);

}

The following fagment of code ilistrateshow FileDescriptor objects are created as a
result of hvoking an operationofpen) exported by &ileSystem object. First, a local

file descriptor is created using the appropriate operating systerilvafi, a CORBA

object reference is creatadd returned to the client. The value of the local filedp®r

will be used to distinguish the newileDescr iptor object from othefFileDe scriptor

objects. Note that FileDescriptor objects in the example are transient, since they use the
value of their file desiotors for their Objetlds,and of course the file descriptors are

only valid for the life of a process.

Il C++
FileDescriptor_ptr
FileSystemImpl::open(
const char* file_name, CORBA::Long flags)
{
int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld(ostr.str());
Object_var obj = my_poa->create_reference_with_id(
oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

}

Any request issued toEileDescriptor object is handled by the same servant. In the
context of a method invocation, the servarteduines which particular odgt is being
incarnated by invoking an operation that returns a reference to the target object and, after
that, invokingPOA::ref erence_to_id . In C++, the operation used to obtain a reference

to the target object isthis() . Typically, theObjectld value associated with the

refeence will be used to retrieve the state of Hrgdt obgct. However, in this example,

such step is not required since the only thing that is needed is the value for the local file
descriptor and that value coincides with @lejectld value associated with the

reference.

Implementation of theead operation is rather simple. Tkervant determines which
object it is incarnating, obtains the local file descriptor hiatgits identity, pdorms
the appropriate operating systeall, and reéurns the result in BataBuffer sequence.

CORBAV2.2 February 1998

Il C++
FileDescriptor::DataBuffer*
FileDescriptorimpl::read(CORBA::Long num_bytes)

{
FileDescriptor_var me = _this();
PortableServer::Objectld_var oid =
my_poa->reference_to_id(me.in());
CORBA::String_var s =
PortableServer::Objectld_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = :iread(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;
}

Using asingle servant per interface is useful in at |éaststuations.

® |n one case, it may be appropriate for encapsulating access to legacy APIs that are
not object-oriented (system calls in the Unix environment, abave shown in the
example).

® |n another case, this technique is useful in handling scalability issues related to the
number of CORBA objects that can be associated with a server. In the example
above, there may be aliitn FileDescriptor objects in the same server ahib
would only require one entry in the ORB. Although there are operating system
limitations in this respect (@nix server is not able to open so maogdl file
desciptors)the important point to take int@eount is that usage of CORBA doesn't
introduce scalaility problemsbut provides mechanisms to handle them.

9.6.11 Single Servant, many objects and types, using DSI

The ability toassociate a single DSI servant witmg CORBA objets is rather
powerful in some scenarios. It can be the basis for development of gateways to legacy
systems or software that mediates with extenaatlware, for example.

Usage of the DSl is llistrated in the following example. This example presumes a POA
that supports thISER_ID, USE_DEFAULT_SERVANT , andRETAIN policies.

A single servant will be used to incarnatauge number of CORBA objects, each of

them representing a separate entry in a Database. There may be several types of entrie:
in the Database, representinffetient atity types in the Database model. Each type of
entry in the Database is associated with a separate intarffacie omprises operations
supported by the Database on entriethaftype. All these interfaces inherit from the
DatabaseEntry interface. Finally, an object supporting tBatabaseAgent interface
supports basic op&tions in the database such asating anew entry, destroying an

existing entry, etc.

CORBAV2.2 Usage@&tarios February 1998 9-57

/I IDL
interface DatabaseEntry {
readonly attribute string name;

k

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

k

interface DatabaseAgent {
DatabaseEntry create_entry (
in string key,
in CORBA::Identifier entry_type,
in NVPairSeque nce initial_att ribute_values
);
void destroy_entry (in string key);

k

Implementation ofthe DatabaseEntry interface may inherit from the standard dynamic
skeleton class as follows:

/I C++
class DatabaseEntrylmpl :
public POA_PortableServer::Dynamiclmplementation

{
public:
DatabaseEntrylmpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntrylmpl ();
virtual POA_ptr _defaultPOA()
{
return poa;
}
2

On the other hand, implementation of DatabaseAgent interface may inherit from
a static skeleton class generated by an IDL to C++ compiler as follows:

9-58 CORBAV2.2 February 1998

/I C++
class DatabaseAgentimpl :
public DatabaseAgentimplBase
{
protected:
DatabaseAccessPoint mydb;
DatabaseEntrylmpl * common_servant;
public:
DatabaseAgentimpl ();
virtual DatabaseEntry_ptr create_entry (
const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values
);
virtual void destroy_entry (const char * key);
~DatabaseAgentimpl ();

h

A single servant may be used to serve all requests issuedatatlaseEntry objects
created by @atabaseAgent object. The dllowing fragment otode illusrates the
steps to performvhen aDatabaseAgent servant is creatl. First, access to the
database iqiitialized. As aesult, some kind of descriptor RatabaseAccessPoint local
object) used to operate on the database is obtained. Finallyaatseill be created and
associated with the POA.

/I C++
void DatabaseAgentimpl::DatabaseAgentimpl ()

{
mydb = ..,;
common_servant = new DatabaseEntrylmpl(mydb);
poa->set_servant(common_servant);

h

The code used to eateDatabaseEntry objects representing entries in the database is
similar to the one used for creatiRleDescriptor objects in the example of the

previous sectin. In his case, amewentry is created in the databasel the key

associated with that entry will hesed to represent the identity for the corresponding
DatabaseEntry object. All requests issued tMatabaseEntry object are handled by

the same servant because references to this type of object are associated with a commo
POA created with thelSE_ DEFAULT_SERVANT policy.

CORBAV2.2 Usage@&tarios February 1998 9-59

9-60

Il C++
DatabaseEntry ptr DatabaseAgentimpl::create_entry (
const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

/I creates a new entry in the database:
mydb->new_entry (key, ...);

/l creates a reference to the CORBA object used to
/I encapsulate access to the new entry in the database.
/I There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(
string_to_Obijectld (key),
identifierToRepositoryld (entry_type),
);

DatabaseEntry ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);
return entry;

h

Any request issued to@atabaseEntry object is handled by the same servant. In the
context of a method invocation, the servariedaines which particular odgt it is
incarnating, obtains the databdsy matching itsdentity, invokes the appropriate
operation in the database and returns déiselt as an output gameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database in
order to invoke operations on the entry. If that is the case, the servant may obtain the
type of an entry based on thedrface supported by thgatabaseEntry object
encapsulating access to that entry. This interface may beettay means of invoking

the get_interface operationexported by the reference to tbatabaseEntry object.

CORBAV2.2 February 1998

Il C++
void DatabaseEntrylmpl::invoke (ServerRequest_ptr request)

{
CORBA::Object_ptr current_obj = _this ();

/I The servant determines the key associated with

/I the database entry represented by current_obj:

PortableServer::Objectld oid =
poa->reference_to_id (current_obj);

char * key = Objectld_to_string (oid);

/I The servant handles the incoming CORBA request. This
/I typically involves the following steps:

/I 1. mapping the CORBA request into a database request
1 using the key obtained previously

/I 2. constructing output parameters to the CORBA request
1 from the response to the database request

h

Note that in this example, we may have a billdatabaseEntry objects in a server
requiring only a single entry in map tables supgubby the POA (that is, the ORB at the
server). No permanent storage is required for references to DatabaseEntry objects at the
server. Actually, references to DatabaseEntry objects nliyl occupy space:

® at clients, as long as those references are used; or

® atthe server, only while a request is being served.

Scalability problems can bdeandled using this technique. There are many scenarios
where this scalability causes nmpdy in terms of performance (badlgawhen there is
no need to restore the state of an object, each time a request to it is being served).

CORBAV2.2 Usage@&tarios February 1998 9-61

9-62 CORBAV2.2 February 1998

	The Portable Object Adaptor
	9.1 Overview
	9.2 Abstract Model Description
	9.2.1 Model Components
	9.2.2 Model Architecture
	9.2.3 POA Creation
	9.2.4 Reference Creation
	9.2.5 Object Activation States
	9.2.6 Request Processing
	9.2.7 Implicit Activation
	9.2.8 Multi-threading
	9.2.9 Dynamic Skeleton Interface
	9.2.10 Location Transparency

	9.3 Interfaces
	9.3.1 The Servant IDL Type
	9.3.2 POAManager Interface
	9.3.3 AdapterActivator Interface
	9.3.4 ServantManager Interface
	9.3.5 ServantActivator Interface
	9.3.6 ServantLocator Interface
	9.3.7 POA Policy Objects
	9.3.8 POA Interface
	9.3.9 Current operations

	9.4 IDL for PortableServer module
	9.5 UML Description of PortableServer
	9.6 Usage Scenarios
	9.6.1 Getting the root POA
	9.6.2 Creating a POA
	9.6.3 Explicit Activation with POA-assigned Object Ids
	9.6.4 Explicit activation with user assigned Object Ids
	9.6.5 Creating references before activation
	9.6.6 Servant Manager Definition and Creation
	9.6.7 Object activation on demand
	9.6.8 Persistent objects with POA-assigned Ids
	9.6.9 Multiple Object Ids Mapping to a Single Servant
	9.6.10 One Servant for all Objects
	9.6.11 Single Servant, many objects and types, using DSI

