
 The Portable Object Adaptor 9
goals,
ailed

This chapter describes the Portable Object Adapter, or POA. It presents the design
a description of the abstract model of the POA and its interfaces, followed by a det
description of the interfaces themselves.

Contents

This chapter contains the following sections.

9.1 Overview

 The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable between
different ORB products.

• Provide support for objects with persistent identities. More precisely, the POA is
designed to allow programmers to build object implementations that can provide
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

Section Title Page

“Overview” 9-1

“Abstract Model Description” 9-2

“Interfaces” 9-13

“IDL for PortableServer module” 9-38

“UML Description of PortableServer” 9-46

“Usage Scenarios” 9-47
 CORBA V2.2 February 1998 9-1

9

or.

, and

cts,
been
n.

ts

ts that

y be
• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and
overhead.

• Provide support for implicit activation of servants with POA-allocated Object Ids.

• Allow object implementations to be maximally responsible for an object’s behavi
Specifically, an implementation can control an object’s behavior by establishing the
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of the
object’s state, providing the code that will be executed in response to requests
determining whether or not the object exists at any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual obje
their identities, where their state is stored, whether certain identity values have
previously used or not, whether an object has ceased to exist or not, and so o

• Provide an extensible mechanism for associating policy information with objec
implemented in the POA.

• Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

9.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computational
model. This section presents that model and defines terminology and basic concep
will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its intended
uses, and provides a background for understanding the interface descriptions.

9.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model are
present in the model described here, but there are some new components, and some of
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the following
components:

• Client—A client is a computational context that makes requests on an object
through one of its references.

• Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Note that client and
server are roles that programs play with respect to a given object. A program that
is a client for one object may be the server for another. The same process ma
both client and server for a single object.
9-2 CORBA V2.2 February 1998

9

A

f a

e ORB

be

s
ged
 by

usly
r an

BA

 it

n
ich
odel

y

ild)
• Object—In this discussion, we use object to indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and an
implementation. From a client’s perspective, the object’s identity is encapsulated in
the object’s reference. This specification defines the server’s view of object
identity, which is explicitly managed by object implementations through the PO
interface.

• Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context o
server process. Requests made on an object’s references are mediated by th
and transformed into invocations on a particular servant. In the course of an
object’s lifetime it may be associated with (that is, requests on its references will
targeted at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id value
may be assigned and managed by the POA, or they may be assigned and mana
by the implementation. Object Id values are hidden from clients, encapsulated
references. Object Ids have no standard form; they are managed by the POA as
uninterpreted octet sequences.

Note – The Object Id defined in this specification is a mechanical device used by an
object implementation to correlate incoming requests with references it has previo
created and exposed to clients. It does not constitute a unique logical identity fo
object in any larger sense. The assignment and interpretation of Object Id values is
primarily the responsibility of the application developer, although the SYSTEM_ID
policy enables the POA to generate Object Id values for the application.

• Object Reference—An object reference in this model is the same as in the COR
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note – A concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example,
might contain the full name of the POA (the names of all POAs starting from the root
and ending with the specific POA). The reference might not, in fact, actually contai
the Object Id, but instead contain more compact values managed by the ORB wh
can be mapped to the Object Id. This is a description of the abstract information m
implied by the POA. Whatever encoding is used to represent the POA name and the
Object Id must not restrict the ability to use any legal character in a POA name or an
legal octet in an Object Id.

• POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or ch
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for objects
within a server.
CORBA V2.2 Abstract Model Description February 1998 9-3

9

to

a

ts

tate
cause
n also

r

bject
r

er

sts.
• Policy—A Policy is an object associated with a POA by an application in order
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA’s threading model as well as
variety of other options related to the management of objects. Other specifications
may define other policies that affect how an ORB processes requests on objec
implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing s
of one or more POAs. Using operations on a POA manager, the developer can
requests for the associated POAs to be queued or discarded. The developer ca
use the POA manager to deactivate the POAs.

• Servant Manager—A servant manager is an object that the application develope
can associate with a POA. The ORB will invoke operations on servant managers to
activate servants on demand, and to deactivate servants. Servant managers are
responsible for managing the association of an object (as characterized by its O
Id value) with a particular servant, and for determining whether an object exists o
not. There are two kinds of servant managers, called ServantActivator and
ServantLocator ; the type used in a particular situation depends on policies in the
POA.

• Adapter Activator—An adapter activator is an object that the application develop
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently exist.
The adapter activator can then create the required POA on demand.

9.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and the
interactions between various components. The ORB is an abstraction visible to both the
client and server. The POA is an object visible to the server. User-supplied
implementations are registered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make reque
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.
9-4 CORBA V2.2 February 1998

9

iation

r an

e
Figure 9-1 Abstract POA model

Figure 9-2 shows the detail of the relationship between the POA and the implementation.
Ultimately, a POA deals with an Object Id and an active servant. By active servant, we
mean a programming object that exists in memory and has been presented to the POA
with one or more associated object identities. There are several ways for this assoc
to be made.

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map,
that associates Object Ids with active servants, each association constituting an active
object. If the POA has the USE_DEFAULT_SERVANT policy, a default servant may
be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives fo
object not present in the Active Object Map, the POA either uses the default servant to
perform the request or it invokes the servant manager to obtain a servant to perform the
request. If the RETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process th
one request.

In this specification, the term active is applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA’s Active Object Map contains an entry
that associates an Object Id with an existing servant. When this specification refers to
active Object Ids and active servants, it means that the Object Id value or servant in
question is part of an entry in the Active Object Map.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
CORBA V2.2 Abstract Model Description February 1998 9-5

9

Figure 9-2 POA Architecture

9.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a POA
object. A distinguished POA object, called the root POA, is managed by the ORB and
provided to the application using the ORB initialization interface under the initial object
name “RootPOA.” The application developer can create objects using the root POA if
those default policies are suitable. The root POA has the following policies.

• Thread Policy: ORB_CTRL_MODEL
• Lifespan Policy: TRANSIENT
• Object Id Uniqueness Policy: UNIQUE_ID
• Id Assignment Policy: SYSTEM_ID
• Servant Retention Policy: RETAIN
• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY
• Implicit Activation Policy: IMPLICIT_ACTIVATION

default servant

 servant mgr.

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
ServantManager.

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

A
d
a
p
t
e
r

A
c
t
i
v
a
t
o
r

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

AdapterActivator.
9-6 CORBA V2.2 February 1998

9

preted

nique

he

o

n

 into

ject
The developer can also create new POAs. Creating a new POA allows the application
developer to declare specific policy choices for the new POA and to provide a different
adapter activator and servant manager (these are callback objects used by the POA to
activate objects and nested POAs on demand). Creating new POAs also allows the
application developer to partition the name space of objects, as Object Ids are inter
relative to a POA. Finally, by creating new POAs, the developer can independently
control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_POA operation on
the parent POA. When a POA is created, the POA is given a name that must be u
with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB.
It is the responsibility of the server application to create and initialize the appropriate
POA objects during server initialization or to set an AdapterActivater to create POA
objects needed later.

Creating the appropriate POA objects is particularly important for persistent objects,
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the POA that
created the object reference as well as all of its ancestor POAs. To ensure portability,
each POA must be created with the same name as the corresponding POA in the original
server process and with the same policies. (It is the user’s responsibility to create t
POA with these conditions.)

A portable server application can presume that there is no conflict between its POA
names and the POA names chosen by other applications. It is the responsibility of the
ORB implementation to provide a way to support this behavior.

9.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported t
clients.

From this model’s perspective, object references encapsulate object identity informatio
and information required by the ORB to identify and locate the server and POA with
which the object is associated (that is, in whose scope the reference was created.)
References are created in the following ways:

• The server application may directly create a reference with the create_reference
and create_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object
existence, but do not associate it with an active servant.

• The server application may explicitly activate a servant, associating it with an ob
identity using the activate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using the servant_to_reference or id_to_reference
operations.
CORBA V2.2 Abstract Model Description February 1998 9-7

9

ign a

.

of

tempt

ly
• The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object
reference corresponding to an inactive servant, the POA may automatically ass
generated unique Object Id to the servant and activate the resulting object. The
reference may be obtained by invoking POA::servant_to_reference with an
inactive servant, or by performing an explicit or implicit type conversion from the
servant to a reference type in programming language mappings that permit this
conversion.

Once a reference is created in the server, it can be made available to clients in a variety
of ways. It can be advertised through the OMG Naming and Trading Services. It can be
converted to a string via ORB::object_to_string and published in some way that
allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocation

Once a reference becomes available to a client, that reference constitutes the identity
the object from the client’s perspective. As long as the client program holds and uses that
reference, requests made on the reference should be sent to the “same” object.

Note – It should be noted here that the meaning of object identity and “sameness” is at
present the subject of heated debate in the OMG. This specification does not at
to resolve that debate in any way, particularly by defining a concrete notion of identity
that is exposed to clients, beyond the existing notions of identity described in the
CORBA specifications and the OMA guide.

The states of servers and implementation objects are opaque to clients. This specification
deals primarily with the view of the ORB from the server’s perspective.

9.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active
servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are entered
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

• The server application instructs the POA to activate objects on demand by having the
POA invoke a user-supplied servant manager. The server application registers this
servant manager with set_servant_manager .

• Under some circumstances (when the IMPLICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implicit
activate an object when the server application attempts to obtain a reference for a
servant that is not already active (that is, not associated with an Object Id).
9-8 CORBA V2.2 February 1998

9

 a

s the

 to re-

ervant

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servant with
set_servant .

If the POA has the NON_RETAIN policy, for every request, the POA may use either
default servant or a servant manager to locate an active servant. From the POA’s point of
view, the servant is active only for the duration of that one request. The POA does not
enter the servant-object association into the Active Object Map.

9.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well a
identification of the POA that created the target object reference. When a client issues a
request, the ORB first locates an appropriate server (perhaps starting one if needed) and
then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity
create the required POA by using an adapter activator. An adapter activator is a user-
implemented object that can be associated with a POA. It is invoked by the ORB when a
request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The
further processing of that request depends both upon the policies associated with that
POA as well as the object's current state of activation.

If the POA has the RETAIN policy, the POA looks in the Active Object Map to find if
there is a servant associated with the Object Id value from the request. If such a s
exists, the POA invokes the appropriate method on the servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

• If the POA has the USE_DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception.

• If the POA has the USE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invoke incarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends on the
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises the OBJ_ADAPTER system exception.

• If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception.

If a servant manager is located and invoked, but the servant manager is not directly
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility. Any
CORBA V2.2 Abstract Model Description February 1998 9-9

9

 a

d

d
amic

n

 an

system exception raised by the servant manager will be returned to the client in the reply.
In addition to standard CORBA exceptions, a servant manager is capable of raising
ForwardRequest exception. This exception includes an object reference. The ORB
will process this exception as stated below.

9.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policy, IMPLICIT_ACTIVATION , also requires the SYSTEM_ID and
RETAIN policies. When a POA supports implicit activation, an inactive servant may be
implicitly activated in that POA by certain operations that logically require an Object I
to be assigned to that servant. Implicit activation of an object involves allocating a
system-generated Object Id and registering the servant with that Object Id in the Active
Object Map. The interface associated with the implicitly activated object is determine
from the servant (using static information from the skeleton, or, in the case of a dyn
servant, using the _primary_interface() operation).

The operations that support implicit activation include:

• The POA::servant_to_reference operation, which takes a servant parameter and
returns a reference.

• The POA::servant_to_id operation, which takes a servant parameter and returns an
Object Id.

• Operations supported by a language mapping to obtain an object reference or a
Object Id for a servant. For example, the _this() servant member function in C++
returns an object reference for the servant.

• Implicit conversions supported by a language mapping that convert a servant to
object reference or an Object Id.

The last two categories of operations are language mapping dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object Id in the POA's Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and
servant_to_id operations will always perform implicit activation, even if the servant is
already associated with an Object Id. The behavior of language mapping operations in
the MULTIPLE_ID case is specified by the language mapping. For example, in C++, the
_this() servant member function will not implicitly activate a MULTIPLE_ID
servant if the invocation of _this() is immediately within the dynamic context of a
request invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the request.

Note – The exact timing of implicit activation is ORB implementation dependent. For
example, instead of activating the object immediately upon creation of a local object
reference, the ORB could defer the activation until the Object Id is actually needed (for
example, when the object reference is exported outside the process).
9-10 CORBA V2.2 February 1998

9

eded

a

ovide
B.

All
ith

r
9.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is ne
from a threads package. However, in order to allow the development of portable servers
that utilize threads, the behavior of the POA and related interfaces when used within a
multiple thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does pr
support for multi-threading, these are the behaviors that will be supported by that OR
This allows a programmer to take advantage of multiple ORBs that support threads in a
portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB:
work_pending , perform_work , run , and shutdown .

POA Threading Models

The POA supports two models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled and single thread behavior. The two
models can be used together or independently. Either model can be used in
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by
including a ThreadPolicy object in the policies parameter of the POA’s create_POA
operation. Once a POA is created with one model, it cannot be changed to the other.
uses of the POA within the server must conform to that threading model associated w
the POA.

Using the Single Thread Model

Requests for a single-threaded POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementation code (servants, servant
managers, and adapter activators) are made in a manner that is safe for code that is multi-
thread-unaware.

Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the develope
wants the ORB/POA to control the use of threads in the manner provided by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction of
threads used with one or more POAs.
CORBA V2.2 Abstract Model Description February 1998 9-11

9

mmer

-
 the

rvant
e

g

e

le,
Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server progra
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and code
with it in mind.

9.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

• type-specific skeletons, typically generated by OMG IDL compilers; or

• dynamic skeletons

Servants that are members of type-specific skeleton classes are referred to as type
specific servants. Servants connected to dynamic skeletons are used to implement
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific se
is transparent to its clients. Two CORBA objects supporting the same interface may b
incarnated one by a DSI servant and the other with a type-specific servant. Furthermore,
a CORBA object may be incarnated by a DSI servant only during some period of time,
while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language specific, with each language providing a
set of interfaces to the POA. These interfaces are used only by the POA. The interfaces
required are the following.

• Take a CORBA::ServerRequest object from the POA and perform the processin
necessary to execute the request.

• Return the Interface Repository Id identifying the most-derived interface supported
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be abl
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason for the second interface can be understood by comparing DSI servants to
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for examp
an IDL interface Window in module GraphicalSystem will generate a type-
specific skeleton class called Window in namespace POA_GraphicalSystem . A
type-specific servant which is directly derived from the
9-12 CORBA V2.2 February 1998

9

e

e-

ion if

r

ire

not
POA_GraphicalSystem::Window skeleton class may incarnate several
CORBA objects at a time, but all those CORBA objects will support the
GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting th
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the
Interface Repository Id identifying the most-derived interface supported by the target
CORBA object in a request. The POA should be able to determine this by asking the
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the typ
specific skeleton class from which the servant is a directly derived. In the case of DSI
servants, the POA obtains that information by using the second language-specific
interface above.

9.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless
explicitly stated to the contrary, all POA behavior described in this specification applies
regardless of whether the client is local (same process) or remote. For example, like a
request from a remote client, a request from a local client may: cause object activat
the object is not active; may block indefinitely if the target object's POA is in the holding
state; may be rejected if the target object's POA is in the discarding or inactive states;
may be delivered to a thread-unaware object implementation; or may be delivered to a
different object if the target object's servant manager raises the ForwardRequest
exception. The Object Id and POA of the target object will also be available to the serve
via the Current object, regardless of whether the client is local or remote.

Note – The implication of these requirements on the ORB implementation is to requ
the ORB to mediate all requests to POA based objects, even if the client is co-resident in
the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specification
does not prohibit (nonstandard) POA extensions to support object behavior that is
location transparent.

9.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA module,
the PortableServer module. It consists of several interfaces:

• POA
• POAManager
• ServantManager
• ServantActivator
• ServantLocator
• AdapterActivator
• ThreadPolicy
CORBA V2.2 Interfaces February 1998 9-13

9

an
used

ess

ssing

n cause
• LifespanPolicy
• IdUniquenessPolicy
• IdAssignmentPolicy
• ImplicitActivatio nPolicy
• ServantRetentionPolicy
• RequestProcessingPolicy
• Current

In addition, the POA defines the Servant native type.

9.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORBA interfaces.
Each language mapping must specify how Servant is mapped to the programming
language data type that corresponds to an object implementation. The Servant type has
the following characteristics and constraints.

• Values of type Servant are opaque from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them by
user programs. They can be passed as parameters to certain POA operations. Some
language mappings may allow Servant values to be implicitly converted to object
references under appropriate conditions.

• Values of type Servant support a language-specific programming interface that c
be used by the ORB to obtain a default POA for that servant. This interface is
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.

• Values of type Servant must be testable for identity.

• Values of type Servant have no meaning outside of the process context or addr
space in which they are generated.

9.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the proce
state of the POAs it is associated with. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded, and ca
the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA manager
object is provided at POA creation time, a POA manager is created when a POA is
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.
9-14 CORBA V2.2 February 1998

9

 and

t

/or
Processing States

A POA manager has four possible processing states; active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POAs
the disposition of requests received by those POAs. Figure 9-3 illustrates the processing
states and the transitions between them. For simplicity of presentation, this specification
sometimes describes these states as POA states, referring to the POA or POAs thahave
been associated with a particular POA manager. A POA manager is created in the
holding state. The root POA is therefore initially in the holding state.

Figure 9-3 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and start
processing requests (assuming that appropriate thread resources are available). Note that
even in the active state, a POA may need to queue requests depending upon the ORB
implementation and resource limits. The number of requests that can be received and
queued is an implementation limit. If this limit is reached, the POA should return a
TRANSIENT system exception to indicate that the client should re-issue the request.

A user program can legally transition a POA manager from the active state to either the
discarding, holding, or inactive state by calling the discard_requests ,
hold_requests , or deact ivate operations, respectively. The POA enters the active
state through the use of the activate operation when in the discarding or holding state.
CORBA V2.2 Interfaces February 1998 9-15

9

rded,

for

e, an

ion

 in

he

le.
Discarding State

When a POA manager is in the discarding state, the associated POAs will discard all
incoming requests (whose processing has not yet begun). When a request is disca
the TRANSIENT system exception must be returned to the client-side to indicate that
the request should be re-issued. (Of course, an ORB may always reject a request
other reasons and raise some other system exception.)

In addition, when a POA manager is in the discarding state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that require the
invocation of an adapter activator will be discarded, as described in the previous
paragraph.

The primary purpose of the discarding state is to provide an application with flow-
control capabilities when it determines that an object's implementation or POA is being
flooded with requests. It is expected that the application will restore the POA manager to
the active state after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from the discarding state to either the active,
holding, or inactive state by calling the activate , hold_requests , or deactivate
operations, respectively. The POA enters the discarding state through the use of the
discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incoming
requests. The number of requests that can be queued is an implementation limit. If this
limit is reached, the POAs may discard requests and return the TRANSIENT system
exception to the client to indicate that the client should reissue the request. (Of cours
ORB may always reject a request for other reasons and raise some other system
exception.)

In addition, when a POA manager is in the holding state, the adapter activators registered
with the associated POAs will not get called. Instead, requests that require the invocat
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from the holding state to either the active,
discarding, or inactive state by calling the activate , discard_requests , or
deactivate operations, respectively. The POA enters the holding state through the use
of the hold_requests operation when in the active or discarding state. A POA manager
is created in the holding state.

Inactive State

The inactive state is entered when the associated POAs are to be shut down. Unlike the
discarding state, the inactive state is not a temporary state. When a POA manager is
the inactive state, the associated POAs will reject new requests. The rejection mechanism
used is specific to the vendor. The GIOP location forwarding mechanism and
CloseConnection message are examples of mechanisms that could be used to indicate t
rejection. If the client is co-resident in the same process, the ORB could raise the
OBJ_ADAPTER exception to indicate that the object implementation is unavailab
9-16 CORBA V2.2 February 1998

9

d
ion

ject.
be

ith
ill

ts that

In addition, when a POA manager is in the inactive state, the adapter activators registere
with the associated POAs will not get called. Instead, requests that require the invocat
of an adapter activator will be rejected, as described in the previous paragraph.

The inactive state is entered using the deactivate operation. It is legal to enter the
inactive state from either the active, holding, or discarding states.

If the transition into the inactive state is a result of calling deactivate with an
etherealize_objects parameter of

• TRUE - the associated POAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed processing(if
the POAs have the RETAIN and USE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the ob
If there are any queued requests that have not yet started executing, they will
treated as if they were new requests and rejected.

• FALSE - No deactivations or etherealizations will be attempted.

Locality Constraints

A POAManager object must not be exported to other processes, or externalized w
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POAManager object with
the DII may raise the NO_IMPLEMENT exception.

activate

void activate()
raises (Adapt erInactive);

This operation changes the state of the POA manager to active. If issued while the POA
manager is in the inactive state, the AdapterInactive exception is raised. Entering the
active state enables the associated POAs to process requests.

hold_requests

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

This operation changes the state of the POA manager to holding. If issued while the POA
manager is in the inactive state, the AdapterInactive exception is raised. Entering the
holding state causes the associated POAs to queue incoming requests. Any reques
have been queued but have not started executing will continue to be queued while in the
holding state.
CORBA V2.2 Interfaces February 1998 9-17

9

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE, this operation does not return until
either there are no actively executing requests in any of the POAs associated with this
POA manager (that is, all requests that were started prior to the state change have
completed) or the state of the POA manager is changed to a state other than holding.

discard_requests

void discard_requests(in boolean wait_for_completion)
raises (Adapt erInactive);

This operation changes the state of the POA manager to discarding. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised. Entering
the discarding state causes the associated POAs to discard incoming requests. In
addition, any requests that have been queued but have not started executing are
discarded. When a request is discarded, a TRANSIENT system exception is returned to
the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE, this operation does not return until
either there are no actively executing requests in any of the POAs associated with this
POA manager (that is, all requests that were started prior to the state change have
completed) or the state of the POA manager is changed to a state other than discarding.

deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

raises (Adapt erInactive);

This operation changes the state of the POA manager to inactive. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised. Entering
the inactive state causes the associated POAs to reject requests that have not begun to be
executed as well as any new requests.

After changing the state, if the ethereali ze_objects parameter is

• TRUE - the POA manager will cause all associated POAs that have the RETAIN and
USE_SERVANT_MANAGER policies to perform the etherealize operation on the
associated servant manager for all active objects.

• FALSE - the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example, unrecoverable
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE, this operation does not
return until there are no actively executing requests in any of the POAs associated with
this POA manager (that is, all requests that were started prior to the state change have
9-18 CORBA V2.2 February 1998

9

ith

ing.

ts it

at

t
to

d

t of
completed) and, in the case of a TRUE etherealize_objects , all invocations of
etherealize have completed for POAs having the RETAIN and
USE_SERVANT_MANAGER policies.

If the ORB::shutdown operation is called, it makes a call on deactivate with a TRUE
etherealize_objects parameter for each POA manager known in the process; the
wait_for_completion parameter to deactivate will be the same as the similarly
named parameter of ORB::shutdown .

9.3.3 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA w
the ability to create child POAs on demand, as a side-effect of receiving a request that
names the child POA (or one of its children), or when find_POA is called with an
activate parameter value of TRUE. An application server that creates all its needed POAs
at the beginning of execution does not need to use or provide an adapter activator; it is
necessary only for the case in which POAs need to be created during request process

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

Locality Constraints

An AdapterActivator object must be local to the process containing the POA objec
is registered with.

unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference th
identifies a target POA that does not exist. The ORB invokes this operation once for each
POA that must be created in order for the target POA to exist (starting with the ancestor
POA closest to the root POA). The operation is invoked on the adapter activator
associated with POA that is the parent of the POA that needs to be created. That paren
POA is passed as the parent parameter. The name of the POA to be created (relative
the parent) is passed as the name parameter.

The implementation of this operation should either create the specified POA and return
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will procee
with processing the request. If the operation returns FALSE, the ORB will return
OBJECT_NOT_EXIST to the client. If multiple POAs need to be created, the ORB will
invoke unknown_adapter once for each POA that needs to be created. If the paren
a nonexistent POA does not have an associated adapter activator, the ORB will return the
OBJECT_NOT_EXIST exception.
CORBA V2.2 Interfaces February 1998 9-19

9

t,

n
to be

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER exception.

For example, if the target object reference was created by a POA whose full name is
“A”, “B”, “C”, “D” and only POAs “A” and “B” c urrently exist, the
unknown_ad apter operation will be invoked on the adapter activator associated with
POA “B” passing POA “B” as the parent parameter and “C” as the name of the missing
POA. Assuming that the adapter activator creates POA “C” and returns TRUE, the ORB
will then invoke unknown_adapter on the adapter activator associated with POA “C”,
passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is called on the
POA with which the AdapterActivator is associated, the specified child does not exis
and the activate_it parameter to find_POA is TRUE. If unknown_adapter creates
the specified POA and returns TRUE, that POA is returned from find_POA .

Note – This allows the same code, the unknown_adapter implementation, to be used
to initialize a POA whether that POA is created explicitly by the application or as a side-
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to the POA.

9.3.4 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA with
the ability to activate objects on demand when the POA receives a request targeted at a
inactive object. A servant manager is registered with a POA as a callback object,
invoked by the POA when necessary. An application server that activates all its needed
objects at the beginning of execution does not need to use a servant manager; it isused
only for the case in which an object must be activated during request processing.

The ServantManager interface is itself empty. It is inherited by two other interfaces,
ServantAct ivator and ServantLocator .

The two types of servant managers correspond to the POA’s RETAIN policy
(ServantActivator) and to the NON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that are available for POAs using each policy
are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and return a
servant and the second to deactivate a servant. The operations differ according to the
amount of information usable for their situation.

Common information for servant manager types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed
appropriate (for example, OBJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).
9-20 CORBA V2.2 February 1998

9

n.
ated.

ts it

ated
til

i

Note – If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exceptio
It is the user’s responsibility to deactivate the object if it had been previously activ

The incarnate and preinvoke operation may also raise a ForwardRequest
exception. If this occurs, the ORB is responsible for delivering the current request and
subsequent requests to the object denoted in the forward_reference member of the
exception. The behavior of this mechanism must be the functional equivalent of the
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as IIOP), the reference in the exception
should be returned to the client in a reply message with LOCATION_FORWARD reply
status. If some other protocol or delivery mechanism was used, the ORB is responsible
for providing equivalent behavior, from the perspectives of the client and the object
denoted by the new reference.

Locality Constraints

A ServantManager object must be local to the process containing the POA objec
is registered with.

9.3.5 ServantActivator Interface

When the POA has the RETAIN policy it uses servant managers that are
ServantAct ivator s. When using such servant managers, the following statements apply
for a given ObjectId used in the incarnate and etherealize operations:

• Servants incarnated by the servant manager will be placed in the Active Object Map
with objects they have activated.

• Invocations of incarnate on the servant manager are serialized.

• Invocations of etherealize on the servant manager are serialized.

• Invocations of incarnate and etherealize on the servant manager are mutually
exclusive.

• Incarnations of a particular servant may not overlap; that is, if a servant is incarn
by a servant manager, incarnate shall not be invoked using that same Object Id un
that servant is etherealized.

It should be noted that there may be a period of time between an object's deactivation
and the etherealization (during which outstanding requests are being processed) in which
arriving requests on that object should not be passed to its servant. During this perod,
requests targeted for such an object act as if the POA were in holding state until
etherealize completes. If etherealize is called as a consequence of a deactivate call
with a etherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate .There may be a
period of time after the POA invokes incarnate and before that method returns in which
arriving requests bound for that object should not be passed to the servant.
CORBA V2.2 Interfaces February 1998 9-21

9

s.

ed.

ject

 use
A single servant manager object may be concurrently registered with multiple POA
Invocations of incarnate and etherealize on a servant manager in the context of
different POAs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in which etherealize is invoked.

incarnate

 Servant incarnate (
in ObjectId oid,
in POA adapter)

raises (Forward Request);

This operation is invoked by the POA whenever the POA receives a request for an object
that is not currently active, assuming the POA has the USE_SERVANT_MANAGER
and RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activat

The user-supplied servant manager implementation is responsible for locating or creating
an appropriate servant that corresponds to the ObjectId value if possible. incarnate
returns a value of type Servant , which is the servant that will be used to process the
incoming request (and potentially subsequent requests, since the POA has the RETAIN
policy).

The POA enters the returned Servant value into the Active Object Map so that
subsequent requests with the same ObjectId value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Ob
Id and if the POA also has the UNIQUE_ID policy, the incarnate has violated the POA
policy and is considered to be in error. The POA will raise an OBJ_ADAPTER system
exception for the request.

Note – If the same servant is used in two different POAs, it is legal for the POAs to
that servant even if the POAs have different Object Id uniqueness policies. The POAs do
not interact with each other in this regard.

etherealize

void ethereal ize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_act ivations);
9-22 CORBA V2.2 February 1998

9

e

This operation is invoked whenever a servant for an object is deactivated, assuming the
POA has the USE_SERVANT_MAN AGER and RETAIN policies. Note that an active
servant may be deactivated by the servant manager via etherealize even if it was not
incarnated by the servant manager.

The oid parameter contains the Object Id value of the object being deactivated. The
adapter parameter is an object reference for the POA in whose scope the object was
active. The serv parameter contains a reference to the servant that is associated with th
object being deactivated. If the servant denoted by the serv parameter is associated with
other objects in the POA denoted by the adapter parameter (that is, in the POA's Active
Object Map) at the time that etherealize is called, the remaining_activations
parameter has the value TRUE. Otherwise, it has the value FALSE.

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize
operation is that either the deactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter is FALSE, the etherealize
operation is called for other reasons.

Deactivation occurs in the following circumstances:

• When an object is deactivated explicitly by an invocation of
POA::deactivate_object .

• When the ORB or POA determines internally that an object must be deactivated.
For example, an ORB implementation may provide policies that allow objects to be
deactivated after some period of quiescence, or when the number of active objects
reaches some limit.

• If POAManager ::deactivate is invoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the POA
can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow servant
managers to safely destroy servants. Specifically, the servant's entry in the Active Object
Map corresponding to the target object is removed before etherealize () is called.
Because calls to incarnate () and etherealize () are serialized, this prevents new
requests for the target object from being invoked on the servant during etherealization.
After removing the entry from the Active Object Map, if the POA determines before
invoking etherealize () that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize () until all active methods for
the target object have completed. Therefore, when etherealize () is called, the servant
manager can safely destroy the servant if it wants to, unless the
remaining_act ivations argument is TRUE.
CORBA V2.2 Interfaces February 1998 9-23

9

able to

uest

t

ect

ed.

9.3.6 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are
ServantLocator s. Because the POA knows that the servant returned by this servant
manager will be used only for a single request, it can supply extra information to the
servant manager’s operations and the servant manager’s pair of operations may be
cooperate to do something different than a ServantActivator .

When the POA uses the ServantLocator interface, immediately after performing the
operation invocation on the servant returned by preinvoke , the POA will invoke
postinvoke on the servant manager, passing the ObjectId value and the Servant
value as parameters (among others). The next request with this ObjectId value will then
cause preinvoke to be invoked again. This feature may be used to force every req
for objects associated with a POA to be mediated by the servant manager.

When using such a ServantLocator , the following statements apply for a given
ObjectId used in the preinvoke and postinvoke operations:

• The servant returned by preinvoke is used only to process the single request tha
caused preinvoke to be invoked.

• No servant incarnated by the servant manager will be placed in the Active Obj
Map.

• When the invocation of the request on the servant is complete, postinvoke will be
invoked for the object.

• No serialization of invocations of preinvoke or postinvoke may be assumed;
there may be multiple concurrent invocations of prein voke for the same ObjectId .

• The same thread will be used to preinvoke the object, process the request, and
postinvoke the object.

preinvoke

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie th e_cookie)

raises (Forward Request);

This operation is invoked by the POA whenever the POA receives a request for an object
that is not currently active, assuming the POA has the USE_SERVANT_MANAGER
and NON_RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activat

The user-supplied servant manager implementation is responsible for locating or creating
an appropriate servant that corresponds to the ObjectId value if possible. preinvoke
returns a value of type Servant , which is the servant that will be used to process the
incoming request.
9-24 CORBA V2.2 February 1998

9

r use
y

ctory
d

The Cookie is a type opaque to the POA that can be set by the servant manager fo
later by postinvoke . The operation is the name of the operation that will be called b
the POA when the servant is returned.

postinvoke

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

This operation is invoked whenever a servant completes a request, assuming the POA
has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the Object Id value of the object on which the request was
made. The adapter parameter is an object reference for the POA in whose scope the
object was active. The serv parameter contains a reference to the servant that is
associated with the object.

The Cookie is a type opaque to the POA; it contains any value that was set by the
prein voke operation. The operation is the name of the operation that was called by
the POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

9.3.7 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA
operation to specify policies that apply to a POA. Policy objects are created using fa
operations on any pre-existing POA, such as the root POA. Policy objects are specifie
when a POA is created. Policies may not be changed on an existing POA. Policies are
not inherited from the parent POA.

Thread Policy

Objects with the ThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to the POA::create_POA
operation to specify the threading model used with the created POA. The value attribute
of ThreadPolicy contains the value supplied to the POA::create_thread_policy
operation from which it was obtained. The following values can be supplied.

• ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an ORB
controlled POA to threads. In a multi-threaded environment, concurrent requests
may be delivered using multiple threads.

• SINGLE_THREAD_MODEL - Requests for a single-threaded POA are processed
sequentially. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner that is
safe for code that multi-thread-unaware.
CORBA V2.2 Interfaces February 1998 9-25

9

in

d by

 in

e

ot
If no Thread Policy object is passed to create_POA , the thread policy defaults to
ORB_CTRL_MODEL .

Note – In some environments, calling multi-thread-unaware code safely (that is, using
the SINGLE_THREAD_MODEL) may mean that the POA will use only the main
thread, in which case the application programmer is responsible to ensure that the ma
thread is given to the ORB, using ORB::perform_work or ORB::run .

POAs using the SINGLE_THREAD_MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is share
multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible
threading primitives in a multi-threaded environment.

Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA
operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

• TRANSIENT - The objects implemented in the POA cannot outlive the process
which they are first created. Once the POA is deactivated, use of any object
references generated from it will result in an OBJECT_NOT_EXIST exception.

• PERSISTENT - The objects implemented in the POA can outlive the process in
which they are first created.

• Persistent objects have a POA associated with them (the POA which created them).
When the ORB receives a request on a persistent object, it first searches for th
matching POA, based on the names of the POA and all of its ancestors.

• Administrative action beyond the scope of this specification may be necessary to
inform the ORB's location service of the creation and eventual termination of
existence of this POA, and optionally to arrange for on-demand activation of a
process implementing this POA.

• POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will n
conflict with its own POA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA , the lifespan policy defaults to
TRANSIENT.
9-26 CORBA V2.2 February 1998

9

ed

Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the
POA::create_id_uniqu eness_policy operation and passed to the
POA::create_POA operation to specify whether the servants activated in the creat
POA must have unique object identities. The following values can be supplied.

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Object
Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and passed to the
POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied.

• USER_ID - Objects created with that POA are assigned Object Ids only by the
application.

• SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the
POA. If the POA also has the PERSISTENT policy, assigned Object Ids must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the
POA::create_servant_retention_policy operation and passed to the
POA::create_POA operation to specify whether the created POA retains active
servants in an Active Object Map. The following values can be supplied.

• RETAIN - The POA will retain active servants in its Active Object Map.

• NON_RETAIN - Servants are not retained by the POA.

If no ServantR etentionPolicy is specified at POA creation, the default is RETAIN.

Note – The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.
CORBA V2.2 Interfaces February 1998 9-27

9

f
Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the
POA::create_POA operation to specify how requests are processed by the created
POA. The following values can be supplied.

• USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the Active
Object Map, an OBJECT_NOT_EXIST exception is returned to the client. The
RETAIN policy is also required.

• USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a default servant has been
registered with the POA using the set_servant operation, the request is dispatched
to the default servant. If no default servant has been registered, an OBJ_ADAPTER
exception is returned to the client. The MULTIPLE_ID policy is also required.

• USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a servant manager has been
registered with the POA using the set_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If no
servant manager has been registered, an OBJECT_ADAPTER exception is returned
to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining the USE_ACTIVE_OBJECT_MA P_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the
RETAIN / NON_RETAIN policies, the programmer is able to define a rich number o
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object
activation (that is, the POA searches only the Active Object Map). The server must
activate all objects served by the POA explicitly, using either the activate_object or
activate_object_with_id operation.

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Object
Map and a ServantManager .

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map for
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries to
determine the servant by means of invoking incarnate in the ServantManager
(specifically a ServantActivator) registered with the POA. If no ServantManager is
available, the POA raises the OBJE CT_ADAPTER system exception.
9-28 CORBA V2.2 February 1998

9

or all

ll

te
RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined f
requests involving unknown objects.

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map for
use in later requests.

The POA first tries to find a servant in the Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. If no default servant is available,
the POA raises the OBJE CT_ADAPTER system exception.

NON-RETAIN and USE_SERVANT_MANAGER:

This combination represents the situation where one servant is used per method call.

The POA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call prein voke on the
ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJE CT_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT:

This combination represents the situation where there is one single servant defined for a
CORBA objects.

The POA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the appropria
operation on the default servant registered with the POA. If no default servant is
available, the POA will raise the OBJECT_ADAPTER system exception.

Implicit Activation Policy

Objects with the ImplicitActivat ionPolicy interface are obtained using the
POA::create_impl icit_activatio n_policy operation and passed to the
POA::create_POA operation to specify whether implicit activation of servants is
supported in the created POA. The following values can be supplied.

• IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires the SYSTEM_ID and RETAIN policies.

• NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION .
CORBA V2.2 Interfaces February 1998 9-29

9

ill

e

9.3.8 POA Interface

A POA object manages the implementation of a collection of objects. The POA supports
a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an existing
POA, which forms a hierarchy starting with the root POA.

Locality Constraints

A POA object must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POA object with the DII may
raise the NO_IMPLEMENT exception.

create_POA

POA create_POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExi sts, Invali dPolicy);

This operation creates a new POA as a child of the target POA. The specified name
identifies the new POA with respect to other POAs with the same parent POA. If th
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a new POAManager object is created and
associated with the new POA. Otherwise, the specified POAManager object is
associated with the new POA. The POAManager object can be obtained using the
attribute name the_POAManager .

The specified policy objects are associated with the POA and used to control its
behavior. The policy objects are effectively copied before this operation returns, so the
application is free to destroy them while the POA is in use. Policies are not inherited
from the parent POA.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects require
prior administrative action that has not been performed, an InvalidPolicy exception is
raised containing the index in the policies parameter value of the first offending policy
object.

Note – Creating a POA using a POA manager that is in the active state can lead to race
conditions if the POA supports preexisting objects, because the new POA may receive a
request before its adapter activator, servant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adapter activator
registered with a parent of the new POA, because requests are queued until the adapter
9-30 CORBA V2.2 February 1998

9

he

m

ere
ing

activator returns. To avoid these problems when a POA must be explicitly initialized,
the application can initialize the POA by invoking find_POA with a TRUE activate
parameter.

find_POA

POA find_POA(in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);

If the target POA is the parent of a child POA with the specified name (relative to t
target POA), that child POA is returned. If a child POA with the specified name does
not exist and the value of the activate_it parameter is TRUE, the target POA's
AdapterActivator , if one exists, is invoked, and, if it successfully activates the child
POA, that child POA is returned. Otherwise, the AdapterNonExistent exception is
raised.

destroy

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendant POAs. The POA so destroyed (that
is, the POA with its name) may be re-created later in the same process. (This differs fro
the POAManager::deactivate operation that does not allow a re-creation of its
associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to
completion. Any requests that have not started execution are processed as if they w
newly arrived, that is, the POA will attempt to cause recreation of the POA by invok
one or more adapter activators.

If the etherealize_objects parameter is TRUE, the POA has the RETAIN policy, and
a servant manager is registered with the POA, the etherealize operation on the servant
manager will be called for each active object in the Active Object Map. The apparent
destruction of the POA occurs before any calls to etherealize are made. Thus, for
example, an etherealize method that attempts to invoke operations on the POA will
receive the OBJECT_NOT_EXIST exception.

If the wait_for_completion parameter is TRUE, the destroy operation will return
only after all requests in process have completed and all invocations of etherealize
have completed. Otherwise, the destroy operation returns after destroying the POAs.
CORBA V2.2 Interfaces February 1998 9-31

9

 relied
Policy Creation Operations

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);

LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);

IdUniquenessPolicy
create_id_uniqueness_policy(in IdUniquenessPolicyValue value);

IdAssignmentPolicy
create_id_assignment_policy(in IdAssignmentPolicyValue value);

ImplicitActivat ionPolicy
create_i mplicit_activat ion_policy

(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy

create_servant_retention_policy(in ServantRetentionPolicyValue value);
RequestProcessingPolicy

create_request_processing_policy
(in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value. The
application is responsible for calling the inherited destroy operation on the returned
reference when it is no longer needed.

the_name

readonly attri bute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the
POA is created. The name of the root POA is system-dependent and should not be
upon by the application.

the_parent

readonly attri bute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

the_POAManager

readonly attri bute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.
9-32 CORBA V2.2 February 1998

9

the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly created
POA has no adapter activator (the attribute is null). It is system-dependent whether the
root POA initially has an adapter activator; the application is free to assign its own
adapter activator to the root POA.

get_servant_manager

ServantManager get_servant_manager()
raises(WrongPoli cy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servant
manager has been associated with the POA, it returns a null reference. It is system-
dependent whether the root POA initially has a servant manager; the application is free to
assign its own servant manager to the root POA.

set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPoli cy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation sets the default servant manager associated with the POA.

get_servant

Servant get_servant()
raises(NoServant, Wrong Policy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has
been associated with the POA, the NoServant exception is raised.
CORBA V2.2 Interfaces February 1998 9-33

9

This
ect

e

ject
set_servant

void set_servant(in Servant p_servant)
raises(WrongPoli cy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant.
servant will be used for all requests for which no servant is found in the Active Obj
Map.

activate_object

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPol icy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the Active
Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and the
specified servant in the Active Object Map. The Object Id is returned.

activate_object_with_id

void activate_object_with_id(in ObjectId oid,
in Servant p_servant)

raises (ObjectAlreadyActive, ServantAlre adyActive, WrongPoli cy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

If the CORBA object denoted by the Object Id value is already active in this POA (there
is a servant bound to it in the Active Object Map), the ObjectAlreadyActive exception
is raised. If the POA has the UNIQUE_ID policy and the servant is already in the Activ
Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Ob
Id and the specified servant in the Active Object Map.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not
generated by the system or for this POA, the activate_object_with_id operation may
raise the BAD_PARAM system exception. An ORB is not required to detect all such
invalid Object Id values, but a portable application must not invoke
activate_object_with_id on a POA that has the SYSTEM_ID policy with an Object
Id value that was not previously generated by the system for that POA, or, if the POA
also has the PERSISTENT policy, for a previous instantiation of the same POA.
9-34 CORBA V2.2 February 1998

9

iated

 be
ng

d

deactivate_object

void deactivate_object (in ObjectId oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy
exception is raised.

This operation causes the association of the Object Id specified by the oid parameter and
its servant to be removed from the Active Object Map. If a servant manager is assoc
with the POA, ServantLocator::etherealize will be invoked with the oid and the
servant. (The deactivate_object operation does not wait for the etherealize operation
to complete before deactivate_object returns.) If there is no active object associated
with the specified Object Id, the operation raises an ObjectNotActive exception.

Note – If the servant associated with the oid is serving multiple Object Ids,
ServantLocat or::etherealize may be invoked multiple times with the same servant
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

create_reference

Object create_reference (in CORBA::Reposi toryId intf)
raises (WrongPol icy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy
exception is raised.

This operation creates an object reference that encapsulates a POA-generated Object Id
value and the specified interface repository id. This operation does not cause an
activation to take place. The resulting reference may be passed to clients, so that
subsequent requests on those references will cause the appropriate servant manager to
invoked, if one is available. The generated Object Id value may be obtained by invoki
POA::reference_to_id with the created reference.

create_reference_with_id

Object create_reference_with_id (
in ObjectId oid,
in CORBA::Reposi toryId intf);

This operation creates an object reference that encapsulates the specified Object Iand
interface repository Id values. This operation does not cause an activation to take place.
The resulting reference may be passed to clients, so that subsequent requests on those
references will cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not
generated by the system or for this POA, the create_reference_with_id operation
may raise the BAD_PARAM system exception. An ORB is not required to detect all
CORBA V2.2 Interfaces February 1998 9-35

9

ct

t, and

ed
t, and

 that
such invalid Object Id values, but a portable application must not invoke this operation
on a POA that has the SYSTEM_ID policy with an Object Id value that was not
previously generated by the system for that POA, or, if the POA also has the
PERSISTENT policy, for a previous instantiation of the same POA.

servant_to_id

ObjectId servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires the RETAIN and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies; if not present, the WrongPolicy exception is raised.

This operation has three possible behaviors.

• If the POA has the UNIQUE_ID policy and the specified servant is active, the Obje
Id associated with that servant is returned.

• If the POA has the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated
using a POA-generated Object Id and the Interface Id associated with the servan
that Object Id is returned.

• Otherwise, the ServantNotActive exception is raised.

servant_to_reference

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires the RETAIN and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies; if not present, the WrongPolicy exception is raised.

This operation has three possible behaviors.

• If the POA has the UNIQUE_ID policy and the specified servant is active, an object
reference encapsulating the information used to activate the servant is returned.

• If the POA has the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activat
using a POA-generated Object Id and the Interface Id associated with the servan
a corresponding object reference is returned.

• Otherwise, the ServantNotActive exception is raised.

Note – The allocation of an Object Id value and installation in the Active Object Map
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement here is that a reference is produced
will behave appropriately (that is, yield a consistent Object Id value when asked
politely).
9-36 CORBA V2.2 February 1998

9

e

reference_to_servant

Servant reference_to_servant (O bject reference)
raises (ObjectNotAct ive, WrongAdapter, WrongPol icy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the Activ
Object Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT policy and a
default servant has been registered with the POA, this operation returns the default
servant. Otherwise, the ObjectNotActive exception is raised.

If the object reference was not created by this POA, the Wrong Adapter exception is
raised.

reference_to_id

ObjectId reference_to_id(in Object ref erence)
raises (WrongAdapter, WrongPol icy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specified reference . This
operation is valid only if the reference was created by the POA on which the operation is
being performed. If the reference was not created by that POA, a WrongAdapter
exception is raised. The object denoted by the reference does not have to be active for
this operation to succeed.

id_to_servant

Servant id_to_servant (in ObjectId oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

This operation returns the active servant associated with the specified Object Id value. If
the Object Id value is not active in the POA, an ObjectNotActive exception is raised.

id_to_reference

Object id_to_reference(in ObjectId oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.
CORBA V2.2 Interfaces February 1998 9-37

9

ntext

f
If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Object Id
value is not active in the POA, an ObjectNotActive exception is raised.

9.3.9 Current operations

The PortableServer::Current interface, derived from CORBA::Current , provides
method implementations with access to the identity of the object on which the method
was invoked. The Current interface is provided to support servants that implement
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required to
support use of Current in the context of both locally-invoked and remotely-invoked
operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB: :resolve_initial_references(" POACurrent") operation.
Thereafter, it can be used within the context of a method dispatched by the POA to
obtain the POA and ObjectId that identify the object on which that operation was
invoked.

get_POA

POA get_POA() raises (NoContext);

This operation returns a reference to the POA implementing the object in whose co
it is called. If called outside the context of a POA-dispatched operation, a NoContext
exception is raised.

get_object_id

ObjectId get_object_id() raises (NoContext);

This operation returns the ObjectId identifying the object in whose context it is called. I
called outside the context of a POA-dispatched operation, a NoContext exception is
raised.

9.4 IDL for PortableServer module

#pragma prefix "omg.org"
module PortableServer
{

// forward reference
interface POA;

native Servant;

typedef sequence<oct et> ObjectId;
9-38 CORBA V2.2 February 1998

9

exception ForwardR equest
{

Object forward_reference;
};

// **
//
// Policy interfaces
//
// **
enum ThreadPolicyValue {

ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

};
interface ThreadPol icy : CORBA::Policy
{

readonly attribute ThreadPolicyValue value;
};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};
interface LifespanPolicy : CORBA::Policy
{

readonly attribute LifespanPolicyValue value;
};

enum IdU niquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};
interface IdU niquenessPolicy : CORBA::Policy
{

readonly attribute IdUniqu enessPolicyValue value;
};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};
interface IdAssignmentPolicy : CORBA::Policy
{

readonly attribute IdAssignmentPolicyValue value;
};

enum ImplicitActivat ionPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};
interface ImplicitActivat ionPol icy : CORBA::Policy
CORBA V2.2 IDL for PortableServer module February 1998 9-39

9

{
readonly attribute ImplicitAct ivatio nPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};
interface ServantRetentionPol icy : CORBA::Policy
{

readonly attribute ServantRetentionPolicyValue value;
};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};
interface RequestProcessingPol icy : CORBA::Policy
{

readonly attribute RequestProcessingPolicyValue value;
};

// **
//
// POAManager interface
//
// **

interface POAManager
{

exception AdapterInactive{};

void activate()
raises(AdapterInactive);

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion)

raises(AdapterInactive);
};

// **
//
// AdapterActivator interface
//
// **

interface AdapterActivator
9-40 CORBA V2.2 February 1998

9

{
boolean unknown_adapter(in POA parent, in string name);

};

// **
//
// ServantManager interface
//
// **

interface ServantManager
{ };

interface ServantActivator : ServantManager {
 Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (Forward Request);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_act ivations);

};

interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie th e_cookie)

raises (Forward Request);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie th e_cookie,
in Servant the_servant);

};

// **
//
// POA interface
//
// **
CORBA V2.2 IDL for PortableServer module February 1998 9-41

9

interface POA
{

exception AdapterAlreadyExists {};
exception AdapterInactive {};
exception AdapterNonExistent {};
exception InvalidPolicy { unsigned short index; };
exception NoServ ant {};
exception ObjectAlreadyAct ive {};
exception ObjectNotAct ive {};
exception ServantAlreadyAct ive {};
exception ServantNotAct ive {};
exception WrongAdapter {};
exception WrongPolicy {};

//--
//
// POA creation and destruction
//
//--

POA create_POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, Inval idPolicy);

POA find_POA(in string adapter_name, in boolean act ivate_it)
raises (AdapterNonExistent);

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

// **
//
// Factories for Policy objects
//
// **

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);

LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);

IdUniquenessPolicy
create_id_uniqueness_policy

(in IdUniquenessPolicyValue value);
IdAssignmentPolicy

create_id_assignment_policy
(in IdAssignmentPolicyValue value);

ImplicitActivat ionPolicy
create_i mplicit_activat ion_policy
9-42 CORBA V2.2 February 1998

9

(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy

create_servant_retention_policy
(in ServantRetentionPolicyValue value);

RequestProcessingPolicy
create_request_processing_policy

(in RequestProcessingPolicyValue value);

//--
//
// POA attr ibutes
//
//--

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

//--
//
// Servant Manager registration:
//
//--

ServantManager get_servant_manager()
raises (WrongPol icy);

void set_servant_manager(in ServantManager imgr)
raises (WrongPol icy);

//--
//
// operations for the USE_DEFA ULT_SERVANT policy
//
//--

Servant get_servant()
raises (NoSer vant, Wro ngPol icy);

void set_servant(in Servant p_servant)
raises (WrongPol icy);

// **
//
// object activation and deactivation
//
// **
CORBA V2.2 IDL for PortableServer module February 1998 9-43

9

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActi ve, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActi ve, ObjectAlre adyAct ive,
WrongPol icy);

void deactivate_obj ect(in ObjectId oid)
raises (ObjectNotActive, Wrong Policy);

// **
//
// reference creation operations
//
// **

Object create_reference (
in CORBA::Reposi toryId intf)

raises (WrongPol icy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::Reposi toryId intf)

raises (WrongPol icy);

//--
//
// Identity mapping operations:
//
//--

ObjectId servant_to_id(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises (ObjectNotActive, Wrong Adapt er, WrongPoli cy);

ObjectId reference_to_id(in Object reference)
raises (WrongAd apter, Wro ngPol icy);

Servant id_to_servant(in ObjectId oid)
raises (ObjectNotActive, Wrong Policy);
9-44 CORBA V2.2 February 1998

9

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, Wrong Policy);

};

// **
//
// Current interface
//
// **

interface Current : CORBA::Current
{

exception NoContext { };

POA get_POA() raises (NoContext);
ObjectId get_object_id() raises (NoContext);

};

};
CORBA V2.2 IDL for PortableServer module February 1998 9-45

9

to
9.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with
the cardinalities of the associations. They are intended to be an aid in comprehension
those who enjoy such representations. They are are not normative.

Figure 9-4 UML for main part of PortableServer

PortableServer::AdapterActivator
(from Portable Server)

unknown_adapter()

PortableServer::POAManager
(from Portable Server)

activate()
hold_requests()
discard_requests()
deactivate()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

preinvoke()
postinvoke()

PortableServer::ServantActivator
(from Portable Server)

incarnate()
etherealize()

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::PolicyList
(from CORBA Core)

CORBA::Policy
(from CORBA Core)

PortableServer::POA
(from Portable Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

: CORBA::Policy
policy_type : CORBA::PolicyType

copy()
destroy()

the_name : string
the_parent : PortableServer::POA
the_manager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator

create_POA ()
find_POA()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_iwth_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()
id_to_servant()
id_to_reference()

1..1 0..n

the_parent

1..n
the_manager

1..1

0..1

0..1

1..n

0..n

0..n

0..n

the_servant_manager : PortableServer::ServantManager
9-46 CORBA V2.2 February 1998

9

ly
Figure 9-5 UML for PortableServer policies

9.6 Usage Scenarios

This section illustrates how different capabilities of the POA may be used in
applications.

Note – In some of the following C++ examples, PortableServer names are not explicit
scoped. It is assumed that all the examples have the C++ statement
using namespace PortableServer;

IdAssignmentPolicyValue

USER_ID
SYSTEM_ID

IdUniquenessPolicyValue

UNIQUE_ID
MULTIPLE_ID

ImplicitActivationPolicyValue

IMPLICIT_ACTIVATION
NO_IMPLICIT_ACTIVATION

LifespanPolicyValue

TRANSIENT
PERSISTENT

RequestProcessingPolicyValue

USE_ACTIVE_OBJECT_MAP_ONLY
USE_DEFAULT_SERVANT

ThreadPolicyPolicyValue

ORB_CTRL_MODEL
SINGLE_THREAD_MODEL

USE_SERVANT_MANAGER

ServantRetentionPolicyValue
RETAIN
NON_RETAIN

IdAssignmentPolicy
value:IdAssignmentPolicyValue

IdUniquessPolicy
value:IdUniquenessPolicyValue

ImpliciActivationtPolicy
value:ImpliciActivationPolicyValue

LifespanPolicy
value:LifespanPolicyValue

RequestProcessingPolicy
value:RequestProcessingPolicyValue

ThreadPolicy
value:ThreadPolicyValue

ServantRetentionPolicy
value:ServantRetentionPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

CORBA::PolicyList
(from CORBA core)

 : CORBA::Policy

valuevaluevalue

valuevaluevalue

value

1..n

0..n
CORBA V2.2 Usage Scenarios February 1998 9-47

9

the

 to

e, the

ct Id
9.6.1 Getting the root POA

All server applications must obtain a reference to the root POA, either to use it directly
to manage objects or to create new POA objects. The following example demonstrates
how the application server can obtain a reference to the root POA.

// C++
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

9.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The POA
is created as a child of an existing POA. In this example, it is created as a child of
root POA.

// C++
CORBA::PolicyList policies(2);
policies[0] = rootPOA->create_thread_policy(

PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(

PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =

rootPOA->create_POA("my_little_poa",
PortableServer::POAManager::_nil(), policies);

9.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this approach,
objects are activated by performing the activate_object operation on the POA with the
object in question. For this operation, the POA allocates, assigns, and returns a unique
identity value for the object.

Generally this capability is most useful for transient objects, where the Object Id needs
be valid only as long as the servant is active in the server. The Object Ids can remain
completely hidden and no servant manager need be provided. When this is the cas
identity and lifetime of the servant and the abstract object are essentially equivalent.
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Obje
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-
assigned Object Ids. It presumes a POA that has the SYSTEM_ID,
USE_SERVANT_MANAGER , and RETAIN policies.
9-48 CORBA V2.2 February 1998

9

is
Assume this interface:

// IDL
interface Foo
{

long doit();
}

This might result in the generation of the following skeleton:

class POA_Foo : public ServantBase
{
public:
...

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{

public:
 MyFooServant(POA_ptr poa, Long value)

: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() { CORBA::release(my_poa); }
virtual POA_ptr _default_POA()

{ return POA::_duplicate(my_poa); }
virtual Long doit() { return my_value; }

protected:
POA_ptr my_poa;
Long my_value;

};

Now, somewhere in the program during initialization, probably in main() :

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

 poa->activate_object(afoo);
Foo_var foo = afoo->_this();
poa->the_POAManager()->activate();
orb->run();

This object is activated with a generated Object Id.

9.6.4 Explicit activation with user assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. Th
may be done for several reasons. For example, a programmer may know that certain
objects are commonly used, or act as initial points of contact through which clients
CORBA V2.2 Usage Scenarios February 1998 9-49

9

t

ion
r

n

hown
access other objects (for example, factories). The server could be implemented to create
and explicitly activate these objects during initialization, avoiding the need for a servan
manager.

If an implementation has a reasonably small number of servants, the server may be
designed to keep them all active continuously (as long as the server is executing). If this
is the case, the implementation need not provide a servant manager. When the server
initializes, it could create all available servants, loading their state and identities from
some persistent store. The POA supports an explicit activation operation,
activate_object_with_id , that associates a servant with an Object Id. This operat
would be used to activate all of the existing objects managed by the server during serve
initialization. Assuming the POA has the USE_SERVANT_MANAGER policy and no
servant manager is associated with a POA, any request received by the POA for a
Object Id value not present in the Active Object Map will result in an
OBJECT_NOT_EXIST exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate them
with well known Object Id values during server initialization, before activating the POA.
This approach ensures that the objects are always available when the POA is active, and
doesn’t require writing a servant manager. It has severe practical limitations for a large
number of objects, though.

This example illustrates the explicit activation of an object using a user chosen Object Id.
This example presumes a POA that has the USER_ID, USE_SERVANT_MANAGER ,
and RETAIN policies.

The code is like the previous example, but replace the last portion of the example s
above with the following code:

// C++
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("myLittleFoo");
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

9.6.5 Creating references before activation

It is sometimes useful to create references for objects before activating them. This
example extends the previous example to illustrate this option:
9-50 CORBA V2.2 February 1998

9

// C++
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("myLittleFoo");
CORBA::Object_var obj = poa->create_reference_with_id(

oid.in(), "IDL:Foo:1.0");
Foo_var foo = Foo::_narrow(obj);

// ...later...

MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

9.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of the
requirements of object implementations necessary for their intended function. Because
servant managers are local objects, and their use is limited to a single narrow role, some
simplifications in their implementation are possible. Note that these simplifications are
suggestions, not normative requirements. They are intended as examples of ways to
reduce the programming effort required to define servant managers.

A servant manager implementation must provide the following things:

• implementation code for either

• incarnate() and etherealize() , or

• preinvoke() and postinvoke()

• implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the default
servant manager on the root POA already supplies this implementation code. User
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expected that
most servant managers can be activated on the root POA with its default set of policies
(see “POA Creation” on page 9-6). It is for this reason that the root POA has the
IMPLICIT_ACTIVATION policy: so that a servant manager can easily be activated.
Users may choose to activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that has the USER_ID, USE_SERVANT_MANAGER , and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a ServantActivator. The
ORB supplies a servant activator skeleton class in a library:

// C++
namespace POA_PortableServer
{

class ServantActivator : public virtual ServantManager
{

CORBA V2.2 Usage Scenarios February 1998 9-51

9

n the

rom
public:
virtual ~ServantActivator();
virtual Servant incarnate(

const ObjectId& POA_ptr poa) = 0;
virtual void etherealize(

const ObjectId&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

};
}

A ServantActivator servant manager might then look like:

// C++
class MyFooServantActivator : public POA_PortableServer::Ser-
vantActivator
{

public:
// ...
Servant incarnate(

const ObjectId& oid, POA_ptr poa)
{

String_var s = PortableServer::ObjectId_to_string
(oid);

if (strcmp(s, "myLittleFoo") == 0) {
return new MyFooServant(poa, 27);

} else {
throw CORBA::OBJECT_NOT_EXIST();

}
}
void etherealize(

const ObjectId& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

{
if (remaining_activations == 0)

delete servant;
}
// ...

};

9.6.7 Object activation on demand

The precondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request o
reference. It is the responsibility of the ORB, in collaboration with the POA and the
server application to find or create an appropriate servant and perform the requested
operation on it. Such an object is said to be incarnated when it has an active servant (or,
incarnation). Note that the client had to obtain the reference in question previously f
9-52 CORBA V2.2 February 1998

9

est to

t
e
target

sulate

n a
 in
 POA
t

tivate
rvant

is

some source. From the client’s perspective, the abstract object exists as long as it holds a
reference, until it receives an OBJECT_NOT_EXIST system exception in a reply from
an attempted request on the object. Incarnation state does not imply existence or non-
existence of the abstract object.

Note – This specification does not address the issues of communication or server
process activation, as they are immaterial to the POA interface and operation. It is
assumed that the ORB activates the server if necessary, and can deliver the requ
the appropriate POA.

To support object activation on demand, the server application must register a servan
manager with the appropriate POA. Upon receiving the request, if the POA consults th
Active Object Map and discovers that there is no active servant associated with the
Object Id, the POA invokes the incarnate operation on the servant manager.

Note – An implication that this model has for GIOP is that the object key in the
request message must encapsulate the Object Id value. In addition, it may encap
other values as necessitated by the ORB implementation. For example, the server must
be able to determine to which POA the request should be directed. It could assig
different communication endpoint to each POA so that the POA identity is implicit
the request, or it could use a single endpoint for the entire server and encapsulate
identities in object key values. Note that this is not a concrete requirement; the objec
key may not actually contain any of those values. Whatever the concrete information
is, the ORB and POA must be able to use it to find the servant manager, invoke ac
if necessary (which requires the actual Object Id value), and/or find the active se
in some map.

The incarnate invocation passes the Object Id value to the servant manager. At th
point, the servant manager may take any action necessary to produce a servant that it
considers to be a valid incarnation of the object in question. The operation returns the
servant to the POA, which invokes the operation on it. The incarnate operation may
alternatively raise an OBJE CT_NOT_EXIST system exception that will be returned to
the invoking client. In this way, the user-supplied implementation is responsible for
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object Id in
the Active Object Map. (This example presumes the RETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contain a key
for a record in a database that contains the object’s state. The servant manager would
retrieve the state from the database, construct a servant of the appropriate implementation
class (assuming an object-oriented programming language), initialize it with the state
from the database, and return it to the POA.

The example servant manager in the last section (“Servant Manager Definition and
Creation” on page 9-51) could be used for this scenario. Recall that the POA would have
the USER_ID, USE_SERVANT_MANAGER , and RETAIN policies.
CORBA V2.2 Usage Scenarios February 1998 9-53

9

the

.

all

Given such a ServantActivator, all that remains is initialization code such as the
following.

PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId("myLittleFoo");

CORBA::Object_var obj = poa->create_reference_with_id(
oid, "IDL:foo:1.0");

MyFooServantActivator* fooIM = new MyFooServantActivator;
ServantActivator_var IMref = fooIM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();

9.6.8 Persistent objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with
POA::reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id value, whether
it was assigned by the POA or the user. By doing this, an implementation may provide
a servant manager that associates the POA-allocated Object Id values with persistently
stored state. It may also pass the POA-allocated Object Id values to POA operations such
as activate_object_with_id and create_reference_w ith_id .

A POA with the PERSISTENT policy may be destroyed and later reinstantiated in the
same or a different process. A POA with both the SYSTEM_ID and PERSISTENT
policies generates Object Id values are unique across all instantiations of the same POA

9.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allowed to
support multiple object identities simultaneously. If a POA allows multiple identities per
servant, the POA’s treatment of the servants is affected in the following ways:

• Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.

• A servant cannot be mapped onto or converted to an individual object reference
using that POA, since the identity is potentially ambiguous.

9.6.10 One Servant for all Objects

By using the USE_DEFAULT_SERVANT policy, the developer can create a POA that
will use a single servant to implement all of its objects. This approach is useful when
there is very little data associated with each object, so little that the data can be encoded
in the Object Id.

The following example illustrates this approach by using a single servant to incarnate
CORBA objects that export a given interface in the context of a server. This example
presumes a POA that has the USER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.
9-54 CORBA V2.2 February 1998

9

Two interfaces are defined in IDL. The FileDescriptor interface is supported by objects
that will encapsulate access to operations in a file, associated with a file system. Global
operations in a file system, such as the ones necessary to create FileDescriptor objects,
are supported by objects that export the FileSystem interface.

// IDL
interface FileDe scriptor {

typedef sequence<o ctet> DataBuf fer;

long write (in DataBuffer buffer);
DataBuf fer read (in long num_bytes);
void destroy ();

};

interface FileSystem {
...
FileDescriptor open (in string file_name, in long flags);
...

};

Implementation of these two IDL interfaces may inherit from static skeleton classes
generated by an IDL to C++ compiler as follows:

// C++
class FileDescriptorImpl : public POA_FileDescriptor
{

public:
FileDescriptorImpl(POA_ptr poa);
~FileDescriptorImpl();
POA_ptr _default_POA();
CORBA::Long write(

const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(

CORBA::Long num_bytes);
void destroy();

private:
POA_ptr my_poa;

};

class FileSystemImpl : public POA_FileSystem
{

public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_POA();
FileDescriptor_ptr open(

const char* file_name, CORBA::Long flags);
private:

POA_ptr my_poa;
FileDescriptorImpl* fd_servant;

};
CORBA V2.2 Usage Scenarios February 1998 9-55

9

e the

, after
ce

al file
A single servant may be used to serve all requests issued to all FileDescriptor objects
created by a FileSystem object. The following fragment of code illustrates the steps to
perform when a FileSystem servant is created.

// C++
FileSystemImpl::FileSystemImpl(POA_ptr poa)

: my_poa(POA::_duplicate(poa))
{

fd_servant = new FileDescriptorImpl(poa);
poa->set_servant(fd_servant);

}

The following fragment of code illustrates how FileDescriptor objects are created as a
result of invoking an operation (open) exported by a FileSystem object. First, a local
file descriptor is created using the appropriate operating system call. Then, a CORBA
object reference is created and returned to the client. The value of the local file descriptor
will be used to distinguish the new FileDescr iptor object from other FileDe scriptor
objects. Note that FileDescriptor objects in the example are transient, since they us
value of their file descriptors for their ObjectIds, and of course the file descriptors are
only valid for the life of a process.

// C++
FileDescriptor_ptr
FileSystemImpl::open(

const char* file_name, CORBA::Long flags)
{

int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(ostr.str());
Object_var obj = my_poa->create_reference_with_id(

 oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

}

Any request issued to a FileDescriptor object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object is being
incarnated by invoking an operation that returns a reference to the target object and
that, invoking POA::ref erence_to_id . In C++, the operation used to obtain a referen
to the target object is _this() . Typically, the ObjectId value associated with the
reference will be used to retrieve the state of the target object. However, in this example,
such step is not required since the only thing that is needed is the value for the loc
descriptor and that value coincides with the ObjectId value associated with the
reference.

Implementation of the read operation is rather simple. The servant determines which
object it is incarnating, obtains the local file descriptor matching its identity, performs
the appropriate operating system call, and returns the result in a DataBuffer sequence.
9-56 CORBA V2.2 February 1998

9

t are

o the
le

t

acy

A

entries
f
// C++
FileDescriptor::DataBuffer*
FileDescriptorImpl::read(CORBA::Long num_bytes)
{

FileDescriptor_var me = _this();
PortableServer::ObjectId_var oid =

my_poa->reference_to_id(me.in());
CORBA::String_var s =

PortableServer::ObjectId_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

}

Using a single servant per interface is useful in at least two situations.

• In one case, it may be appropriate for encapsulating access to legacy APIs tha
not object-oriented (system calls in the Unix environment, as we have shown in the
example).

• In another case, this technique is useful in handling scalability issues related t
number of CORBA objects that can be associated with a server. In the examp
above, there may be a million FileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA doesn'
introduce scalability problems but provides mechanisms to handle them.

9.6.11 Single Servant, many objects and types, using DSI

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to leg
systems or software that mediates with external hardware, for example.

Usage of the DSI is illustrated in the following example. This example presumes a PO
that supports the USER_ID, USE_DEFAULT_SERVANT , and RETAIN policies.

A single servant will be used to incarnate a huge number of CORBA objects, each of
them representing a separate entry in a Database. There may be several types of
in the Database, representing different entity types in the Database model. Each type o
entry in the Database is associated with a separate interface which comprises operations
supported by the Database on entries of that type. All these interfaces inherit from the
DatabaseEntry interface. Finally, an object supporting the DatabaseAgent interface
supports basic operations in the database such as creating a new entry, destroying an
existing entry, etc.
CORBA V2.2 Usage Scenarios February 1998 9-57

9

c
// IDL
interface DatabaseEntry {

readonly attribute string name;
};

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

};

...

interface DatabaseAgent {
DatabaseEntry create_entry (

in string key,
in CORBA::Identifier entry_type,
in NVPairSeque nce initial_att ribute_values

) ;
void destroy_entry (in string key);
...

};

Implementation of the DatabaseEntry interface may inherit from the standard dynami
skeleton class as follows:

// C++
class DatabaseEntryImpl :

public POA_PortableServer::DynamicImplementation
{
public:

DatabaseEntryImpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntryImpl ();

virtual POA_ptr _defaultPOA()
{

return poa;
}

};

On the other hand, implementation of the DatabaseAgent interface may inherit from
a static skeleton class generated by an IDL to C++ compiler as follows:
9-58 CORBA V2.2 February 1998

9

l

 is

mmon
// C++
class DatabaseAgentImpl :

public DatabaseAgentImplBase
{
protected:

DatabaseAccessPoint mydb;
DatabaseEntryImpl * common_servant;

public:
DatabaseAgentImpl ();
virtual DatabaseEntry_ptr create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);
virtual void destroy_entry (const char * key);
~DatabaseAgentImpl ();

};

A single servant may be used to serve all requests issued to all DatabaseEntry objects
created by a DatabaseAgent object. The following fragment of code illustrates the
steps to perform when a DatabaseAgent servant is created. First, access to the
database is initialized. As a result, some kind of descriptor (a DatabaseAccessPoint loca
object) used to operate on the database is obtained. Finally, a servant will be created and
associated with the POA.

// C++
void DatabaseAgentImpl::DatabaseAgentImpl ()
{

mydb = ...;
common_servant = new DatabaseEntryImpl(mydb);
poa->set_servant(common_servant);

};

The code used to create DatabaseEntry objects representing entries in the database
similar to the one used for creating FileDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the corresponding
DatabaseEntry object. All requests issued to a DatabaseEntry object are handled by
the same servant because references to this type of object are associated with a co
POA created with the USE_DEFAULT_SERVANT policy.
CORBA V2.2 Usage Scenarios February 1998 9-59

9

 in
the
// C++
DatabaseEntry_ptr DatabaseAgentImpl::create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

// creates a new entry in the database:
mydb->new_entry (key, ...);

// creates a reference to the CORBA object used to
// encapsulate access to the new entry in the database.
// There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(

string_to_ObjectId (key),
identifierToRepositoryId (entry_type),

);

DatabaseEntry_ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);
return entry;

};

Any request issued to a DatabaseEntry object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object it is
incarnating, obtains the database key matching its identity, invokes the appropriate
operation in the database and returns the result as an output parameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database
order to invoke operations on the entry. If that is the case, the servant may obtain
type of an entry based on the interface supported by the DatabaseEntry object
encapsulating access to that entry. This interface may be obtained by means of invoking
the get_interface operation exported by the reference to the DatabaseEntry object.
9-60 CORBA V2.2 February 1998

9

 at the

.

// C++
void DatabaseEntryImpl::invoke (ServerRequest_ptr request)
{

CORBA::Object_ptr current_obj = _this ();

// The servant determines the key associated with
// the database entry represented by current_obj:
PortableServer::ObjectId oid =

poa->reference_to_id (current_obj);
char * key = ObjectId_to_string (oid);

// The servant handles the incoming CORBA request. This
// typically involves the following steps:
// 1. mapping the CORBA request into a database request
// using the key obtained previously
// 2. constructing output parameters to the CORBA request
// from the response to the database request
...

};

Note that in this example, we may have a billion DatabaseEntry objects in a server
requiring only a single entry in map tables supported by the POA (that is, the ORB at the
server). No permanent storage is required for references to DatabaseEntry objects
server. Actually, references to DatabaseEntry objects will only occupy space:

• at clients, as long as those references are used; or

• at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scenarios
where this scalability causes no penalty in terms of performance (basically, when there is
no need to restore the state of an object, each time a request to it is being served)
CORBA V2.2 Usage Scenarios February 1998 9-61

9

9-62 CORBA V2.2 February 1998

	The Portable Object Adaptor
	9.1 Overview
	9.2 Abstract Model Description
	9.2.1 Model Components
	9.2.2 Model Architecture
	9.2.3 POA Creation
	9.2.4 Reference Creation
	9.2.5 Object Activation States
	9.2.6 Request Processing
	9.2.7 Implicit Activation
	9.2.8 Multi-threading
	9.2.9 Dynamic Skeleton Interface
	9.2.10 Location Transparency

	9.3 Interfaces
	9.3.1 The Servant IDL Type
	9.3.2 POAManager Interface
	9.3.3 AdapterActivator Interface
	9.3.4 ServantManager Interface
	9.3.5 ServantActivator Interface
	9.3.6 ServantLocator Interface
	9.3.7 POA Policy Objects
	9.3.8 POA Interface
	9.3.9 Current operations

	9.4 IDL for PortableServer module
	9.5 UML Description of PortableServer
	9.6 Usage Scenarios
	9.6.1 Getting the root POA
	9.6.2 Creating a POA
	9.6.3 Explicit Activation with POA-assigned Object Ids
	9.6.4 Explicit activation with user assigned Object Ids
	9.6.5 Creating references before activation
	9.6.6 Servant Manager Definition and Creation
	9.6.7 Object activation on demand
	9.6.8 Persistent objects with POA-assigned Ids
	9.6.9 Multiple Object Ids Mapping to a Single Servant
	9.6.10 One Servant for all Objects
	9.6.11 Single Servant, many objects and types, using DSI

