Interceptors 18

18.1 Introdution

This chapter defines ORB operations that allow sendceb as security to be inserted
in the invocation path. Interceptors are not specific to security; they coulsieldeto
invoke any ORB service. These interceptoesmit services internal to the ORB to be
cleanly separated so that, for example, security functanscoexist vth other ORB
services such as transactions and replication.

Interceptors are an optional extension to the ORB to allopldmentation of the
Replaceable Security option defined in the Security Service specification (Chapter 15
of CORBA Services).

Contents

This chapter contains tHellowing sections.

Section Title Page
“Introduction” 18-1

“Interceptors” 18-2
“Client-Target Binding” 18-4

“Using Interceptors” 18-6
“Interceptor Interfaces” 18-7
“IDL for Interceptors” 18-9

CORBA V2.2 ebruary 1998 18-1



18

18.1.1 ORB Core and ORB Services

The ORB Core is defined ithe CORBA architecture as “that part of the ORB which
provides the basic representation of objects and the communication of requests.” ORB
Services, such as the Security Services, are built on thisaodrextend the basic
functions with additional qualities or transparencies, thereby presenting a higher-level
ORB environment to the application.

The function of an ORBervice is specified as a transformation of\eegimessage (a
request, reply, or derivation thereof). A client may generate an object request, which
necessitates some transformation of that request by ORB services (for example,
Security Services may protect the message in tranghbgypting it).

18.2 Interceptors

An interceptor is responsible for the execution of one or more ORB services.
Logically, an interceptor is interposed in the invocation (and response) path(s) between
a clientand a target object. When several ORB services are required, several
interceptors may be used.

Two types of interceptors are defined in this specification:
®* Request-level interceptors, which execute themirequest.

® Message-level interceptors, which send esxkive messages (unstructured buffers)
derved from the requests and replies.

Interceptors provide a highly flexible means of adding portable ORB Services to a
CORBA compliant object systerithe fexibility derives from the capacity of a

binding between client and target object to be extended and specializek¢b thef
mutual requirements of client and target. The portability derives from the definition of
the interceptor interface in OMG IDL.

The kinds ofinterceptors available aleown tothe ORB. Interceptors are created by
the ORB as necessary during binding, as described next.

18.2.1 Generic ORB Serviceand Interceptors

An Interceptor implements one or more ORB services. Logically, an interceptor is
interposed in the invocation (and response) path(s) between aasigbthrget object.
There are two types dfiterceptors:

® Request-level interceptor which perform transformations on a structured request.

®* Message-level interceptorswhich perform transformations on an unstructured
buffer.

18-2 CORBAV2.2 February 1998



18

Figure 18-1 shows interceptors beirgjled during the path of an invoiat.

; Target
Client Obiject
reque* ‘reply reques%l'reply
Request Request
_ level . level
interceptors - interceptors
Message Message
. level _ level
interceptors -~ interceptors

Figure 18-1 Interceptors Called During Invocation Path

18.2.2 Request-Level Interceptors

Request-level interceptors are used to implement serwhéh may be required
regardless of whether the client and target are collocated or rérhete resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subseqently re-nvoke it using the Dynamic Invocation Interface (DIl). An example of
a request-level interceptor is the Access Control interceptor, which uses information
about the requesting principal and thesiggiion in order to mke an access control
decision.

The ORB core invokes each requiestel interceptor via thelient_invoke operation

(at the client) or theéarget_invoke operation (at the target) defined in this sectibime
interceptor may then perform actions, including invoking other objects, before re-
invoking the (transformed) request usi@@RBA::Request::invoke. When theatter
invocation completes, the interceptor has the opportunity to perform axtiars,
including recovering from errors and retrying the invocation or auditing the result if
necessary, before returning.

18.2.3 Message-Level Interceptors

When remote invoation isrequired, the ORB will transform the request into a
message, which can be sent over the network. As functions suchrgptiem are
performed on messages, a second kind on interceptor interface is required.

CORBA V2.2 Interceptors February 1998 18-3



18

The ORB code invokes eadhessage-level interceptor via thend_messageperation
(when sending a message, for example, the request eligheand the reply at the
target) or theeceive_messageperation (when receiving a message). Both have a
message as an argument. The interceptor generally transforms the naesb#gen
invokessend.Send orations return control to the calleithout waiting for the
operation to finish. Having completed thend_messageperation, the interceptor can
continue with its function or return.

18.2.4 Selecting Interceptors

An ORB that uses interceptors must know which interceptors may need to be called,
and in what order they need to be called. An ORB that supports interceptors, when
serving as a client, uses information in the target object reference, as well as local
policy, to decide which interceptors must actually be called during the processing of a
particular request sent to a particular target object.

When aninterceptor isifst invoked, a bind time foction isused to set unterceptor
binding information for future use.

18.3 Client-Target Binding

18-4

The selection of ORB Services is part of the process of establishing a binetwgen
a clientand a target object.

A binding provides the context for a client communicating with a target object via a
particular object reference. The binding determines the mechanisms that will be
involved in interactions such that compatible mechanisms are chosen and client and
target policies are enforced. Some requirements, such as auditing or access control,
may be sasfied bymechanisms in one environment, while others, such as
authentication, require cooperatibetween client and target. Binding may also involve
reserving resources in order to guarantee the particular qualities of service demanded.

Although resolution of mechanismasid policies involves negotiation between the two
parties, thimmeed not always involve interactions between the partieg@snation

about the target can be encoded in the object reference, allowing resolution of the
client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for example, in the GIOP service context.
Where there is an issue of trust, however,té#rget must stilcheck that this outcome

is valid.

The binding between client andrget at the application level can generally be
decomposed into bindings between lower-level objects. For example, the agreement on
transport protocol is an agreement between two communications endpoints, which will
generally not have a one-to-one correspondence to application objects. The overall
binding therefore includes a set of related sub-bindings which may be shared, and also
potentially distributecamong different entities at different locations.

CORBAV2.2 February 1998



18

18.3.1 Binding Model

No object representing the binding is made explicitly visible since the lifetime of such
an object is not under the control of tapplication, an existing binding potentially
being discarded, and a new one made without the application being aware of the fact.

Instead, operations that will affect how a client will interact with a target are provided
on theObject interface and allow a client to determine how it will interact with the
target denoted by that object refezenOn the target side, the binding to the client may
be accessed through tBeirrent interface. This indirect arrangemepgrmits a wde

range of implementations that trade-off the communication and retention of binding
information in different vays.

+n

arget obj r‘e
binding - — — < binding —
~— e ~ _ _ -
— N
Interceptor’, Interceptor
| ORB Core

Figure 18-2 Binding Model

The action of establishing kinding is generally implicit, occurring Hater than the

first invocation between client and target. It may be necessary for a client to establish
more than one binding to the same target object, each with difetébttes (for
example, different security features). In this case, the client can makgyaf the

object reference using Object::duplicaied subsequently specify differeattributes

for that reference.

The scope of aibutes associated with an object reference is that of the object
reference instance (i.e., thaettributes arenot copied if the object reference is used as
an argument to another operation or copied using Objgalicdte). If an object
reference is annout argument, the attributes willilstoe associated witthe object
reference after thesall if the reference it denotes the same object, but not otherwise.

18.3.2 Establishing the Binding and Interceptors

An ORB maintains a list of interceptors, which it supports, and when thesealt.

Note that at the client, when handling the request, the retpwestinterceptors are
alwayscalledbefore the message level ones, while at the target the message-level ones
are called first.

CORBA V2.2 Client-Target Binding February 1998 18-5



18

When the ORB needs to bind abject reference, it refers to the chaeadtics of the
target object andelates this to the types of interceptor it supports. From this it
determines the appropriate type of interceptor to handle the reandesteates it,

passing the object reference in the call. (No separate interceptor initialization operation
is used. Thelient_invoketarget_invoke or send_messagefreceive_messagdls are

used both for the first invocation and for subsequent ones.)

When an interceptor is created, it perforitssbind time functions. flese may involve
getting the policies that apply to the client and to the target. ciukl involve
communicating with the target, for example, a secure invocation interceptor setting up
a security association. Note that the ORB Cselfi isunaware of service-specific
policies. In addition to performing its specific functions, the interceptor must continue
the request by invokingbject(s) dered from the gven object reference.

The inerceptors themselves maintain per-binding information relevant to the function
they perform. This information will be derived from:

®* The policies that apply to the clieanhd target object because of the domains to
which they belong, for example the access policies, default quality of protection.

® Other static properties of the cliesutd target object such as thecurity
mechanisms and protocols supported.

® Dynamic attributes, associated with a particular execution context or invocation (for
example, whether a request must be protected for confidentiality).

If the relevant client or target environmesitanges, part all of a binding may need

to be reestablished. For example, the secure invocation interceptor may detect that the
invocation credentialeave changed and therefore needs to establish a nevitysecur
association using theew credntials. If thebinding cannot be reestablisth, an

exception is raised to the application, indicating the cause of the problem.

Similarly, atthe target, the ORB will create an instance of each interceptor needed
there. A single interceptor handles both requastieplies at the client (or target), as
these share context information.

18.4 Using Inteceptors

18-6

When a client performs an object request, the ORB Core uses the himfdirmgation
to decide which interceptors provide the required ORB Servicasdifoclient and
target as described in “Establishing the Binding and Interceptors” on page 18-5.

18.4.1 Request-Level Interceptors

Request-level interceptors could be used for services such as transaction management
access control, or replication. Services at this level process the request in some way.
For example, they may transform the request into one or more-lewarinvocations

or make checks that the request is permitted. The request-level intercafitars,
performing whatever action is needed at the client (or target), reinvoke the
(transformed) request using the Dynamic Invocation Interface (DII)

CORBAV2.2 February 1998



18

CORBA::Request::invoke. The inerceptor is then stacked until the invocation
completes, when it has an opportunity to perform further actions, taking into account
the response before returning.

Interceptors can find daits of the request using the operations on the request as
defined in the Dynamic Skeleton interface in CORBA 2. Hiigws the interceptor to
find the target objetf operation name, context, parametenrsg (whencomplete) the

result.

If the interceptor decides not to forward the request, for example, the access control
interceptor determines that access is not permitted, it indicates the appropriate
exception and returns.

When the interceptor resumagter an inner request is complete, it can find rénsult
of the operation using thesult operation on the Request object, and check for
exceptions using thexceptionoperation, etc. before returning.

18.4.2 Message-Level Interceptors

When remote invoation isrequired, the ORB will transform the request into a
message that can be sent over the network. Message-level interceptors operate on
messages in general without understanding how these messkgedo requests (for
example, the message couldjost a fragment of a request). Note that the message
interceptors may achieve their purpose not by (just) transforming the given message,
but by communicating using their own message (for example, to establish a secure
association). Fragmentati@nd message protection are possible meskeagée-
interceptors.

send_messages always used when sending a message, so is used by the client to send
a request (or part of a requesthd by the target to send a reply.

When a client mesg@-level interceptor is agtited to perform @end_message
operation, it transforms the message as required, and caigaperation to pass the
message on to the ORB and hence to its target. Unlike inyokeatims, send

operations may return to the caller without completing the operation. The interceptor
can then perform other operations if required before exiting. The client interceptor may
next be called either usirgend_messagéo process another outgoing message, or
usingreceive_messagé process an incoming message.

A target message-level interceptor also suppatsl_messagandreceive_message
operations, though these are obviously called dgiffarentorder from the client side.

18.5 Interceptor Interfaces

Two interceptor interfaces are specified, bosied only by the ORB:

1.It is assumed that the target object fiee is avadable, as this is destred in theC++ mapping for 051, though
not yet in the OMGDL.

CORBA V2.2 Interceptor Interfaces February 1998 18-7



18

® Requestinterceptorfor operations on request-level interceptors. Two operations
are supported:
« client_invoke for invoking a request-level interceptor at the client.
* target_invoke for invoking a request-level interceptor at the target.

®* Messagelnterceptorfor operations on message-level interceptors. Two operations
are supported:
» send_messagtor sending a message from the client to the target or the target to
the client.

* receive_messagéor receiving a message.

Request-level interceptors operate on a representation of the riggekstsused in
the CORBA Dynamic Invocation and Skeletoterfaces.

18.5.1 Client and Target Invoke

These invoke a ragst-level interceptor at the client or target. Both operations have
identical parameterand return values.

module CORBA {
interface Requestint erceptor: Interceptor {// PIDL
void client_invoke (
inout CORBA::Request request
);
void target_invoke (
inout CORBA::Request request
);
|3
|3

Parameters

request The request being invoked. This is defined in the Dynamic
Invocation Interdice. After invocation, output parameters and the
associated result and exceptions may have been updated.

18.5.2 Send and Rewe Message

These invoke a message-level interceptor to send and receive messages. Both
operations have ideigtl parameters and return values.

18-8 CORBAV2.2 February 1998



18

module CORBA {
native Message;
interface Messagelnterceptor: Interceptor {// PIDL
void send_message (

in Object target,
in Message msg
);
void receive_message (
in Object target,
in Message msg
);
|3
|3
Parameters
target The target objectfieence.
Note: The target here mawpt be the same as seen by the
applicaton. For example, a replication request-level interceptor
may send the request to more than one iyidg object.
msg The message to be handled by titisrceptor.
18.6 IDL forInterceptors
module CORBA {
interface Int erceptor {}; /I PIDL

interface Requestint erceptor: Interceptor {// PIDL
void client_invoke (
inout Request request
);
void target_invoke (
inout Request request
);
|3
interface Messagelnterceptor: Interceptor {// PIDL
void send_message (

in Object target,
in Message msg

);

void receive_message (
in Object target,
in Message msg

CORBAV2.2 IDL fdnterceptors February 1998 18-9



18

18-10 CORBAV2.2 February 1998



	Interceptors
	18.1 Introduction
	18.1.1 ORB Core and ORB Services

	18.2 Interceptors
	18.2.1 Generic ORB Services and Interceptors
	18.2.2 Request-Level Interceptors
	18.2.3 Message-Level Interceptors
	18.2.4 Selecting Interceptors

	18.3 Client-Target Binding
	18.3.1 Binding Model
	18.3.2 Establishing the Binding and Interceptors

	18.4 Using Interceptors
	18.4.1 Request-Level Interceptors
	18.4.2 Message-Level Interceptors

	18.5 Interceptor Interfaces
	18.5.1 Client and Target Invoke
	18.5.2 Send and Receive Message

	18.6 IDL for Interceptors


