
Interceptors 18

r 15
18.1 Introduction

This chapter defines ORB operations that allow services such as security to be inserted
in the invocation path. Interceptors are not specific to security; they could be used to
invoke any ORB service. These interceptors permit services internal to the ORB to be
cleanly separated so that, for example, security functions can coexist with other ORB
services such as transactions and replication.

Interceptors are an optional extension to the ORB to allow implementation of the
Replaceable Security option defined in the Security Service specification (Chapte
of CORBA Services).

Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 18-1

“Interceptors” 18-2

“Client-Target Binding” 18-4

“Using Interceptors” 18-6

“Interceptor Interfaces” 18-7

“IDL for Interceptors” 18-9
 CORBA V2.2 February 1998 18-1

18

ORB

evel

ich

een

)

 of

t.
18.1.1 ORB Core and ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB which
provides the basic representation of objects and the communication of requests.”
Services, such as the Security Services, are built on this core and extend the basic
functions with additional qualities or transparencies, thereby presenting a higher-l
ORB environment to the application.

The function of an ORB service is specified as a transformation of a given message (a
request, reply, or derivation thereof). A client may generate an object request, wh
necessitates some transformation of that request by ORB services (for example,
Security Services may protect the message in transit by encrypting it).

18.2 Interceptors

An interceptor is responsible for the execution of one or more ORB services.
Logically, an interceptor is interposed in the invocation (and response) path(s) betw
a client and a target object. When several ORB services are required, several
interceptors may be used.

Two types of interceptors are defined in this specification:

• Request-level interceptors, which execute the given request.

• Message-level interceptors, which send and receive messages (unstructured buffers
derived from the requests and replies.

Interceptors provide a highly flexible means of adding portable ORB Services to a
CORBA compliant object system. The flexibility derives from the capacity of a
binding between client and target object to be extended and specialized to reflect the
mutual requirements of client and target. The portability derives from the definition
the interceptor interface in OMG IDL.

The kinds of interceptors available are known to the ORB. Interceptors are created by
the ORB as necessary during binding, as described next.

18.2.1 Generic ORB Services and Interceptors

An Interceptor implements one or more ORB services. Logically, an interceptor is
interposed in the invocation (and response) path(s) between a client and target object.
There are two types of interceptors:

• Request-level interceptor, which perform transformations on a structured reques

• Message-level interceptors, which perform transformations on an unstructured
buffer.
18-2 CORBA V2.2 February 1998

18

f
on

if
Figure 18-1 shows interceptors being called during the path of an invocation.

Figure 18-1 Interceptors Called During Invocation Path

18.2.2 Request-Level Interceptors

Request-level interceptors are used to implement services which may be required
regardless of whether the client and target are collocated or remote. They resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subsequently re-invoke it using the Dynamic Invocation Interface (DII). An example o
a request-level interceptor is the Access Control interceptor, which uses informati
about the requesting principal and the operation in order to make an access control
decision.

The ORB core invokes each request level interceptor via the client_invoke operation
(at the client) or the target_invoke operation (at the target) defined in this section. The
interceptor may then perform actions, including invoking other objects, before re-
invoking the (transformed) request using CORBA::Request::invoke. When the latter
invocation completes, the interceptor has the opportunity to perform other actions,
including recovering from errors and retrying the invocation or auditing the result
necessary, before returning.

18.2.3 Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a
message, which can be sent over the network. As functions such as encryption are
performed on messages, a second kind on interceptor interface is required.

Client

request request

Target
Object

Message
level

interceptors

Message
level

interceptors

Request
level

interceptors

Request
level

interceptors

reply reply
CORBA V2.2 Interceptors February 1998 18-3

18

led,
en
al
 of a

 a

nd
trol,

e
nded.

o

e

ntext.

nt on
 will
all
 also
The ORB code invokes each message-level interceptor via the send_message operation
(when sending a message, for example, the request at the client and the reply at the
target) or the receive_message operation (when receiving a message). Both have a
message as an argument. The interceptor generally transforms the message and then
invokes send. Send operations return control to the caller without waiting for the
operation to finish. Having completed the send_message operation, the interceptor can
continue with its function or return.

18.2.4 Selecting Interceptors

An ORB that uses interceptors must know which interceptors may need to be cal
and in what order they need to be called. An ORB that supports interceptors, wh
serving as a client, uses information in the target object reference, as well as loc
policy, to decide which interceptors must actually be called during the processing
particular request sent to a particular target object.

When an interceptor is first invoked, a bind time function is used to set up interceptor
binding information for future use.

18.3 Client-Target Binding

The selection of ORB Services is part of the process of establishing a binding between
a client and a target object.

A binding provides the context for a client communicating with a target object via
particular object reference. The binding determines the mechanisms that will be
involved in interactions such that compatible mechanisms are chosen and client a
target policies are enforced. Some requirements, such as auditing or access con
may be satisfied by mechanisms in one environment, while others, such as
authentication, require cooperation between client and target. Binding may also involv
reserving resources in order to guarantee the particular qualities of service dema

Although resolution of mechanisms and policies involves negotiation between the tw
parties, this need not always involve interactions between the parties as information
about the target can be encoded in the object reference, allowing resolution of th
client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for example, in the GIOP service co
Where there is an issue of trust, however, the target must still check that this outcome
is valid.

The binding between client and target at the application level can generally be
decomposed into bindings between lower-level objects. For example, the agreeme
transport protocol is an agreement between two communications endpoints, which
generally not have a one-to-one correspondence to application objects. The over
binding therefore includes a set of related sub-bindings which may be shared, and
potentially distributed among different entities at different locations.
18-4 CORBA V2.2 February 1998

18

uch

 fact.

ed

y

g

blish

e.

 ones
18.3.1 Binding Model

No object representing the binding is made explicitly visible since the lifetime of s
an object is not under the control of the application, an existing binding potentially
being discarded, and a new one made without the application being aware of the

Instead, operations that will affect how a client will interact with a target are provid
on the Object interface and allow a client to determine how it will interact with the
target denoted by that object reference. On the target side, the binding to the client ma
be accessed through the Current interface. This indirect arrangement permits a wide
range of implementations that trade-off the communication and retention of bindin
information in different ways.

Figure 18-2 Binding Model

The action of establishing a binding is generally implicit, occurring no later than the
first invocation between client and target. It may be necessary for a client to esta
more than one binding to the same target object, each with different attributes (for
example, different security features). In this case, the client can make a copy of the
object reference using Object::duplicate and subsequently specify different attributes
for that reference.

The scope of attributes associated with an object reference is that of the object
reference instance (i.e., the attributes are not copied if the object reference is used as
an argument to another operation or copied using Object::duplicate). If an object
reference is an inout argument, the attributes will still be associated with the object
reference after the call if the reference still denotes the same object, but not otherwis

18.3.2 Establishing the Binding and Interceptors

An ORB maintains a list of interceptors, which it supports, and when these are called.
Note that at the client, when handling the request, the request-level interceptors are
always called before the message level ones, while at the target the message-level
are called first.

Client

ORB Core

Target
Object

Interceptors Interceptors

binding binding

target obj ref

Current
CORBA V2.2 Client-Target Binding February 1998 18-5

18

ation

g up

ue

tion

n.

(for

at the

d

ement,
way.
When the ORB needs to bind an object reference, it refers to the characteristics of the
target object and relates this to the types of interceptor it supports. From this it
determines the appropriate type of interceptor to handle the request and creates it,
passing the object reference in the call. (No separate interceptor initialization oper
is used. The client_invoke/target_invoke or send_message/receive_message calls are
used both for the first invocation and for subsequent ones.)

When an interceptor is created, it performs its bind time functions. These may involve
getting the policies that apply to the client and to the target. This could involve
communicating with the target, for example, a secure invocation interceptor settin
a security association. Note that the ORB Core itself is unaware of service-specific
policies. In addition to performing its specific functions, the interceptor must contin
the request by invoking object(s) derived from the given object reference.

The interceptors themselves maintain per-binding information relevant to the func
they perform. This information will be derived from:

• The policies that apply to the client and target object because of the domains to
which they belong, for example the access policies, default quality of protectio

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular execution context or invocation
example, whether a request must be protected for confidentiality).

If the relevant client or target environment changes, part or all of a binding may need
to be reestablished. For example, the secure invocation interceptor may detect th
invocation credentials have changed and therefore needs to establish a new security
association using the new credentials. If the binding cannot be reestablished, an
exception is raised to the application, indicating the cause of the problem.

Similarly, at the target, the ORB will create an instance of each interceptor neede
there. A single interceptor handles both requests and replies at the client (or target), as
these share context information.

18.4 Using Interceptors

When a client performs an object request, the ORB Core uses the binding information
to decide which interceptors provide the required ORB Services for this client and
target as described in “Establishing the Binding and Interceptors” on page 18-5.

18.4.1 Request-Level Interceptors

Request-level interceptors could be used for services such as transaction manag
access control, or replication. Services at this level process the request in some
For example, they may transform the request into one or more lower-level invocations
or make checks that the request is permitted. The request-level interceptors, after
performing whatever action is needed at the client (or target), reinvoke the
(transformed) request using the Dynamic Invocation Interface (DII)
18-6 CORBA V2.2 February 1998

18

unt

trol

n

ge,

re

 send

tor
may
CORBA::Request::invoke. The interceptor is then stacked until the invocation
completes, when it has an opportunity to perform further actions, taking into acco
the response before returning.

Interceptors can find details of the request using the operations on the request as
defined in the Dynamic Skeleton interface in CORBA 2. This allows the interceptor to
find the target object1, operation name, context, parameters, and (when complete) the
result.

If the interceptor decides not to forward the request, for example, the access con
interceptor determines that access is not permitted, it indicates the appropriate
exception and returns.

When the interceptor resumes after an inner request is complete, it can find the result
of the operation using the result operation on the Request object, and check for
exceptions using the exception operation, etc. before returning.

18.4.2 Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a
message that can be sent over the network. Message-level interceptors operate o
messages in general without understanding how these messages relate to requests (for
example, the message could be just a fragment of a request). Note that the message
interceptors may achieve their purpose not by (just) transforming the given messa
but by communicating using their own message (for example, to establish a secu
association). Fragmentation and message protection are possible message-level
interceptors.

send_message is always used when sending a message, so is used by the client to
a request (or part of a request), and by the target to send a reply.

When a client message-level interceptor is activated to perform a send_message
operation, it transforms the message as required, and calls a send operation to pass the
message on to the ORB and hence to its target. Unlike invoke operations, send
operations may return to the caller without completing the operation. The intercep
can then perform other operations if required before exiting. The client interceptor
next be called either using send_message to process another outgoing message, or
using receive_message to process an incoming message.

A target message-level interceptor also supports send_message and receive_message
operations, though these are obviously called in a different order from the client side.

18.5 Interceptor Interfaces

Two interceptor interfaces are specified, both used only by the ORB:

1.It is assumed that the target object reference is available, as this is described in the C++ mapping for DSI, though
not yet in the OMG IDL.
CORBA V2.2 Interceptor Interfaces February 1998 18-7

18

ns

t to

e

• RequestInterceptor for operations on request-level interceptors. Two operations
are supported:

• client_invoke for invoking a request-level interceptor at the client.

• target_invoke for invoking a request-level interceptor at the target.

• MessageInterceptor for operations on message-level interceptors. Two operatio
are supported:

• send_message for sending a message from the client to the target or the targe
the client.

• receive_message for receiving a message.

Request-level interceptors operate on a representation of the request itself as used in
the CORBA Dynamic Invocation and Skeleton interfaces.

18.5.1 Client and Target Invoke

These invoke a request-level interceptor at the client or target. Both operations hav
identical parameters and return values.

module CORBA {
interface RequestInt ercept or: Interceptor {// PIDL

void client_invoke (
inout CORBA::Request request

);
void target_invoke (

inout CORBA::Request request
);

};
};

Parameters

request The request being invoked. This is defined in the Dynamic
Invocation Interface. After invocation, output parameters and the
associated result and exceptions may have been updated.

18.5.2 Send and Receive Message

These invoke a message-level interceptor to send and receive messages. Both
operations have identical parameters and return values.
18-8 CORBA V2.2 February 1998

18
module CORBA {
native Message;
interface MessageInterceptor: Interceptor {// PIDL

void send_message (
in Object target,
in Message msg

);
void receive_message (

in Object target,
in Message msg

);
};

};

Parameters

target The target object reference.

Note: The target here may not be the same as seen by the
application. For example, a replication request-level interceptor
may send the request to more than one underlying object.

msg The message to be handled by this interceptor.

18.6 IDL for Interceptors

module CORBA {
interface Int erceptor {}; // PIDL
interface RequestInt ercept or: Interceptor {// PIDL

void client_invoke (
inout Request request

);
void target_invoke (

inout Request request
);

};
interface MessageInterceptor: Interceptor {// PIDL

void send_message (
in Object target,
in Message msg

);
void receive_message (

in Object target,
in Message msg

);
};

};
CORBA V2.2 IDL for Interceptors February 1998 18-9

18
18-10 CORBA V2.2 February 1998

	Interceptors
	18.1 Introduction
	18.1.1 ORB Core and ORB Services

	18.2 Interceptors
	18.2.1 Generic ORB Services and Interceptors
	18.2.2 Request-Level Interceptors
	18.2.3 Message-Level Interceptors
	18.2.4 Selecting Interceptors

	18.3 Client-Target Binding
	18.3.1 Binding Model
	18.3.2 Establishing the Binding and Interceptors

	18.4 Using Interceptors
	18.4.1 Request-Level Interceptors
	18.4.2 Message-Level Interceptors

	18.5 Interceptor Interfaces
	18.5.1 Client and Target Invoke
	18.5.2 Send and Receive Message

	18.6 IDL for Interceptors

