
Interoperable Naming Service

BEA Systems, Inc.
Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Inprise Corporation
IONA Technologies, PLC

OMG TC Document orbos/98-10-11
19 October 1998
orbos/98-10-11

Copyright 1998 BEA Systems, Inc, Cooperative Research Centre for Distributed Systems Technology (DSTC
Pty Ltd), Inprise Corporation, IONA Technologies PLC.

All rights reserved.

The companies listed above hereby grant to the Object Management Group and Object Management Group
members permission to copy this document for the purpose of evaluating the technology contained herein
during the Object Services technology selection process for an Interoperable Naming Service. OMG members
may make up to 50 copies of this document for review purposes. Distribution for any purpose other than
technology evaluation is prohibited.

The material in this document is submitted to the OMG for evaluation. Submission of this document does not
represent a commitment to implement any portion of this specification in the products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed above shall
not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material. The information contained in this document is subject to
change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except as
otherwise provided herein, no part of this work may be reproduced or used in any form or by any means --
graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems -- without the permission of the copyright owner. All copies of this document must include
the copyright and other information contained on this page.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the document if one is published.
The submitters may make improvements and/or changes in the product(s) and/or the program(s) described in
this document at any time.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as
set forth in subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DF ARS
252.227-7013.

Notices

Each of the following terms used in this publication is a trademark of another company:

The term “CORBA” used throughout this publication refers to the Common Object Request Broker
Architecture standards promulgated by the Object Management Group, Inc.

OMG Object Management Group

CORBA Object Management Group

ORB Object Management Group

IDL Object Management Group

Introduction 1
gy

lity
BEA Systems, the Cooperative Research Centre for Distributed Systems Technolo
(DSTC), Inprise Corporation, and IONA Technologies are pleased to submit this
Interoperable Naming Service specification in response to the OMG’s Interoperabi
Name Service Enhancements RFP.

1.1 Submission Contact Points

Enquiries and comments about this submission are most welcome and should be
directed to:

Dan Frantz
BEA Systems, Inc.
436 Amherst Street
Nashua, NH 03063
USA
Phone: +1 603 579-2519
Email: dan.frantz@beasys.com

Michi Henning, Michael Neville, Ted McFadden
CRC for Distributed Systems Technology
University of Queensland
Brisbane 4072
Australia
Phone: +61 7 3365-4310
Fax: +61 7 3365-4311
Email: {michi, neville, mcfadden}@dstc.edu.au

Jeff Mischkinsky
Inprise Corporation
951 Mariner’s Island Blvd. Suite 120
San Mateo, CA 94404
CORBAservices: Common Object Services Specification October 20, 1998 2:54 am 1-1

1

USA
Phone: +1 650 358-3049
Email: jeffm@inprise.com

Martin Chapman
IONA Technologies PLC
The IONA Building
Shellbourne Road
Dublin 4, Ireland
Phone: +353 1 662 5255
Fax: +353 1 662 5244
Email: mchapman@iona.com
1-2 CORBAservices: Common Object Services Specification

1

d

.

ing

ion
ion

e
t

1.2 Submission Overview

This submission is organized as follows:

• Chapter 2 describes the rationale for the service.

• Chapter 3 explains how clients and server obtain access to initial references an
shows the URL format for names.

• Chapter 4 is the replacement chapter for the CORBAservices Naming Service
Specification.

1.3 Scope of RFP

This RFP addresses the following points:

• Resolves open issues affecting interoperability with the current Naming Service

• Provides a mechanism to allow multiple clients to access a common Initial Nam
Context.

• Defines an interoperable, stringified form of aCosNaming::Name .

• Defines a URL format for names.

1.4 Proof of Concept

At the time of submission, the submitters have an implementation of this specificat
in testing. No problems that would endanger the technical viability of this specificat
were found.

The IDL presented in this submission has been compiled successfully with the
following compilers:

• BEA M3 2.1

• DSTC internal research compiler

• Expersoft PowerBroker CORBAplus 2.2

• HP ORB Plus 2.6

• Inprise VisiBroker 3.2

• IONA Orbix 2.3c

1.5 Changes to Existing CORBA Specifications

This specification adds definitions to the ORB core, but does not add or change th
existingCosNaming IDL interfaces. No changes to IIOP are required to implemen
this specification. This submission defines four new minor codes for theBAD_PARAM
system exception. These minor codes will need to be assigned by the OMG.
Naming Service: v1.1 Service Description Month Year 1-3

1

ed
1.6 Registrations with Other Standards Organizations

This specification introduces two new stringified URL schemes,iioploc and
iiopname , in addition to the currently specifiedIOR scheme. If this submission is
adopted, the OMG will need to register all three schemes with the Internet Assign
Numbers Authority (IANA).

This specification uses port 9999 as the default port for use with theiioploc and
iiopname schemes. If this submission is adopted, the OMG will need to request
assignment of this or another port number from IANA.

1.7 Addressed Requirements

1.7.1 Specific Requirements

This submission addresses all of the requirements stated in the RFP.

This submission is upwardly compatible with current OMG specifications.

1.7.2 General Requirements

This submission meets the requirements stated in section 5 of the RFP.
1-4 CORBAservices: Common Object Services Specification

Designrationale 2
ressed

d.

y,

n
d file
This section presents the rationale for the design of this submission. Further
explanations can be found in the description of the relevant functionality.

2.1 RFP Requirements

The Interoperability Name Service Enhancements RFP (orbos/97-12-20) solicited
proposals addressing several areas concerning the Naming Service. We have add
these issues in a manner that is compatible with the current Naming Service
specification. The RFP items are listed in the following sections.

2.1.1 Name String Syntax

The RFP states:

“Name string syntax is not specified. Interfaces for parsing names are not specifie
These make it difficult for users to easily define and search for names. A common
means for parsing name-strings and converting them to and from name-structures
would increase interoperability.”

We define a straightforward stringified representation of names that is user-friendl
provides a unique and easily comparable representation for a given name, and is
interoperable between Naming Services.

2.1.2 Configuration of Initial Naming Context

The RFP states:

“There is no standard way to allow clients to independently bootstrap to a commo
naming context. For example, using a file system relies on the presence of a share
system and an agreed upon location, it is not a particularly scalable solution.”
CORBAservices: Common Object Services Specification October 20, 1998 2:54 am 2-1

2

ed

y

o
g

aming

here

t

This submission defines a simple mechanism by which
resolve_initial_references can be configured to return a common naming
context to any number of clients. The mechanism is scalable and supports other
services besides the Naming Service.

2.1.3 URL Names

The RFP states:

“With the use of CORBA in the Internet, and it’s associated Domain Name Service
(DNS), it is desirable to support the use of a Uniform Resource Locator (URL) bas
names, thus allowing for example, Web-browser based access to CosNaming in a
standard way.”

Given that the current CORBAIOR format is already a valid URL but difficult for
humans to transcribe, we have definediioploc and iiopname URL schemes that
are more user-friendly and similar toftp andhttp URLs.

2.1.4 Interoperability Defects in the Current Naming Specification

Significance ofid andkind in CosNameComparison

The RFP states:

“When aCosNaming::Name is evaluated as a sequence of components, it is not
stated whether or not both theid andkind field of the two
CosNaming::NameComponent s must match for the two components to be
identical. Differing products have made different choices, leading to interoperabilit
problems.”

This submission clearly states the significance of theid andkind fields during
comparison. Bothid andkind fields are significant, even if empty.

Clarifying only this point would still leave a Naming Service specification that is to
deficient to be interoperable. To meet the RFP objective of an interoperable namin
service, we have addressed several other items listed below.

Issues Open Against the Naming Service

The OMG issues database contains a number of open issues raised against the N
Service affecting interoperability. We felt that any revised service should at least
address issues against the previous version. The updated specification presented
addresses these issues as follows:

• Issue 24, 280, return type oflist incorrect

No change. Fixing this would require changing an existing interface which is no
possible without losing backward compatibility. This issue does not affect
interoperability.

• Issues 64, 271, 272, 273, 274, values returned from iterator operations
2-2 CORBAservices: Common Object Services Specification

2

d

can

ved
by

e

t

e
of

in
ry

ide
e
,
nt-
This specification defines the semantics of iterator operations more precisely to
avoid the ambiguities in the original specification. The semantics permit an
implementation to avoid read-ahead or buffering during iteration.

• Issue 275, meaning ofhow_many in the list andnext_n operations

For list , a how_many value of zero indicates that all bindings are to be returne
via an iterator. Fornext_n , a how_many value of zero raises an exception.

• Issue 276, fewer thanhow_many bindings returned from iterator

This specification makes it clear under what circumstances an implementation
return fewer than the requested number of bindings.

• Issues 277, 278, destruction of iterators

We rejected the idea of destroying an iterator as soon as the last binding is retrie
as “too clever”. However, the text makes it clear that iterators can be destroyed
an implementation without warning, and that clients must be prepared to handl
OBJECT_NOT_EXISTexceptions from iterator operations.

• Issue 279, inheritance fromLifeCycleObject

No change. Fixing this would require changing an existing interface which is no
possible without losing backward compatibility.

• Issue 281, Names Library benefit

The Names Library is removed by this document (see section 2.2.1).

• Issue 298, meaning ofwhy member inNotFound exception

The semantics of thewhy member are specified.

• Issue 270, semantics of name equality

This specification has well-defined semantics for equality of names.

2.2 Deprecations and Limitations

2.2.1 Names Library

The Names Library as described in the original specification claims that it hides th
representation of names from client code and therefore permits the representation
names to evolve without affecting existing clients. However, the library as specified
does not provide this functionality—the representation of names is just as visible
the Names Library as it is in the basic IDL. In fact, the Names Library offers only ve
few benefits (comparison and random insertion) over the basic IDL.

The Names Library requires functionality that can only be implemented as client-s
code (is not provided by distributable object interfaces). This requires porting of th
Names Library to all possible combinations of operating system, language binding
compiler version, and ORB version. In addition, we believe that specifying such clie
side functionality is undesirable because it invalidates transparencies provided by
CORBA, such as language, platform, and implementation independence.

The Names Library is therefore removed by this specification.
Naming Service: v1.1 Service Description Month Year 2-3

2

ice.
s. In
ge
t

2.2.2 No Support for Wide Characters

The RFP calls for submissions upwardly compatible with the existing Naming Serv
We do not see a way to provide this if names are allowed to contain wide character
addition, current ORBs do not yet support wide characters and strings, and langua
bindings for wide strings are still incomplete, which prohibits even proof-of-concep
implementations. Therefore, this submission makes no attempt to support names
containing wide characters.
2-4 CORBAservices: Common Object Services Specification

InitialReferencesandURLs 3
A

ts
Note – Editing Instructions: The entire section 3.1 is to be inserted into the CORB
2.3 Specification between section 4.7 Obtaining Initial Object References and the
section 4.8 CurrentObject. Note that references to CORBA 2.3 refer to the draft
chapters in ptc/98-10-xx. If the section numbers for CORBA 2.3 in these documen
change before final publications, the cross references in this document must be
adjusted.

3.1 Configuring Initial Service References

3.1.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary
object reference fromCORBA::ORB::resolve_initial_references for non-
locality-constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initial reference
configuration.

3.1.2 ORBInitRef

The ORB initial reference argument,-ORBInitRef , allows specification of an
arbitrary object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

-ORBInitRef NameService=IOR:00230021AB...
CORBAservices: Common Object Services Specification October 20, 1998 7:03 am 3-1

3

lid

.

-ORBInitRef \
NotificationService=iioploc://555objs.com/NotificationService

-ORBInitRef TradingService=iiopname://555objs.com/Dev/Trader

<ObjectID> represents the well-knownObjectID for a service defined in the
CORBA specification, such asNameService . This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Sections 13.6.6 to 13.6.7 CORBA 2.3
Specification). If a URL is syntactically malformed or can be determined to be inva
in an implementation defined manner,ORB_init raises aBAD_PARAMexception.

Note – Editing Instructions: Theiioploc and iiopname URL schemes are
described in section 3.2 of this submission. That section is to be placed into the
CORBA 2.3 document as the (new) section 13.6.7.

3.1.3 ORBDefaultInitRef

The ORB default initial reference argument,-ORBDefaultInitRef , assists in
resolution of initial references not explicitly specified with-ORBInitRef .
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character
and a stringified object key, forms a new URL to identify an initial object reference
For example:

-ORBDefaultInitRef iioploc://555objs.com

A call to resolve_initial_references(“NotificationService”) with
this argument results in a new URL:

iioploc://555objs.com/NotificationService

That URL is passed toCORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another example is:

-ORBDefaultInitRef \
iiopname://555ResolveRefs.com,555Backup.com/Prod/Local

After calling resolve_initial_references(“NameService”) , one of the
iiopname URLs

iiopname://555ResolveRefs.com/Prod/Local/NameService

or

iiopname://555Backup411.com/Prod/Local/NameService

is used to obtain an object reference fromstring_to_object . (In this example,
Prod/Local/NameService represents a stringifiedCosNaming::Name).
3-2 CORBAservices: Common Object Services Specification

3

by

ter
Section 13.6.7 provides details of theiioploc and iiopname URL schemes. The
-ORBDefaultInitRef argument naturally extends to URL schemes that may be
defined in the future, provided the final part of the URL is an object key.

3.1.4 Configuration Effect onresolve_initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given<ObjectID> is:

1. Resolve with-ORBInitRef for this <ObjectID> if possible

2. Resolve with an-ORBDefaultInitRef entry if possible

3. Resolve with pre-configured ORB settings.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use of-ORBDefaultInitRef may have unintended resolution side
effects. For example, an ORB may use a proprietary service, such as
ImplementationRepository , for internal purposes and may want to prevent a
client from unknowingly diverting the ORB’s reference to an implementation
repository from another vendor. To prevent this, an ORB is allowed to ignore the
-ORBDefaultInitRef argument for any or all<ObjectID> s for those services
that are not OMG-specified services with a well-known service name as accepted
resolve_initial_references . An ORB can only ignore the
-ORBDefaultInitRef argument but must always honor the-ORBInitRef
argument.

3.1.5 Configuration Effect onlist_initial_services

The <ObjectID> s of all -ORBInitRef arguments toORB_init appear in the list
of tokens returned bylist_initial_services as well as all ORB-configured
<ObjectID> s. Any other tokens that may appear are implementation-dependent.

The list of <ObjectID> s returned bylist_initial_services can be a subset
of the <ObjectID> s recognized as valid byresolve_initial_reference s.

3.2 Object URLs

Note – EDITING INSTRUCTIONS. This section is to be added as a new section af
Section 13.6.6 Stringified Object References of the CORBA 2.3 Specification.
Naming Service: v1.1 Service Description Month Year 3-3

3

of

ined

.

f

To address the problem of bootstrapping and allow for more convenient exchange
human-readable object references,ORB::string_to_object allows URLs in the
iioploc and iiopname formats to be converted into object references. If
conversion fails,string_to_object raises aBAD_PARAMexception with the
following minor codes (to be assigned by the OMG):

• BadSchemeName

• BadAddress

• BadSchemeSpecificPart

• Other

iioploc URL

The iioploc URL scheme provides stringified object references that are easily
manipulated in TCP/IP- and DNS-centric environments such as the Internet. An
iioploc URL contains:

• an address

• an IIOP version number

• an object key

The object address and key are specified directly in the URL. Examples ofiioploc
URLs are:

iioploc://1.1@555xyz.com:9999/Dev/NameService

iioploc://555xyz.com/Prod/TradingService

The full syntax is:

<iioploc> = “iioploc://”[<addr_list>][“/”<key_string>]

<addr_list>= [<address> “,”]* <address>

<address> = [<version> <host> [“:” <port>]]

<host> = DNS-style Host Name | ip_address

<version> = <major> “.” <minor> “@” | empty_string

<port> = number

<major> = number

<minor> = number

<key_string>= <string> | empty_string

Where:

addr_list: comma-separated list of addresses that is used in an implementation-def
manner to address this object

address:a single address

host: DNS-style host name or IP address. If not present, the local host is assumed

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. I
the version is absent, 1.0 is assumed.
3-4 CORBAservices: Common Object Services Specification

3

to

ped,

s

s

ip_address:numeric IP address (dotted decimal notation)

port: port number the agent is listening on (see below). Default is 9999.

key_string: a stringified object key

Thekey_string corresponds to the octet sequence in theobject_key member of
a GIOPRequest or LocateRequest header as defined in section 15.4 of
CORBA 2.3. Thekey_string uses the escape conventions described in RFC 2396
map away from octet values that cannot directly be part of a URL. US-ASCII
alphanumeric characters are not escaped. Characters outside this range are esca
except for the following:

“;” | “/” | “:” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

The key_string is not NUL-terminated.

iioploc Server Implementation

The only requirements on an object advertised by aniioploc URL are that there
must be a software agent listening on the host and port specified by the URL. Thi
agent must be capable of handling IIOPRequest andLocateRequest messages
targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement
lightweight object location forwarding agents that respond to IIOPRequest messages
with Reply messages with aLOCATION_FORWARDstatus, and respond to IIOP
LocateRequest messages withLocateReply messages.

iiopname URL

The iiopname URL scheme is described in Chapter 3 of the CORBAservices
specification. It extends the capabilities of theiioploc scheme to allow URLs to
denote entries in a Naming Service. Resolvingiiopname URLs does not require a
Naming Service implementation in the ORB core. An example is:

iiopname://555objs.com/a/string/path/to/obj

This URL specifies that at host555objs.com , a object of typeNamingContext
(with an object key ofNameService) can be found, or alternatively, that an agent i
running at that location which will return a reference to aNamingContext . The
(stringified) namea/string/path/to/obj is then used as the argument to a
resolve operation on thatNamingContext . The URL denotes the object reference
that results from that lookup.

Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved.
Implementations may choose to provide these or other URL schemes to support
additional ways of denoting objects with URLs.
Naming Service: v1.1 Service Description Month Year 3-5

3

Table 3-1 lists the required and some optional formats.

Table 3-1 URL formats

Scheme Description Status

IOR: Standard stringified IOR format Required

iioploc: IIOP specific stringified object reference Required

iiopname: IIOP CosName URL Required

file:// Specifies a file containing a URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is
accessible via ftp protocol.

Optional

http:// Specifies an HTTP URL that returns an object
URL/IOR.

Optional
3-6 CORBAservices: Common Object Services Specification

NamingServiceSpecification 4
t
an

,

ing

ws

ss.
4.1 Service Description

Note – EDITING INSTRUCTIONS - This chapter is a replacement for the CORBA
Services Specification Chapter 3.

4.1.1 Overview

A name-to-object association is called aname binding. A name binding is always
defined relative to anaming context. A naming context is an object that contains a se
of name bindings in which each name is unique. Different names can be bound to
object in the same or different contexts at the same time. There is no requirement
however, that all objects must be named.

To resolve a nameis to determine the object associated with the name in a given
context. Tobind a nameis to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a nam
context. Binding contexts in other contexts creates anaming graph— a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph allo
more complex names to reference an object. Given a context in a naming graph, a
sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution proce
Figure 4-1 shows an example of a naming graph.
CORBAservices: Common Object Services Specification October 20, 1998 7:15 am 4-1

4

ames

ed to

at use
Figure 4-1 A Naming Graph

4.1.2 Names

Many of the operations defined on a naming context take names as parameters. N
have structure. A name is an ordered sequence ofcomponents.

A name with a single component is called asimple name; a name with multiple
components is called acompound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

component1/component2/component3

indicates a sequence of components.

Note –The slash (/) characters are simply a notation used here and are not intend
imply that names are sequences of characters separated by slashes.

A name component consists of two attributes: theid attributeand thekind attribute.
Both theid attribute and thekind attribute are represented as IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of thekind attribute includec_source, object_code, executable,
postscript, or “ ” . The naming system does not interpret, assign, or manage these
values in any way. Higher levels of software may make policies about the use and
management of these values. This feature addresses the needs of applications th

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2

parent

abc
def
4-2 CORBAservices: Common Object Services Specification

4

s

ing
sily
s a

ffer

-
rge,
rs"

ch a
ce as

of
iven
es

ook

y
d so

roups

to
.g.,

nd
sent

ice.
syntactic naming conventions to distinguish related objects. For example Unix use
suffixes such as.c and .o . Applications (such as the C compiler) depend on these
syntactic convention to make name transformations (for example, to transformfoo.c
to foo.o).

A sequence ofid andkind pairs forming a name can be expressed as a single str
using the syntax described in section 4.5. This allows names to be written down ea
or to be presented as a strings in user interfaces. In addition, section 4.6 describe
way to express a name relative to a particular naming context in URL format. The
URL representation provides a human-readable form of an object reference that is
named in some naming context.

4.1.3 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that di
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterprise
wide naming server such as DCE CDS. The Naming Service is used to construct la
enterprise-wide naming graphs where NamingContexts model "directories" or "folde
and other names identify "document" or "file" kinds of objects. In other words, the
naming service is used as the backbone of an enterprise-wide filing system. In su
system, non-object-based access to the naming service may well be as commonpla
object-based access to the naming service.

The Naming Service provides the principal mechanism through which most clients
an ORB-based system locate objects that they intend to use (make requests of). G
an initial naming context, clients navigate naming contexts retrieving lists of the nam
bound to that context. In conjunction with properties and security services, clients l
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externall
visible characteristics with other services (a name service, a properties service, an
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, g
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are used
identify contexts that list the names of services that are available in the system (e
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role a
can have a less sophisticated implementation. In this model, naming contexts repre
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information service, a filing serv
Naming Service: v1.1 Service Description Month Year 4-3

4

a

e
as
s
y

to
ow

cs

is is

tion

in a

ther

er

e

of

g

Given a handful of references to "root objects" obtained from the Naming Service,
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system, th
Naming Service is used sparingly and instead clients rely on other services such
query services to navigate through large collections of objects. Also, objects in thi
scheme rarely register "external characteristics" with another service - instead the
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being used
provide both models of use at the same time. These two scenarios demonstrate h
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and semanti
which determine how frameworks of application and facilities objects locate other
objects.

4.1.4 Design Principles

Several principles have driven the design of the Naming Service:

1. The design imparts no semantics or interpretation of the names themselves; th
up to higher-level software.

2. The design supports distributed, heterogeneous implementation and administra
of names and name contexts.

3. Naming service clients need not be aware of the physical site of name servers
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

4. The Naming Service is a fundamental object service, with no dependencies on o
interfaces.

5. Name contexts of arbitrary and unknown implementation may be utilized togeth
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

6. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of th
above features contribute to making this possible.

7. The design does not address namespace administration. It is the responsibility
higher-level software to administer the namespace.

4.2 TheCosNaming Module

The CosNaming module is a collection of interfaces that together define the Namin
Service. This module contains three interfaces:

• The NamingContext interface
• The BindingIterator interface
4-4 CORBAservices: Common Object Services Specification

4

• The NamingContextExt interface

This section describes these interfaces and their operations in detail.

The CosNaming module is shown below.

Note – Istring was a “placeholder for a future IDL internationalized string data
type” in the original specification. It is maintained solely for compatibility reasons.
Naming Service: v1.1 Service Description Month Year 4-5

4

// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {

 missing_node, not_context, not_object
 };

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};

exception AlreadyBound {};

exception NotEmpty{};
4-6 CORBAservices: Common Object Services Specification

4

void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed,
 InvalidName, AlreadyBound

);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(

 NotFound, CannotProceed,
 InvalidName, AlreadyBound
);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);

void destroy() raises(NotEmpty);

void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator bi

);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();

};

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;
Naming Service: v1.1 Service Description Month Year 4-7

4

y
ing
:

tail.
StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);
};

};
#endif // _COSNAMING_IDL_

Resolution of Compound Names

In this specification operations that are performed on compound names recursivel
perform a resolve operation on all but the last component of a name before perform
the operation on the final name component. The general form is defined as follows

ctx->op(<c1; c2; ...; cn>) equiv

ctx->resolve(<c1>)->resolve(<c2; cn-1>)->op(<cn>)

where ctx is a naming context, <c1; ...; cn> a compound name, and op a naming
context operation.

4.3 NamingContext Interface

The following sections describe the naming context data types and interface in de

4.3.1 Structures

NameComponent

struct NameComponent {
Istring Id;
Istring kind;

};

A name component consists of two attributes: the identifier attribute,id , and the kind
attribute,kind.

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters,
excluding the ASCIINULcharacter.
4-8 CORBAservices: Common Object Services Specification

4

in a

as a

.

When comparing twoNameComponents for equality both theid and thekind field
must match in order for twoNameComponents to be considered identical. This
applies for zero-length (empty) fields as well.

An implementation may place limitations on the characters that may be contained
name component, as well as the length of a name component. For example, an
implementation may disallow certain characters, may not accept the empty string
legal name component, or may limit name components to some maximum length.

Name

A name is a sequence ofNameComponents. The empty sequence is not a legal name
An implementation may limit the length of the sequence to some maximum. When
comparingNames for equality, eachNameComponent in the first name must match
the correspondingNameComponent in the secondNamefor the names to be
considered identical.

Binding

enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

This types are used by theNamingContext::list ,
BindingIterator::next_n andBindingIterator::next_one operations.
A Binding contains aNamein the memberbinding_name , together with the
BindingType of that Namein the memberbinding_type.

Note – The binding_name member is incorrectly typed as aNameinstead of a
NameComponent. For compatibility with the originalCosNaming specification this
incorrect definition has been retained. Thebinding_name is used as a
NameComponent and will always be aNamewith length of 1.

The value of binding_type is ncontext if a Namedenotes a binding created
with one of the following operations:

• bind_context

• rebind_context

• bind_new_context

For bindings created with any other operation, the value ofBindingType is
nobject .
Naming Service: v1.1 Service Description Month Year 4-9

4

ntify
he

he
text.

.

on
4.3.2 Exceptions

The Naming Service exceptions are defined below.

NotFound

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

This exception is raised by operations when a component of a name does not ide
a binding or the type of the binding is incorrect for the operation being performed. T
why member explains the reason for the exception and therest_of_name identifies
the portion of the name that caused the error:

• missing_node

The first name component inrest_of_name denotes a binding that is not bound
under that name within its parent context.

• not_context

The first name component inrest_of_name denotes a binding with a type of
nobject when the typencontext was required.

• not_object

The first name component inrest_of_name denotes a binding with a type of
ncontext when the typenobject was required.

CannotProceed

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

This exception is raised when an implementation has given up for some reason. T
client, however, may be able to continue the operation at the returned naming con

The cxt member contains the context that the operation may be able to retry from

The rest_of_name member contains the remainder of the non-working name.

InvalidName

exception InvalidName {};

This exception is raised if aNameis invalid. A name of length zero is invalid
(containing no name components). Implementations may place further limitations
what constitutes a legal name and raise this exception to indicate a violation.
4-10 CORBAservices: Common Object Services Specification

4

und,

.

d

AlreadyBound

exception AlreadyBound {};

Indicates an object is already bound to the specified name. Only one object can be
bound to a particularNamein a context.

NotEmpty

exception NotEmpty {};

This exception is raised bydestroy if the NamingContext contains bindings. A
NamingContext must be empty to be destroyed.

4.3.3 Binding Objects

The binding operations name an object in a naming context. Once an object is bo
it can be found with theresolve operation. The Naming Service supports four
operations to create bindings:bind , rebind , bind_context and
rebind_context . bind_new_context also creates a binding, see section 4.3.6

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

bind

Creates annobject binding in the naming context.

rebind

Creates annobject binding in the naming context even if the name is already boun
in the context.

If already bound, the previous binding must be of typenobject ; otherwise, a
NotFound exception with awhy reason ofnot_object is raised.

bind_context

Creates anncontext binding in the parent naming context. Attempts to bind a nil
context raise aBAD_PARAMexception.
Naming Service: v1.1 Service Description Month Year 4-11

4

xts

ools

a

ng”
t

ltiple
nces.

e

rebind_context

Creates anncontext binding in the naming context even if the name is already
bound in the context.

If already bound, the previous binding must be of typencontext ; otherwise, a
NotFound exception with awhy reason ofnot_context will be raised.

Usage

If a binding with the specified name already exists,bind andbind_context raise
an AlreadyBound exception.

If an implementation places limits on the number of bindings within a context,bind
andbind_context raise the IMP_LIMIT system exception if the new binding
cannot be created.

Naming contexts bound usingbind_context andrebind_context participate in
name resolution when compound names are passed to be resolved; naming conte
bound withbind andrebind do not.

Use ofrebind_context may leave a potential orphaned context (one that is
unreachable within an instance of the Name Service). Policies and administration t
regarding potential orphan contexts are implementation-specific.

If rebind or rebind_context raise aNotFound exception because an already
existing binding is of the wrong type, therest_of_name member of the exception
has a sequence length of 1.

4.3.4 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrowi
the object to the appropriate type. That is, clients typically cast the returned objec
from Object to a more specialized interface. The IDL definition of theresolve
operation is:

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);

Names can have multiple components; therefore, name resolution can traverse mu
contexts. These contexts can be federated between different Naming Service insta

4.3.5 Unbinding Names

The unbind operation removes a name binding from a context. The definition of th
unbind operation is:
4-12 CORBAservices: Common Object Services Specification

4

yed
void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

4.3.6 Creating Naming Contexts

The Naming Service supports two operations to create new contexts:new_context
andbind_new_context .

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

new_context

This operation returns a new naming context. The new context is not bound to any
name.

bind_new_context

This operation creates a new context and creates anncontext binding for it using the
name supplied as an argument.

Usage

If an implementation places limits on the number of naming contexts, both
new_context andbind_new_context can raise theIMP_LIMIT system
exception if the context cannot be created.bind_new_context can also raise
IMP_LIMIT if the bind would cause an implementation limit on the number of
bindings in a context to be exceeded.

4.3.7 Deleting Contexts

The destroy operation deletes a naming context.

void destroy()
raises(NotEmpty);

This operation destroys its naming context. If there are bindings denoting the destro
context, these bindings arenot removed. If the naming context contains bindings, the
operation raisesNotEmpty .

4.3.8 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming
context.
Naming Service: v1.1 Service Description Month Year 4-13

4

in

gs

s.

or
void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

list returns the bindings contained in a context in the parameterbl . The
bl parameter is a sequence where each element is aBinding containing aNameof
length 1 representing a singleNameComponent.

The how_many parameter determines the maximum number of bindings to return
the parameterbl , with any remaining bindings to be accessed through the returned
BindingIterator bi.

• A non-zero value ofhow_many guarantees thatbl contains at mosthow_many
elements. The implementation is free to return fewer than the number of bindin
requested byhow_many. However, for a non-zero value ofhow_many, it may not
return abl sequence with zero elements unless the context contains no binding

• If how_many is set to zero, the client is requesting to use only the
BindingIterator bi to access the bindings andlist returns a zero length
sequence inbl .

• The parameterbi returns a reference to an iterator object.

• If the bi parameter returns a non-nil reference, this indicates that the call to
list may not have returned all of the bindings in the context and that the
remaining bindings (if any) must be retrieved using the iterator. This applies f
all values ofhow_many.

• If the bi parameter returns a nil reference, this indicates that thebl parameter
contains all of the bindings in the context. This applies for all values of
how_many.

4.4 TheBindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings
using thenext_one or next_n operations:

If a context is modified in between calls tolist , next_one , or next_n , the
behavior of further calls tonext_one or next_n is implementation-dependent.

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};

next_one

The next_one operation returns the next binding. It returns true if it is returning a
binding, false if there are no more bindings to retrieve. Ifnext_one returns false, the
returnedBinding is indeterminate
4-14 CORBAservices: Common Object Services Specification

4

in

gs

n

n

ing
rder
ect
.

for
e.

see
Further calls tonext_one after it has returned false have undefined behavior.

next_n

next_n returns, in the parameterbl , bindings not yet retrieved withlist or
previous calls tonext_n or next_one . It returns true ifbl is a non-zero length
sequence; it returns false if there are no more bindings andbl is a zero-length
sequence.

The how_many parameter determines the maximum number of bindings to return
the parameterbl :

• A non-zero value ofhow_many guarantees thatbl contains at mosthow_many
elements. The implementation is free to return fewer than the number of bindin
requested byhow_many. However, it may not return abl sequence with zero
elements unless there are no bindings to retrieve.

• A zero value ofhow_many is illegal and raises aBAD_PARAMsystem exception.

next_n returns false with abl parameter of length zero once all bindings have bee
retrieved. Further calls tonext _n after it has returned a zero-length sequence have
undefined behavior.

destroy

The destroy operation destroys its iterator. If a client invokes any operation on a
iterator after callingdestroy , the operation raisesOBJECT_NOT_EXIST.

4.4.1 Garbage Collection of Iterators

Clients that create iterators but never calldestroy can cause an implementation to
permanently run out of resources. To protect itself against this scenario, an
implementation is free to destroy an iterator object at any time without warning, us
whatever algorithm it considers appropriate to choose iterators for destruction. In o
to be robust in the presence of garbage collection, clients should be written to exp
OBJECT_NOT_EXISTfrom calls to an iterator and handle this exception gracefully

4.5 Stringified Names

Names are sequences of name components. This representation makes it difficult
applications to conveniently deal with names for I/O purposes, human or otherwis
This specification defines a syntax for stringified names and provides operations to
convert a name in stringified form to its equivalent sequence form and vice-versa (
section 4.6.4).

A stringified name represents one and only oneCosNaming::Name . If two names
are equal, their stringified representations are equal (and vice-versa).
Naming Service: v1.1 Service Description Month Year 4-15

4

he

in

ire

ses
The stringified name representation reserves use of the characters ‘/’, ‘.’, and ‘\’. T
forward slash ‘/’ is a name component separator; the dot ‘.’ separatesid andkind
fields. The backslash ‘\’ is an escape character (see section 4.5.2).

4.5.1 Basic Representation of Stringified Names

A stringified name consists of the name components of a name separated by a
‘/’ character. For example, a name consisting of the components “a”, “b”, and “c” (
that order) is represented as

a/b/c

Stringified names use the ‘.’ character to separateid andkind fields in the stringified
representation. For example, the stringified name

a.b/c.d

represents theCosNaming::Name :

If a name component in a stringified name does not contain a ‘.’ character, the ent
component is interpreted as theid field, and thekind field is empty. For example:

a/./c.d/.e

corresponds to theCosNaming::Name :

4.5.2 Escape Mechanism

The backslash ‘\’ character escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a
stringified name. The meaning of any other character following a ‘\’ is reserved for
future use.

NameComponent Separators

If a name component contains a ‘/’ slash character, the stringified representation u
the ‘\’ character as an escape. For example, the stringified name

a/x\/y\/z/b

represents the name consisting of the name components “a”, “x/y/z”, and “b”.

Index id kind

0 a b

1 c d

Index id kind

0 a <empty>

1 <empty> <empty>

2 c d

3 <empty> e
4-16 CORBAservices: Common Object Services Specification

4

port

of

is
Id andkind Fields

The backslash escape mechanism is also used for ‘.’, soid andkind fields can
contain a literal ‘.’. To illustrate, the stringified name

a\.b.c\.d/e.f

represents theCosNaming::Name :

The Escape Character

The escape character ‘\’ must be escaped if it appears in a name component. For
example, the stringified name:

a/b\\/c

represents the name consisting of the components “a”, “ b\ ”, and “c ”.

4.6 URL schemes

This section describes the Uniform Resource Locator (URL) schemes available to
represent a CORBA object and a CORBA object bound in aNamingContext .

4.6.1 IOR

The string form of an IOR (IOR:<hex_octets>) is a valid URL. The scheme name is
IOR and the text after the ‘:’ is defined in the CORBA 2.3 specification, Section
13.6.6. The IOR URL is robust and insulates the client from the encapsulated trans
information and object key used to reference the object. This URL format is
independent of Naming Service.

4.6.2 iioploc

It is difficult for humans to exchange IORs through non-electronic means because
their length and the text encoding of binary information. Theiioploc URL scheme
provides URLs that are familiar to people and similar toftp or http URLs.

The iioploc URL is described in the CORBA 2.3 Specification, Section 13.6.6. Th
URL format is independent of the Naming Service.

4.6.3 iiopname

An iiopname URL is similar to aniioploc URL. However, aniiopname URL
also contains a stringified name that identifies a binding in a naming context.

Index id kind

0 a.b c.d

1 e f
Naming Service: v1.1 Service Description Month Year 4-17

4

ault

al

ined

.

f

iiopname Examples

iiopname://1.1@myhost.555xyz.com:9999/a/b/c

The URL denotes a naming context atmyhost.xyz.com:9999 (possibly returned
in a LocateReply or LOCATION_FORWARDreply by an agent listening at that
address). The agent at that hosts supports IIOP version 1.1. The namea/b/c is
resolved against that context to yield the object reference denoted by the URL.

iiopname:///x/y/z

This URL refers to an agent supporting IIOP version 1.0 on the local host and def
port. The naming context associated with the object keyNameService is used to
resolve the namex/y/z , which yields the object reference denoted by the URL.

iiopname:///

This URL represents the naming context returned by the agent running on the loc
host at the default port. It is equivalent toiioploc:///NameService .

iiopname Syntax

The full iiopname BNF is:

<iiopname> = “iiopname://”[<addr_list>][“/”<string_name>]

<addr_list> = [<address> “,”]* <address>

<address> = [<version> <host> [“:” <port>]]

<host> = DNS Style Host Name | ip_address

<version> = <major> “.” <minor> “@” | empty_string

<port> = number

<major> = number

<minor> = number

<string_name>= stringified Name | empty_string

Where:

addr_list: comma-separated list of addresses that is used in an implementation-def
manner to address this object.

address:A single address

host: DNS-style host name or IP address. If not present, the local host is assumed

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. I
the version is absent, 1.0 is assumed.

ip_address:numeric IP address (dotted decimal notation).

port: port number object is listening on. Default is 9999.

string_name: a stringified Name with URL escapes as defined in section .
4-18 CORBAservices: Common Object Services Specification

4

g
erred
s for

e are

ing is
“%”
gh-
der
y

Multiple Addresses iniiopname s

iiopname:555xyz.com,555backup.com/very/critical/binding

An implementation resolves the stringified namevery/critical/binding
through the naming context identified by either555xyz.com or 555backup.com .
The order of processing of the address list to obtain the naming context is
implementation-dependent.

Note –Unlike stringified names,iiopname s cannot be compared directly for equality
as the address specification can differ foriiopname URLs with the same meaning.

iiopname Character Escapes

iiopname URLs use the escape mechanism described in the Internet Engineerin
Task Force (IETF) RFC 2396. These escape rules insure that URLs can be transf
via a variety of transports without undergoing changes. The character escape rule
the stringified name portion of aniiopname are:

US-ASCII alphanumeric characters are not escaped. Characters outside this rang
escaped, except for the following:

“;” | “/” | “:” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

iiopname Escape Mechanism

The percent ‘%’ character is used as an escape. If a character that requires escap
present in a name component it is encoded as two hexadecimal digits following a
character to represent the octet. (The first hexadecimal character represent the hi
order nibble of the octet, the second hexadecimal character represents the low-or
nibble.) If a ‘%’ is not followed by two hex digits, the stringified name is syntacticall
invalid.
Naming Service: v1.1 Service Description Month Year 4-19

4

Examples

iiopname Resolution

iiopname s can be implemented using theiioploc URL scheme. Given an
iiopname :

iiopname://<addresses>[“/” <string_name>]

The iiopname is resolved by:

1. First constructing aniioploc URL of the form:
iioploc://<addresses>/NamingService .
NamingService is the object key foriiopname s.

2. This is converted to a naming context object reference with
CORBA::ORB::string_to_object .

3. The<string_name> is converted to aCosNaming::Name .

4. The resulting name is passed to aresolve operation on the naming context.

5. The object reference returned by theresolve is the result.

Implementations are not required to use the method described and may make
optimizations appropriate to their environment.

4.6.4 Converting between CosNames, Stringified Names, and URLs

The NamingContextExt interface, derived fromNamingContext , provides the
operations required to use URLs and stringified names.

Table 4-1

Stringified Name After URL Escapes Comment

a.b/c.d a.b/c.d URL form identical

<a>.b/c.d %3ca%3e.b/c.d Escaped “<“ and “>”

a.b/ c.d a.b/%20%20c.d Escaped two “ “ spaces

a%b/c%d a%25b/c%25d Escaped two “%” percents
4-20 CORBAservices: Common Object Services Specification

4

of
module CosNaming {
// ...
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);
};

};

to_string

This operation accepts aNameand returns a stringified name. If theNameis invalid,
an InvalidName exception is raised.

to_name

This operation accepts a stringified name and returns aName. If the stringified name is
syntactically malformed or violates an implementation limit, anInvalidName
exception is raised.

resolve_str

This is a convenience operation that performs a resolve in the same manner as
NamingContext ::resolve . It accepts a stringified name as an argument instead
a Name.

to_url

This operation takes a URL<address> component such as

• myhost.xyz.com

• myhost.555xyz.com,my_backup_host.555xyz.com:900
Naming Service: v1.1 Service Description Month Year 4-21

4

ame
or

pty,

,

ust

in a

rver.

n

and a stringified name. It then performs any escapes necessary on the stringified n
and returns a fully formed URL string. An exception is raised if either the protocol
name parameters are invalid.

It is legal for the address and/or stringified_name to be empty. If the address is em
it means the local host.

URL to Object Reference

Conversions from URLs to objects are handled by
CORBA::ORB::string_to_object as described in the CORBA 2.3 Specification
Section 13.6.6.

4.7 Initial Reference to a NamingContextExt

An initial reference to an instance of this interface can be obtained by calling
resolve_initial_references with an ObjectID of NameService .

4.8 Conformance Requirements

4.8.1 Optional Interfaces

There are no optional interfaces in this specification. A compliant implementation m
implement all of the functionality and interfaces described.

4.8.2 Documentation Requirements

A compliant implementation must document all of the following:

• any limitations to the character values or character sequences that may be used
name component

• any limitations to the length (including minimum or maximum) of a name
component

• any limitations to number of name components in a name

• any limitations to the maximum number of bindings in a context

• any limitations to the total number of bindings (implementation-wide)

• any limitations to the maximum number of contexts

• the means provided to deal with orphaned contexts and bindings

• Any policy for dealing with potentially orphaned naming contexts. Orphaned
contexts are contexts that are not bound in any other context within a naming se

• Any policy for destroying binding iterators that are considered to be no longer i
use.

• Under what circumstances, if any, aCannotProceed exception is raised.
4-22 CORBAservices: Common Object Services Specification

	Interoperable Naming Service
	Introduction
	1

	1.1 Submission Contact Points
	1.2 Submission Overview
	1.3 Scope of RFP
	1.4 Proof of Concept
	1.5 Changes to Existing CORBA Specifications
	1.6 Registrations with Other Standards Organizations
	1.7 Addressed Requirements
	1.7.1 Specific Requirements
	1.7.2 General Requirements
	Design rationale
	2

	2.1 RFP Requirements
	2.1.1 Name String Syntax
	2.1.2 Configuration of Initial Naming Context
	2.1.3 URL Names
	2.1.4 Interoperability Defects in the Current Naming Specification
	Significance of id and kind in CosName Comparison
	Issues Open Against the Naming Service

	2.2 Deprecations and Limitations
	2.2.1 Names Library
	2.2.2 No Support for Wide Characters
	Initial References and URLs
	3

	3.1 Configuring Initial Service References
	3.1.1 ORB-specific Configuration
	3.1.2 ORBInitRef
	3.1.3 ORBDefaultInitRef
	3.1.4 Configuration Effect on resolve_initial_references
	Default Resolution Order
	1. Resolve with -ORBInitRef for this <ObjectID> if possible
	2. Resolve with an -ORBDefaultInitRef entry if possible
	3. Resolve with pre-configured ORB settings.

	ORB Configured Resolution Order

	3.1.5 Configuration Effect on list_initial_services

	3.2 Object URLs
	iioploc URL
	iioploc Server Implementation
	iiopname URL
	Future URL Schemes
	Table�3�1 URL formats
	Naming Service Specification
	4

	4.1 Service Description
	4.1.1 Overview
	Figure�4�1 A Naming Graph

	4.1.2 Names
	4.1.3 Example Scenarios
	4.1.4 Design Principles
	1. The design imparts no semantics or interpretation of the names themselves; this is up to highe...
	2. The design supports distributed, heterogeneous implementation and administration of names and ...
	3. Naming service clients need not be aware of the physical site of name servers in a distributed...
	4. The Naming Service is a fundamental object service, with no dependencies on other interfaces.
	5. Name contexts of arbitrary and unknown implementation may be utilized together as nested graph...
	6. Existing name and directory services employed in different network computing environments can ...
	7. The design does not address namespace administration. It is the responsibility of higher-level...

	4.2 The CosNaming Module
	//�File:�CosNaming.idl
	#ifndef�_COSNAMING_IDL_
	#define�_COSNAMING_IDL_
	#pragma�prefix�"omg.org"
	module�CosNaming�{
	 typedef�string�Istring;
	 struct�NameComponent�{
	 Istring�id;
	 Istring�kind;
	 };
	 typedef�sequence<NameComponent>�Name;
	 enum�BindingType�{�nobject,�ncontext�};
	 struct�Binding�{
	 Name������������binding_name;
	 BindingType�����binding_type;�����������������������������������
	 };
	 //�Note:�In�struct�Binding,�binding_name�is�incorrectly�defined
	 //�as�a�Name�instead�of�a�NameComponent.�This�definition�is
	 //�unchanged�for�compatibility�reasons.
	 typedef�sequence�<Binding>�BindingList;���
	 interface�BindingIterator;
	 interface�NamingContext�{
	 enum�NotFoundReason�{
	missing_node,�not_context,�not_object
	};
	 exception�NotFound�{�
	 NotFoundReason��why;
	 Name��������������������rest_of_name;
	 };
	 exception�CannotProceed�{
	 NamingContext���cxt;
	 Name��������������������rest_of_name;
	 };
	 exception�InvalidName{};���...
	 exception�AlreadyBound�{};
	 exception�NotEmpty{};
	 void����bind(in�Name�n,�in�Object�obj)����������
	 raises(
	 NotFound,�CannotProceed,
	InvalidName,�AlreadyBound
);
	 void����rebind(in�Name�n,�in�Object�obj)��������
	 raises(NotFound,�CannotProceed,�InvalidName);
	 void����bind_context(in�Name�n,�in�NamingContext�nc)������������
	 raises(
	NotFound,�CannotProceed,
	InvalidName,�AlreadyBound
);
	 void����rebind_context(in�Name�n,�in�NamingContext�nc)��
	 raises(NotFound,�CannotProceed,�InvalidName);
	 Object��resolve�(in�Name�n)
	 raises(NotFound,�CannotProceed,�InvalidName);
	 void����unbind(in�Name�n)
	 raises(NotFound,�CannotProceed,�InvalidName);
	 NamingContext���new_context();
	 NamingContext���bind_new_context(in�Name�n)
	 raises(
	 NotFound,�AlreadyBound,
	 CannotProceed,�InvalidName
);
	 void����destroy()�raises(NotEmpty);
	 void����list(
	 in�unsigned�long��������how_many,
	 out�BindingList���������bl,
	 out�BindingIterator�����bi
);
	 };
	 interface�BindingIterator�{
	 boolean�next_one(out�Binding�b);
	 boolean�next_n(in�unsigned�long�how_many,�out�BindingList�bl);
	 void����destroy();
	 };
	 interface�NamingContextExt:�NamingContext�{
	 typedef�string�StringName;
	 typedef�string�Address;
	 typedef�string�URLString;
	 StringName������to_string(in�Name�n)�raises(InvalidName);
	 Name������������to_name(in�StringName�sn)�
	 raises(InvalidName);
	 exception�InvalidAddress�{};
	 URLString�������to_url(in�Address�addr,�in�StringName�sn)
	 raises(InvalidAddress,�InvalidName);
	 Object����������resolve_str(in�StringName�n)
	 raises(
	 NotFound,�CannotProceed,
	 InvalidName,�AlreadyBound
);
	 };
	};
	Resolution of Compound Names

	4.3 NamingContext Interface
	4.3.1 Structures
	NameComponent
	 struct NameComponent {
	 Istring Id;
	 Istring kind;
	 };

	Name
	Binding
	enum BindingType { nobject, ncontext };
	struct Binding {
	 Name binding_name;
	 BindingType binding_type;
	};
	typedef sequence<Binding> BindingList;

	4.3.2 Exceptions
	NotFound
	exception�NotFound�{
	 NotFoundReason��why;
	 Name�rest_of_name;

	CannotProceed
	exception�CannotProceed�{
	 NamingContext��cxt;
	 Name�rest_of_name;

	InvalidName
	exception�InvalidName�{};

	AlreadyBound
	exception�AlreadyBound�{};

	NotEmpty
	exception�NotEmpty�{};

	4.3.3 Binding Objects
	void bind(in Name n, in Object obj)
	raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
	void rebind(in Name n, in Object obj)
	raises(NotFound, CannotProceed, InvalidName);
	void bind_context(in Name n, in NamingContext nc)
	raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
	void rebind_context(in Name n, in NamingContext nc)
	bind
	rebind
	bind_context
	rebind_context
	Usage

	4.3.4 Resolving Names
	Object resolve (in Name n)

	4.3.5 Unbinding Names
	void unbind(in Name n)

	4.3.6 Creating Naming Contexts
	NamingContext new_context();
	NamingContext bind_new_context(in Name n)
	new_context
	bind_new_context
	Usage

	4.3.7 Deleting Contexts
	void destroy()

	4.3.8 Listing a Naming Context
	void list (in unsigned long how_many,
	out BindingList bl, out BindingIterator bi);

	4.4 The BindingIterator Interface
	interface BindingIterator { ������ boolean next_one(out Binding b); ������boolean next_n(in unsig...
	out BindingList bl); ����� void destroy();
	next_one
	next_n
	destroy
	4.4.1 Garbage Collection of Iterators

	4.5 Stringified Names
	4.5.1 Basic Representation of Stringified Names
	4.5.2 Escape Mechanism
	NameComponent Separators
	Id and kind Fields
	The Escape Character

	4.6 URL schemes
	4.6.1 IOR
	4.6.2 iioploc
	4.6.3 iiopname
	iiopname Examples
	iiopname Syntax
	Multiple Addresses in iiopnames
	iiopname Character Escapes
	iiopname Escape Mechanism
	Examples
	Table�4�1

	iiopname Resolution
	1. First constructing an iioploc URL of the form: iioploc://<addresses>/NamingService. NamingServ...
	2. This is converted to a naming context object reference with CORBA::ORB::string_to_object.
	3. The <string_name> is converted to a CosNaming::Name.
	4. The resulting name is passed to a resolve operation on the naming context.
	5. The object reference returned by the resolve is the result.

	4.6.4 Converting between CosNames, Stringified Names, and URLs
	module�CosNaming�{
	 // ...
	 interface�NamingContextExt:�NamingContext�{
	 typedef�string�StringName;
	 typedef�string�Address;
	 typedef�string�URLString;
	 StringName������to_string(in�Name�n)�raises(InvalidName);
	 Name������������to_name(in�StringName�sn)�
	 raises(InvalidName);
	 exception�InvalidAddress�{};
	 URLString�������to_url(in�Address�addr,�in�StringName�sn)
	 raises(InvalidAddress,�InvalidName);
	 Object����������resolve_str(in�StringName�n)
	 raises(
	 NotFound,�CannotProceed,
	 InvalidName,�AlreadyBound
);
	 };
	to_string
	to_name
	resolve_str
	to_url
	URL to Object Reference

	4.7 Initial Reference to a NamingContextExt
	4.8 Conformance Requirements
	4.8.1 Optional Interfaces
	4.8.2 Documentation Requirements

