
        

CORBA Components
 Joint Revised Submission
BEA Systems, Inc.

Cooperative Research Centre for Distributed Systems Technology

Expersoft Corporation

Genesis Development Corporation

IBM Corporation

Inprise Corporation 

IONA Technologies, PLC

Oracle Corporation

Rogue Wave Software, Inc.

Unisys Corporation

Supported by:
Fujitsu, Ltd.

Hewlett-Packard Corporation

Sun Microsystems, Inc.

OMG TC Document orbos/99-02-05

March 1, 1999 
CORBA Components - orbos/98-12-02 -1



 

Copyright 1999 by BEA Systems
Copyright 1999 by Cooperative Research Centre for Distributed Systems Technology
Copyright 1999 by Expersoft Corporation
Copyright 1999 by Genesis Development Corporation
Copyright 1999 by IBM Corporation
Copyright 1999 by Inprise Corporation
Copyright 1999 by IONA Technologies, PLC
Copyright 1999 by Oracle Corporation
Copyright 1999 by Rogue Wave Software
Copyright 1999 by Unisys Corporation

The submitting companies listed above have all contributed to this “merged” submission. These 
companies recognize that this draft joint submission is the joint intellectual property of all the 
submitters, and may be used by any of them in the future, regardless of whether they ultimately 
participate in a final joint submission.

The companies listed above hereby grant a royalty-free license to the Object Management 
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, 
so long as the OMG reproduces the copyright notices and the below paragraphs on all distributed 
copies.
The material in this document is submitted to the OMG for evaluation. Submission of this 
document does not represent a commitment to implement any portion of this specification in the 
products of the submitters. 
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE 
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND 
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 
The companies listed above shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance or use of this material. 
The information contained in this document is subject to change without notice. 
This document contains information which is protected by copyright. All Rights Reserved. 
Except as otherwise provided herein, no part of this work may be reproduced or used in any 
form or by any means—graphic, electronic, or mechanical, including photocopying, recording, 
taping, or information storage and retrieval systems— without the permission of one of the 
copyright owners. All copies of this document must include the copyright and other information 
contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited 
number of copies of this document (up to fifty copies) for their internal use as part of the OMG 
evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to 
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer 
Software Clause at DFARS 252.227.7013. 

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.
-2 CORBA Components - orbos/98-12-02



  

Table of Contents

        
1  Introduction 1

Overview 2
Relationship to other CORBA Technology 3

CORBA Core and Object Services 3
Business Objects Interoperability Initiative 3
UML and the Meta Object Facility 3

Guide to the Submission 4
Proof of Concept 5
Conventions 5
Submission Contact Points 5

2  Mapping to RFP Requirements 9

Mandatory Requirements 9
Component Model Elements 9
Requirements for Component Description Facility 11
Requirements for Programming Model 12
Requirements for Mapping to JavaBeans 13
Security Requirements 14

Optional Requirements 15

3  Introduction to Components 17

4  Extensions to CORBA Core 19

Local interface types 19
Java language mapping 21
C++ language mapping 22
resolve_local 24

Import 24
Repository identity declarations 27

Repository identity declaration 27
Repository identifier prefix declaration 28

IDL Grammar modifications 29
Keywords 29

5  Component Model 31

Change History 31
Component Model 31

Ports 32
Components and facets 32
March 2, 1999 5:36 pm CORBA Components - orbos/99-02-05 iii



  

Table of Contents

 

Component identity 33
Component homes 34

Component Definition 34
IDL Extensions for Components 34

Component Declaration 36
Syntax 36
Equivalent IDL 37
Component Body 38

Facets and Navigation 39
Syntax 39
Equivalent IDL 39
Semantics of facet references 39
Navigation 40
Provided References and Component Identity 44
Supported interfaces 44

Receptacles 46
Syntax 46
Equivalent IDL 47
Behavior 48
Receptacles interface 50

Events 52
Event types 53
Integrity of value types contained in anys 53
EventConsumer interface 53
Event service provided by container 54
Event Sources—publishers and emitters 54
Publisher 55
Emitters 57
Module scope of generated event consumer interfaces 58
Event Sinks 59
Events interface 60

Homes 62
Home header 63
Equivalent interfaces 64
Primary key declarations 67
Explicit operations in home definitions 68
Home inheritance 69
Semantics of home operations 71
HomeBase interface 72
KeylessHomeBase interface 73

Home Finders 73
Component Configuration 75

Exclusive configuration and operational life cycle phases 77
iv CORBA Components - orbos/99-02-05 March 2, 1999 5:36 pm



  

Table of Contents

   
Configuration with attributes 78
Attribute declaration syntax 78
Language mapping responsibilities 79
Behavior 79
Attribute Configurators 79
Factory-based configuration 80

CORBAComponent Module 83
Component Inheritance 87
Component Descriptions in the Interface Repository 88

6  Component Persistence 89

Persistence and the Component Implementation Framework (CIF) 89
CIDL, components, and persistence 89

Component persistence 90
Persistence concepts 90

Component Implementation Definition Language (CIDL) 91
Grammar description syntax 92
Lexical conventions 92
CIDL Grammar 93
CIDL type identifiers 96

CIDL Specification 97
Import 97
CIDL modules 98

Syntax 98
Storage types 99

Storage Header 99
Members of storage types 100
Independent storage members 101
Dependent storage members 102
Storage sequence members 104
Atomic members 105
Storage object life cycle 106
Persistent IDs 107
Incarnations 107
Persistence Semantics 109

Storage home 112
Syntax 112
Equivalent local interfaces 113
Initial values of created storage objects 118
Primary key type constraints 119
Explicit operations in storage home definitions 119
Storage home inheritance 121
March 2, 1999 5:36 pm CORBA Components - orbos/99-02-05 v



  

Table of Contents

    
Implementation responsibility 122
StorageHomeBase 124
KeylessStorageHomeBase 126

Persistent store 127
Syntax 127
Equivalent local interfaces 128
Obtaining storage homes from a persistent store 128
Local operations on persistent stores 129
PersistentStoreBase interface 129
GenericPersistentStore 133

7  The Container Programming Model 135

Change History 136
Introduction 137

External Types 139
Container Type 139
Container Implementation Type 139
Component Categories 140

The Server Programming Environment 140
Component Containers 140
Container Implementation Type 141
Component Factories 142
Component Activation 143
Servant Lifetime Management 143
Transactions 144
Security 146
Events 146
Persistence 147
Application Operation Invocation 148
Component Implementations 149
Component Categories 149

Server Programming Interfaces 153
Component Interfaces 154
Interfaces Common to both Container Types 155
Interfaces Supported by the Transient Container Type 163
Interfaces Supported by the Persistent Container Type 166

The Client Programming Model 174
Component-aware Clients 175
Component-unaware Clients 179

8  Container Architecture 183
vi CORBA Components - orbos/99-02-05 March 2, 1999 5:36 pm



  

Table of Contents

   
Change History 183
Component Server 184

POA Creation 185
Binding the Container to CORBA services 187
Container API Frameworks 187

Containers Categories 189
The Empty Container 189
The Service Container 190
The Session Container 195
The Process Container 203
The Entity Container 214

Persistence Integration 218
Container Managed Persistence 219
Component Managed Persistence 219
Interactions between the Container and the Persistence Provider 219

Event Management Integration 221
Channel setup 221
Transmitting an event 222
Receiving an event 222

Servant Locators for CORBA Components 223
The TransientServantLocator 223
The PersistentServantLocator 225

9  Packaging and Deployment 229

Change History 230
Component Packaging 230
Software Package Descriptor 230

A softpkg Descriptor Example 231
The Software Package Descriptor XML Elements 231

CORBA Component Descriptor 243
CORBA Component Descriptor Example 245
The CORBA Component Descriptor XML Elements 246

Component Assembly Packaging 261
Component Assembly File 261
Component Assembly Descriptor 261

Component Assembly Descriptor Example 262
Component Assembly Descriptor XML Elements 265

Property File Descriptor 276
Property File Example 276
Property File XML Elements 277

Component Deployment 282
Participants in Deployment 282
March 2, 1999 5:36 pm CORBA Components - orbos/99-02-05 vii



  

Table of Contents

     
Installation Interface 285
AssemblyFactory Interface 286
Assembly Interface 287
ServerActivator Interface 287
ComponentServer Interface 287
Container Interface 288
Component Entry Points (Component Home Factories) 288

10  Component Meta-Model 291

Introduction 291
Change History 291
An Overview of the MOF 293

The MOF Model 293
The MOF-IDL Mapping 294

An Overview of XMI 295
A MOF-Based Interface Repository Metamodel 296

BaseIDL Package 297
ComponentIDL Package 311

Packaging and Deployment Metamodel 319
The PDGeneral MOF Package 320
The Softpkg MOF Package 320
The Component MOF Package 328
The Assembly MOF Package 332
The PropertySet MOF Package 340

11  Mapping to Enterprise Java Beans 343

History of changes 343
Since 99-02-01 343
Since 98-12-02 343

Enterprise Java Beans Compatibility  Objectives and Requirements 344
EJB Facades for EJBs 345
CORBA Component facades for EJBs 345

Java Language to IDL Mapping 345
EJB to CORBA Component IDL mapping 346
EJB Facades for CORBA Components 351

Enterprise Java Beans deployed to a CORBA Component Server 351
EJB Hosting Strategies 352
EJBObject 353
Transactional State Management 353
Container Managed Persistence 353
Bean Managed Persistence 354
viii CORBA Components - orbos/99-02-05 March 2, 1999 5:36 pm



  

Table of Contents

       
EJBHome 354
Object References and Handles 355
EJB Context Interfaces 356
EJB Implementation Interfaces 356
Environment Properties 356
JNDI and CosNaming 356
CORBA Component and EJB 1.0 Containment Contracts 357
Deployment Processes and Artifacts 359

12  C++ Language Mapping 361

Introduction 361
Mapping for incarnations 361

Incarnation members 363
Constructors, Assignment Operators, and Destructors 369
_downcast operation 369
_type_id operation 369
Example 369
IncarnationBase 372
IndependentBase and reference counting 372

13  Java Language Mapping 375

Introduction 375
Mapping for incarnations 375
Incarnation members 377

Atomic members 377
Independent storage members 379
Storage sequence members 380
Dependent members 382
IncarnationBase 384
IndependentBase 384

14  Changes to CORBA and Services 387

Changes to the CORBA Core 387
Changes to the ORB interface 387
Changes to the Object interface 388
Local interface types 388
resolve_local 390
Import 390
Repository identity declarations 392
Repository identifier prefix declaration 393
March 2, 1999 5:36 pm CORBA Components - orbos/99-02-05 ix



  

Table of Contents

          
IDL Grammar modifications 394
Keywords 394
Changes to the Attribute declaration syntax 395

Changes to Object Services 396
Life Cycle Service 396
Transaction Service 396
Security Service 396
Name Service 396
Notification Service 396

15  Conformance Criteria 397

Conformance Points 397
A Note on Tools 398

A  IDL Summary 399

Module Architecture 399
The Core Module 400
The Components Module 400

Interfaces Defined Within the Components Module 400
Interfaces Defined Within the Persistence Module 404
Interfaces Defined Within the Deployment Module 406
Interfaces Defined Within the Server Module 407
Interfaces Defined Within the Container Module 412

B  XML  DTDs 415

softpkg.dtd 415
corbacomponent.dtd 419
properties.dtd 423
componentassembly.dtd 425

C  MOF DTDs and IDL 431

IR Metamodel 431
XMI DTD 431
IDL for the IR Metamodel 456

Packaging and Deployment Metamodel 501
 XMI DTD 501

D  Related Work 543
x CORBA Components - orbos/99-02-05 March 2, 1999 5:36 pm



  

Table of Contents

  
Polymorphism 543
Java Parameterized Type Proposals 543

Where Clauses 543
 Constraining on Interface 544

JavaBeans 544
COM 545
Rapide 546

E  References 547
March 2, 1999 5:36 pm CORBA Components - orbos/99-02-05 xi



  

Table of Contents
xii CORBA Components - orbos/99-02-05 March 2, 1999 5:36 pm



                              
Introduction 1
The following companies are pleased to jointly submit this specification in response to 
the CORBA Component Model RFP (Document orbos/97-06-12):

¥ BEA Systems, Inc.

¥ Cooperative Research Centre for Distributed Systems Technology (DSTC)

¥ Expersoft Corporation

¥ Genesis Development Corporation

¥ IBM Corporation

¥ Inprise Corporation

¥ IONA Technologies, PLC

¥ Oracle Corporation

¥ Rogue Wave Software, Inc.

¥ Unisys Corporation

Recognizing the importance of aligning this specification with Enterprise Java Beans, 
the submitters are pleased to acknowledge the cooperation of:

¥ Sun Microsystems

In addition, we also acknowledge support from:

¥ Fujitsu, Ltd.

¥ Hewlett-Packard, Inc.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 1-1



  

1

                          
1.1 Overview

The submitters believe that a CORBA component model should focus on the strength 
of CORBA as a server-side object model. To that end we have chosen to concentrate on 
those issues that must be addressed to provide a server facility rather than a client 
facility. We compare this model to the Enterprise Java Bean specification which was 
released by JavaSoft after the OMG’s Component RFP was issued rather than the Java 
Beans model requested by the original RFP. 

The submitters believe that the Java Beans model is inappropriate for server side 
development. 

Just as Sun chose to define a different component model with Enterprise Java Beans 
(EJB) than its Java Bean predecessor, we chose to define CORBA components as a 
server-side model which more closely aligns with EJB than Java Beans. The 
component model defined by this specification has the following characteristics:

¥ It defines extensions to IDL to support the definition of CORBA components and 
the relationships between them.

¥ It introduces CIDL, a language similar to IDL, as a mechanism for defining servant 
implementations that enhances the ability to do automatic code generation on behalf 
of the developer.

¥ It defines extensions to the CORBA core object model to introduce the concept of 
components to the OMA.

¥ It defines interfaces necessary to support navigation among the multiple interfaces 
supported by a CORBA component.

¥ It defines a mechanism for tailoring CORBA components prior to deployment using 
both metadata defined by the component model and runtime properties which can 
be tailored using a design tool.

¥ It introduces a deployment model to CORBA using XML to describe the run time 
properties of a CORBA component.

¥ It defines a container model for introducing system services into the runtime 
environment of a CORBA component.   

¥ It defines locality constrained interfaces for a component to interact with its 
container.

¥ It introduces the container programming model, a higher level abstraction of the 
POA and the CORBA services for use by the developer and defines the container as 
a simplified set of policies derived from the Portable Object Adaptor (POA). 

¥ It defines interfaces to manage object activation and passivation derived from the 
POA policies selected.

¥ It defines policies which support a simplified version of CORBA transactions. 
These policies provide transaction control independent of the component 
implementation and integrate synchronization between object state and persistent 
storage prior to commit processing. They also permit the component itself to control 
transaction demarcation.
1-2 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



  

1

                  
¥ It defines policies for managing servant lifetimes to optimize resource usage within 
a process thereby enhancing the scalability of a compliant implementation.

¥ It defines security policies which provide authorization based on role as described 
by the CORBA Security Service. 

¥ It defines policies which provide persistent state management based on the POA for 
all CORBA components, either with application assistance or automatically in 
conjunction with the CORBA Persistent State Service.

¥ It defines a mapping to Enterprise Java Beans which makes it possible for an EJB to 
be supported as a CORBA component within a container which provides activation, 
transactions, security, events, and persistence.

1.2 Relationship to other CORBA Technology

CORBA components extend the CORBA core object model and introduce a 
deployment model into the OMA. They also provide a higher level of abstraction of 
CORBA and object services, greatly simplifying CORBA programming. 

1.2.1 CORBA Core and Object Services

CORBA Components extend the core object model through the introduction of 
component types and support for multiple interfaces. Components use services above 
the core, specifically the POA, transactions, security, events, and persistence in a 
specialized way to offer the programmer a simpler programming abstraction. The 
submitters believe that this abstraction is suitable for a broad spectrum of CORBA 
applications.

1.2.2 Business Objects Interoperability Initiative

The Business Objects Interoperability Initiative seeks a framework suitable for 
deploying a new category of CORBA objects, designated as business objects. It does so 
by defining a meta-model which introduces the notion of business semantics to the 
behavior description of these CORBA objects. The initiative also seeks a technology 
mapping of these concepts to the CORBA model, including the CORBA services. 

CORBA components can serve as an alternative technology mapping of this business 
objects architecture, since it incorporates many of the design patterns used by business 
objects in support of the various CORBA services. CORBA components, however, are 
not the same as business objects because they do not of themselves define any of the 
business semantics desired for the business object model. 

1.2.3 UML and the Meta Object Facility

This specification of CORBA components defines a meta-model based on UML and a 
mapping of that meta-model to the MOF. The meta-model includes the component 
extensions to IDL and the Interface Repository as well as the component deployment 
model defined by this specification. This meta-model requires no changes to UML.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 1-3



  

1

                                  
1.3 Guide to the Submission

The submission is organized as follows:

¥ Chapter 2 provides a mapping of the submission to the requirements specified in the 
CORBA Components RFP (orbos/97-06-12).

¥ Chapter 3 contains an overview of the architecture for CORBA components which 
introduces the major concepts that are further described in the ensuing chapters.

¥ Chapter 4 introduces core changes to support locality-constrained interfaces which 
are necessary to define the CORBA component model. 

¥ Chapter 5 provides a description of the abstract model for Components including 
the changes to IDL and the CORBA core.

¥ Chapter 6 describes the component implementation framework which supports the 
component model and integrates the use of PSS.

¥ Chapter 7 defines the programmer’s view of the container model with emphasis on 
the contract between the container and the server programmer.

¥ Chapter 8 specifies the architecture of the container with emphasis on the contract 
between the container provider and the ORB, POA, and the CORBA services.

¥ Chapter 9 provides a description of the deployment model, including packaging and 
distribution.

¥ Chapter 10 provides a description of the component meta model and its realization 
in UML and the MOF.

¥ Chapter 11 provides a mapping of the CORBA component model to Enterprise Java 
Beans (EJB).

¥ Chapter 12 defines the changes to the C++ language mappings required by CORBA 
components.

¥ Chapter 13 defines the changes to the Java language mappings required by CORBA 
components.

¥ Chapter 14 provides instructions to the editor of the specific changes to CORBA 
and the CORBA services introduced by this specification.

¥ Chapter 15 provides a description of the compliance criteria for conforming 
implementations.

In addition to the normative parts of the specification, several appendices are provided 
as clarifications:

¥ Appendix A summarizes the IDL introduced by this specification. All of this IDL 
has been introduced in the normative portion of the specification.

¥ Appendix B summarizes the XML DTDs introduced by this specification. All of 
this XML has been introduced in the normative portion of the specification.
1-4 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



1

¥ Appendix C contains the IDL for the MOF metamodels of the Interface Repository, 
including the component extensions, and the component packaging and deployment 
metamodel as well as the XML generated using the XMI standard for metadata 
interchange.

¥ Appendix D compares CORBA components to other component models including 
Java Beans and Rapide.

¥ Appendix E contains references to other work in this area.

1.4 Proof of Concept

The specification presented here is based on the extensive experience the submitting 
companies have had over the past year with their “experimental” and/or commercial 
implementations, e.g. BEA’s M3 product implements many of the interfaces defined 
for the CORBA container albeit with different API syntax. Many of the alternative 
designs that were considered have actually been implemented and tried by many users. 
The final choices that are embodied in this submission were made based upon user and 
vendor experience.

Shipping product which implements this specification can be expected to be made 
available almost concurrently with its final approval.

1.5 Conventions

IDL appears using this font.

XML appears using this font.

Language Mapped code appears using this font.

Important Reminders appear using this font.

In some chapters, rationale appears using this font.

In various places a few issues are highlighted. These are mostly areas where we have 
discovered that some additional clarification may be needed. 

Please note that any change bars have no semantic meaning. They show the places that 
final edits were applied to the last reviewed draft submission. They are present for the 
convenience of the submitters (and the editor who didn’t want to have to re-edit the 
entire document to remove change bars and maintain two synchronized copies) so that 
the final edits can be identified.

1.6 Submission Contact Points

All questions about this submission should be directed to:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 1-5



1

Ed Cobb (Editor)
BEA Systems Inc.
2315 North 1st St.
San Jose, CA 95131
USA
phone: +1 408 570 8264
fax: +1 408 570 8910
email: ed.cobb@beasys.com

Keith Duddy
CRC for Distributed Systems Technology
University of Queensland
Brisbane 4072, Queensland
Australia
phone: +61 7 3365 4310
fax: +61 7 3365 4311
email: dud@dstc.edu.au

Shahzad Aslam-Mir
Expersoft Corporation
5825 Oberlin Drive
San Diego, CA 92121
phone: +1 619 824 4128
fax: +1 619 824 4110
email: sam@expersoft.com

David Frankel
Genesis Development Corporation
741 Santiago Court
Chico, CA 95973
USA
phone: +1 530 893 1100
fax: +1 530 893 1153
email: dfrankel@gendev.com

Jim Rhyne
IBM Canada Ltd. 2G/846/1150/TOR
1150 Eglington Ave. E.
Toronto, Ontario M3C 1H7
Canada
phone: +1 416 448 4383
fax: + 1 416 448 4414
email: jrhyne@us.ibm.com

David Curtis
Inprise Corporation
951 Mariner’s Island Blvd.
San Mateo, CA 94404
USA
phone: +1 650 358 2447
fax: +1 650 286 2475
email: dcurtis@inprise.com
1-6 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



1

Jeff Mischkinsky
Inprise Corporation
951 Mariner’s Island Blvd.
San Mateo, CA 94404
USA
phone: +1 650 358 3049
fax: +1 650 286 2475
email: jeffm@inprise.com

Martin Chapman
IONA Technologies, PLC
The IONA Building
Shelbourne Rd.
Dublin 4, 
Ireland
phone: +353 1 637 2000
fax: +353 1 637 2888
email: mchapman@iona.com

Garrett Conaty
IONA Technologies, PLC
The IONA Building
Shelbourne Rd.
Dublin 4, 
Ireland
phone: +353 1 637 2000
fax: +353 1 637 2888
email: gconaty@iona.com

Glenn Seidman
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA
phone: +1 650 506 5823
fax: +1 650 654 6208
email: gseidman@us.oracle.com

Jim Trezzo
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA
phone: +1 650 506 8240
fax:  +1 650 654 6208
email: jtrezzo@us.oracle.com

Patrick Thompson
Rogue Wave Software
815 NW 9th St.
Corvallis, OR 97330
USA 
phone: +1 541 754 3189
fax: +1 541 758 4761 
email: thompson@roguewave.com
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 1-7



1

Sridhar Iyengar
Unisys Corporation
25725 Jeronimo Road
Mission Viejo, CA, 92691
USA
phone: +1 714 380 5692
fax: +1 714 380 6600
email: sridhar.iyengar2@unisys.com
1-8 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Mapping to RFP Requirements 2
2.1 Mandatory Requirements
¥ Responses shall specify a component model for CORBA systems. This model 

shall be structured as a natural extension of the existing CORBA object 
model, and shall be informed by experiences with other successful component 
models, such as JavaBeans and COM. 

The component model specified in this submission is based on extensions to the 
CORBA model. The submitters have focussed on a server side model and have 
considered input from Enterprise Java Beans, COM+, and existing CORBA-based 
products.

¥ Responses shall define the elements of a component model, and concrete 
expressions of these elements in terms of CORBA technology. 

All elements of the abstract model are specified using IDL with extensions to 
support the component architecture. Packaging and deployment have not been 
previously considered in CORBA specifications and, based on similar work in the 
W3C, are specified using XML. The container specification is based on the Portable 
Object Adaptor (POA) and uses a new local IDL construct to define locality-
constrained interfaces.

¥ Responses shall build upon existing specifications, and be aligned with other 
simultaneously emerging specifications. 

The specification is based on CORBA 2.3 and the current levels of CORBA 
transactions (1.1), CORBA security (1.2), and CORBA notification (1.1). It 
integrates work in process for CORBA persistence.

2.1.1 Component Model Elements
¥ Responses shall clearly define the concept of component type and the 

structure for a component typing system, and shall specify mechanisms for 
establishing and expressing component type identity.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 2-9



2

These mechanisms are defined as part of the abstract model in Chapter 5. The 
specification address both the type system for components and the notion of 
component identity.

¥ Responses shall define a concrete concept of component instance identity, and 
a reliable means for determining whether two interface references belong to 
the same component instance.

These mechanisms are defined as part of the abstract model in Chapter 5. 
Operations are defined on a new CORBA metatype, CORBA::Component, which 
provide the necessary mechanisms for determining if two interfaces are within the 
same component. 

¥ Responses shall describe the life cycle of a component, and specify interfaces 
and mechanisms for managing its life cycle.

Component life cycle is described as part of the abstract model in Chapter 5. Life 
cycle operations are also defined as part of the container APIs in Chapter 7. 

¥ Responses shall describe the association between a component and its 
interfaces, and their relative life cycles. These descriptions shall be consistent 
with responses to the Multiple Interfaces RFP.

These descriptions are provided as part of the abstract model in Chapter 5. Since the 
ORBOS Task Force voted to terminate the Multiple Interfaces RFP in January 1999, 
consistency with that specification is no longer applicable.

¥ Responses shall specify interfaces for exposing and managing component 
properties. Properties are an externally accessible view of a component’s 
abstract state that can be used for design-time customizing of the component, 
and which support mechanisms for notification (event generation) and 
validation when a property’s value changes. Responses shall define the 
relationship between component properties and IDL interface attributes, if 
any.

These descriptions, which are based on an extended version of CORBA attributes, 
are provided as part of the abstract model in Chapter 5. Although a mechanism for 
distinguishing design time from run time is not mandated by this specification, such 
a mechanism can be implemented using the configuration architecture defined in 
Chapter 5. Because the component model is designed for the server, the property-
change notification system inherent in client component models like Java Beans was 
not adopted. Instead a more robust event mechanism based on CORBA notification 
is specified.

¥ Responses shall specify interfaces and mechanisms for serializing a 
component’s state and for constructing a component from serialized state. The 
serialization mechanism shall be suitable for storage and retrieval, and for 
externalizing state over communication channels. To the extent possible, this 
serialization mechanism shall be aligned with other existing or emerging 
serialization mechanisms, such as the externalization service, proposed 
streaming mechanisms for passing objects by value, proposed mechanisms in 
Messaging Service responses, and so on. The intent of this requirement is to 
avoid further redundant serialization interfaces in CORBA specifications.
2-10 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



2

Serialization, as it exists in JavaBeans, is not applicable to CORBA components. It 
is used in Enterprise Java Beans for deployment descriptors, but it is Sun’s stated 
intention to move to XML for that purpose. CORBA components use XML for their 
deployment descriptors as defined in Chapter 9. The mechanism for serializing a 
component’s abstract state is based on the techniques proposed by the Persistent 
State Service submissions which use state declarations as part of the abstract model 
to provide representations of that state. 

¥ Responses shall specify interfaces and mechanisms for generating events, and 
for installing arbitrary event handlers (listeners) for specific events generated 
by components. The event mechanism shall be coordinated with the property 
mechanisms to support event generation when property values are modified. 
The relationship between this component model’s event mechanism and the 
existing CORBA Event Service shall be clearly defined. If a response does not 
make use of the existing Event Service, it shall provide rationale for this 
decision.

The event mechanism is defined as part of the abstract model in Chapter 5 and 
permits arbitrary event handlers to consume events generated by the component. Its 
architecture is based on the CORBA notification service which is derived from the 
CORBA event service. This provides a robust event distribution mechanism more 
scalable and functional than the event mechanism provided by other component 
models such as JavaBeans and COM.

2.1.2 Requirements for Component Description Facility
¥ Responses shall specify an information model that describes components. In 

conjunction with the information model, responses shall specify a set of 
interfaces for a programmatic representation of this information model and a 
textual representation (i.e. a description language) for the information model. 
This language may be an extension to IDL or a complementary adjunct to 
IDL. Responses shall provide rationale for their decision regarding the form 
of the language and its relationship to IDL. The information model shall 
capture all the salient features of components.

The component information model is addressed by this specification in multiple 
ways:

¥ IDL extensions are defined in Chapter 5 to capture the designer’s intent and to 
allow component tools to perform code generation.

¥ A Component Implementation Definition Language (CIDL) is introduced in 
Chapter 6 to define abstract state for container-managed persistence and to define 
other properties of the component’s implementation in the server. 

¥ Run-time descriptions necessary to create instances of components and their 
deployment characteristics are defined in Chapter 9 and described using XML 
based on similar work being done in the W3C.

¥ A MOF-based meta-model is provided for the abstract component model in 
Chapter 10.

¥ Responses shall specify how component descriptions are stored in a 
repository. The relationship between this repository and existing CORBA 
repositories, including the Interface Repository, Implementation Repository, 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 2-11



2

and the Meta-data repository shall be clearly defined. The information models 
supported by the description language and the repository shall be completely 
isomorphic. The mapping between the description language and the repository 
contents shall be reflexive.

This specification provides extensions to the Interface Repository (IR) which 
contain the additional information associated with components. These extensions 
are defined as part of the abstract model in Chapter 5. The meta-model defined in 
Chapter 10 is based on the MOF.

2.1.3 Requirements for Programming Model
¥ Responses shall describe a mapping from the component description 

information to a concrete programming model, and define how that 
programming model is expressed in programming languages that support IDL 
mappings. 

This specification defines the abstract model as extensions to IDL in Chapter 5. 
Where required, new language mappings are defined in Chapter 12.

¥ The mapping shall automate the generation of as many programming details 
as reasonably possible. For example, if the information in the component 
description contains a complete description of a component’s state, the 
responses shall describe how methods for serializing that state will be 
generated from the description.

The specification was designed with the goal of automatic code generation. 
Techniques for creating factory code as well as automating persistence were 
introduced into the model. Based on the experience of the submitters, we believe 
such automation is feasible with the techniques defined in this specification. This is 
elaborated in Chapter 6.

¥ Responses shall specify interfaces and mechanisms so as to maximize the 
portability of component implementation code between compliant 
implementations of the specification. To this end, responses shall clearly 
define the relationship between elements of component model and the 
interfaces specified in the Enhanced ORB Portability specification, 
particularly the POA and its related interfaces. Responses shall specify how 
the behaviors and policies supported by the POA interfaces apply to 
components, and describe the relationships between servants and component 
implementations. If possible, responses shall define how implementations of 
objects required by the POA, such as servant managers, may be automatically 
generated from component descriptions.

The container architecture defined in Chapter 8 is derived by specializing the 
Portable Object Adaptor (POA). The POA policies used by the containers are 
clearly identified as are extended versions of POA interfaces which provide 
additional functionality.

¥ Responses shall specify how components can be passed as value parameters in 
CORBA requests. This specification shall be aligned with responses to the 
Objects by Value RFP. 
2-12 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



2

CORBA Components cannot be valuetypes  so they cannot be passed as value 
parameters in CORBA requests. Where needed, a component developer may 
provide operations and attributes which produce valuetypes that encapsulate all or 
part of the component’s state and behavior.  

2.1.4 Requirements for Mapping to JavaBeans
¥ Responses shall specify a mapping from the proposed component model to the 

JavaBeans component model. Responses shall define and address the mapping 
between the intersection of the two component models (i.e. it is not a 
requirement that the two models be isomorphic).

The component model defined by this specification is a superset of the Enterprise 
Java Beans component model. It contains additional function beyond the EJB 1.0 
specification including events and tighter integration with the CORBA object 
model. The mapping to EJB is described in Chapter 11.

¥ The mapping shall permit a CORBA component to present itself as a JavaBean 
to Java programs and application building tools based on JavaBeans. 

The specification defines a mechanism for a CORBA component written in Java to 
comply with the Enterprise Java Beans level of function and describes the 
constraints on a Java CORBA component to be an EJB.

¥ The mapping shall support automatic generation of elements required to effect 
the mapping. 

Deployment descriptors in EJB are currently specified as .jar files. It is Sun’s intent 
to utilize XML for this purpose in the future. Component descriptors are specified 
using XML. Considerations for converting between component XML and EJB .jar 
files are covered in Chapter 11.

¥ The mapping shall support both run-time and design-time needs. Responses 
shall describe how component descriptions are mapped to BeanInfo structures, 
so that visual application building tools that rely on BeanInfo can be used to 
configure and assemble CORBA components and JavaBeans interchangeably. 

The specification considers both design time and runtime. Since the component 
model maps to EJB rather then JavaBeans, mapping to BeanInfo structures are 
neither required nor provided. The configuration architecture defined in Chapter 5 
provides mechanisms to distinguish between design time and run time. Where 
possible, the submitters have adopted EJB syntax to minimize impact on existing or 
planned EJB tools.

¥ The mapping shall maximize interoperability between features of the CORBA 
component model and the JavaBeans model.

All features of the EJB model are accommodated in the CORBA component model, 
either directly or by the EJB to CORBA components mapping in Chapter 11.

¥ The version of the Java Beans specification that shall be used is JavaBeans 1.0 
Revision A unless it is superseded by a revised specification issued before the 
submission due date. The specification is available at 
<http://splash.javasoft.com/beans/beans.100A.pdf>.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 2-13



2

This specification is based on V1.0 of the Enterprise Java Beans specification 
<ftp://ftp.javasoft.com/docs/ejb/ejb.10.pdf>. In-process changes beyond the 1.0 
level of the specification will have to be reconciled during the P-spec RTF process.

¥ The JavaBeans specification is still under development and significant new 
features are being considered. Submitters should track these developments. 
Information about new draft specifications is available on the JavaBeans web 
page at <http://splash.javasoft.com/beans>.

Since CORBA components is based on the Enterprise Java Beans specification, not 
the JavaBeans specification, this requirement is not applicable as written. However 
the submitters have attempted to track changes to the EJB 1.0 specification and 
anticipate them within this submission.

2.1.5 Security Requirements
¥ What, if any, are the security sensitive objects that are introduced by the 

proposal?

Distributed components systems introduce no new security requirements beyond 
those required of distributed object systems. All objects introduced in this proposal 
can have CORBA security policies applied to them in the same way that other 
objects participate.

¥ Which accesses to security-sensitive objects must be subject to security policy 
control?

The choice of objects subject to security policy control is up to the security 
administrator at each site. CORBA components place no constraints on the 
application of any security policy by any administrator.

¥ Does the proposed service of facility need to be security-aware?

Under normal operating conditions, security policy may be set on individual 
components and their interfaces by the administrator and it will be enforce by the 
component container using CORBA security. The container API framework defined 
in this specification (Chapter 7) allows the component implementation to perform 
additional security checking by testing security roles against the credentials in effect 
for CORBA security when an operation is dispatched.

¥ What CORBAsecurity level and options are required to protect an 
implementation of this proposal?

In general, this is up to the security administrator, however we recommend that 
security level 2 be used with authentication, and authorization. Auditing policy is at 
the discretion of the administrator as is message protection (except where export 
restrictions apply). Note that CORBA security provides no standard way to use SSL 
to establish client credentials. 

¥ What default policies should be applied to security sensitive objects 
introduced by the proposal?

CORBA components introduces no new unique security requires beyond those of 
today’s distributed object systems. Security administrators can choose the level of 
protection they desire for any and all of the objects defined by CORBA 
components.
2-14 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



2

¥ Of what security considerations must the implementors of your proposal be 
aware?

A design goal of CORBA components is compatibility and interoperability with 
Enterprise Java Beans. The EJB specification is currently undergoing major 
revisions in that area, as this proposal is being submitter. As a result, the submission 
team has chosen to use only those EJB security functions which can easily be 
mapped to CORBA security. Enhancing the security capability of EJB beyond the 
capabilities of CORBA security could impact, not only this submission, but 
CORBA security itself.

Finally, this submission assumes a container will be built using a POA, most likely 
a ServantLocator.  CORBA security depends on interceptors which are neither 
well-defined, portable between ORB implementations, or demonstratively capable 
of working with the POA. Fortunately, security policies can defined with the 
component deployment descriptor, enabling the component container to enforce 
authorization security by calling CORBA security operations directly, even if the 
security interceptor cannot.  

2.2 Optional Requirements
¥ Responses may choose to specify enhancements to the standard CORBA Life 

Cycle Service that apply to components.

Enhancements to life cycle services are defined with the Components module 
(Chapter 5) and to the CosLifeCycle module (Chapter 14).

¥ Responses may choose to specify locality constraints for component 
management and construction. If an RFP for describing locality constraints is 
issued within the time frame of this RFP, responses to both RFPs shall be 
aligned

This submission introduces an new IDL construct, local, in Chapter 4 for use in 
defining locality-constrained interfaces. This construct is used to define all locality-
constrained interfaces in this specification. Since the referenced RFP was never 
issued, no alignment is necessary.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 2-15



2

2-16 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Introduction to Components 3
This chapter is intended to provide a high-level introduction to the components 
submission. It will contain no specification material that is not defined in considerable 
more detail in the body of the submission. It is intended to introduce the key concepts 
before the reader delves into the next 300+ pages. Unfortunately it was not completed 
in time for this submission and consequently will be provided as an errata.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 3-17



3

3-18 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Extensions to CORBA Core 4
4.1 Local interface types

This specification provides a new CORBA meta-type that is used to define 
programming interfaces for locality-constrained objects.  The syntax is similar to that 
of CORBA object interfaces, but the resulting type cannot be marshaled or remotely 
invoked.  The local meta-type is intended to obviate the need for PIDL, to obviate the 
need for defining special “locality-constrained” cases of CORBA interfaces or abstract 
value types, and to provide users with a language-independent mechanism for 
declaring programming interfaces on local objects that leverages the CORBA typing 
system.

The grammar for specifying local interfaces is defined by the following BNF:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 4-19



4

<local> ::= <local_header> “{“ <local_member>* “}”

<local_header> ::= “local” [ <local_inheritance_spec> ]

<local_inheritance_spec> ::= “:”  <local_name> 
{ “,” <local_name> } *

<local_member> ::= <local_op_dcl>
| <attr_dcl>
| <type_dcl>
| <const_dcl>
| <except_dcl>

<local_op_dcl> ::= <op_type_spec> <identifier> <parameter_dcls> 
[ <raises_expr> ]

<local_name> ::= <scoped_name>

<local_base_type> ::= “localBase”

The semantics associated with local types are as follows:

¥ Local types cannot be marshaled. Consequently, local types (including sequences 
and arrays of local types) may not appear as parameters (or as components of any 
types that appear as parameters) of operations on CORBA Object interfaces. Local 
types (including sequences and arrays of local types) may not be members of 
structs, unions, or valuetypes.  Local types may not be inserted into values of type  
any.

¥ Local types may appear as parameters or return values of operations on local types, 
or as attributes on local types.

¥ Parameters and return values of operations on local types may be any CORBA type. 
Attributes on local types may be any CORBA type.

¥ Language mappings for local types shall consist of the minimal language construct 
that satisfies the requirements of local types.  In most object-oriented languages, it 
is expected that local types will be mapped to the language’s fundamental object 
type, if one exists. The semantics of invocations on local types are the semantics of 
function or method calls in the underlying programming languages.

¥ When possible, language mappings for local types shall be syntactically similar to 
the mappings for interfaces.  Inasmuch as possible, invocations on local types shall 
be consistent syntactically with invocations on CORBA objects with similar 
signatures.

¥ Language mappings shall specify the form of skeletons for local types to be 
generated by ORB products, allowing ORB users to provide implementations of 
local types.  There is no specified generalized framework for managing the life 
cycles of user-defined local types (e.g., no standard factory mechanism).  The life 
cycles of user-defined local types are determined by the life cycle constructs of 
underlying programming languages for base object types (e.g., 
constructors/destructors, garbage collection. etc.)
4-20 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



4

¥ Instances of local types have no inherent identities beyond their identities as 
programming objects.  Specifically, there is no support for the concept of a 
reference to a local type, other than the basic programming language construct for 
referring to objects.

¥ Instances of local types defined as part of OMG specifications to be supplied by 
ORB products or object service products shall be exposed through the 
ORB::resolve_local operation or through some other local object obtained from 
resolve_local.

¥ The localBase keyword denotes the generalization of local types. When 
localBase is the formal type of a parameter in an operation, an instance of any 
specific local type may be passed as the actual parameter.

¥ Local types cannot be mapped to asynchronous invocation forms as specified by the 
CORBA Messaging Service specification.

4.1.1 Java language mapping

Local types map to the following Java constructs:

¥ A Java interface that corresponds to the specified local interface.

¥ A Holder class for the interface.

¥ If the local interface contains any type or constant definitions within its scope, a 
package corresponding to the interface scope.

¥ A Helper class

Applications may provide arbitrary classes that implement the mapped local interface.

The mapping for local interfaces is defined in terms of the mapping for normal Object 
interfaces. To determine the mapping for a given local interface, do the following:

1. Substitute the keyword interface for local in the IDL

2. Map the interface as currently specified by the IDL to Java language mapping
(orbos/98-01-16).

3. The Java interface whose name is formed by appending the string
“Operations” to the IDL interface name is identical to the mapping for the local
interface. 

4. If any types or constants are defined within the scope of the local interface
scope, they are mapped exactly as they would be for a similar IDL Object
interface. Their mapped types are placed in a package whose name is formed by
appending the string “Package” to the interface name.

5. The holder class for a local interface is identical to an IDL Object interface of
the same name.

6. The helper class for a local interface defines one public static method, id()
which takes no parameters and returns a value of
org.omg.CORBA.RepositoryId, which contains the repository ID of the
local interface.

localBase maps to the java.lang.Object interface.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 4-21



4

4.1.2 C++ language mapping

The C++ language mapping for local interfaces is almost identical to the mapping for 
abstract interfaces (ptc/98-09-03). Rather than defining a complete C++ mapping for 
abstract interfaces, which would only duplicate much of the specification of the 
mapping for abstract interfaces found in ptc/98-09-03, only the ways in which the local 
interface mapping differs from the abstract interface mapping are described here.

4.1.2.1 Local Interface Base

To avoid typing confusion, C++ classes for local interfaces are not derived from the 
CORBA::AbstractBase C++ class, but from a similar class called 
CORBA::LocalBase. As with CORBA::AbstractBase, CORBA::LocalBase 
facilitates narrowing and reference counting.  All local interface base classes that have 
no other base local interfaces derive directly from CORBA::LocalBase. the 
CORBA::LocalBase C++ class is the mapping for the IDL LocalBase type. This 
base class provides the following:

¥ a protected default constructor

¥ a protected copy constructor

¥ a protected pure virtual destructor

¥ a public static _duplicate function

¥ a public static _narrow function

¥ a public static _nil function

The LocalBase class is shown below:

// C++
class LocalBase;
typedef LocalBase* LocalBase_ptr;  
class LocalBase {
public:
static LocalBase_ptr _duplicate(LocalBase_ptr);
static LocalBase_ptr _narrow(LocalBase_ptr);
static LocalBase_ptr _nil();
protected:
LocalBase();
LocalBase(const LocalBase& val);
virtual ~LocalBase() = 0;
};

Local interface types support reference counting.  The LocalBase class and the 
implementation of release overloaded for LocalBase are responsible for 
implementing reference counting. The _duplicate function increments the reference 
count of the argument and returns the argument. If the argument is a nil 
LocalBase_ptr, the return value is nil.
4-22 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



4

The implementation of LocalBase::_narrow is identical to that of _duplicate. 
_duplicate uses the value it returns as its own return value. Strictly speaking, the 
_narrow function is not needed in the LocalBase interface, but it is required by all 
conforming implementations so that LocalBase does not present a special case. As 
with regular object references, the _nil function returns a typed LocalBase nil 
reference.

Both the is_nil and release functions in the CORBA namespace are overloaded to 
handle local interface references:

// C++
namespace CORBA {
Boolean is_nil(LocalBase_ptr);
void release(LocalBase_ptr);
}

The is_nil function behaves identically to the other overloaded versions of the 
function.

If the argument to release is nil, then it does nothing.  Otherwise, the it decrements the 
reference count on its argument. If the reference count is zero after being decremented, 
release destroys the argument.

4.1.2.2 Local interface mapping

The client side mapping for local interfaces is almost identical to the mapping for 
abstract interfaces, except:

¥ C++ classes for abstract interfaces derive from CORBA::LocalBase, not 
CORBA::AbstractBase.

¥ References to local interfaces cannot be inserted into a CORBA::Any

¥ Local interface references can only refer to local implementations of said interfaces.  
They may not refer to actual CORBA Objects or valuetypes.

Other than that, the mapping for abstract interfaces is identical to that for regular 
interfaces, including the following:

¥ a protected default constructor, a protected copy constructor, and a protected virtual 
destructor (because local interface classes server as base classes for application-
supplied implementations)

¥ public virtual inheritance

¥ support for narrowing

¥ the provision of _var types, _out types 

¥ the provision of manager types for struct, sequence, and array members 

¥ identical memory management for parameters of operations

¥ identical C++ signatures for operations.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 4-23



4

¥ operations and attribute accessors/mutators map to pure virtual functions

The application is responsible for providing a derived implementation of user-defined 
local interface types, and for implementing the proper behavior for memory 
management of parameter values.

4.1.3 resolve_local

This specification defines a new operation on the ORB pseudo-object that allows 
application programmers to obtain services expressed as local types. It is similar to 
ORB::resolve_initial_references, except that the operation return value is type 
localBase. The PIDL definition is as follows:

module CORBA {
// PIDL
interface ORB {
localBase resolve_local(in string name) 
raises (InvalidName);
};
};

The string parameter to the resolve_local operation denotes a specific local object 
that is managed and supplied by the ORB or by services cooperating with the ORB.  
Specifications that define local interfaces that are not implemented by applications 
shall specify unique strings that will denote well-known local objects that can be 
obtained from resolve_local.

4.2 Import

This specification extends IDL to provide a mechanism for importing external name 
scopes into IDL specifications.

The grammar for the import statement is described by the following BNF:

<specification> ::= <import>* <definition>+

<import> ::= “import” <imported_scope> “;”

<imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name 
denoting an IDL name scope, or a string containing the interface repository ID of an 
IDL name scope, i.e., a definition object in the repository whose interface derives from 
CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in 
terms of “file scopes”. This specification defines the concepts of a specification as a 
unit of IDL expression. In the abstract, a specification consists of a finite sequence of 
4-24 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



4

ISO Latin-1 characters that form a legal IDL sentence. The physical representation of 
the specification is of no consequence to the definition of IDL, though it is generally 
associated with a file in practice.

Any scoped name that begins with the scope token ( “::” ) is resolved relative to the 
global scope of the specification in which it is defined. In isolation, the scope token 
represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context a well-
defined set of IDL specifications whose union constitutes the space from within which 
name scopes are imported.  By “a well-defined set of IDL specifications”, we mean 
any identifiable representation of IDL specifications, such as an interface repository.  
The specific representation from which name scopes are imported is not specified, nor 
is the means by which importing is implemented, nor is the means by which a 
particular set of IDL specifications (such as an interface repository) is associated with 
the context in which the importing specification is to be interpreted.

The above wording is deliberately imprecise. For example, we describe 
IDL specifications as being “interpreted in a particular context” rather 
than being compiled. Although IDL specifications exist most commonly as 
text files, and are usually processed by compilers, these are implementation 
artifacts that exist outside the scope of CORBA specifications.  IDL specifi-
cations, from the perspective of CORBA specifications, are abstractions 
that may take an arbitrary number of forms, as long as they are unambigu-
ously isomorphic to either a legal textual IDL specification or a legal con-
struct in an interface repository. The use of a specification for a particular 
purpose (e.g., to generate stubs and skeletons) may be implemented in an 
arbitrary number of different ways, with or without compilers. 

In general, we expect that interface repositories will be a common means 
for supporting the import mechanism, and that compilers will be a common 
means for processing IDL specifications. In these cases, vendors will need 
to provide some means for users to associate the act of compilation with a 
particular interface repository, possibly through the use of environment 
variables or a system registry.

The effects of an import statement are as follows:

¥ The contents of the specified name scope are visible in the context of the importing 
specification. Names that occur in IDL declarations within the importing 
specification may be resolved to definitions in imported scopes. 

¥ Imported IDL name scopes exist in the same space as names defined in subsequent  
declarations in the importing specification. 

¥ IDL module definitions may re-open modules defined in imported name scopes. 

¥ Importing an inner name scope (i.e., a name scope nested within one or more 
enclosing name scopes) does not implicitly import the contents of any of the 
enclosing name scopes.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 4-25



4

¥ When an name scope is imported, the names of the enclosing scopes in the fully-
qualified pathname of the enclosing scope are exposed within the context of the 
importing specification, but their contents are not imported.  An importing 
specification may not re-define or re-open a name scope which has been exposed 
(but not imported) by an import statement.

¥ Importing a name scope recursively imports all name scopes nested within it.

¥ For the purposes of this specification, name scopes that can be imported (i.e., 
specified in an import statement) include the following: modules, interfaces, 
valuetypes, structures, unions, and exceptions.

¥ Redundant imports (e.g., importing an inner scope and one of its enclosing scopes 
in the same specification) are disregarded.  The union of all imported scopes is 
visible to the importing program.

¥ This specification does not define a particular form for generated stubs and 
skeletons in any given programming language.  In particular, it does not imply any 
normative relationship between units specification and units of generation and/or 
compilation for any language mapping.

For example, assume that the following IDL has been processed and made 
available for importing by a particular product:

module A {
struct outer {

float f;
string s;

};
interface I {

struct inner {
outer o;
string s;

};
};
interface J {

exception badThing {};
};

};

module B {
typedef sequence<octet> mysteryBlob;

};

Consider the following specification in that context:

import ::A::I::inner;

import ::A::J;

import ::B;

module B {   // OK; re-opened
interface K {

void op1 (in ::A::I::inner val);  // OK
void op2(in ::A::outer val);  // error; outer is not visible
void op3(in long n) raises (::A::J::badThing); // OK
4-26 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



4

void op4(in mysteryBlob blb);  // OK;  
// unqualified mysteryBlob resolves to imported B scope

};
};

module A {   // error; 
// A is exposed, but not imported; it may not be re-opened

};

4.3 Repository identity declarations 

This specification defines extensions to IDL to allow repository identifier values to be 
declared in a portable, standard manner. This mechanism is intended to obviate the 
#pragma mechanism currently specified (speaking in approximate terms) in section 
10.6, “RepositoryIds”, of the CORBA 2.3 specification. Should this specification be 
adopted, the #pragma mechanisms shall be deprecated.

The following grammatical productions shall be added to the IDL grammar:

<type_id_dcl> ::= “typeId” <scoped_name> <string_literal>

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

4.3.1 Repository identity declaration

The syntax of a repository identity declaration is as follows:

<type_id_dcl> ::= “typeId” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

¥ the keyword typeId

¥ a <scoped_name> that denotes the named IDL construct to which the repository 
identifier is assigned

¥ a string literal that must contain a valid repository identifier value

The <scoped_name> is resolved according to normal IDL name resolution rules, based 
on the scope in which the declaration occurs. It must denote a previously-declared 
name of one of the following IDL constructs:

¥ module

¥ interface

¥ component

¥ home

¥ facet

¥ receptacle

¥ event sink

¥ event source

¥ finder
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 4-27



4

¥ factory

¥ value type

¥ value type member

¥ value box

¥ constant

¥ typedef

¥ exception

¥ attribute

¥ operation

¥ enum

¥ local

The value of the string literal is assigned as the repository identity of the specified type 
definition. This value will be returned as the RepositoryId by the interface repository 
definition object corresponding to the specified type definition. Language mappings 
constructs, such as Java helper classes, that return repository identifiers shall return the 
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition. 
An attempt to re-define the repository identity for a type definition is illegal, regardless 
of the value of the re-definition.

If no explicit repository identity declaration exists for a type definition, the repository 
identifier for the type definition shall be an IDL format repository identifier, as defined 
in section 10.6.1 of the CORBA 2.3 specification.

4.3.2 Repository identifier prefix declaration

The syntax of a repository identifier prefix declaration is as follows:

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

¥ the keyword typeId

¥ a <scoped_name> that denotes an IDL name scope to which the prefix applies

¥ a string literal that must contains the string to be pre-fixed to repository identifiers 
in the specified name scope

The <scoped_name> is resolved according to normal IDL name resolution rules, based 
on the scope in which the declaration occurs. It must denote a previously-declared 
name of one of the following IDL constructs:

¥ module

¥ interface (including abstract interface)

¥ value type (including abstract, custom, and box value types)

¥ local interface

¥ specification scope ( :: )
4-28 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



4

The specified string is pre-fixed to the body of all repository identifiers in the specified 
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of a repository identifier”, we mean that the specified string 
is inserted into the default IDL format repository identifier immediately after the 
format name and colon ( “IDL:” ) at the beginning of the identifier. A forward slash ( 
‘/’ ) character is inserted between the end of the specified string and the remaining 
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly 
assigned by a typeId declaration. The prefix is applied to all such repository identifiers 
in the specified name scope, including the identifier of the construct that constitutes the 
name scope.

Note that this specification does not provide a mechanism that is analogous 
to the #pragma version mechanism. It is the considered opinion of the sub-
mitters that the current definition (or lack thereof) of the semantics of inter-
face repository identifier versions is useless, or worse, misleading. To 
provide a mechanism for assigning so-called versions numbers would only 
invite further misuse. 

4.4 IDL Grammar modifications

In addition the extensions to IDL grammar specified in the previous sections, the 
following productions shall be modified to define the scopes in which local, typeId, 
and typePrefix may occur:

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <local> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

<export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
|<op_dcl> “ ;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

4.4.1 Keywords

This specification defines the following new keywords in IDL:

import local localBase typeId typePrefix
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 4-29



4

4-30 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



Component Model 5
5.1 Change History

The following changes have been made since the December 1998 version of the 
document (orbos./98-12-02) was posted:

1. Provide interfaces have been named facets.

2. The home declarations have been reworked to be compatible with the storage home 
construct of the persistence mechanism.

3. Miscellaneous clarifications have been made to the text.

All changes are clearly marked with change bars. In general existing text which was 
moved will not have change bars.

5.2 Component Model

Component is a new basic meta-type in CORBA. The component meta-type is an 
extension and specialization of the object meta-type. Component types can be specified 
in IDL and represented in the Interface Repository. A component is denoted by a 
component reference, which is a specialization of an object reference. 
Correspondingly, a component definition is a specialization and extension of an 
interface definition.

A component type is a specific, named collection of features that can be described by 
an IDL component definition or a corresponding structure in an Interface Repository. 
Although the current specification does not attempt to provide mechanisms to support 
formal semantic descriptions associated with component definitions, our intent is that a 
component type definition is associated with a single well-defined set of behaviors. 
Although there may be several realizations of the component type for different run-
time environments (e.g., OS/hardware platforms, languages, etc.), they should all 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-31



5

behave consistently. In this sense, a component type corresponds to an implementation 
type. As an abstraction in a type system, a component type is instantiated to create 
concrete entities (instances) with state and identity.

A component type encapsulates its internal representation and implementation; the 
“surface” of the component, as defined by its IDL description, is opaque from the 
perspective of the component’s users. Although the component specification includes 
standard frameworks for component implementation, these frameworks, and any 
assumptions that they might entail, are completely hidden from clients of the 
component.

5.2.1 Ports

Components support a variety of surface features through which clients and other 
elements of an application environment may interact with a component. In general, 
these surface features are called ports. The component model supports four basic kinds 
of ports:

¥ Facets, which are distinct named interfaces provided by the component for client 
interaction

¥ Receptacles, which are named connection points that describe the component’s 
ability to use a reference supplied by some external agent

¥ Event sources, which are named connection points that emit events of a specified 
type to one or more interested event consumers, or to an event channel

¥ Event sinks, which are named connection points into which events of a specified 
type may be pushed.

¥ Attributes, which are named values exposed through accessor and mutator 
operations. attributed are primarily intended to be used for component 
configuration, although they may be used in a variety of other ways.

5.2.2 Components and facets 

A component can provide multiple object references, called facets, which are capable 
of supporting distinct (i.e., unrelated by inheritance) CORBA interfaces. The 
component has a single distinguished reference whose interface conforms to the 
component definition. This reference supports an interface, called the component’s 
equivalent interface, that manifests the component’s surface features to clients. The 
equivalent interface allows clients to navigate among the component’s facets, and to 
connect to the component’s ports. The other interfaces provided by the component are 
referred to as facets. Figure 5-1 illustrates the relationship between the component and 
its facets. 
5-32 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

Figure 5-1 Component Interfaces and Facets

The relationship between the component and its facets is characterized by the 
following observations:

¥ The implementations of the facet interfaces are encapsulated by the component, and 
considered to be “parts” of the component. The internal structure of a component is 
opaque to clients.

¥ Clients can navigate from any facet to the component equivalent interface, and can 
obtain any facet from the component equivalent interface.

¥ Clients can reliably determine whether any two references belong to the same 
component instance.

¥ The life cycle of a facet reference is identical to the life cycle of its owning 
component.

5.2.3 Component identity

A component instance is identified primarily by its component reference, and 
secondarily by its set of facet references (if any). The component model provides 
operations to determine whether two references belong to the same component 
instance, and (as mentioned above) operations to navigate among a component’s 
references. The definition of “same” component instance is ultimately up to the 

Component

Component reference supports
component’s equivalent interface

facet references
support independent
facet interfaces

Implementations
of facet 
interfaces are
encapsulated
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-33



5

component implementor, in that they may provide a customized implementation of this 
operation. However, the component framework provides standard implementations that 
constitute de facto definitions of “sameness” when they are employed.

Components may also be associated with primary key values by a component home. 
Primary keys are data values exposed to the component’s clients that may be used in 
the context of a component home to identify component instances and obtain 
references for them. Primary keys are not features of components themselves; the 
association between a component instance and a particular primary key value is 
maintained by the home that manages the component.

5.2.4 Component homes

This specification defines a component home meta-type that acts as a manager for 
instances of a specified component type. Component home interfaces provide 
operations to manage component life cycles, and optionally, to manage associations 
between component instances and primary key values. A component home may be 
thought of as a manager for the extent of a type (within the scope of a container).

Component types are defined in isolation, independent of home types. A home 
definition, however, must specify exactly one component type that it manages. 
Multiple different home types can manage the same component type, though they 
cannot manage the same set of component instances.

At execution time, a component instance is managed by a single home object of a 
particular type. The operations on the home are roughly equivalent to static or class 
methods in object-oriented programming languages.

5.3 Component Definition

5.3.1 IDL Extensions for Components

A component definition in IDL implicitly defines an interface that supports the 
features defined in the component definition body. It extends the concept of an 
interface definition to support features that are not supported in interfaces. Component 
definitions also differ from interface definitions in that they support only single 
inheritance from other component types. 

The extensions to IDL for components are described by the following grammar.
5-34 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <component> “;”
| <home_dcl> “;”

<component> ::= <component_dcl> 
| <component_forward_dcl> 

<component_forward_dcl> ::= “component” <identifier> 

<component_dcl> ::= <component_header> “{” <component_body> “}” 

<component_header> ::= “component” <identifier> 
[ <component_inheritance_spec> ] 
[ <supported_interface_spec> ] 

<supported_interface_spec> ::= “supports” <scoped_name> { “,” 
<scoped_name> }*

<component_inheritance_spec> ::= “:” <scoped_name> 

<component_body> ::= <component_export>*

<component_export> ::= <provides_dcl> “;”
| <uses_dcl> “;”
| <emits_dcl> “;”
| <publishes_dcl> “;”
| <consumes_dcl> “;”
| <attr_dcl>;

<provides_dcl> ::= “provides” <interface_type> <identifier>

<interface_type> ::= <scoped_name>
| “Object”

<uses_dcl> ::= “uses” [ “multiple” ] < interface_type> <identifier> 

<emits_decl> ::= “emits” <scoped_name> <identifier>

<publishes_decl> ::= “publishes” <scoped_name> <identifier>

<consumes_dcl> ::= “consumes” <scoped_name> <identifier> 

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-35



5

<readonly_attr_declarator> ::= <simple_declarator> [ <raises_expr> ]
| <simple_declarator> { “,” <simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> { “,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [ <set_excep_expr> ]
| <set_excep_expr>

<get_excep_expr> ::= “getRaises” <exception_list>

<set_excep_expr> ::= “setRaises” <exception_list>

<exception_list> ::= “(” <scoped_name> { “,” <scoped_name> } * “)”

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier> [ <home_inheritance_spec> ] 
“manages” <scoped_name> [ <primary_key_spec> ]

<home_inheritance_spec> ::= “:” <scoped_name>

<primary_key_spec> ::= “primaryKey” <scoped_name>

<home_body> ::= “{” <home_export>* “}”

<home_export ::= <export> 
| <factory_dcl> “;”
| <finder_dcl> “;”

<factory_dcl> ::= “factory” <identifier> “(“ [ <init_param_decls> ] “)” [ 
<raises_expr> ] 

<finder_dcl> ::= “finder” <identifier> “(“ [ <init_param_decls> ] “)” [ 
<raises_expr> ]

5.4 Component Declaration

5.4.1 Syntax

The syntax for declaring a component header is as follows:
5-36 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

<component_dcl> ::= <component_header> “{” <component_body> “}” 

<component_header> ::= “component” <identifier> 
[ <component_inheritance_spec> ] 
[ <supported_interface_spec> ] 

<supported_interface_spec> ::= “supports” <scoped_name> { “,” 
<scoped_name> }*

<component_inheritance_spec> ::= “:” <scoped_name> 

A component header comprises the following elements:

¥ the keyword component

¥ an <identifier> that names the component type, and the equivalent interface, in the 
enclosing scope

¥ an optional <inheritance_spec>, consisting of a colon and a single <scoped_name> 
that must denote a previously-defined component type; see Section 5.13, 
“Component Inheritance” for details of component inheritance

¥ an optional <supported_interface_spec> that must denote one or more previously-
defined IDL interfaces

5.4.2 Equivalent IDL

The client mappings (i.e., mappings of the externally-visible component features) for 
component declarations are described in terms of equivalent IDL. All of the features of 
components have equivalent forms in IDL as it exists are the time of this proposed 
specification (i.e., IDL grammar as specified by CORBA version 2.3).

As described above, the component meta-type is a specialization of the interface meta-
type. Each component definition has a corresponding equivalent interface. In 
programming language mappings, components are denoted by object references that 
support the equivalent interface implied by the component definition.

5.4.2.1 Simple declaration

For a component declaration with the following form:

component component_name { … };

the equivalent interface shall have the following form:

interface component_name 
: Components::ComponentBase { … };

5.4.2.2 Supported interfaces

For a component declaration with the following form:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-37



5

component <component_name> 
supports <interface_name_1>, <interface_name_2> { … };

the equivalent interface shall have the following form:

interface <component_name> 
: Components::ComponentBase, 
<interface_name_1>, <interface_name_2> { … };

Supported interfaces are described in detail in Section 5.5.6 on page 44

5.4.2.3 Inheritance

For a component declaration with the following form:

component <component_name> : <base_name> { … };

the equivalent interface shall have the following form:

interface <component_name> : <base_name> { … }

5.4.2.4 Inheritance and supported interfaces

For a component declaration with the following form:

component <component_name> : <base_name>
supports <interface_name_1>, <interface_name_2> { … };

the equivalent interface shall have the following form:

interface <component_name> 
: <base_name>, <interface_name_1>, <interface_name_2> { … };

5.4.3 Component Body

A component forms a naming scope, nested within the scope in which the component 
is declared. A component body can contain the following kinds of port declarations:

¥ Provided interface declarations (provides)

¥ Receptacle declarations (uses)

¥ Event source declarations (emits or publishes)

¥ Event sink declarations (consumes)

¥ Attribute declarations (attribute)

Declarations for facets, receptacles, events sources, event sinks and attributes all map 
onto operations on the component’s equivalent interface. These declarations and their 
meanings are described in detail below.
5-38 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

5.5 Facets and Navigation

A component type may provide several independent interfaces to its clients in the form 
of facets. Facets are intended to be the primary vehicle through which a component 
exposes its functional application behavior to clients during normal execution.

5.5.1 Syntax

A facet is declared with the following syntax:

<provides_dcl> ::= “provides” <interface_type> <identifier>

The interface type must be either the keyword Object, or a scoped name that denotes 
a previously-declared interface type which is not a component interface, i.e., is not the 
interface corresponding to a component definition. The identifier names the facet 
within the scope of the component, allowing multiple facets of the same type to be 
provided by the component. 

5.5.2 Equivalent IDL

Facet declarations imply operations on the component interface that provide access to 
the provided interfaces by their names. A facet declaration of the following form:

provides <interface_type> <name>;

results in the following equivalent operation defined in the component interface:

<interface_type> provide_<name> ();

The mechanisms for navigating among a component’s facets are described in section 
Section 5.5.4 on page 40. The relationships between the component identity and the 
facet references, and assumptions regarding facet references, are described in section 
Section 5.5.5 on page 44. The implementation of navigation operations are provided by 
the component implementation framework in generated code; the user-provided 
implementation of a component type is not responsible for navigation operations. The 
responsibilities of the component servant framework for supporting navigation 
operations are described in detail in Chapter 6.

5.5.3 Semantics of facet references

Clients of a component instance can obtain a reference to a facet by invoking the 
provide_<name> operation on the component interface corresponding to the 
provides declaration in the component definition. The component implementation is 
responsible for guaranteeing the following behaviors:

¥ In general, a component instance should be prepared to return object references for 
facets throughout the instance’s life cycle. A component implementation may, as 
part of its advertised behavior, return a nil object reference as the result of a 
provide_<name> operation.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-39



5

¥ An object reference returned by a provide_<name> operation must support the 
interface associated with the corresponding provides declaration in the component 
definition. Specifically, when the _is_a operation is invoked on the object reference 
with the RepositoryId of the provided interface type, the result must be true, and 
legal operations of the facet interface must be able to be invoked on the object 
reference. If the type specified in the provides declaration is Object, then there 
are no constraints on the interface types supported by the reference.

A facet reference provided by a component may support additional inter-
faces, such as interfaces derived from the declared type, as long as the 
stated contract is satisfied.

¥ Facet references must behave properly with respect to component identity and 
navigation, as defined in sections Section 5.5.4 on page 40.

5.5.4 Navigation

Navigation among a component’s facets may be accomplished in the following ways:

¥ A client may navigate from any facet reference to the component that provides the 
reference via CORBA::Object::get_component.

¥ A client may navigate from the component interface to any facet using the 
generated provide_<name> operations on the component interface.

¥ A client may navigate from the component interface to any facet using the generic 
provide_facet operation on the Navigation interface (inherited by all component 
interfaces through Components::ComponentBase). Other operations on the 
Navigation interface (i.e., provide_all_facets and provide_named_facets) 
return multiple references, and can also be used for navigation. When using generic 
navigation operations on Navigation, facets are identified by string values that 
contain their declared names.

¥ A client may navigate from a facet interface that derives from the Navigation 
interface directly to any other facet on the same component, using provide_facet, 
provide_all_facets, and provide_named_facets.

The detailed descriptions of these mechanisms follow.

5.5.4.1 get_component()

The CORBA component specification extends the CORBA::Object pseudo interface 
with a single operation:
5-40 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

module CORBA {
interface Object { // PIDL

...
Object get_component ( );

};
};

If the target object reference is itself a component reference (i.e., it denotes the 
component itself), the get_component operation returns the same reference (or 
another equivalent reference). If the target object reference is a facet reference the 
get_component operation returns an object reference for the component. If the target 
reference is neither a component reference nor a provided reference, get_component 
returns a nil reference.

Implementation of get_component

As with other operations on CORBA::Object, get_component is implemented as a 
request to the target object. Following the pattern of other CORBA::Object 
operations (i.e., _interface, _is_a, and _non_existent; see section 15.4.1.2 of the 
CORBA 2.3 specification), the operation name in GIOP request corresponding to 
get_component shall be “_component”.

Programming skeletons generated by the Component Implementation Framework for 
components and facets shall provide standard implementations for get_component 
(i.e., the _component request).

5.5.4.2 Component-specific provide operations

The provide_<name> operation implicitly defined by a provides declaration can be 
invoked to obtain a reference to the facet. 

5.5.4.3 Navigation interface on the component

As described in Section 5.4 on page 36 all component interfaces implicitly inherit 
directly or indirectly from ComponentBase, which inherits from 
Components::Navigation. The definition of the Components::Navigation 
interface is as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-41



5

module Components {

interface Navigation {

valuetype FacetDescription {
public RepositoryID InterfaceID;
public FeatureName Name;

};

valuetype Facet : FacetDescription {
public Object Ref;

};

typedef sequence<Facet> Facets;

typedef sequence<FacetDescription>
FacetDescriptions;

Object provide_facet( in FeatureName name ) 
raises (InvalidName);

FacetDescriptions describe_facets();

Facets provide_all_facets();

Facets provide_named_facets(in NameList names)
raises (InvalidName);

boolean same_component( in Object ref );

};
};

This interface provides generic navigation capabilities. It is inherited by all component 
interfaces, and may be optionally inherited by any interface that is explicitly designed 
to be a facet interface for a component. The descriptions of Navigation operations 
follow.

provide_facet

The provide_facet operation returns a reference to the facet denoted by the name 
parameter. The value of the name parameter must be identical to the name specified in 
the provides declaration. The valid names are defined by inherited closure of the actual 
type of the component, i.e., the names of facets of the component type and all of its 
inherited component types. If the value of the name parameter does not correspond to 
one of the component’s facets, the InvalidName exception is raised.
5-42 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

describe_facets

The describe_facets operation returns a sequence containing descriptions of all of 
the facets provided by the target component. Each description is a value type 
containing the RepositoryId of the facet’s interface and the name of the facet, 
expressed as an unscoped local name relative to the owning component’s name scope. 
The order in which these descriptions occur in the sequence is not specified.

provide_all_facets

The provide_all_facets operation returns a sequence of value objects, each of which 
contains the RepositoryId of the facet interface and name of the facet, along with a 
reference to the facet. The sequence must contain descriptions and references for all of 
the facets in the component’s inheritance hierarchy. The order in which these values 
occur in the sequence is not specified.

provide_named_facets

The provide_named_facets operation returns a sequence of described references 
(identical to the sequence returned by provide_all_facets), containing descriptions 
and references for the facets denoted by the names parameter. If any name in the 
names parameter is not a valid name for a provided interface on the component, the 
operation raises the InvalidName exception. The order of values in the returned 
sequence is not specified.

The same_component operation on Navigation is described in Section 5.5.5 on 
page 44.

5.5.4.4 Navigation interface on facet interfaces

Any interface that is designed to be used as a facet interface on a component may 
optionally inherit from the Navigation interface. When the navigation operations (i.e., 
provide_facet, provide_all_facets, provide_named_facets, and 
describe_facets) are invoked on the facet reference, the operations shall return the 
same results as if they had been invoked on the component interface that provided the 
target facet. The skeletons generated by the Component Implementation Framework 
will provide implementations of these operations that will delegate to the component 
interface. 

This option allows navigation from one facet to another to be per-
formed in a single request, rather than a pair of requests (to get the 
component reference and navigate from there to the desired facet). 
To illustrate, consider the following component definition:

module example {
interface foo : Components::Navigation {... };
interface bar { ... };
component baz session {

provides foo a;
provides bar b;

};
};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-43



5

A client could navigate from a to b as follows:

foo myFoo;
// assume myFoo holds a reference to a foo provided by a baz
baz myBaz = bazHelper.narrow(myFoo.get_component());
bar myBar = myBaz.provide_b();

Or, it could navigate directly:

foo myFoo;
// assume myFoo holds a reference to a foo provided by a baz
bar myBar = barHelper.narrow(myFoo.provide_interface(“b”);

5.5.5 Provided References and Component Identity

The same_component operation on the Navigation interface allows clients to 
determine reliably whether two references belong to the same component instance, that 
is, whether the references are facets of or directly denote the same component instance. 
The component implementation is ultimately responsible for determining what the 
“same component instance” means. The skeletons generated by the Component 
Implementation Framework provide an implementation of same_component, where 
“same instance” is defined in terms of opaque identity values supplied by the 
component implementation or the container in the container context. User-supplied 
implementations can provide different semantics.

If a facet interface inherits the Navigation interface, then the same_component 
operation on the provided interface should give the same results as the 
same_component operation on the component interface that owns the provided 
interface. The skeletons generated by the Component Implementation Framework 
provide an implementation of same_component for facets that inherit the 
Navigation interface.

5.5.6 Supported interfaces

A component definition may optionally support one or more interfaces, or inherit from 
a component that supports one or more interfaces. When a component definition 
header includes a supports clause as follows:

component <component_name> supports <interface_name> { … };

the equivalent interface inherits both ComponentBase and any supported interfaces, 
as follows:

interface <component_name> 
: Components::ComponentBase, <interface_name> { … };

The component implementation must supply implementations of operations defined on 
supported interfaces. Clients must be able to widen a reference of the component’s 
equivalent interface type to the type of any of the supported interfaces. Clients must 
also be able to narrow a reference of type ComponentBase to the type of any of the 
component’s supported interfaces.
5-44 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

For example, given the following IDL:

module M {
interface I {

void op(); 
};
component A supports I {

provides I foo; 
};
home AManager manages A { };

};

The AManager interface will be derived from KeylessHomeBase, support-
ing the create_component operation, which returns a reference of type 
ComponentBase. This reference must be able to be narrowed directly from 
ComponentBase to I:

// java
...
M.AManager aHome = ...; // get A’s home
org.omg.Components.ComponentBase myComp = 
aHome.create_component();
M.I myI = M.IHelper.narrow(myComp); 
// must succeed

For example, given the following IDL:

module M {
interface I {

void op(); 
};
component A supports I {

provides I foo;
};
component B : A { ... };
home BHome manages B {};

};

The equivalent IDL is:

module M {
interface I {

void op();
};
interface A : 
org.omg.Components.ComponentBase, I { ... };
interface B : A { ... };

};

which allows the following usage:

M.BHome bHome = ... // get B’s home
M.B myB = bHome.create();
myB.op(); // I’s operations are supported 

// directly on B’s interface

The supports mechanism provides programming convenience for light-
weight components that only need to implement a single operational inter-
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-45



5

face. A client can invoke operations from the supported interface directly 
on the component reference, without narrowing or navigation:

M.A myA = aHome.create();
myA.op();

as opposed to 

M.A myA = aHome.create();
M.I myI = myA.provide_foo();
myI.op();

or, assuming that the client has A’s home, but doesn’t statically know about 
A’s interface or home interface:

org.omg.Components.KeylessHomeBase genericHome =
... // get A’s home;
org.omg.Components.ComponentBase myComp = 
genericHome.create_component();

M.I myI = M.IHelper.narrow(myComp);
myI.op();

as opposed to 

org.omg.CORBA.Object obj = 
myComp.provide_interface(“foo”);
M.I myI = M.IHelper.narrow(obj);
myI.op();

This mechanism allows component-unaware clients to receive a reference 
to a component (passed as type CORBA::Object) and use the supported 
interface.

5.6 Receptacles

A component definition can describe the ability to accept object references upon which 
the component may invoke operations. When a component accepts an object reference 
in this manner, the relationship between the component and the referent object is called 
a connection; they are said to be connected. The conceptual point of connection is 
called a receptacle. A receptacle is an abstraction that is concretely manifested on a 
component as a set of operations for establishing and managing connections.

Receptacles are intended as a mechanical device for expressing a wide 
variety of relationships that may exist at higher levels of abstraction. As 
such, receptacles have no inherent higher-order semantics, such as imply-
ing ownership, or that certain operations will be transient across connec-
tions.

5.6.1 Syntax

The syntax for describing a receptacle is as follows:
5-46 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

<uses_dcl> ::= “uses” [ “multiple” ] <interface_type> <identifier>

A receptacle declaration comprises the following elements:

¥ The keyword uses.

¥ The optional keyword multiple. The presence of this keyword indicates that the 
receptacle may accept multiple object references simultaneously, and results in 
different operations on the component’s associated interface.

¥ An <interface_type>, which must be either the keyword Object or a scoped name 
that denotes the interface type that the receptacle will accept. The scoped name 
must denote a previously-defined non-component interface type.

¥ An <identifier> that names the receptacle in the scope of the component. 

5.6.2 Equivalent IDL

A uses declaration of the following form:

uses <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:

void connect_<receptacle_name> ( in <interface_type> conxn ) 
raises (

Components::AlreadyConnected,
Components::InvalidConnection 

);

<interface_type> disconnect_<receptacle_name> ( ) 
raises ( Components::NoConnection );

<interface_type> get_connection_<receptacle_name> ( );

A uses declaration of the following form:

uses multiple <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-47



5

struct <receptacle_name>Connection {
<interface_type> objref;
Components::Cookie ck;

};
sequence< <receptacle_name>Connection> 
<receptacle_name>Connections;

Components::Cookie 
connect_<receptacle_name> ( in <interface_type> connection ) 
raises (

Components::ExceededConnectionLimit,
Components::InvalidConnection 

);

<interface_type> disconnect_<receptacle_name> (
in Components::Cookie ck

) 
raises ( Components::InvalidConnection );

<receptacle_name>Connections
get_connections_<receptacle_name> ( );

5.6.3 Behavior

5.6.3.1 Connect operations

Operations of the form connect_<receptacle_name> are implemented in part by 
the component implementor, and in part by generated code in the component servant 
framework. The responsibilities of the component implementation and servant 
framework for implementing connect operations are described in detail in Chapter 6. 
The receptacle holds a copy of the object reference passed as a parameter. The 
component may invoke operations on this reference according to its design. How and 
when the component invokes operations on the reference is entirely the prerogative of 
the component implementation. The receptacle will hold a copy of the reference until 
it is explicitly disconnected.

Simplex receptacles

If a receptacle’s uses declaration does not include the optional multiple keyword, 
then only a single connection to the receptacle may exist at a given time. If a client 
invokes a connect operation when a connection already exists, the connection 
operation will raise the AlreadyConnected exception.

The component implementation may refuse to accept the connection for arbitrary 
reasons. If it does so, the connection operation will raise the InvalidConnection 
exception. 
5-48 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

Multiplex receptacles

If a receptacle’s uses declaration includes the optional multiple keyword, then 
multiple connections to the receptacle may exist simultaneously. The component 
implementation may choose to establish a limit on the number of simultaneous 
connections allowed. If an invocation of a connect operation attempts to exceed this 
limit, the operation will raise the ExceededConnectionLimit exception.

The component implementation may refuse to accept the connection for arbitrary 
reasons. If it does so, the connection operation will raise the InvalidConnection 
exception. 

Connect operations for multiplex receptacles return values of type 
Components::Cookie. Cookie values are used to identify the connection for 
subsequent disconnect operations. Cookie values are generated by the receptacle 
implementation (the responsibility of the supplier of the component-enabled ORB, not 
the component implementor). Likewise, cookie equivalence is determined by the 
implementation of the receptacle implementation.

The client invoking connection operations is responsible for retaining cookie values 
and properly associating them with connected object references, if the client needs to 
subsequently disconnect specific references. Cookie values must be unique within the 
scope of the receptacle that created them. If a cookie value is passed to a disconnect 
operation on a different receptacle than that which created it, results are undefined. 

Cookie values are described in detail in Section 5.6.3.4, “Cookie type”.

Cookie values are required because object references cannot be reliably 
tested for equivalence.

5.6.3.2 Disconnect operations

Operations of the form disconnect_receptacle_name terminate the relationship 
between the component and the connected object reference. 

Simplex receptacles

If a connection exists, the disconnect operation will return the connected object 
reference. If no connection exists, the operation will raise a NoConnectionExists 
exception.

Multiplex receptacles

The disconnect_receptacle_name operation of a multiplex receptacle takes a 
parameter of type Components::Cookie. The ck parameter must be a value 
previously returned by the connect_receptacle_name operation on the same 
receptacle. It is the responsibility of the client to associate cookies with object 
references they connect and disconnect. If the cookie value is not recognized by the 
receptacle implementation as being associated with an existing connection, the 
disconnect_receptacle_name operation raises an InvalidConnection exception.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-49



5

5.6.3.3 get_connection and get_connections operations

Simplex receptacles

Simplex receptacles have operations named get_connection_receptacle_name. If 
the receptacle is currently connected, this operation returns the connected object 
reference. If there is no current connection, the operation returns a nil object reference.

Multiplex receptacles

Multiplex receptacles have operations named get_connections_receptacle_name. 
This operation returns a sequence of structures, where each structure contains a 
connected object reference and its associated cookie value. The sequence contains a 
description of all of the connections that exist at the time of the invocation. If there are 
no connections, the sequence length will be zero.

5.6.3.4 Cookie type

The Cookie valuetype is defined by the following IDL:

module Components {

valuetype Cookie {
private sequence<octet> cookieValue;

};
};

Cookie values are created by multiplex receptacles, and are used to correlate a connect 
operation with a disconnect operation on multiplex receptacles.

Implementations of component-enabled ORBs may employ value type derived from 
Cookie, but any derived cookie types must be truncatable to Cookie, and the 
information preserved in the cookieValue octet sequence must be sufficient for the 
receptacle implementation to identify the cookie and its associated connected 
reference.

5.6.4 Receptacles interface

The Receptacles interface provides generic operations for connecting to a 
component’s receptacles. The ComponentBase interface is derived from 
Receptacles. The Receptacles interfaces is defined by the following IDL:
5-50 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

module Components {

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

};

typedef sequence<ConnectionDescription> ConnectedDescriptions;

interface Receptacles {

Cookie connect ( 
in FeatureName name, 
in Object connection )

raises (
InvalidName, 
InvalidConnection, 
AlreadyConnected, 
ExceededConnectionLimit);

void disconnect ( 
in FeatureName name, 
in Cookie ck)

raises (
InvalidName, 
InvalidConnection, 
CookieRequired, 
NoConnection);

ConnectionList get_connections (in FeatureName name) 
raises (InvalidName);

};
};

connect

The connect operation connects the object reference specified by the connection 
parameter to the receptacle specified by the name parameter on the target component. 
If the specified receptacle is a multiplex receptacle, the operation returns a cookie 
value that can be used subsequently to disconnect the object reference. If the receptacle 
is a simplex receptacle, the return value is a nil. The following exceptions may be 
raised:

¥ If the name parameter does not specify a valid receptacle name, then the 
InvalidName exception is raised.

¥ If the receptacle is a simplex receptacle and it is already connected, then the 
AlreadyConnected exception is raised. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-51



5

¥ If the object reference in the connection parameter does not support the interface 
declared in the receptacle’s uses statement, the InvalidConnection exception is 
raised. 

¥ If the receptacle is a multiplex receptacle and the implementation-defined limit to 
the number of connections is exceeded, the ExceededConnectionLimit 
exception is raised.

disconnect

If the receptacle identified by the name parameter is a simplex receptacle, the 
operation will disassociate any object reference currently connected to the receptacle. 
The cookie value in the ck parameter is ignored. If the receptacle identified by the 
name parameter is a multiplex receptacle, the disconnect operation disassociates the 
object reference associated with the cookie value (i.e., the object reference that was 
connected by the operation that created the cookie value) from the receptacle. The 
following exceptions may be raised:

¥ If the name parameter does not specify a valid receptacle name, then the 
InvalidName exception is raised. 

¥ If the receptacle is a simplex receptacle there is no current connection, then the 
NoConnection exception is raised. 

¥ If the receptacle is a multiplex receptacle and the cookie value in the ck parameter 
does not denote an existing connection on the receptacle, the InvalidConnection 
exception is raised.

¥ If the receptacle is a multiplex receptacle and a null value is specified in the ck 
parameter, the CookieRequired exception is raised.

get_connections

The get_connections operation returns a sequence of ConnectionDescription 
structs. Each struct contains an object reference connected to the receptacle named in 
the name parameter, and a cookie value that denotes the connection. If the name 
parameter does not specify a valid receptacle name, then the InvalidName exception 
is raised.

5.7 Events

The CORBA component model supports a publish/subscribe event model. The event 
model for CORBA components is designed to be compatible with the OMG Event and 
Notification Services, as defined in OMG documents formal/97-12-11 and telcom/98-
11-01, but it does not require that either service be used to implement the component 
event model. The interfaces exposed by the component event model provide a simple 
programming interface whose semantics can be mapped onto a subset of Event and 
Notification Service semantics. 
5-52 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

5.7.1 Event types

Event types in the CORBA Component event model are value types derived from the 
abstract value type Components::EventBase, which is defined as follows:

module Components {
abstract valuetype EventBase {};

};

Applications derive specific concrete event types from this base type.

When the underlying implementation of the component event mechanism provided by 
the container is either the CORBA Event Service or the CORBA Notification Service, 
event values shall be inserted into instances of the any type. The resulting any values 
can be used as parameters to the push operation on untyped event channels, or inserted 
into a structured event for use with the Notification Service.

5.7.2 Integrity of value types contained in anys

To ensure proper transmission of value type events, this specification makes the 
following clarifications to the semantics of value types when inserted into anys:

When an any containing a value type is received as a parameter in an ORB-mediated 
operation, the value contained in the any must be preserved, regardless of whether the 
receiving execution context is capable of constructing the value (in its original form or 
a truncated form), or not. If the receiving context attempts to extract the value, the 
extraction may fail, or the extracted value may be truncated. The value contained in the 
any shall remain unchanged, and shall retain its integrity if the any is passed as a 
parameter to another execution context.

5.7.3 EventConsumer interface

The component event model is a push model. The basic mechanics of this push model 
are defined by consumer interfaces. Event sources hold references to consumer 
interfaces and invoke various forms of push operations to send events. Component 
event sources hold references to consumer interfaces and push to them. Component 
event sinks provide consumer references, into which other entities (e.g., channels, 
clients, other component event sources) push events.

Event consumer interfaces are derived from the 
Components::EventConsumerBase interface, which is defined as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-53



5

module Components {
exception BadEventType {

CORBA::RepositoryId expected_event_type
};
interface EventConsumerBase {

void push_event(in EventBase evt) raises (BadEventType);
};

};

Type-specific event consumer interfaces are derived from the EventConsumerBase 
interface. Event source and sink declarations in component definitions cause type-
specific consumer interfaces to be generated for the event types used in the 
declarations.

The push_event operation pushes the event denoted by the evt parameter to the 
consumer. The consumer may choose to constrain the type of event it accepts. If the 
actual type of the evt parameter is not acceptable to the consumer, the 
BadEventType exception is raised. The expected_event_type member of the 
exception contains the repository ID of the type expected by the consumer.

Note that this exception can only be raised by the consumer upon whose reference the 
push_event operation was invoked. The consumer may be a proxy for an event or 
notification channel with an arbitrary number of subscribers. If any of those 
subscribers raise any exceptions, they will not be propagated back to the original event 
source (i.e., the component).

5.7.4 Event service provided by container

Container implementations provide event services to components and their clients. 
Component implementations obtain event services from the container during 
initialization, and mediate client access to those event services. The container 
implementation is free to provide any mechanism that supports the required semantics. 
The container is responsible for configuring the mechanism and determining the 
specific quality of service and routing policies to be employed when delivering events. 
More detail is defined in Chapter 8, specifically Section 8.5 on page 221.

5.7.5 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a 
specified type, and provides mechanisms for associate consumers with sources.

There are two categories of event sources, emitters and publishers. An emitter can be 
connected to at most one consumer. A publisher can be connected to an arbitrary 
number of consumers, who are said to subscribe to the publisher event source.

A publisher event source has the following characteristics:

¥ The equivalent operations for publishers allow multiple subscribers (i.e., 
consumers) to connect to the same source simultaneously.
5-54 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

¥ Subscriptions to a publisher are delegated to an event channel supplied by the 
container at run time. The component is guaranteed to be the only source publishing 
to that event channel.

An emitter event source has the following characteristics:

¥ The equivalent operations for emitters allow only one consumer to be connected to 
the emitter at a time.

¥ The events pushed from an emitter to the connected consumer are not mediated by 
a channel associated with the component or the emitter. Events pushed from an 
emitter are pushed directly into to consumer interface supplied as a parameter to the 
connect_<source> operation.

In general, emitters are not intended to be exposed to clients. Rather, they 
are intended to be used for configuration purposes. It is expected that emit-
ters will be connected at the time of component initialization and configu-
ration to consumer interfaces that are proxies for event channels that may 
be shared between arbitrary clients, components and other system ele-
ments. 

In contrast, publishers are intended to provide clients with direct access to 
a particular event stream being generated by the component (embodied by 
the publisher event source). It is our intent that clients subscribe directly to 
the publisher source.

5.7.6 Publisher

5.7.6.1 Syntax

The syntax for an event publisher is as follows:

<publishes_decl> ::= “publishes” <scoped_name> <identifier>

A publisher declaration consists of the following elements:

¥ the keyword publishes

¥ a <scoped_name> that denotes a previously-defined value type derived from 
Components::EventBase

¥ an <identifier> that names the publisher event source in the scope of the 
component

5.7.6.2 Equivalent IDL

For an event source declaration of the following form:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-55



5

module <module_name> {
component <component_name> {

publishes <event_type> <source_name>;
};

};

The following equivalent IDL is implied:

module <module_name> {
module <component_name>EventConsumers {

interface <event_type>Consumer;
};

interface <component_name> : Components::ComponentBase {

Components::Cookie subscribe_<source_name>(
in
<component_name>EventConsumers::<event_type>Consumer
consumer

)
raises (

Components::ExceededConnectionLimit
);

<component_name>EventConsumers::<event_type>Consumer
unsubscribe_<source_name> (in Components::Cookie ck)
raises (Components::InvalidConnection);

};

module <component_name>EventConsumers {
interface <event_type>Consumer 
: Components::EventConsumerBase {

void push(in <event_type> evt);
};

};
};

5.7.6.3 Event publisher operations

subscribe_<source_name>

The subscribe_<source_name> operation connects the consumer parameter to an 
event channel provided to the component implementation by the container. The 
component will be the only publisher to that channel. If the implementation of the 
component or the channel place an arbitrary limit on the number of subscriptions that 
can be supported simultaneously, and the invocation of the subscribe operation would 
cause that limit to be exceeded, the operation raises the ExceededConnectionLimit 
exception.The Cookie value returned by the operation identifies the subscription 
5-56 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

formed by the association of the subscriber with the publisher event source. This value 
can be used subsequently in an invocation of unsubscribe_<source_name> to 
disassociate the subscriber from the publisher.

unsubscribe_<source_name>

The unsubscribe_<source_name> operation destroys the subscription identified 
by the ck parameter value, returning the reference to the subscriber. If the ck 
parameter value does not identify an existing subscription to the publisher event 
source, the operation raises a InvalidConnection exception.

5.7.7 Emitters

5.7.7.1 Syntax

The syntax for an emitter declaration is as follows:

<emits_decl> ::= “emits” <scoped_name> <identifier>

An emitter declaration consists of the following elements:

¥ the keyword emits

¥ a <scoped_name> that denotes a previously-defined value type derived from 
Components::EventBase

¥ an <identifier> that names the event source in the scope of the component

5.7.7.2 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {

emits <event_type> <source_name>;
};

};

The following equivalent IDL is implied:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-57



5

module <module_name> {
module <component_name>EventConsumers {

interface <event_type>Consumer;
};

interface <component_name> : Components::ComponentBase {

void connect_<source_name>(
in
<component_name>EventConsumers::<event_type>Consumer
consumer

)
raises (

Components::AlreadyConnected
);

<component_name>EventConsumers::<event_type>Consumer
disconnect_<source_name>() 
raises (Components::NoConnection);

};

module <component_name>EventConsumers {
interface <event_type>Consumer 
: Components::EventConsumerBase {

void push(in <event_type> evt);
};

};
};

5.7.7.3 Event emitter operations

connect_<source_name>

The connect_<source_name> operation connects the event consumer denoted by 
the consumer parameter to the event emitter. If the emitter is already connected to a 
consumer, the operation raises the AlreadyConnected exception.

disconnect_<source_name>

The disconnect_<source_name> operation destroys any existing connection by 
disassociating the consumer from the emitter. The reference to the previously 
connected consumer is returned. If there was no existing connection, the operation 
raises the NoConnection exception.

5.7.8 Module scope of generated event consumer interfaces

The following observations and constraints apply to the equivalent IDL for event 
source declarations:
5-58 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

¥ The need for a typed event consumer interface requires the definition of a module 
scope to guarantee that the interface name for the event subscriber is unique. The 
module (whose name is formed by appending the string “EventConsumers” to the 
component type name) is defined in the same scope as the component’s equivalent 
interface. The module is opened before the equivalent interface definition to 
provide forward declarations for consumer interfaces. It is re-opened after the 
equivalent interface definition to define the consumer interfaces.

¥ The name of a consumer interface is formed by appending the string “Consumer” to 
the name of the event type. One consumer interface type is implied for each unique 
event type used in event source and event sink declarations in the component 
definition.

5.7.9 Event Sinks

An event sink embodies the potential for the component to receive events of a 
specified type. An event sink is, in essence, a special-purpose facet whose type is an 
event consumer. External entities, such as clients or configuration services, can obtain 
the reference for the consumer interface associated with the sink.

Unlike event sources, event sinks do not distinguish between connection and 
subscription. The consumer interface may be associated with an arbitrary number of 
event sources, unbeknownst to the component that supplies the event sink. The 
component event model provides no inherent mechanism for the component to control 
which events sources may be pushing to its sinks. By exporting an event sink, the 
component is, in effect, declaring its willingness to accept events pushed from 
arbitrary sources.

If a component implementation needs control over which sources can push 
to a particular sink it owns, the sink should not be exposed as a port on the 
component. Rather, the component implementation can create a consumer 
internally and explicitly connect or subscribe it to sources.

5.7.9.1 Syntax

The syntax for an event sink declaration is as follows:

<consumes_dcl> ::= “consumes” <scoped_name> <identifier> 

An event sink declaration contains the following elements:

¥ the keyword consumes

¥ a <scoped_name> that denotes a previously-defined value type that is derived from 
the Components::EventBase abstract value type

¥ an <identifier> that names the event sink in the component’s scope

5.7.9.2 Equivalent IDL

For an event sink declaration of the following form:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-59



5

module <module_name> {
component <component_name> {

consumes <event_type> <sink_name>;
};

};

The following equivalent IDL is implied:

module <module_name> {
module <component_name>EventConsumers {

interface <event_type>Consumer;
};

interface <component_name> : Components::ComponentBase {
<component_name>EventConsumers::<event_type>Consumer
get_consumer_<sink_name>();

};

module <component_name>EventConsumers {
interface <event_type>Consumer 
: Components::EventConsumerBase {

void push(in <event_type> evt);
};

};
};

5.7.9.3 Event sink operations

The get_consumer_<sink_name> operation returns a reference that supports the 
consumer interface specific to the declared event type.

5.7.10 Events interface

The Events interface provides generic access to event sources and sinks on a 
component. ComponentBase is derived from Events. The Events interface is 
described as follows:
5-60 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

module Components {

interface Events {
EventConsumerBase 
get_consumer(in FeatureName sinkName)

raises(InvalidName);
Cookie subscribe(in FeatureName publisherName, 

in EventConsumerBase subscriber) 
raises (InvalidName);

void unsubscribe(in FeatureName publisherName, 
in Cookie ck) 
raises(InvalidName, InvalidConnection);

void connect_consumer(in FeatureName emitterName, 
in EventConsumerBase consumer) 
raises (InvalidName, AlreadyConnected);

EventConsumerBase 
disconnect_consumer(in FeatureName sourceName) 

raises(InvalidName, NoConnection);

};

}; 

get_consumer

The get_consumer operation returns the EventConsumerBase interface for the 
sink specified by the sinkName parameter. If the sinkName parameter does not 
specify a valid event sink on the component, the operation raises the InvalidName 
exception.

subscribe

The subscribe operation associates the subscriber denoted by the subscriber 
parameter with the event source specified by the publisherName parameter. If the 
publisherName parameter does not specify a valid event publisher on the 
component, the operation raises the InvalidName exception. The cookie return value 
can be used to unsubscribe from the source.

unsubscribe

The unsubscribe operation disassociates the subscriber associated with ck parameter 
with the event source specified by the publisherName parameter. If the 
publisherName parameter does not specify a valid event source on the component, 
the operation raises the InvalidName exception. If the ck parameter does not identify 
a current subscription on the source, the operation raises the InvalidConnection 
exception.

connect_consumer

The connect_consumer operation associates the consumer denoted by the 
consumer parameter with the event source specified by the emitterName parameter. 
If the emitterName parameter does not specify a valid event emitter on the 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-61



5

component, the operation raises the InvalidName exception. If a consumer is already 
connected to the emitter, the operation raises the AlreadyConnected exception. The 
cookie return value can be used to disconnect from the source.

disconnect_consumer

The disconnect_consumer operation disassociates the currently connected 
consumer from the event source specified by the emitterName parameter, returning a 
reference to the disconnected consumer. If the emitterName parameter does not 
specify a valid event source on the component, the operation raises the InvalidName 
exception. If there is no consumer connected to the emitter, the operation raises the 
NoConnection exception.

5.8 Homes

An IDL specification may include home definitions. A home definition describes an 
interface for managing instances of a specified component type. The salient 
characteristics of a home definition are as follows:

¥ A home definition implicitly defines an equivalent interface, which can be 
described in terms of IDL as specified in CORBA 2.3a.

¥ A home definition must specify exactly one component type that it manages. 
Multiple home definitions may manage the same component type. 

This statement applies only to home and component types. An actual com-
ponent instance is managed by exactly one home instance. A component 
instance can only exist in the context of a home. Component identities are 
relative to the home to which they belong. Two homes with different defini-
tions may manage components of the same type, but they may not manage 
the same instances.

¥ A home definition may specify a primary key type. Primary keys are values 
assigned by the application environment that uniquely identify component instances 
managed by a particular home. Primary key types must be value types derived from 
Components::PrimaryKeyBase. There are more specific constraints placed on 
primary key types, which are specified in Section 5.8.3.1, “Primary key type 
constraints. 

¥ The presence of a primary key specification in a home definition causes home’s 
equivalent interface to contain a set of implicitly defined operations whose 
signatures are determined by the types of the primary key and the managed 
component. These operations are specified in Section 5.8.2.2, “Home definitions 
with primary keys”.

¥ Home definitions may include any declarations that are legal in normal interface 
definitions.

¥ Home definitions support single inheritance from other home definitions, subject to 
a number of constraints, which are described in Section 5.8.5, “Home inheritance”. 
The need to inherit home definitions introduces some complexity into the structure 
5-62 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

of home equivalent interfaces. The details of home inheritance and the resulting 
inheritance in equivalent interfaces is described in Section 5.8.5, “Home 
inheritance”.

5.8.1 Home header

A <home_header> describes fundamental characteristics of a home interface, 
including the following:

¥ the home type name

¥ an optional inherited base home type

¥ the component type managed by the home

¥ an optional primary key

5.8.1.1 Syntax

The syntax for a home definition is as follows:

<home_dcl> ::= <home_header> <home_body>

<home_header> ::= “home” <identifier> [ <home_inheritance_spec> ] 
“manages” <scoped_name> [ <primary_key_spec> ]

<home_inheritance_spec> ::= “:” <scoped_name>

<primary_key_spec> ::= “primaryKey” <scoped_name>

<home_body> ::= “{” <home_export>* “}”

<home_export ::= <export> 
| <factory_dcl> “;”
| <finder_dcl> “;”

<factory_dcl> ::= “factory” <identifier> “(“ [ <init_param_decls> ] “)” [ 
<raises_expr> ] 

<finder_dcl> ::= “finder” <identifier> “(“ [ <init_param_decls> ] “)” [ 
<raises_expr> ]

A <home_header> consists of the following elements:

¥ the keyword home

¥ an <identifier> that names the home in the enclosing name scope

¥ an <inheritance_spec>, consisting of a colon “:” and a <scoped_name> that 
denotes a previously defined home type

¥ the keyword manages

¥ a <scoped_name> that denotes a previously defined component type
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-63



5

¥ an optional primary key definition, consisting of the keyword primaryKey 
followed by a <scoped_name> that denotes a previously defined value type that is 
derived from the abstract value type Components::PrimaryKeyBase. Additional 
constraints on primary keys are described in Section 5.8.3.1, “Primary key type 
constraints”.

5.8.2 Equivalent interfaces

Every home definition implicitly defines a set of operations whose names are the same 
for all homes, but whose signatures are specific to the component type managed by the 
home and, if present, the primary key type specified by the home.

Because the same operation names are used for these operations on different homes, 
the implicit operations cannot be inherited. The specification for home equivalent 
interfaces accommodates this constraint. A home definition results in the definition of 
three interfaces, called the explicit interface, the implicit interface, and the equivalent 
interface. The name of the explicit interface has the form <home_name>Explicit, 
where <home_name> is the declared name of the home definition. Similarly, the 
name of the implicit interface has the form <home_name>Implicit, and the name of 
the equivalent interface is simply the name of the home definition, with the form 
<home_name>. All of the operations defined explicitly on the home (including 
explicitly-defined factory and finder operations) are represented on the explicit 
interface. The operations that are implicitly defined by the home definition are 
exported by the implicit interface. The equivalent interface inherits both the explicit 
and implicit interfaces, forming the interface presented to programmer using the home.

The same names are used for implicit operations in order to provide clients 
with a simple, uniform view of the basic life cycle operations—creation, 
finding, and destruction. The signatures differ to make the operations spe-
cific to the storage type (and, if present, primary key) associated with the 
home. These two goals—uniformity and type safety—are admittedly con-
flicting, and the resulting complexity of equivalent home interfaces reflects 
this conflict. Note that this complexity manifests itself in generated inter-
faces and their inheritance relationships; the model seen by the client pro-
grammer is relatively simple.

5.8.2.1 Home definitions with no primary key

Given a home definition of the following form:

home <home_name> manages <component_type>
{ 

<explicit_operations>
};

The resulting explicit, implicit, and equivalent local interfaces have the following 
forms:
5-64 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

interface <home_name>Explicit 
: Components::HomeBase 
{

<equivalent_explicit_operations>
};

interface <home_name>Implicit 
: Components::KeylessHomeBase
{

<component_type> create();
};

interface <home_name> :
<home_name>Explicit, 
<home_name>Implicit 
{};

where <equivalent_explicit_operations> are the operations defined in the home 
declaration ( <explicit_operations> ), with factory and finder operations transformed 
to their equivalent operations, as described in Section 5.8.4, “Explicit operations in 
home definitions”.

create

This operation creates a new component instance of the type managed by the home.

5.8.2.2 Home definitions with primary keys

Given a home of the following form:

home <home_name> 
manages <component_type>
primaryKey <key_type> 
{ 

<explicit_operations>
};

The resulting explicit, implicit, and equivalent interfaces have the following forms:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-65



5

interface <home_name>Explicit 
: Compoents::HomeBase 
{

<equivalent_explicit_operations>
};

interface <home_name>Implicit 
{

<component_type> create(in <key_type> key) 
raises (Components::DuplicateKeyValue, Components::InvalidKey);

<component_type> find(in <key_type> key) 
raises (Components::UnknownKeyValue, Components::InvalidKey);

void destroy(in <key_type> key) 
raises (Components::UnknownKeyValue, Components::InvalidKey);

<key_type> get_primary_key(in <component_type> comp);

};

interface <home_name> 
: <home_name>Explicit , 
<home_name>Implicit 
{};

where <equivalent_explicit_operations> are the operations defined in the home 
declaration (<explicit_operations>), with factory and finder operations transformed to 
their equivalent operations, as described in Section 5.8.4, “Explicit operations in home 
definitions.

create

This operation creates a new component associated with the specified primary key 
value, returning a reference to the component. If the specified key value is already 
associated with an existing component managed by the storage home, the operation 
raises an DuplicateKeyValue exception. If the key value was not a well-formed, 
legal value, the operation raises the InvalidKey exception.

find

This operation returns a reference to the component identified by the primary key 
value. If the key value does not identify an existing component managed by the home, 
an UnknownKeyValue exception is raised. If the key value was not a well-formed, 
legal value, the operation raises the InvalidKey exception.

destroy

This operation removes the component identified by the specified key value. 
Subsequent requests to any of the component’s facets shall raise a 
OBJECT_NOT_EXIST system exception. If the specified key value does not identify 
5-66 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

an existing component managed by the home, the operation shall raise an 
UnknownKeyValue exception. If the key value was not a well-formed, legal value, 
the operation raises the InvalidKey exception.

5.8.3 Primary key declarations

Primary key values must uniquely identify component instances within the scope of the 
home that manages them. Two component instances cannot exist on the same home 
with the same primary key value.

Different home types that manage the same component type may specify different 
primary key types. Consequently, a primary key type is not inherently related to the 
component type, and vice versa. A home definition determines the association between 
a component type and a primary key type The home implementation is responsible for 
maintaining the association between specific primary key values and specific 
component identities.

Note that this discussion pertains to component definitions as abstractions. 
A particular implementation of a component type may be cognizant of, and 
dependent upon, the primary keys associated with its instances. Such 
dependencies, however, are not exposed on the surface of the component 
type. A particular implementation of a component type may be designed to 
be manageable by different home interfaces with different primary keys, or 
it may be inextricably bound to a particular home definition. Generally, an 
implementation of a component type and the implementation of its associ-
ated home are inter-dependent, although this is not absolutely necessary.

5.8.3.1 Primary key type constraints

Primary key and types are subject to the following constraints:

¥ A primary key type must be a value type derived from 
Components::PrimaryKeyBase.

¥ A primary key type must be a concrete type with at least one public state member.

¥ A primary key type may not contain private state members.

¥ A primary key type may not contain any members whose type is a CORBA 
interface reference type, including references for interfaces, abstract interfaces, and 
local interfaces. 

¥ These constraints apply recursively to the types of all of the members, i.e., members 
which are structs, unions, value types, sequences or arrays may not contain interface 
reference types. If a the type of a member is a value type or contains a value type, 
it must meet all of the above constraints.

5.8.3.2 PrimaryKeyBase

The base type for all primary keys is the abstract value type 
Components:PrimaryKeyBase. The definition of PrimaryKeyBase is as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-67



5

module Components {
abstract valuetype PrimaryKeyBase {};

};

5.8.4 Explicit operations in home definitions

A home body may include zero or more operation declarations, where the operation 
may be a factory operation, a finder operation, or a normal operation or attribute.

5.8.4.1 Factory operations

The syntax of a factory operation is as follows:

<factory_operation> ::= “factory” <identifier> “(“ [ <init_param_decls> ] “)” 
[ <raises_expr> ] 

A factor operation declaration consists of the following elements:

¥ the keyword factory

¥ an identifier that names the operation in the scope of the home definition

¥ an optional list of initialization parameters (<init_param_decls>) enclosed in 
parentheses

¥ an optional <raises_expr> declaring exceptions that may be raised by the operation

A factory operation is denoted by the factory keyword. A factory operation has a 
corresponding equivalent operation on the home’s explicit interface. Given a factory 
declaration of the following form:

home <home_name> manages <component_type> {
factory <factory_operation_name> (<parameters>) 
raises (<exceptions>);

};

The equivalent operation on the explicit interface is as follows:

<component_type> <factory_operation_name> ( <parameters> ) 
raises ( <exceptions> );

A factory operation is required to support creation semantics, i.e., the reference 
returned by the operation shall identify a component that did not exist prior to the 
operation’s invocation.

5.8.4.2 Finder operations

The syntax of a finder operation is as follows:
5-68 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

<finder_operation> ::= “finder” <identifier> “(“ [ <init_param_decls> ] “)” 
[ <raises_expr> ] 

A finder operation declaration consists of the following elements:

¥ the keyword finder

¥ an identifier that names the operation in the scope of the storage home definition

¥ an optional list of initialization parameters (<init_param_decls> ) enclosed in 
parentheses

¥ an optional <raises_expr> declaring exceptions that may be raised by the operation

A factory operation is denoted by the finder keyword. A finder operation has a 
corresponding equivalent operation on the home’s explicit interface. Given a factory 
declaration of the following form:

home <home_name> manages <component_type> {
finder <factory_operation_name> (<parameters>) 
raises (<exceptions>);

};

The equivalent operation on the explicit interface is as follows:

<component_type> <finder_operation_name> ( <parameters> ) 
raises ( <exceptions> );

A finder operation is required to support the following semantics. The the reference 
returned by the operation shall identify a previously-existing component managed by 
the home. The operation implementation determines which component’s reference to 
return based on the values of the operation’s parameters.

5.8.4.3 Miscellaneous exports

All of the exports, other than factory and finder operations, that appear in a home 
definition are duplicated exactly on the home’s explicit interface. 

5.8.5 Home inheritance

Given a derived home definition of the following form:

home <home_name>
: <base_home_name>
manages <component_type> 
{ 

<explicit_operations>
};

The resulting explicit interface has the following form:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-69



5

interface <home_name>Explicit 
: <base_home_name>Explicit 
{

<equivalent_explicit_operations>
};

where <equivalent_explicit_operations> are the operations defined in the home 
declaration (<explicit_operations>), with factory and finder operations transformed to 
their equivalent operations, as described in Section 5.8.4, “Explicit operations in home 
definitions. The forms of the implicit and equivalent interfaces are identical to the 
corresponding forms for non-derived storage homes, determined by the presence or 
absence of a primary key specification.

A home definition with no primary key specification constitutes a pair (H, T) where H 
is the home type and T is the managed component type. If the home definition includes 
a primary key specification, it constitutes a triple (H, T, K), where H and T are as 
previous and K is the type of the primary key. Given a home definition (HÕ, TÕ) or (HÕ, 
TÕ, K), where K is a primary key type specified on HÕ, such that HÕ is derived from H, 
then TÕ must be identical to T or derived (directly or indirectly) from T. 

Given a base home definition with a primary key (H, T, K), and a derived home 
definition with no primary key (HÕ, TÕ), such that HÕ is derived from H, then the 
definition of HÕ implicitly includes a primary key specification of type K, becoming 
(HÕ, TÕ, K). The implicit interface for HÕ shall have the form specified for an implicit 
interface of a home with primary key K and component type TÕ.

Given a base home definition (H, T, K), noting that K may have been explicitly 
declared in the definition of H, or inherited from a base home type, and a home 
definition (HÕ, TÕ, KÕ) such that HÕ is derived from H, then TÕ must be identical to or 
derived from T and KÕ must be identical to or derived from K.

Note the following observations regarding these constraints and the structure of 
inherited equivalent interfaces:

¥ If a home definition does not specify a primary key directly in its header, but it is 
derived from a home definition that does specify a primary key, the derived home 
inherits the association with that primary key type, precisely as if it had explicitly 
specified that type in its header. This inheritance is transitive. For the purposes of 
the following discussion, home definitions that inherit a primary key type are 
considered to have specified that primary key type, even though it did not explicitly 
appear in the definition header.

¥ Operations on HomeBase are inherited by all home equivalent interfaces. These 
operations apply equally to homes with and without primary keys.

¥ Operations on KeylessHomeBase are inherited by all homes that do not specify 
primary keys

¥ Implicitly-defined operations (i.e., that appear on the implicit interface) are only 
visible to the equivalent interface for the specific home type that implies their 
definitions. Implicitly-defined operations on a base home type are not inherited by a 
5-70 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

derived home type. Note that the implicit operations for a derived home may be 
identical in form to the corresponding operations on the base type, but they are 
defined in a different name scope.

¥ Explicitly-defined operations (i.e., that appear on the explicit interface) are 
inherited by derived home types.

5.8.6 Semantics of home operations

Operations in home interfaces fall into two categories:

¥ Operations that are defined by the component model. Default implementations of 
these operations must, in some cases, be supplied by the component-enabled ORB 
product, without requiring user programming or intervention. Implementations of 
these operations must have predictable, uniform behaviors. Hence, the required 
semantics for these operations are specified in detail. For convenience, we will refer 
to these operations as orthodox operations.

¥ Operations that are defined by the user The semantics of these operations are 
defined by the user-supplied implementation. Few assumptions can be made 
regarding the behavior of such operations. For convenience, we will refer to these 
operations as heterodox operations.

Orthodox operations include the following:

¥ Operations defined on HomeBase and KeylessHomeBase.

¥ Operations that appear on the implicit interface for any home.

Heterodox operations include the following:

¥ Operations that appear in the body of the home definition, including factory 
operations, finder operations, and normal IDL operations and attributes.

5.8.6.1 Orthodox operations

Because of the inheritance structure described in Section 5.8.5, “Home inheritance”, 
problems relating to polymorphism in orthodox operations are limited. For the 
purposes of determining key uniqueness and mapping key values to components in 
orthodox operations, equality of value types (given the constraints on primary key 
types specified in Section 5.8.3.1, “Primary key type constraints) are defined as 
follows:

¥ Only the state of the primary key type specified in the home definition (which is 
also the actual parameter type in operations using primary keys) shall be used for 
the purposes of determining equality. If the type of the actual parameter to the 
operation is more derived that the formal type, the behavior of the underlying 
implementation of the operation shall be as if the value were truncated to the formal 
type before comparison. This applies to all value types that may be contained in the 
closure of the membership graph of the actual parameter value, i.e., if the type of a 
member of the actual parameter value is a value type, only the state that constitutes 
the member’s declared type is compared for equality.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-71



5

¥ Two values are equal if their types are precisely equivalent and the values of all of 
their public state members are equal. This applies recursively to members which are 
value types.

¥ If the values being compared constitute a graph of values, the two values are equal 
only if the graphs are isomorphic.

¥ Union members are equal if both the discriminator values and the values of the 
union member denoted by the discriminator are precisely equal.

¥ Members which are sequences or arrays are considered equal if all of their members 
are precisely equal, where order is significant.

5.8.6.2 Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are 
inherited by homes that may specify more-derived component and primary key types. 
Assume a home definition (H, T, K), with an explicit factory operation f that takes a 
parameter of type K, and a home definition (HÕ, TÕ, KÕ), such that HÕ is derived from 
H, TÕ is derived from T, and KÕ is derived from K. The operation f (whose parameter 
type is K) is inherited by equivalent interface for HÕ. It may be the intended behavior 
of the designer that the actual type of the parameter to invocations of f on HÕ should be 
KÕ, exploiting the polymorphism implied by inheritance of K by KÕ. Alternatively, it 
may be the intended behavior of the designed that actual parameter values of either K 
or KÕ are legitimate, and the implementation of the operation determines what the 
appropriate semantics of operation are with respect to key equality.

This specification does not attempt to define semantics for polymorphic equality. 
Instead, we define the behavior of operations on home that depend on primary key 
values in terms of abstract tests for equality that are provided by the implementation of 
the heterodox operations.

Implementations of heterodox operations, including implementations of key value 
comparison for equality, are user-supplied. This specification imposes the following 
constraints on the tests for equality of value types used as keys in heterodox 
operations:

¥ For any two actual key values A and B, the comparison results must be the same for 
all invocations of all operations on the storage home.

¥ The comparison behavior must meet the general definition of equivalence, i.e., it 
must be symmetric, reflexive, and transitive.

5.8.7 HomeBase interface

The definition of the HomeBase interface is as follows:
5-72 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

module Components {
interface HomeBase {

ComponentDef get_component_def();
void destroy_component ( in ComponentBase comp);

};
};

get_component_def

The get_component_def operation returns an object reference that supports the 
ComponentDef interface, describing the component type associated with the home 
object.

destroy_component

The destroy_component operation causes the component denoted by the reference 
to cease to exist. Subsequent invocations on the reference will cause an 
OBJECT_NOT_EXIST system exception to be raised. If the component denoted by 
the parameter does not exist in the container associated with target home object, 
destroy_component raises a BAD_PARAM system exception.

5.8.8 KeylessHomeBase interface

The definition of the KeylessHomeBase interface is as follows:

module Components {
interface KeylessHomeBase {

ComponentBase create_component();
};

};

create_component

The create_component operation creates a new instance of the component type 
associated with the home object. A home implementation (in particular, an 
implementation of a home that specifies a primary key) may choose to disable the 
parameter-less create_component operation, in which case it shall raise a 
NO_IMPLEMENT system exception.

5.9 Home Finders

The HomeFinder interface is, conceptually, a greatly simplified analog of the 
CosLifecycle::FactoryFinder interface. Clients can use the HomeFinder interface 
to obtain homes for particular component types, of particularly home types, or homes 
that are bound to specific names in a naming service.

A reference that supports the HomeFinder interface may be obtained from the ORB 
pseudo-object by invoking CORBA::ORB::resolve_initial_references, with the 
parameter value “ComponentHomeFinder”.

The HomeFinder interface is defined by the following IDL:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-73



5

module Components {

exception HomeNotFound { };

interface HomeFinder {
HomeBase find_home_by_component_type (

in CORBA::RepositoryId comprepid)
raises (HomeNotFound);

HomeBase find_home_by_home_type (
in CORBA::RepositoryId homerepid)
raises (HomeNotFound);

HomeBase find_home_by_name (
in string home_name) 
raises (HomeNotFound);

};
};

Þnd_home_by_component_type

The Þnd_home_by_component_type operation returns a reference which supports the 
interface of a home object that manages the component type specified by the 
comprepid parameter. This parameter contains the repository identifier of the 
component type required. If there are no homes that manage the specified component 
type currently registered, the operation raises the HomeNotFound exception.

Little is guaranteed about the home interface returned by this operation. If 
the definition of the returned home specified a primary key, there is no 
generic factory operation available on any standard interface (i.e, pre-
defined, as opposed to generated type-specific interface) supported by the 
home. The only generic factory operation that is potentially available is 
Components::KeylessHomeBase::create_component. The client must first 
attempt to narrow the HomeBase reference returned by the 
find_home_by_component_type to KeylessHomeBase. Otherwise, the cli-
ent must specific out-of-band knowledge regarding the home interface that 
may be returned, or the client must be sophisticated enough to obtain the 
InterfaceDef for the home and use the DII to discover and invoke a create 
operation on a type-specific interface supported by the home.

Þnd_home_by_home_type

The Þnd_home_by_home_type operation returns a reference that supports the 
interface of type specified by the repository identifier in the homerepid parameter. If 
there are no homes of this type currently registered, the operation raises the 
HomeNotFound exception.

The current LifeCycle find_factories operation returns a sequence of facto-
ries to the client requiring the client to choose the one which will create the 
instance. Based on the experience of the submitters, CORBA components 
defines operations which allows the server to choose the “best” home for 
the client request based on its knowledge of workload, etc. 

Since the operation returns a reference to HomeBase, it must be narrowed to the 
specific home type before it can be used.
5-74 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

Þnd_home_by_name

The Þnd_home_by_name operation returns a home reference bound to the name 
specified in the home_name parameter. This parameter is expected to contain a name 
in the format described in the Interoperable Naming Service specification (orbos/98-
10-11), section 4.5, “Stringified Names”. The implementation of this operation may be 
delegated directly to an implementation of CosNaming, but it is not required. The 
semantics of the implementation are considerably less constrained, being defined as 
follows:

¥ The implementation is free to maintain multiple bindings for a given name, and to 
return any reference bound to the name.

It is generally expected that implementations that do not choose to use Cos-
Naming will do so for reasons of scalability and flexibility, in order, for 
example, to provide a home which is logically more “local” to the home 
finder (and thus, the client).

¥ The client’s expectations regarding the returned reference, other than that it support 
the HomeBase interface, are not guaranteed or otherwise mediated by the home. 
The fact that certain names may be expected to provide certain home types or 
qualities of implementation are outside of the scope of this interface, and are not 
addressed by this specification.

This is no different than any application of naming services in general. 
Applications that require clients to be more discriminating are free to use 
the Trader service, or any other similar mechanism that allows query or 
negotiation to select an appropriate home. This mechanism is intentionally 
kept simple.

If the specified name does not map onto a home object registered with the finder, the 
operation raises the HomeNotFound exception.

5.10 Component Configuration

The CORBA component model provides mechanisms to support the concept of 
component configurability.

Experience has proven that building re-usable components involves mak-
ing difficult trade-offs between providing well-defined, reasonably-scoped 
functionality, and providing enough flexibility and generality to be useful 
(or re-useful) across a variety of possible applications. Packaging assump-
tions of the component architecture preclude customizing a component’s 
behavior by directly altering its implementation or (in most cases) by 
deriving specialized sub-types. Instead, the model focuses on extension and 
customization through delegation (e.g., via dependencies expressed with 
uses declarations) and configuration. Our assumption is that generalized 
components will typically provide a set of optional behaviors or modalities 
that can be selected and adjusted for a specific application.

The configuration framework is designed to provide the following capabili-
ties:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-75



5

• The ability to define attributes on the component type that are used to 
establish a component instance’s configuration. Component attributes 
are intended to be used during a component instance’s initialization to 
establish its fundamental behavioral properties. Although the compo-
nent model does not constrain the visibility or use of attributes defined 
on the component, it is generally assumed that they will not be of 
interest to the same clients that will use the component after it is con-
figured. Rather, it is intended for use by component factories or by 
deployment tools in the process of instantiating an assembly of com-
ponents.

• The ability to define a configuration in an environment other than the 
deployment environment (e.g., an assembly tool), and store that con-
figuration in a component package or assembly package to be used 
subsequently in deployment.

• The ability to define such a configuration without having to instantiate 
the component type itself.

• The ability to associate a pre-defined configuration with a component 
factory, such that component instances created by that factory will be 
initialized with the associated configuration.

• Support for visual, interactive configuration tools to define configura-
tions. Specifically, the framework allows component implementors to 
provide a configuration manager associated with the component 
implementation. The configuration manager interface provides 
descriptive information to interactive users, constrains configuration 
options, and performs validity checks on proposed configurations.

The CORBA component model allows a distinction to be made between interface 
features that are used primarily for configuration, and interface features that are used 
primarily by application clients during normal application operation. This distinction, 
however, is not precise, and enforcement of the distinction is largely the responsibility 
of the component implementor.

It is the intent of this specification (and a strong recommendation to component 
implementors and users) that operational interfaces should be either provided 
interfaces or a supported interface. Features on the component interface itself, other 
than provided interfaces, (i.e., receptacles, event sources and sinks) are generally 
intended to be used for configuration, although there is no structural mechanism for 
limiting the visibility of the features on a component interface. A mechanism is 
provided for defining configuration and operational phases in a component’s life cycle, 
and for disabling certain interfaces during each phase.

The distinction between configuration and operational interfaces is often 
hard to make in practice. For example, we expect that operational clients 
of a component will want to receive events generated by a component. On 
the other hand, some applications will want to establish a fixed set of event 
source and sink connections as part of the overall application structure, 
and will want to prevent clients from changing those connections. Likewise, 
the responsibility for configuration may be hard to assign—in some appli-
cations the client that creates and configures a component may be the same 
client that will use it operationally. For this reason, the CORBA component 
model provides general guidelines and optional mechanisms that may be 
5-76 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

employed to characterize configuration operations, but does not attempt to 
define a strict separation of configuration and operational behaviors.

5.10.1 Exclusive configuration and operational life cycle phases

A component implementation may be designed to implement an explicit configuration 
phase of its life cycle, enforcing serialization of configuration and functional operation. 
If this is the case, the component life cycle is divided into two mutually exclusive 
phases, the configuration phase and the operational phase. 

The configuration_complete operation (inherited from 
Components::ComponentBase) is invoked by the agent effecting the 
configuration to signal the completion of the configuration phase. The 
InvalidConfiguration exception is raised if the state of the component configuration 
state at the time configuration_complete is invoked does not constitute an 
acceptable configuration state. It is possible that configuration may be a multi-step 
process, and that the validity of the configuration may not be determined until the 
configuration process is complete. The configuration_complete operation should 
not return to the caller until either 1) the configuration is deemed invalid, in which 
case the InvalidConfiguration exception is raised, or 2) the component instance has 
performed whatever work is necessary to consolidate the final configuration and is 
prepared to accept requests from arbitrary application clients. 

In general, component implementations should defer as much consolida-
tion and integration of configuration state as possible until 
configuration_complete is invoked. In practice, configuring a highly-con-
nected distributed object assembly has proven very difficult, primarily 
because of subtle ordering dependencies that are difficult to discover and 
enforce. If possible, a component implementation should not be sensitive to 
the ordering of operations (interface connections, configuration state 
changes, etc.) during configuration. This is one of the primary reasons for 
the definition of configuration_complete.

5.10.1.1 Enforcing exclusion of configuration and operation

The implementation of a component may choose to disable changes to the 
configuration after configuration_complete is invoked, or to disable invocations of 
operations on provided interfaces until configuration_complete is invoked. If an 
implementation chooses to do either (or both), an attempt to invoke a disabled 
operations should raise a BAD_INV_ORDER system exception.

Alternatively, a component implementation may choose not to distinguish between 
configuration phase and deployment phase. In this case, invocation of 
configuration_complete will have no effect.

The component implementation framework provides standard mechanisms to support 
disabling operations during configuration or operation. Certain operations are 
implemented by the component implementation framework (see Chapter 6), and may 
not be disabled.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-77



5

5.11 Configuration with attributes

A component’s configuration is established primarily through its attributes. An 
attribute configuration is defined to be a description of a set of invocations on a 
component’s attribute set methods, with specified values as parameters. 

There are a variety of possible approaches to attribute configuration at run time, 
depending on the design of the component implementation and the needs of the 
application and deployment environments. The CORBA component model defines a 
set of basic mechanisms to support attribute configuration. These mechanisms can be 
deployed in a number of ways in a component implementation or application.

5.11.1 Attribute declaration syntax

The CORBA Component specification modifies the existing definition of attributes to 
add the ability to raise independent exceptions on the attribute’s accessor and mutator 
operations. The modified syntax for attributes is as follows:

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [ <raises_expr> ]
| <simple_declarator> { “,” <simple_declarator> }*

<attr_dcl> ::= [ “readonly” ] “attribute” <param_type_spec> 
<simple_declarator> { “,” <simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> { “,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [ <set_excep_expr> ]
| <set_excep_expr>

<get_excep_expr> ::= “getRaises” <exception_list>

<set_excep_expr> ::= “setRaises” <exception_list>

<exception_list> ::= “(” <scoped_name> { “,” <scoped_name> } * “)”

These modifications to the existing attribute declaration syntax allow attribute get and 
set methods to raise user-defined exceptions. Note the following characteristics of the 
extended attribute declaration syntax:

¥ All existing attribute declarations using the previous syntax are still valid, and 
produce exactly the same results.
5-78 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

¥ When an attribute declaration raises an exception (on get, set or both), the 
declaration may not contain multiple declarators.

5.11.2 Language mapping responsibilities

The correspondence between an attribute declaration on an interface and the 
corresponding operations exposed to a programmer are defined by language mappings; 
there is no equivalent IDL for operations.

Language mappings shall specify accessor and mutator operations that are capable of 
raising the exceptions described in the attribute declaration.

5.11.3 Behavior

Component implementations are required to supply the behavior of attribute 
operations.

Attributes are intended to be reflected in the component’s internal state, but 
should not be taken as a concrete description of internal state. The internal 
state of a component is not visible to the component’s clients, and the 
attribute declarations on a component type definition do not necessarily 
imply the existence of corresponding concrete state variables in the compo-
nent. Attribute declarations are syntactic abbreviations for operations to 
examine and (optionally) set abstract state. 

5.11.4 Attribute Configurators

A configurator is an object that encapsulates a specific attribute configuration that can 
be reproduced on many instances of a component type. A configurator may invoke any 
operations on a component that are enabled during its configuration phase. In general, 
a configurator is intended to invoke attribute set operations on the target component. 

5.11.4.1 The Configurator interface

The following interface is supported by all configurators:

module Components {

interface Configurator {
void configure(in ComponentBase comp)
raises WrongComponentType;

};

};

configure

The configure operation establishes its encapsulated configuration on the target 
component. If the target component is not of the type expected by the configurator, the 
configure operation raises the WrongComponentType exception.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-79



5

5.11.4.2 The StandardConfigurator interface

The StandardConfigurator has the following definition:

module Components {

valuetype ConfigValue {
FeatureName name;
any value;

};

typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

};
};

The StandardConfigurator interface supports the ability to provide the configurator 
with a set of values defining an attribute configuration. 

set_configuration

The set_configuration operation accepts a parameter containing a sequence of 
ConfigValue instances, where each ConfigValue contains the name of an attribute 
and a value for that attribute, in the form of an any. The name member of the 
ConfigValue type contains the unqualified name of the attribute as declared in the 
component definition IDL. After a configuration has been provided with 
set_configuration, subsequent invocations of configure will establish the 
configuration on the target component by invoking the set operations on the attributes 
named in the value set, using the corresponding values provided in the anys. 
Invocations on attribute set methods will be made in the order in which the values 
occur in the sequence.

5.11.5 Factory-based configuration

Factory operations on home objects may participate in the configuration process in a 
variety of ways.

¥ A factory operation may be explicitly implemented to establish a particular 
configuration.

¥ A factory operation may apply a configurator to newly-created component 
instances. The configurator may be supplied by an agent responsible for deploying 
a component implementation or a component assembly.

¥ A factory operation may apply an attribute configuration (in the form of a 
Components::ConfigValues sequence) to newly-created instances. The attribute 
configuration may be supplied to the home object by an agent responsible for 
deploying a component implementation or a component assembly.
5-80 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

¥ A factory operation may be explicitly implemented to invoke 
configuration_complete on newly-created component instances, or to leave 
component instances open for further configuration by clients.

¥ A factory operation may be directed by an agent responsible for deploying a 
component implementation or assembly to invoked configuration_complete on 
newly-created instances, or to leave them open for further configuration by clients.

If no attribute configuration is applied by a factory or by a client, the state established 
by the component implementation’s instance initialization mechanism (e.g., the 
component servant constructor) constitutes the default configuration.

5.11.5.1 HomeConfiguration interface

The implementation of a component type’s home object may optionally support the 
HomeConfiguration interface. The HomeConfiguration interface is derived from 
Components::HomeBase. In general, the HomeConfiguration interface is 
intended for use by an agent deploying a component implementation into a container, 
or an agent deploying an assembly.

The HomeConfiguration interface allows the caller to provide a Configurator 
object and/or a set of configuration values that will be applied to instances created by 
factory operations on the home object. It also allows the caller to cause the home 
object’s factory operations to invoke configuration_complete on newly-created 
instances, or to leave them open for further configuration.

The HomeConfiguration allows the caller to disable further use of the 
HomeConfiguration interface on the home object.

The Configurator interface and the HomeConfiguration interface are 
designed to promote greater re-use, by allowing a component implementor 
to offer a wide range of behavioral variations in a component implementa-
tion. As stated previously, the CORBA component specification is intended 
to enable assembling applications from pre-built, off-the-shelf component 
implementations. An expected part of the assembly process is the customi-
zation (read: configuration) of a component implementation, to select from 
among available behaviors the behaviors suited to the application being 
assembled. We anticipate that assemblies will need to define configurations 
for specific component instances in the assembly, but also that they will 
need to define configurations for a deployed component type, i.e., all of the 
instances of a component type managed by a particular home object.

The HomeConfiguration interface is defined by the following IDL:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-81



5

module Components {

interface HomeConfiguration : HomeBase {
void set_configurator (in Configurator cfg);
void set_configuration_values(

in ConfigValues config);
void complete_component_configuration(in boolean b);
void disable_home_configuration();

};

};

set_configurator

This operation establishes a configurator object for the target home object. Factory 
operations on the home object will apply this configurator to newly-created instances.

set_configuration_values

This operation establishes an attribute configuration for the target home object, as an 
instance of Components::ConfigValues. Factory operations on the home object 
will apply this configurator to newly-created instances.

complete_component_configuration

This operation determines whether factory operations on the target home object will 
invoke configuration_complete on newly-created instances. If the value of the 
boolean parameter is true, factory operations will invoke configuration_complete 
on component instances after applying any required configurator or configuration 
values to the instance. If the parameter is false, configuration_complete will not be 
invoked.

home_configuration_complete

This operation is serves the same function with respect to the home object that the 
configuration_complete operation serves for components. This operation disables 
further use of operations on the HomeConfiguration interface of the target home 
object. If a client attempts to invoked HomeConfiguration operations, the request 
will raise a BAD_INV_ORDER system exception. This operation may also be 
interpreted by the implementation of the home as demarcation between its own 
configuration and operational phases, in which case the home implementation may 
disable operations and attributes on the home interface.

If a home object is supplied with both a configurator and a set of configuration values, 
the order in which set_configurator and set_configuration_values are invoked 
determines the order in which the configurator and configuration values will be applied 
to component instances. If set_configurator is invoked before 
set_configuration_values, the configurator will be applied before the configuration 
values, and vice-versa.
5-82 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

The component implementation framework defines default implementations of factory 
operations that are automatically generated. These generated implementations will 
behave as specified here. Component implementors are free to replace the default 
factory implementations with customized implementations. If a customized home 
implementation chooses to support the HomeConfiguration interface, then the 
factory operation implementations must behave as specified, with respect to 
component configuration.

5.12 CORBAComponent Module

This specification defines a module named Components, which contains a set of pre-
defined interfaces that support the component model. The Components module is 
defined as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-83



5

module Components {

interface ComponentDef;

typedef string FeatureName;
typedef sequence<FeaureName> NameList;

valuetype Cookie {
private sequence<octet> cookieValue;

};

exception InvalidName { };
exception InvalidConnection { };
exception ExceededConnectionLimit { };
exception AlreadyConnected { };
exception NoConnection { };
exception CookieRequired { };
exception DuplicateKeyValue { };
exception UnknownKeyValue { };
exception BadEventType {

CORBA::RepositoryId expected_event_type
};
exception HomeNotFound { };

interface Navigation {

valuetype FacetDescription {
public RepositoryID InterfaceID;
public FeatureName Name;

};

valuetype Facet : FacetDescription {
public Object Ref;

};

typedef sequence<Facet> Facets;

typedef sequence<FacetDescription>
FacetDescriptions;

Object provide_facet( in FeatureName name ) 
raises (InvalidName);

FacetDescriptions describe_facets();

Facets provide_all_facets();

Facets provide_named_facets(in NameList names)
raises (InvalidName);

boolean same_component( in Object ref );
5-84 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

};

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

};

typedef sequence<ConnectionDescription> ConnectedDescriptions;

interface Receptacles {

Cookie connect ( 
in FeatureName name, 
in Object connection )

raises (
InvalidName, 
InvalidConnection, 
AlreadyConnected, 
ExceededConnectionLimit);

void disconnect ( 
in FeatureName name, 
in Cookie ck)

raises (
InvalidName, 
InvalidConnection, 
CookieRequired, 
NoConnection);

ConnectionList get_connections (in FeatureName name) 
raises (InvalidName);

};

struct Property {
PropertyName name;
PropertyValue value;

};

typedef sequence<Property> EventData;

abstract valuetype EventBase {};

interface EventConsumerBase {
void push_event(in EventBase evt) raises (BadEventType);

};

interface Events {
EventConsumerBase 
get_consumer(in FeatureName sinkName)

raises(InvalidName);
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-85



5

Cookie subscribe(in FeatureName publisherName, 
in EventConsumerBase subscriber) 
raises (InvalidName);

void unsubscribe(in FeatureName publisherName, 
in Cookie ck) 
raises(InvalidName, InvalidConnection);

void connect_consumer(in FeatureName emitterName, 
in EventConsumerBase consumer) 
raises (InvalidName, AlreadyConnected);

EventConsumerBase 
disconnect_consumer(in FeatureName sourceName) 

raises(InvalidName, NoConnection);

};

interface HomeBase {
ComponentDef get_component_def();
void destroy_component ( in ComponentBase comp);

};

interface KeylessHomeBase {
ComponentBase create_component();

};

interface HomeFinder {
HomeBase find_home_by_component_type (

in CORBA::RepositoryId comprepid)
raises (HomeNotFound);

HomeBase find_home_by_home_type (
in CORBA::RepositoryId homerepid)
raises (HomeNotFound);

HomeBase find_home_by_name (
in string home_name) 
raises (HomeNotFound);

};

interface Configurator {
void configure(in ComponentBase comp)
raises WrongComponentType;

};

valuetype ConfigValue {
FeatureName name;
any value;

};

typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

};
5-86 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



5

interface HomeConfiguration : HomeBase {
void set_configurator (in Configurator cfg);
void set_configuration_values(

in StandardConfigurator::ConfigValues config);
void complete_component_configuration(in boolean b);
void disable_home_configuration();

};

interface ComponentBase 
: Navigation, Receptacles, Events {

ComponentDef get_component_def ( );
HomeBase get_home( );
void configuration_complete( );
void destroy();

};

};

5.13 Component Inheritance

The mechanics of component inheritance are defined by the inheritance relationships 
of the equivalent IDL component interfaces. The following rules apply to component 
inheritance:

¥ All interfaces for non-derived component types are derived from 
ComponentBase. 

¥ If a component type directly supports an IDL interface, the component interface is 
derived from both ComponentBase and the supported interface.

¥ A derived component type may not directly support an interface.

¥ The interface for a derived component type is derived from the interface of its base 
component type.

¥ A component type may have at most one base component type.

¥ The features of a component that are expressed directly on the component interface 
are inherited as defined by IDL interface inheritance. These include:

¥ operations implied by provides statements

¥ operations implied by uses statements

¥ operations implied by emits statements

¥ operations implied by consumes statements

¥ attributes
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 5-87



5

Figure 5-2 Component inheritance and related interface inheritance

5.14 Component Descriptions in the Interface Repository

Component types are described in the Interface Repository by objects that support the 
ComponentDef interface.

module CORBA {
interface ComponentDef : InterfaceDef {
// details to be supplied in subsequent draft of specification
};

};

ComponentDef is derived from InterfaceDef, reflecting the fact that the component 
meta-type is a specialization and extension of the interface meta-type.

component A supports I

interface I

component B interface B

interface A

interface ComponentBase

interface Navigation

interface Events

interface Receptacles

interface HomeBase

pre-defined

user-defined

generated

home AHome manages A 

home BHome manages A 

interface AHome

interface AHome
5-88 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



Component Persistence 6
6.1 Persistence and the Component Implementation Framework (CIF)

The Component Implementation Framework (CIF) defines the programming model for 
constructing component implementations, which includes the programming model for 
managing persistent state. The elements of the CIF that pertain directly to persistence 
are described separately in this chapter, and the balance of the CIF is described in 
<<<>>>. The persistence mechanisms specified in this chapter are best understood 
when considered in that context.

At the time of writing, the OMG process for adopting a Persistent State 
Specification is in progress, but the outcome (as always) is uncertain. By 
organizing this document to clearly delineate the specification of state per-
sistence mechanisms, we hope to reduce any future effort required to align 
the persistence model of the CIF with a putative PSS model. In particular, 
should a PSS specification be adopted whose specification is sufficiently 
similar to this one, it may be possible to remove the sections of this docu-
ment that address persistence, and replace them with a reference to the PSS 
specification. Otherwise, it will be necessary to either 1) maintain a sepa-
rate persistence model for components, or 2) define a mapping from the 
component persistence model to the PSS.

6.1.1 CIDL, components, and persistence

The focal point of the CIF is Component Implementation Definition Language (CIDL), 
a declarative language for describing the structure and state of component 
implementations. Component-enabled ORB products generate implementation 
skeletons from CIDL definitions. Component builders extend these skeletons to create 
complete implementations.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-89



6

CIDL definitions address two distinct aspects of a component implementation—the 
form of the implementation of the component’s behavior (i.e., the organization of the 
programming artifacts that implement the operations), and the abstract representation 
of the component’s state. Although CIDL as a language addresses both of these issues, 
only the portion of CIDL that defines persistent state is described in this chapter.

CIDL includes constructs for declaring aggregations of state, called storage types, and 
interfaces for managing instances of those types, called storage homes and persistent 
stores. A CIDL implementation definition may optionally associate a storage type with 
the component implementation, such that the storage type defines the form of the 
internal state encapsulated by the component. When a component implementation 
declares an associated storage type in this manner, the CIF and the run-time container 
environment cooperate to manage the persistence of the component state automatically. 
The coupling of storage types with component types is described in <<<>>>.

6.2 Component persistence

6.2.1 Persistence concepts

The CIF defines the following concepts pertaining to persistence:

6.2.1.1 Storage type

A storage type is a meta-type defined CIDL. A storage type defines an abstract state 
that may be specified as the state of an executor (i.e., a component implementation), in 
which case the component’s state will be automatically managed by the generated 
implementation of the executor, the generated implementation of an associated home 
executor, and the container. Storage types may also be explicitly managed by a 
component or object implementation.

6.2.1.2 Storage object

Storage objects are instances of storage types. A storage object is an abstract entity that 
conceptually exists in the persistent store. A storage object associates an identity 
(specifically, a Persistent ID or PID) with a state vector. A storage object is created and 
managed by a persistent store, through the agency of a storage home.

6.2.1.3 Incarnation

An incarnation is a programming artifact that manifests a particular storage object in 
an execution context. An incarnation provides a programming interface through which 
the storage object’s state can be accessed and modified. An incarnation hides storage 
implementation details, such as the physical state being managed by the persistent 
store, actual storage and retrieval of physical data, the implementation of transactional 
semantics, cache management, and so on.
6-90 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

6.2.1.4 Storage home

A storage home defines an interface for managing instances of a specified storage type. 
A storage home interface includes operations to create storage objects, find 
incarnations of storage objects, and destroy instances of the storage type associated 
with the manager.

6.2.1.5 Persistent store

A persistent store defines a scope within which storage objects are identified and 
managed. A persistent store is the primary point of contact between the application and 
the storage mechanisms. A persistent store manages the state of storage objects, and 
maintains ACID properties of operations on the state (if required). A persistent store 
provides storage homes through which component implementations can create, 
incarnate, and destroy storage objects. 

6.2.1.6 Persistent ID (or PID)

A PID is a value that uniquely identifies a storage object within the scope of the 
persistent store to which it belongs. There is a one-to-one mapping between storage 
objects and PID values. PID values are provided by the persistent store, and are opaque 
to servant logic and applications.

6.2.1.7 Primary keys

A storage home may optionally define a primary key. A primary key declaration 
specifies a value type, which is derived from an abstract base value type, 
Components::PrimaryKeyBase. Values of the type specified in the storage home 
definitions are uniquely associated with storage objects managed by that storage home. 
These values act as keys—identities assigned to storage objects by the application at 
the time of their creation. The storage home is responsible for maintaining the 
association between a set of key values and their respective storage objects. A primary 
key declaration implicitly declares a factory operation, a finder operation, and a 
destructor operation on the storage home. These operations create new component 
instances with specified key values, map key values onto PIDs or incarnations, and 
destroy component instances with specified key values, respectively.

6.3 Component Implementation Definition Language (CIDL)

This specification defines Component Implementation Definition Language (CIDL), an 
adjunct to IDL for describing characteristics of state management and component 
implementations that can be automatically generated. CIDL definitions include 
descriptions of a component implementation’s persistent state, interfaces for managing 
instances of that state, and descriptions of the home executor and the component 
executor.

CIDL is a separate language from IDL, but is closely related to it.  The relationship 
between IDL and CIDL is summarized in the following observations:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-91



6

¥ CIDL is used to define the structure of component implementations and the state 
that they manage.  CIDL definitions are not visible beyond the scope of a 
component’s implementation context.

¥ CIDL can import the contents of specified IDL name scopes from an interface 
repository or functional equivalent thereof. CIDL constructs can make use of 
imported IDL types in CIDL definitions. 

¥ CIDL can also be used directly to define a large subset of IDL types, essentially all 
types but components and interfaces. The intersection of IDL and CIDL grammars 
is large, as most of the volume of IDL grammar describes constant and data type 
definitions. Although CIDL data types may be identical to IDL data types, there is 
no provision for importing CIDL definitions into IDL.

¥ This specification does not at present define a standard meta-data repository for 
CIDL constructs, analogous to the interface repository for IDL, though one may be 
defined in the future if the need arises. However, type identifiers are assigned to 
CIDL constructs, and are exported through programming interfaces of constructs for 
availability at run time. The assignment of type identifiers to CIDL constructs is 
described in <<<>>>.

The need for a standard meta-data representation is questionable, since 
CIDL is inherently limited to implementation concerns, primarily with 
respect to code generation for servants. Unlike the interface repository, a 
standard CIDL repository is not required for product interoperability.

6.3.1 Grammar description syntax

The syntax used to describe CIDL Grammar is identical to that used to define IDL, and 
is described in section 3.1 of the CORBA 2.3 specification (ptc/98-12-04). 

6.3.2 Lexical conventions

With the exception of keywords, CIDL lexical conventions are identical to those of 
IDL, and are described in section 3.2 of the CORBA 2.3 specification (ptc/98-12-04). 

CIDL defines all of the keywords in IDL as CIDL keywords, whether they appear as 
terminals in CIDL grammar or not. These are as follows:
6-92 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

abstract double long readonly unsigned
any enum module sequence union
attribute exception native short Val ueBase
boolean  FALSE Object string valuetype
case  fixed octet struct void
char  float oneway supports wchar
const  in out switch wstring
context  init private  TRUE
custom inout public truncatable
default interface raises typedef

Issue Ð add new component keywords

In addition, CIDL specifies the following keywords:

factory  local  provides  storedAs 
finder  localBase  servant  strong 
import  persistentStore storage supports
incarnationBase primaryKey storageHome weak

6.3.3 CIDL Grammar

As noted above, the intersection of IDL and CIDL is large.  To avoid reproducing most 
of the IDL grammar here, this specification defines a new starting production, and 
productions for constructs specific to CIDL.  All non-terminal symbols that appear in 
the CIDL grammar below, but which are not defined therein, take their definitions 
from the IDL grammar specified in the CORBA 2.3 specification (ptc/98-12-04). 

Although this section presents the complete CIDL grammar (modulo the intersection 
with IDL grammar), only the constructs that pertain to persistence are described. The 
remaining constructs that define form of behavioral units and their relationships to 
storage types are described in <<<>>>.

The following BNF productions, in conjunction with productions from IDL grammar 
necessary to resolve non-terminals, define the grammar for CIDL:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-93



6

<cidl_specification> ::= <cidl_imports> <cidl_modules>

<cidl_imports> ::= <cidl_import>*

<cidl_modules> ::= { <cidl_module> “;” }+

<cidl_import> ::= “import” <cidl_imported_scope> “;”

<cidl_imported_scope> ::= <scoped_name> | <string_literal>

<cidl_module> ::= “module” <identifier> “{” <cidl_definition>* “}”

<cidl_definition> ::=  <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <value> “;”
| <cidl_module> “;”
| <storage> “;”
| <storage_home> “;”
| <persistent_store> “;”
| <executor> “;”
| <home_executor> “;”
| <type_id_dcl> “;”

<storage> ::= <storage_dcl> 
| <storage_forward_dcl>

<storage_forward_dcl> ::= “storage” <identifier>

<storage_dcl> ::= <storage_header> <storage_body>

<storage_header>  ::= “storage” <identifier> 
[ <storage_inheritance_spec> ]

<storage_inheritance_spec> ::= “:” <scoped_name>

<storage_body> ::= “{” <storage_member>* “}”

<storage_member> ::= <nested_storage_member>
| <atomic_member>

<nested_storage_member> = <independent_storage_member>
| <dependent_storage_member>

<independent_storage_member> ::= [ “readonly” ] <reference_modifier> 
<independent_storage_type> <simple_declarator> “;”

<reference_modifier> ::= “strong” | “weak” 

<independent_storage_type> ::= <storage_type> 
| <storage_sequence_spec>
6-94 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

<storage_type> ::= <storage_dcl> 
| <storage_type_spec>

<storage_sequence_spec> ::= “sequence” “<” <storage_type_spec> “>”

<storage_type_spec> ::= <scoped_name> | “incarnationBase”

<dependent_storage_member> ::= <storage_type> <simple_declarator> “;”

<atomic_member> ::= [ “readonly” ] <type_spec> <declarators> “;”

<storage_home> ::= <storage_home_header> <storage_home_body> 

<storage_home_header> ::= “storageHome” <identifier> [ 
<storage_type_inheritance_spec> ] “manages” 
<scoped_name> [ <primary_key_spec> ]

<storage_home_inheritance_spec> ::= “:” <scoped_name>

<primary_key_spec> ::= “primaryKey” <scoped_name>

<storage_home_body> ::= “{” <storage_home_member>* “}”

<storage_home_member> ::= <storage_home_operation> “;”

<storage_member_name> ::= <identifier>

<storage_home_operation> ::= <factory_operation>
| <finder_operation>
| <local_operation>

<factory_operation> ::= “factory” <identifier> “(“ [ <init_param_decls> ] “)” [ 
<raises_expr> ] 

<finder_operation> ::= “finder” <identifier> “(“ [ <init_param_decls> ] “)” [ 
<raises_expr> ] 

<local_operation> ::= <local>

<persistent_store> ::= <persistent_store_header> <persistent_store_body>

<persistent_store_header> ::= “persistentStore” <identifier> 

<persistent_store_body> ::= “{” <persistent_store_member>+ “}”

<persistent_store_member> ::= <storage_home_spec> “;”
| <local_operation> “;”

<storage_home_spec> ::= “provides” <storage_home_type_spec> 
<simple_declarator>
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-95



6

<storage_home_type_spec> ::= <scoped_name>

The following productions are included for completeness, but are not discussed in this 
chapter. The discussion of executor definitions is provided in <<<>>>.

<executor> ::= <executor_header> <executor_body>

<executor_header> ::= <executor_category> <identifier> “implements” 
<scoped_name> [ <storage_spec> ]

<executor_category> ::= “service” 
| “session”
| “entity”

<storage_spec> ::= “storedAs” <scoped_name>

<executor_body> ::= “{” <executor_member>+ “}”

<executor_member> ::= <segment> “;”

<segment> ::= “segment” <identifier> [ <storage_spec> ] <segment_body>

<segment_body> ::= “{” <segment_member>+ “}”

<segment_member> ::= <target_descr>

<target_descr> ::= “provides” <identifier> { “,” <identifier> }* “;”

<home_executor> ::= <home_executor_header> <home_executor_body>

<home_executor_header> ::= <executor_category> “home” <identifier> 
“implements” <scoped_name> [ “primaryKey” 
<scoped_name> ] [ <delegation_spec> ]
[ <storage_spec> ]

<delegation_spec> ::= “delegatesTo” <scoped_name>

<home_executor_body> ::= “{” <home_executor_member>* “}”

<home_executor_member> ::= <operation_descr> “;”
| <key_descr> “;”

<operation_descr> ::= <identifier> “delegatesTo” < scoped_name>

6.3.4 CIDL type identifiers

CIDL constructs are assigned type identifiers in a manner similar to IDL 
RepositoryIds. The following rules define the assignment of type identifiers and the 
form of the identifiers:
6-96 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

¥ The default format for CIDL type identifiers is identical to IDL format repository 
identifiers, excepts that the format name prefix is “CIDL:”, rather than “IDL:”.

¥ By default, all CIDL constructs which are exact analogs of IDL constructs are 
assigned default type identifiers in CIDL format.

¥ The following CIDL constructs are assigned default identifiers in CIDL format:

storage storageHome persistentStore executor

¥ The typeId and typePrefix declarations defined for IDL behave exactly in CIDL 
as they do in IDL. These mechanisms are described in <<<>>>.

6.4 CIDL Specification

The grammar for CIDL specifications is described by the following BNF:

<cidl_specification> ::= <cidl_imports> <cidl_modules>

<cidl_imports> ::= <cidl_import>*

<cidl_modules> ::= { <cidl_module> “;” }+

A CIDL specification consists of zero or more imports, followed by one or more 
module definitions.  Unlike IDL, there is no anonymous name scope in CIDL. 
Declarations (other than module declarations themselves) cannot be made outside of a 
module scope in CIDL.

6.5 Import

The import mechanism for IDL is described in Section 4.2 on page 24. The same 
mechanism is available in CIDL, with some minor differences. Specifically, import 
statements may be used to import name scopes into CIDL specifications from both 
IDL and CIDL specifications. Although CIDL cannot be used to specify some IDL 
constructs (e.g., interfaces and components), it can import their definitions into CIDL 
specifications, where they may be used as constituents of CIDL constructs. 

The grammar for a CIDL import statement is isomorphic to that of an IDL import 
statement:

<cidl_import> ::= “import” <cidl_imported_scope> “;”

<cidl_imported_scope> ::= <scoped_name> | <string_literal>

The <cidl_imported_scope> non-terminal may be either a fully-qualified scoped name 
denoting an IDL or CIDL name scope, or a string containing the interface repository 
ID of an IDL name scope or CIDL name scope.

As with imports in IDL, a CIDL specification that imports name scopes from IDL 
and/or CIDL must be interpreted in the context a well-defined set of IDL and/or CIDL 
specifications that constitute the space from within which name scopes are imported. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-97



6

Since there is not standard repository for CIDL meta-data, the means by which a 
particular set of IDL and CIDL specifications is associated with the context in which a 
CIDL specification is interpreted is not specified

At present, we do not specify a repository structure for CIDL. The need for 
a standard meta-data representation is questionable, since CIDL is inher-
ently limited to implementation concerns, primarily with respect to code 
generation for servants. Unlike the interface repository, a standard CIDL 
repository is not required for product interoperability.

The effects of an import statement in CIDL are as follows:

¥ The contents of the specified name scope are visible in the context of the importing 
specification. Names that occur in CIDL declarations within the importing 
specification may be resolved to definitions in imported scopes. 

¥ Imported IDL and CIDL name scopes exist in the same space as names defined in 
subsequent  declarations in the importing specification. 

¥ CIDL module definitions may not re-open modules defined in imported IDL name 
scopes. This rule precludes the possibility of any CIDL declaration having the same 
fully-qualified name as an imported IDL declaration. CIDL module definitions may, 
however, re-open modules defined in imported CIDL name scopes.

¥ Importing an inner name scope (i.e., a name scope nested within one or more 
enclosing name scopes) does not implicitly import the contents of any of the 
enclosing name scopes.

¥ When an name scope is imported, the names of the enclosing scopes in the fully-
qualified path name of the enclosing scope are exposed within the context of the 
importing specification, but their contents are not imported. An importing 
specification may not re-define or re-open a name scope which has been exposed 
(but not imported) by an import statement.

¥ Importing a name scope recursively imports all name scopes nested within it.

¥ For the purposes of this specification, IDL name scopes that can be imported (i.e., 
specified in an import statement) into CIDL include the following: module, 
interface, valuetype, struct, union, and exception. CIDL name scopes that can 
be imported into other CIDL specifications include the following: module, 
incarnation, storage, local, struct, union, and exception.

¥ Redundant imports (e.g., importing an inner scope and one of its enclosing scopes 
in the same specification) are disregarded.  The union of all imported scopes is 
visible to the importing program.

¥ This specification does not define any normative relationship between units 
specification and units of generation and/or compilation for any language mapping.

6.6 CIDL modules

6.6.1 Syntax

The syntax for a CIDL module definition is as follows:
6-98 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

<cidl_module> ::= “module” <identifier> “{” <cidl_definition>* “}”

<cidl_definition> ::=  <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <value> “;”
| <cidl_module> “;”
| <storage> “;”
| <storage_home> “;”
| <persistent_store> “;”
| <executor> “;”
| <home_executor> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

A module defines a name scope, within which the contained definitions are named. 
Note that CIDL definitions may not exist outside of a module definition; CIDL does 
not support an anonymous file scope.

6.7 Storage types

Storage types define abstract states that are managed by persistent stores. Storage 
objects (instances of storage types) are exposed to the application as incarnations, as 
defined by CIDL language mappings.

A storage declaration consists of a storage header that names the storage type and 
optionally specifies an inherited base storage type, and a body that declares members 
of the storage type. An instance of the storage type consists of the aggregation of the 
states of its members.

6.7.1 Storage Header

6.7.1.1 Syntax

A storage type declaration has the following form:

<storage_header>  ::= “storage” <identifier> 
[ <storage_inheritance_spec> ]

<storage_inheritance_spec> ::= “:” <scoped_name>

A storage declaration constitutes a new name scope, nested within the enclosing scope 
in which the storage is declared. 

A storage header consists of the following elements:

¥ The keyword storage.

¥ An <identifier> that names the storage type in the enclosing scope.

¥ An optional inheritance specification. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-99



6

A storage forward declaration declares the name of a storage type without defining it. 
This permits the definition of storage types that refer to each other. The syntax of a 
forward storage declaration consists of the following elements:

¥ The keyword storage

¥ An <identifier> that names the storage type in the enclosing scope. 

The actual definition of the declared storage type must follow later in the specification. 
Multiple forward declarations of the same storage type name are legal. It is illegal to 
inherit from a forward-declared storage type whose definition has not yet been seen.

6.7.1.2 Storage type inheritance

A storage type may inherit at most one base storage type. The optional 
<scoped_name> in the storage header identifies a base storage type, from which the 
storage type being defined is derived. This name must denote a previously defined 
storage type. Storage type inheritance causes all members defined in the closure of the 
inheritance tree to be imported into the current storage type’s naming scope. Members 
in derived storage types may not re-define members inherited from base storage types, 
i.e., member names must be unique within the inheritance hierarchy.

6.7.1.3 Substitutability

When the type of a formal parameter of an operation is a storage type, an incarnation 
may be passed as the actual parameter if it incarnates the specified formal type or any 
storage type derived (directly or indirectly) from the formal type. If the formal type of 
a parameter is incarnationBase, an incarnation of any storage type may be passed as 
the actual parameter.

6.7.1.4 Narrowing

Storage types do not inherently support narrowing operations, as all uses of storage 
types are local to a single process. Type conversions may be done with the mechanisms 
provided by programming languages. If a particular language mapping needs to define 
an explicit narrowing mechanism, it may do so.

6.7.2 Members of storage types

Members of storage types may be nested storage members or atomic members. The 
type of a nested storage member is itself a storage type. The type of an atomic storage 
member is any non-storage type (e.g., IDL primitive types, value types, etc.). 

Nested storage members are further sub-divided into two categories—independent 
members and dependent members. Independent members are references to distinct 
storage objects with separate identities and life cycles. Dependent members are 
contained by the storage types to which they belong. Values assigned to dependent 
6-100 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

members have no identities, apart from the identities of the containing storage objects. 
The life cycle of a dependent member is identical to the life cycle of the storage object 
that contains it.

All storage types support two kinds of incarnations—independent incarnations that 
have identity, and dependent incarnations that have no identity. Independent 
incarnations may be assigned to independent members of storage types by reference, 
and used as incarnated states of objects. Dependent incarnations only exist in the 
context of their enclosing storage objects. The storage type definition describes the 
form of the storage type, which is invariant across independent and dependent 
incarnations of the same type.

In general, references to independent incarnations should not be type-com-
patible with representations of dependent incarnations, to discourage inap-
propriate incarnations from being assigned to the wrong kind of members. 
When possible, language mappings for object-oriented languages should 
represent the storage abstraction as an abstract interface that exposes only 
mutators and accessors for the defined state. The specific types for inde-
pendent incarnations may mix in an base interface that for independent 
incarnations that provides operations to manage life cycle and identity. 
Accessors for dependent members should return the type of the abstract 
state interface, which cannot be converted to the independent incarnation 
type.

6.7.3 Independent storage members

6.7.3.1 Syntax

The syntax of an independent storage member is as follows:

<independent_storage_member> ::= [ “readonly” ] <reference_modifier> 
<independent_storage_type> <simple_declarator> “;”

<reference_modifier> ::= “strong” | “weak” 

<independent_storage_type> ::= <storage_type> 
| <storage_sequence_spec>

<storage_type> ::= <storage_dcl> 
| <storage_type_spec>

An independent member declaration consists of the following elements:

¥ the optional modifier keyword readonly

¥ a <reference_modifier>, either the keyword strong or the keyword weak

¥ an <independent_storage_type> that defines the type of the member; it must be 
either of the following forms:

¥ a complete storage type definition <storage_dcl> nested within the enclosing 
storage type definition, or
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-101



6

¥ a <storage_type_spec>, either a <scoped_name> that must denote a previously 
declared (but non necessarily defined) storage type, or the keyword 
incarnationBase

¥ a <storage_sequence_spec> that defines the member to be a storage sequence 
member. Storage sequence members are described in Section 6.7.5, “Storage 
sequence members.

¥ a <simple_declarator>, which is an identifier that names the member in the scope 
of the storage type

6.7.3.2 Semantics

An independent member is a reference to a distinct storage object, with its own 
identity and life cycle. The value of an independent member may be nil. Any value 
assigned to an independent storage member must be a reference to an independent 
incarnation.

Weak reference

If an independent storage member declaration contained the keyword weak, then the 
life cycle of any storage object whose reference is assigned to the member is 
unaffected by the life cycle of the owning storage object. Destruction of the owning 
storage object does not imply destruction of the weak independent member.

Strong reference

If an independent storage member declaration contains the keyword strong, then 
destruction of the owning storage object will cause the destruction of any storage 
object whose reference is assigned to the strong independent member.

6.7.4 Dependent storage members

6.7.4.1 Syntax

The syntax of a dependent storage member is as follows:

<dependent_storage_member> ::= <storage_type> <simple_declarator> “;”

<storage_type> ::= <storage_dcl> | <storage_type_spec>

<storage_type_spec> ::= <scoped_name> | “incarnationBase”

A dependent member declaration consists of the following elements:

¥ a <storage_type> that defines the type of the member; it must be either of the 
following forms:

¥ a complete storage type definition <storage_dcl> nested within the enclosing 
storage type definition, or
6-102 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

¥ a <storage_type_spec> that must denote a previously declared (but non 
necessarily defined) storage type or the keyword incarnationBase. A dependent 
member may not be a sequence of a storage type (see Section 6.7.5 on page 104 
for discussion of storage member sequences).

¥ a <simple_declarator>, which is an identifier that names the member in the scope 
of the storage type

This syntax is similar to the independent storage member, with the exception that the 
readonly, weak, and strong keywords may not appear in the declaration.

6.7.4.2 Semantics

A dependent member is contained by the owning storage object. From the perspective 
of the storage object abstraction, a dependent member is not held by reference. (Note 
that a particular language mapping may or may not use the language’s notion of 
reference; this description applies to the conceptual model for dependent members). 
The value of a dependent member has no distinct identity (i.e., no PID), and its life 
cycle is identical to that of the owning storage object.

Dependent incarnations cannot be created independently (i.e., by a storage home that 
manages their storage type). Dependent members are created when their owning 
storage objects are created. When a storage object with a dependent member is created, 
the dependent member is assigned a value of its defined type, either a default value, an 
arbitrary value, or a value determined by the creation operation. 

The mutator methods of dependent storage members copy the values of their 
parameter’s members to the corresponding members of the mutator’s target. 
Conceptually, the state of a dependent member is modified by invoking mutators on 
the dependent incarnation returned by the dependent member’s accessor. The behavior 
of a dependent member’s mutator is the equivalent of member-by-member assignment 
of its own members. 

For example:

// CIDL

storage duck {
string s;

long n;
};
storage wabbit {

weak duck indepDuck;
duck depDuck;

};

The incarnations for A and B would be (roughly):

// Java language mapping
interface duckAbstractState {

string s();
void s(string s);
long n();
void n(long n);
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-103



6

]

interface duck extends duckAbstractState, 
IncarnationBase {}

interface wabbitAbstractState {
duck indepDuck();
void indepDuck(duck val);
duckAbstractState depDuck();
void depDuck(duckAbstractState val);

}

Assume that wabbitHole is a storage home that manages type wabbit. The 
following example illustrates valid uses of a dependent member:

wabbit bugs = wabbitHole.create();
// bugs.indepDuck == nil
// bugs.depDuck != nil, already initializaed with
// dependent incarnation

// the following is preferred for clarity:
bugs.depDuck().s(“daffy”); 

// the following is also legal, but begs the issue 
// regarding the ability to get a “reference” for
// the dependent member:
duckAbstractState dk = bugs.depDuck();
dk.n(13);
String str = dk.s();

wabbit peter = wabbitHole.create();

// the following line:
peter.depDuck(bugs.depDuck());

// is the equivalent of:
peter.depDuck().s(bugs.depDuck().s());
peter.depDuck().n(bugs.depDuck().n());

// note also that the java language mapping allows
// independent incarnations as parameters for
// mutators of dependent incarnations:
peter.depDuck(bugs.indepDuck());

// which copies the value of indepDuck, as above

// note that dk cannot be assigned to the
// independent member:
peter.indepDuck(bugs.depDuck()); 
// illegal! (won’t compile)

6.7.5 Storage sequence members

Sequences of storage types may only be declared as part of a storage member 
declaration. Hence, sequences of storage types are always anonymous.
6-104 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

This does not present the same problems that normal anonymous sequences 
do, since storage sequences cannot be contstructed by applications.

Storage sequences have the following grammar (in the context of independent storage 
member declarations):

<storage_sequence_spec> ::= “sequence” “<” <storage_type_spec> “>”

Storage sequence members have special semantics, which are summarized as follows:

¥ The declaration of a sequence member may occur in the context of an independent 
member declaration. 

¥ The characteristic of independence implied by the declaration, and the nature of the 
reference stated in the declaration (strong or weak) apply to the elements 
contained in the sequence, not the sequence itself.

¥ Storage sequences may only be one-dimensional, i.e., they may not be sequences of 
sequences of storage types.

Note that the storage type managed by the sequence may have sequence 
members, achieving the same effect as sequences of sequences, though in a 
somewhat more cumbersome manner

¥ The sequence itself (as opposed to the storage objects in the sequence) is managed 
by the owning incarnation precisely as though it were a dependent member. 
Specifically, the sequence has no indentity as a storage object, but it has the 
characteristic that modifications made through its interface (i.e., the sequence’s 
interface for assigning storage object references to sequence elements) apply 
directly to the internal logical state of the incarnation that owns it.

¥ The mutator for a sequence member does not replace the sequence with another 
sequence; it replaces the contents of the member sequence with the contents of the 
argument.

¥ Members of the sequence are independent members, held by either strong or weak 
reference, as specified in the sequence member declaration.

In order to accomodate these semantics, langauge mappings may need to define special 
representations for sequences for storage objects.

6.7.6 Atomic members

An atomic member is, in general, any type other than an storage type or a sequence of 
a storage type. An atomic member is atomic from the perspective of the storage type, 
in that the member value is accessed or mutated as a single, whole entity. 
Modifications made to an atomic member value obtained from an accessor are not 
visible to the persistent store until it is assigned with the corresponding mutator. The 
semantics of atomic members are described in more detail below. 

6.7.6.1 Syntax

The syntax for an atomic member is as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-105



6

<atomic_member> ::= [ “readonly” ] <type_spec> <declarators> “;”

An atomic member declaration includes the following elements:

¥ the optional keyword readonly

¥ a <type_spec> that describes the type of the member

¥ one or more <declarators> that name the atomic member(s) in the scope of the 
enclosing storage type definition

The <type_spec> may denote any of the following:

¥ A base IDL or CIDL type (i.e., numeric, character, string, boolean, octet, fixed, any)

¥ A constructed type (i.e., struct, enum, union) defined in CIDL or imported from 
IDL

¥ An object reference type (i.e., an interface type imported from IDL, or Object) 

¥ A value type defined in CIDL or imported from IDL

¥ A sequence of any of the above types

Storage types, arrays of storage types, and sequences of storage types may not be 
members of a CIDL struct or union. Storage types and sequences of storage types may 
not be inserted into values of type any. 

If the readonly keyword appears in an atomic member declaration, no mutator is 
provided for the member on incarnations of the storage type.

Although it is legal to define types (with typedef) that resolve to arrays of storage 
types, such an array type may not be a member of a storage type.

6.7.7 Storage object life cycle

Throughout the following discussion, the notion of storage object life cycle pertains to 
storage objects that are incarnated by independent incarnations. Storage objects 
incarnated as dependent members do not have distinct life cycles from their owning 
objects.

The life cycle of a storage object is managed by the persistent store, by way of 
operations on storage homes. The interface and semantics of storage homes are 
described in Section 6.8 on page 112.

A storage object is created by a factory operation on a storage home. A storage object 
must be destroyed by the same storage home that created it. A storage object is said to 
be incarnated when a reference to the storage object’s incarnation exists in an active 
execution context. The storage object, as an abstraction, exists whether it is incarnated 
or not. Servant logic can request a storage home to incarnate a storage object with a 
specified PID value. If the storage home in question specified a primary key, servant 
logic can request a storage home to incarnate a storage object with a finder operation, 
specifying a key value. User-defined operations on the storage home may also return 
incarnations.
6-106 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

Note that creation of a storage object does not necessarily imply the immediate 
incarnation of that storage object. If a storage object does not require state 
initialization, the creation of a storage object may result only in the existence of a PID, 
from the perspective of the creating context.

6.7.8 Persistent IDs

A storage object has an identity, called a Persistent ID, or PID, that is unique within 
the scope of the persistent store associated with the manager that created it. Storage 
homes (on behalf of their persistent stores) assign PID values to storage objects when 
they are created. PID values are only meaningful to the persistent stores that allocate 
them. A storage object’s PID value can be obtained from the object’s incarnation. 

The type of a PID is defined by the following IDL:

module Components::Persistence {
typedef sequence<octet> PersistentId;

};

6.7.9 Incarnations

An incarnation is a programming artifact that exposes a storage object’s state in an 
execution context. An incarnation’s form in a particular programming language is 
specified by the CIDL mapping for that language.

The purpose of an incarnation is to de-couple the implementation of an object or 
component’s behavior (i.e., the logic programmed in the servant or executor) from the 
physical manifestation and management of the object or component’s state. A 
persistent store supplies incarnations that exposes accessor and mutator operations 
corresponding to the members of the storage type. A servant or executor’s 
implementation manipulates state by invoking these operations on the incarnation. The 
persistent store that implements the incarnation is free to represent and manage the 
underlying physical state in any way that satisfies the required semantics.

As described above in Section 6.7.2, “Members of storage types, incarnations may take 
two forms—dependent incarnations and independent incarnations. Dependent 
incarnations manifest storage objects that are contained members of other storage 
objects. Independent incarnations manifest storage objects that are not members of any 
other storage object, or are held by reference as members of other storage objects.

A dependent incarnation does not expose any identity for the underlying storage 
object, since the storage object has no identity apart from its identity as a member of 
the storage object that contains it. A dependent incarnation provides no operations to 
manage the life cycle of the underlying contained storage object, since the contained 
storage object’s life cycle is identical to that of the containing storage object. Language 
mappings for dependent incarnations shall supply the following semantics:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-107



6

¥ Each dependent member or read-write independent member declared in the storage 
type definition shall have corresponding accessor and mutator operations on the 
dependent incarnation. Read-only independent members shall have only accessor 
operations. 

¥ The details of managing access to dependent incarnations is determined by each 
CIDL language mapping. In general, the expected semantics are that references to 
dependent incarnations cannot be obtained. If these semantics are not supported in 
the particular programming language (or they would lead to unnecessary 
clumsiness), then references to dependent incarnations shall not be substitutable for 
references to independent incarnations. For example, it shall be illegal to obtain the 
reference to a dependent incarnation of a contained storage object and assign it to 
independent member of a storage object.

An independent incarnation exposes operations to provide the PID of the storage object 
it manifests, and to manage the storage object’s life cycle. Language mappings shall 
supply the following semantics for independent incarnations:

¥ Each dependent member or read-write independent member declared in the storage 
type definition shall have a corresponding accessor operation and mutator operation 
on the independent incarnation. Read-only members shall have only an accessor 
operation.

¥ Language mappings for independent incarnations shall provide a uniform operation 
on incarnations for obtaining the storage object’s PID.

¥ Language mappings for independent incarnations shall provide a uniform operation 
on incarnations for obtaining their associated persistent store.

¥ Language mappings for independent incarnations shall provide a uniform operation 
on incarnations for obtaining the associated storage home.

¥ Language mappings for independent incarnations shall be managed by reference. 
Any incarnation reference may have the value nil, denoting the absence of an 
incarnation.

¥ Language mappings for independent incarnations shall provide a uniform operation 
on incarnations for destroying the associated storage object.

¥ Language mappings shall provide a mechanism for obtaining the type identity of a 
storage type in the abstract (e.g., a static method on the incarnation type, or a helper 
class). CIDL type identities are described in <<<>>>.

Whether an incarnation is dependent or independent is not a function of the storage 
type it incarnates. Independent incarnations may be obtained from factory and finder 
operations on storage homes. Dependent incarnations cannot be explicitly created; they 
are created as a side effect of the creation of their owning storage objects. If an 
incarnation is obtained from the accessor for a dependent member of another 
incarnation, it is a dependent incarnation. A single storage type may simultaneously 
have some incarnations that are dependent and others that are independent.

Where possible, language mappings for operations on dependent incarnations that 
manage the abstract state of the underlying storage type shall be identical to the 
mappings for the same operations on independent incarnations.
6-108 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

6.7.9.1 IncarnationBase type

The keyword incarnationBase denotes the generalization of incarnation types. In 
practice, it acts as an abstract base type for all incarnation types. It plays the same role 
with respect to storage types that ValueBase plays with respect to value types. It can 
be used in declarations to describe signatures that can accept or return an incarnation 
of any storage type.

The relevant sections of each language mapping contain the specifics of how the 
IncarnationBase type is mapped to a particular language.

6.7.10 Persistence Semantics

The behavior of incarnations is specified in terms of the behaviors of  member 
accessor and mutator functions.  No assumptions can be made regarding the physical 
state of a given storage object, either as physical state in the active execution context, 
or physical state stored on some secondary medium. An incarnation presents a logical 
view of a storage object’s state, and may employ any desired technique (such as 
caching, interposition, pre-fetching, etc.)  to manage underlying physical state so as to 
present the correct logical behavior. The precise definition of the logical value of a 
storage object is determined by the implementation of the persistence mechanism and 
the context in which the access to the state occurs (e.g., the isolation policies of an 
underlying transaction mechanism).

6.7.10.1 Creation

Storage objects are created by factory operations on storage homes. A factory 
operation may establish initial values for any or all of the members of the storage 
object. The initial values may be derived from the parameters of the factory operation 
(if any), they may be default values determined by the persistent store or the 
implementation of the storage home, or they may be undefined. 

When a storage object is created, a PID is allocated by the persistent store and 
assigned to the storage object. The PID is unique to the storage object within the scope 
of the persistent store, and invariant over the life time of the storage object.

6.7.10.2 Incarnation

The creation of a storage object by a factory operation may or may not result in the 
incarnation of the storage object, depending on the form of the factory operation. If the 
factory operation returns a PID, it can be subsequently used to incarnate the storage 
object.  If the factory operation returns an incarnation, the PID can be obtained directly 
from the incarnation.

6.7.10.3 State access and modification

The storage object’s logical state is exposed to an execution context through accessor 
and mutator functions on an incarnation. An accessor function shall return the current 
logical value of the member of the storage object. A mutator function shall modify the 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-109



6

logical state of the storage object to reflect the value of the parameter. The relationship 
between accessor and mutator invocations and management of underlying physical 
state is not specified. It is the responsibility of the persistence mechanism and other 
cooperating mechanisms (such as a transaction mechanism) to ensure proper and 
consistent logical behavior.  Different implementations of a persistent store may have 
different definitions of proper and consistent logical behavior, and may define 
different circumstances under which such behavior can be guaranteed.

6.7.10.4 Incarnation release

The manner in which an incarnation is destroyed or released is determined by the 
specific programming language mapping. The life cycle of an incarnation is 
independent of the life cycle of its storage object; releasing or destroying an 
incarnation does not imply the destruction of the underlying storage object. A 
particular storage object (as identified by a single PID value) may have multiple 
incarnations over a period of time, possibly in multiple processes. The persistent store 
is responsible for maintaining the object’s state between (and during) incarnations, 
within the behavioral limits defined by the particular persistent store.

6.7.10.5 Destruction

A storage object may be destroyed by operations on the storage home, or the 
destruction operation on the incarnation. After a storage object is destroyed, any 
attempt to incarnate it with its PID shall fail (the precise manner of failure is specified 
in the interface definition for storage home). When the storage object associated with 
an incarnation is destroyed and the incarnation remains, any attempted invocation of an 
operation on the incarnation shall fail, raising the OBJECT_NOT_EXIST system 
exception.

6.7.10.6 Independent member semantics

For the purposes of this discussion, a storage object that has another storage object for 
an independent member is called the parent storage object; the member is called the 
child storage object. The relationship between a parent storage object and a child 
object is described by the following observations:

¥ Parent and child objects have distinct identities (i.e., distinct PIDs).

¥ The parent object holds a reference for the child object. The value of the reference 
may be nil, indicating the absence of a child storage object. 

¥ Graphs of storage objects formed by parent-child relationships may be re-entrant or 
cyclic (e.g., a child may have multiple parents, cyclic relationships may exist). 
Persistence mechanisms must respect and reproduce these relationships when 
storage objects are incarnated. 

¥ A child storage object must belong to the same persistent store as its parent(s).  All 
of the storage objects in a parent-child graph must belong to the same persistent 
store. 
6-110 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

¥ If the keyword strong appears in the declaration of a storage member, then the 
destruction of the parent object will cause the destruction of any child object 
assigned to the member. If the keyword weak appears, the destruction of the parent 
will not result in the destruction of the child.

¥ Storage types may have independent members of their own type, or that contain 
members of their own type, recursively. 

The following is allowed:

storage duck {
strong duck next;

};

also:

storage wabbit; // forward reference
storage duck {

strong wabbit bugs;
};
storage wabbit {

strong duck daffy;
// the following is legal because the independent member
// bugs of duck prevents unconditional infinite recursion
duck donald; 

};

6.7.10.7 Dependent member semantics

Dependent members behave as if their members were direct members of their owning 
storage objects. If storage type A had dependent member ma of type B, and storage 
type B had a member mb (of any type), the semantics of the dependent member ma 
would be as though its member mb were directly a member of A. The intervening 
dependent member ma provides the following utility:

¥ a dependent member aggregates its members under a single name, as a subset of the 
state of the owning storage object

¥ a dependent member allows the re-use of the type definition as an aggregation

¥ a dependent member allows its value to be assigned in a single operation

Storage types may not define dependent members of their own type, directly or 
indirectly.

Actually, this is prevented by the inability to declare a dependent member 
of a type which has not been previously defined.

6.7.10.8 Atomic member semantics

The details of assignment and management of atomic members (i.e., members which 
are non-storage data types) are determined by language mappings, as are the rules for 
memory management in languages where explicit memory management is an issue. In 
general, the semantics of atomic member assignment and management shall be value 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-111



6

semantics when efficiency concerns permit it. It is preferred that atomic member 
values are copied when returned from accessor functions and passed to mutator 
functions on incarnations.

A language mapping may choose to assign and manage certain types of atomic 
members by reference. For types whose instances may be physically large, such as 
value types, sequences, structs, etc., copying the value on every access or mutation 
may be unreasonably inefficient. Language mappings must clearly specify the 
assumptions that the servant logic is and is not allowed to make regarding ownership 
of a datum whose reference is obtained from, or assigned to, an atomic member 
accessor or mutator.

6.7.10.9 Valuetype atomic members

Sharing semantics

Sharing of value type instances is only defined and maintained with respect to a single 
atomic member. If a graph of values is constructed such that two separate atomic 
members (whose types are a value type) share values, the graphs that are reproduced 
when the storage object is subsequently incarnated will not share corresponding values. 
The graph reproduced for a specific member will be isomorphic to the graph that was 
visible from that member when the storage object’s previous incarnation was 
synchronized with storage.

Polymorphism and truncation

Persistent stores are not required to manage value type instances that are more derived 
than the declared types of the atomic members of the storage types in question. A 
persistent store implementation may choose to attempt to truncate value type instances 
to their declared types when they are assigned to members via mutator operations. This 
applies not only to the value that is assigned directly to the storage member, but also to 
all values in a graph that are reachable from the root value assigned to the storage 
member. A persistent store may attempt to truncate each value to the declared type of 
the reference (i.e., the declared type of the value member) to which it is assigned.

6.8 Storage home

A storage home definition associates a storage type with an interface that supports life 
cycle management of instances of the storage type. This interface is called the storage 
home interface.

6.8.1 Syntax

The syntax for declaring a storage home is as follows:
6-112 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

<storage_home> ::= <storage_home_header> <storage_home_body> 

<storage_home_header> ::= “storageHome” <identifier> [ 
<storage_type_inheritance_spec> ] “manages” 
<scoped_name> [ <primary_key_spec> ]

<storage_home_inheritance_spec> ::= “:” <scoped_name>

<primary_key_spec> ::= “primaryKey” <scoped_name>

<storage_home_body> ::= “{” <storage_home_member>* “}”

<storage_home_member> ::= <storage_home_operation> “;”

<storage_member_name> ::= <identifier>

<storage_home_operation> ::= <factory_operation>
| <finder_operation>
| <local_operation>

A storage home declaration consists of the following elements:

¥ the keyword storageHome

¥ an <identifier> that names the storage home in the enclosing scope

¥ an optional <storage_home_inheritance_spec> consisting of a colon “:” followed 
by a <scoped_name> that denotes a previously defined storage home type

¥ the keyword manages

¥ a <scoped name> that denotes a previously-defined storage type

¥ an <primary_key_spec> consisting of the keyword primaryKey, followed by a 
<scoped_name> denoting a primary key type

¥ a storage home body

A storage home declaration constitutes a name scope. 

If a storage home declaration includes an inheritance specification, the storage type 
managed by the home must be equivalent to, or derived from, the storage type 
managed by the base storage home type identified in the inheritance specification.

The type denoted by the <scoped_name> in the primary key specification must be a 
value type derived from the base type Components::PrimaryKeyBase. Constraints 
on primary key types are discussed in Section 6.8.4, “Primary key type constraints.

6.8.2 Equivalent local interfaces

The language mappings of storage home interfaces are defined indirectly, in terms of 
equivalent local interfaces. A storage home definition maps deterministically onto a 
local interface, which is called the storage home’s equivalent local interface. Local 
interfaces are defined in Section 4.1 on page 19.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-113



6

6.8.2.1 Implicit operations and equivalent local interface structure

Every storage home definition implicitly defines a set of operations whose names are 
invariant across storage homes, but whose signatures are specific to the storage type 
managed by the storage home and, if present, the primary key type specified by the 
storage home.

Because the same operation names are used for different storage homes, the implicit 
operations cannot be inherited. The specification for storage home equivalent local 
interfaces accommodates this constraint. A storage home definition results in the 
definition of three interfaces, called the explicit interface, the implicit interface, and 
the equivalent interface. The name of the explicit interface has the form 
<storage_home_name>Explicit, where <storage_home_name> is the declared 
name of the storage home definition. Similarly, the name of the implicit interface has 
the form <storage_home_name>Implicit, and the name of the equivalent interface 
is simply the name of the storage home definition, with the form 
<storage_home_name>. All of the operations defined explicitly on the storage 
home (including explicitly-defined factory and finder operations) are represented on 
the explicit interface. The operations that are implicitly defined by the storage home 
definition are exported by the implicit interface. The equivalent interface inherits both 
the explicit and implicit interfaces, forming the interface presented to programmer 
using the storage home.

The same names are used for implicit operations in order to provide clients 
with a simple, uniform view of the basic life cycle operations—creation, 
finding, and destruction. The signatures differ to make the operations spe-
cific to the storage type (and, if present, primary key) associated with the 
home. These two goals—uniformity and type safety—are admittedly con-
flicting, and the resulting complexity of equivalent home interfaces reflects 
this conflict. Note that this complexity manifests itself in generated inter-
faces and their inheritance relationships; the model seen by the client pro-
grammer is relatively simple.

6.8.2.2 Storage home definitions with no primary key

Given a storage home of the following form:

storageHome <storage_home_name> manages <storage_type>
{ 

<explicit_operations>
};

The resulting explicit, implicit, and equivalent local interfaces have the following 
forms:
6-114 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

local <storage_home_name>Explicit 
: Components::Persistence::StorageHomeBase 
{

<equivalent_explicit_operations>
};

local <storage_home_name>Implicit 
: Components::Persistence::KeylessHomeBase
{

Components::Persistence::PersistentId create();

<storage_type> find_by_pid(
in Components::Persistence::PersistentId pid

) 
raises (Components::Persistence::DoesNotExist);

};

local <storage_home_name> :
<storage_home_name>Explicit , 
<storage_home_name>Implicit 
{};

where <equivalent_explicit_operations> are the operations defined in the storage 
home declaration ( <explicit_operations> ), with factory and finder operations 
transformed to their equivalent operations, as described in Section 6.8.5, “Explicit 
operations in storage home definitions.

create

This operation creates a new storage object, returning its PID. The PID can be 
subsequently to incarnate the storage object with find_by_pid on the implicit 
interface, or with StorageHomeBase::find_incarnation_by_pid.

find_by_pid

This operation incarnates the storage object identified by the pid parameter, returning 
the incarnation. If the pid parameter does not identify a storage object managed by the 
target storage home, the DoesNotExist exception is raised.

6.8.2.3 Storage home definitions with primary keys

Given a storage home of the following form:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-115



6

storageHome <storage_home_name> 
manages <storage_type>
primaryKey <key_type> 
{ 

<explicit_operations>
};

The resulting explicit, implicit, and equivalent local interfaces have the following 
forms:
6-116 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

local <storage_home_name>Explicit 
: Components::Persistence::StorageHomeBase 
{

<equivalent_explicit_operations>
};

local <storage_home_name>Implicit 
{

<storage_type> create_with_key(in <key_type> key) 
raises (Components::Persistence::AlreadyExists);

Components::Persistence::PersistentId 
create_pid_with_key(in <key_type> key) 
raises (Components::Persistence::AlreadyExists);

<storage_name> find_by_key(in <key_type> key) 
raises (Components::Persistence::DoesNotExist);

<storage_name> 
find_by_pid(in Components::Persistence::PersistentID pid) 
raises (Components::Persistence::DoesNotExist);

Components::Persistence::PersistentID 
find_pid_by_key(in <key_type> key) 
raises (Components::Persistence::DoesNotExist);

void remove_by_key(in <key_type> key) 
raises (Components::Persistence::DoesNotExist);

<key_type> find_key_by_pid(
in Components::Persistence::PersistentID pid

)
raises (Components::Persistence::DoesNotExist);

};

local <storage_home_name> 
: <storage_home_name>Explicit , 
<storage_home_name>Implicit 
{};

where <equivalent_explicit_operations> are the operations defined in the storage 
home declaration (<explicit_operations>), with factory and finder operations 
transformed to their equivalent operations, as described in Section 6.8.5, “Explicit 
operations in storage home definitions.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-117



6

create_with_key

This operation creates a new storage object associated with the specified primary key 
value, and allocates a new PID value for the storage object. An incarnation of the new 
object is returned. If the specified key value is already associated with an existing 
storage object managed by the storage home, the operation raises an AlreadyExists 
exception.

create_pid_with_key

This operation creates a new storage object associated with the specified primary key 
value, and allocates a new PID value for the storage object. The operation returns the 
new PID value. If the specified key value is already associated with an existing storage 
object managed by the storage home, the operation raises an AlreadyExists 
exception.

find_by_key

This operation produces an incarnation of the storage object identified by the primary 
key value. If the key value does not identify an existing storage object managed by the 
storage home, a DoesNotExist exception is raised.

find_by_pid

This operation produces an incarnation for the storage object identified by the 
specified PID value. If the PID value does not identify an existing storage object 
managed by the storage home, the operation raises a DoesNotExist exception.

find_pid_by_key

This operation returns the PID of the storage object identified by the specified key 
value. If the key value does not identify an existing storage object managed by the 
storage home, a DoesNotExist exception is raised.

remove_by_key

This operation removes the storage object identified by the specified key value. 
Subsequent attempts to incarnate the object shall raise a DoesNotExist exception. If the 
specified key value identify an existing storage object managed by the storage home, 
the operation shall raise a DoesNotExist exception.

find_key_by_pid

This operation returns the primary key value associated with the storage object 
identified by the specified PID value. If the PID value does not identify an existing 
storage object managed by the storage home, a DoesNotExist exception is raised.

6.8.3 Initial values of created storage objects

When a new storage object is created by any of the implicitly-defined create methods, 
the initial values of the storage object members shall meet the following constraints:

¥ All independent storage members shall be nil.
6-118 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

¥ All members that are value types shall be nil.

¥ All members that are objects reference types shall return nil object references.

¥ All sequence members shall be initialized to length zero.

¥ All string members will be initialized to zero-length strings.

¥ All anys will be empty.

¥ The initial values of base data types shall be undefined.

When a new storage object is created by an explicitly-defined factory operation on a 
storage home, the initial values are defined by the implementation of the operation.

6.8.4 Primary key type constraints

The persistent store is responsible for maintaining the association between primary key 
values and their respective storage objects, and for being able to map putative values to 
storage objects.

Primary key and types are subject to the following constraints:

¥ A primary key type must be a value type derived from PrimaryKeyBase.

¥ A primary key type must be a concrete type with at least one public state member.

¥ A primary key type may not contain private state members.

¥ A primary key type may not contain any members whose type is a CORBA 
interface reference type, including references for interfaces, abstract interfaces, and 
local interfaces. 

¥ These constraints apply recursively to the types of all of the members, i.e., members 
which are structs, unions, value types, sequences or arrays may not contain interface 
reference types. If a the type of a member is a value type or contains a value type, 
it must meet all of the above constraints.

6.8.5 Explicit operations in storage home definitions

A storage home body may include zero or more operation declarations, where the 
operation may be a factory operation, a finder operation, or a local operation.

6.8.5.1 Factory operations

The syntax of a factory operation is as follows:

<factory_operation> ::= “factory” <identifier> “(“ [ <init_param_decls> ] “)” 
[ <raises_expr> ] 

A factor operation declaration consists of the following elements:

¥ the keyword factory

¥ an identifier that names the operation in the scope of the storage home definition
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-119



6

¥ an optional list of initialization parameters (<init_param_decls>) enclosed in 
parentheses

¥ an optional <raises_expr> declaring exceptions that may be raised by the operation

A factory operation is denoted by the factory keyword. A factory operation has a 
corresponding equivalent operation on the storage home’s explicit interface. Given a 
factory declaration of the following form:

factory <factory_operation_name> (<parameters>) raises (<exceptions>);

The equivalent operation on the explicit interface is as follows:

Components::Persistence::PersistentId <factory_operation_name> ( 
<parameters> 

) raises ( <exceptions> );

A factory operation is required to support creation semantics, i.e., the PID returned by 
the operation shall identify a storage object that did not exist prior to the operation’s 
invocation. The responsibility for implementing explicitly-defined factory operations is 
described in Section 6.8.7, “Implementation responsibility.

6.8.5.2 Finder operations

The syntax of a finder operation is as follows:

<finder_operation> ::= “finder” <identifier> “(“ [ <init_param_decls> ] “)” 
[ <raises_expr> ] 

A finder operation declaration consists of the following elements:

¥ the keyword finder

¥ an identifier that names the operation in the scope of the storage home definition

¥ an optional list of initialization parameters (<init_param_decls> ) enclosed in 
parentheses

¥ an optional <raises_expr> declaring exceptions that may be raised by the operation

A factory operation is denoted by the finder keyword. A finder operation has a 
corresponding equivalent operation on the storage home’s explicit interface. Given a 
factory declaration of the following form:

finder <finder_operation_name> (<parameters>) raises (<exceptions>);

The equivalent operation on the explicit interface is as follows:

Components::Persistence::PersistentId 
<finder_operation_name> ( <parameters> ) raises ( <exceptions> );

A finder operation is required to support the following semantics. The the PID returned 
by the operation shall identify a previously-existing storage object managed by the 
storage home. The operation implementation determines which storage object’s PID to 
6-120 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

return based on the values of the operation’s parameters. The responsibility for 
implementing explicitly-defined finder operations is described in Section 6.8.7, 
“Implementation responsibility.

Note that the signatures of factory and finder operations are not affected by 
the storage type associated with the storage home, as one might expect. 
The operations return a PID value because the most common use of these 
operations is to provide a PID value that is incorporated into an object ref-
erence. Incarnation occurs when the object is activated by a request, most 
likely with StorageHomeBase::incarnate_by_pid.

6.8.5.3 Local operations

Local operation syntax is specified and described in Section 4.1 on page 19. The 
responsibility for implementing explicitly-defined local operations on storage homes is 
described in Section 6.8.7, “Implementation responsibility.

6.8.6 Storage home inheritance

Given a derived storage home definition of the following form:

storageHome <storage_home_name>
: <base_storage_home_name>
manages <storage_type> 
{ 

<explicit_operations>
};

The resulting explicit local interface has the following form:

local <storage_home_name>Explicit 
: <base_storage_home_name>Explicit 
{

<equivalent_explicit_operations>
};

where <equivalent_explicit_operations> are the operations defined in the storage 
home declaration (<explicit_operations>), with factory and finder operations 
transformed to their equivalent operations, as described in Section 6.8.5, “Explicit 
operations in storage home definitions. The forms of the implicit and equivalent 
interfaces are identical to the corresponding forms for non-derived storage homes, 
determined by the presence or absence of a primary key specification.

A storage home definition with no primary key specification constitutes a pair (H, T) 
where H is the storage home type and T is the managed storage type. If the storage 
home definition includes a primary key specification, it constitutes a triple (H, T, K), 
where H and T are as previous and K is the type of the primary key. Given a storage 
home definition (HÕ, TÕ) or (HÕ, TÕ, K), where K is a primary key type specified on HÕ, 
such that HÕ is derived from H, then TÕ must be identical to T or derived (directly or 
indirectly) from T. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-121



6

Given a base storage home definition with a primary key (H, T, K), and a derived 
storage home definition with no primary key (HÕ, TÕ), such that HÕ is derived from H, 
then the definition of HÕ implicitly includes a primary key specification of type K, 
becoming (HÕ, TÕ, K). The implicit interface for HÕ shall have the form specified for an 
implicit interface of a storage home with primary key K and storage type TÕ.

Given a base storage home definition (H, T, K), noting that K may have been explicitly 
declared in the definition of H, or inherited from a base storage home type, and a 
storage home definition (HÕ, TÕ, KÕ) such that HÕ is derived from H, then TÕ must be 
identical to or derived from T and KÕ must be identical to or derived from K.

Note the following observations regarding these constraints and the structure of 
inherited equivalent interfaces:

¥ If a storage home definition does not specify a primary key directly in its header, 
but it is derived from a storage home definition that does specify a primary key, the 
derived storage home inherits the association with that primary key type, precisely 
as if it had explicitly specified that type in its header. This inheritance is transitive. 
For the purposes of the following discussion, storage home definitions that inherit a 
primary key type are considered to have specified that primary key type, even 
though it did not explicitly appear in the definition header.

¥ Operations on StorageHomeBase are inherited by all storage home equivalent 
interfaces. these operations apply equally to homes with and without primary keys.

¥ Operations on KeylessStorageHomeBase are inherited by all storage homes that 
do not specify primary keys

¥ Implicitly-defined operations (i.e., that appear on the implicit interface) are only 
visible to the equivalent interface for the specific storage home type that implies 
their definitions. Implicitly-defined operations on a base storage type are not 
inherited by a derived storage type. Note that the implicit operations for a derived 
storage home may be identical in form to the corresponding operations on the base 
type, but they are defined in a different name scope.

¥ Explicitly-defined operations (i.e., that appear on the explicit interface) are 
inherited by derived storage home types.

6.8.7 Implementation responsibility

Responsibility for the implementations of operations in storage home interfaces fall 
into two categories:

¥ Operations whose implementations must be provided by the storage product, 
without requiring user programming or intervention. Implementations of these 
operations must have predictable, uniform behaviors between storage products. 
Hence, the required semantics for these operations are specified in detail. For 
convenience, we will refer to these operations as orthodox operations.

¥ Operations whose implementations must be specified by the user, either through 
programming or with unspecified tools supplied with the storage product. The 
semantics of these operations are defined by the user-supplied implementation. For 
convenience, we will refer to these operations as heterodox operations.
6-122 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

Orthodox operations include the following:

¥ Operations defined on StorageHomeBase and KeylessStorageHomeBase.

¥ Operations that appear on the implicit interface for any storage home.

Heterodox operations include the following:

¥ Operations that appear in the body of the storage home definition, including factory 
operations, finder operations, and local operations.

6.8.7.1 Orthodox operations

Because of the inheritance structure described in Section 6.8.6 on page 121, problems 
relating to polymorphism in orthodox operations are limited. For the purposes of 
determining key uniqueness and mapping key values to storage objects in orthodox 
operations, equality of value types (given the constraints on primary key types 
specified in Section 6.8.4, “Primary key type constraints) are defined as follows:

¥ Only the state of the primary key type specified in the storage home definition 
(which is also the actual parameter type in operations using primary keys) shall be 
used for the purposes of determining equality. If the type of the actual parameter to 
the operation is more derived that the formal type, the behavior of the underlying 
implementation of the operation shall be as if the value were truncated to the formal 
type before comparison. This applies to all value types that may be contained in the 
closure of the membership graph of the actual parameter value, i.e., if the type of a 
member of the actual parameter value is a value type, only the state that constitutes 
the member’s declared type is compared for equality.

¥ Two values are equal if their types are precisely equivalent and the values of all of 
their public state members are equal. This applies recursively to members which are 
value types.

¥ If the values being compared constitute a graph of values, the two values are equal 
only if the graphs are isomorphic.

¥ Union members are equal if both the discriminator values and the values of the 
union member denoted by the discriminator are precisely equal.

¥ Members which are sequences or arrays are considered equal if all of their members 
are precisely equal, where order is significant.

6.8.7.2 Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are 
inherited by storage homes that may specify more-derived storage and primary key 
types. Assume a storage home definition (H, T, K), with an explicit factory operation f 
that takes a parameter of type K, and a storage home definition (HÕ, TÕ, KÕ), such that 
HÕ is derived from H, TÕ is derived from T, and KÕ is derived from K. The operation f 
(whose parameter type is K) is inherited by equivalent interface for HÕ. It may be the 
intended behavior of the designer that the actual type of the parameter to invocations 
of f on HÕ should be KÕ, exploiting the polymorphism implied by inheritance of K by 
KÕ. Alternatively, it may be the intended behavior of the designed that actual parameter 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-123



6

values of either K or KÕ are legitimate, and the implementation of the operation 
determines what the appropriate semantics of operation are with respect to key 
equality.

This specification does not attempt to define semantics for polymorphic equality. 
Instead, we define the behavior of operations on storage home that depend on primary 
key values in terms of abstract tests for equality that are provided by the 
implementation of the heterodox operations.

Implementations of heterodox operations, including implementations of key value 
comparison for equality, are user-supplied. This specification imposes the following 
constraints on the tests for equality of value types used as keys in heterodox 
operations:

¥ For any two actual key values A and B, the comparison results must be the same for 
all invocations of all operations on the storage home.

¥ The comparison behavior must meet the general definition of equivalence, i.e., it 
must be symmetric, reflexive, and transitive.

The primary motivations for providing user-defined (i.e., heterodox) opera-
tions on storage homes are the following:

• to provide a means of exposing behaviors embedded in the store (e.g., 
stored procedures in a relational database)

• to allow federation of stores

Polymorphism in storage home interfaces may be particularly useful for 
federating stores, or more precisely, storage homes on different stores. 

6.8.8 StorageHomeBase

The StorageHomeBase interface is defined by the following IDL specification:
6-124 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

module Components {
module Persistence {

typedef sequence<octet> PersistentID;
typedef string PSSTypeId;

exception DoesNotExist {};

local StorageHomeBase {

TypeId managed_storage_type_id();

IncarnationBase incarnate(in PersistentID pid) 
raises (DoesNotExist);

void remove(in IncarnationBase inc) raises (DoesNotExist);
void remove_by_pid(in PersistentID pid) raises (DoesNotExist);

void flush() raises (PersistentStoreError);
void refresh() raises (PersistentStoreError);

};

local KeylessStorageHomeBase : StorageHomeBase {
PersistentID create_pid();

};
};
};

incarnate

This operation produces an incarnation for the storage object identified by the 
specified PID value. If the PID value does not denote an existing storage object within 
the persistent store, the operation raises a DoesNotExist exception.

remove

This operation removes the storage object associated with the specified incarnation. 
Subsequent attempts to incarnate the object shall raise a DoesNotExist exception. 
Subsequent attempts to invoke operations on the incarnation shall raise an 
OBJECT_NOT_EXIST system exception. If the specified incarnation is not 
associated with an existing storage object in the persistent store, the operation shall 
raise a DoesNotExist exception.

remove_by_pid

This operation removes the storage object associated with the specified PID value. 
Subsequent attempts to incarnate the object shall raise a DoesNotExist exception. If 
the specified PID is not associated with an existing storage object in the persistent 
store, the operation shall raise a DoesNotExist exception.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-125



6

flush

If the current transaction policy of the persistent store to which the target storage home 
belongs is NonTransactionalAccess, the flush operation makes durable all of the 
modifications to active incarnations managed by the target storage home, regardless of 
the transactional context of the calling thread.

If the current transaction policy of the persistent store to which the target storage home 
belongs is LocalTransactionalAccess or DistributedTransactionalAccess, 
flush behaves as follows:

¥ If the invoking thread is associated with a transaction context, flush makes durable 
all state modifications made in the current transactional scope for incarnations 
managed by the target storage home, flushing them to the underlying store.

¥ If the invoking thread is not associated with a transactional context, the 
NoTransaction exception is raised.

If the persistent store implementation is unable to reconcile the changes and make 
them durable, then the PersistentStoreError exception is thrown.

refresh

If the current transaction policy of the persistent store to which the target storage home 
belongs is NonTransactionalAccess, the refresh operation refreshes the state of all 
active incarnations managed by the target storage home with the current durable state 
from the underlying store, regardless of the transactional context of the calling thread.

If the current transaction policy of the persistent store to which the target storage home 
belongs is LocalTransactionalAccess or DistributedTransactionalAccess, 
refresh behaves as follows:

¥ If the invoking thread is associated with a transaction context, refresh guarantees 
that, subsequent to the refresh invocation, the first time a thread in the same 
transactional context as the caller of refresh accesses or modifies an incarnation 
managed by the target storage home, the state of that incarnation will be refreshed 
before the access is allowed.

¥ If the invoking thread is not associated with a transactional context, the 
NoTransaction exception is raised.

If the persistent store implementation is unable to refresh the appropriate incarnations, 
the PersistentStoreError exception is thrown.

6.8.9 KeylessStorageHomeBase

The KeylessStorageHomeBase interface is defined by the following IDL 
specification:
6-126 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

module Components {
module Persistence {

typedef sequence<octet> PersistentID;

local KeylessStorageHomeBase : StorageHomeBase {
PersistentID create_pid();

};
};
};

create_pid

This operation creates a new storage object and allocates a PID value for the it. The 
PID value is returned. An incarnation of the new storage object may be obtained by 
invoking StorageHomeBase::incarnate or the type-specific incarnate_by_pid 
operation on the storage home.

6.9 Persistent store

A persistent store binds a specified set of storage homes to an underlying storage 
mechanism. A persistent store mediates between the behavior and form of the 
underlying storage mechanism and the abstract semantics offered by storage homes 
and incarnations, encapsulating and managing a set of sessions that connected the 
persistent store with the underlying storage mechanism.

A persistent store defines a scope of identity for storage homes and storage objects, in 
that PIDs are unique within a persistent store. A persistent store also defines a scope of 
reference for storage objects, in that a storage object may only hold a references for 
storage objects in the same persistent store.

6.9.1 Syntax

The syntax for declaring a persistent store is as follows:

<persistent_store> ::= <persistent_store_header> <persistent_store_body>

<persistent_store_header> ::= “persistentStore” <identifier> 

<persistent_store_body> ::= “{” <persistent_store_member>+ “}”

<persistent_store_member> ::= <storage_home_dcl> “;”
| <local_operation> “;”

<storage_home_dcl> ::= “provides” <storage_home_type_spec> 
<simple_declarator>

<storage_home_type_spec> ::= <scoped_name>

A persistent store definition consists of the following elements:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-127



6

¥ the keyword persistentStore

¥ an <identifier> that names the persistent store type in the enclosing module scope

¥ a body containing one or more members, where each member is either:

¥ a <storage_home_dcl> that declares a storage home offered by the persistent 
store, or

¥ a local operation declaration

6.9.2 Equivalent local interfaces

The language mappings for persistent store definitions are described in terms of 
equivalent local interfaces. Given a persistent store definition of the following form:

persistentStore <store_name> {<contents>};

The equivalent local interface would have the form:

local <store_name> 
: Components::Persistence::PersistentStoreBase {

<equivalent_contents> 
};

The base class Components::Persistence::PersistentStoreBase is described in 
Section 6.9.5, “PersistentStoreBase interface.

6.9.3 Obtaining storage homes from a persistent store

Given a <storage_home_dcl> of the following form in a persistent store definition:

provides <storage_home_type> <name>;

The equivalent operation on the store’s equivalent local interface would have the 
following form:

<storage_home_type> provide_<name>();

This operation will return a local reference to a storage home of 
<storage_home_type>, the type specified in the <storage_home_dcl>. All storage 
objects managed by that storage home are associated with the target persistent store.

Storage homes are identified relative to their owning persistent store by the name that 
constitutes the <simple_declarator> in the provides declaration in the persistent store 
definition. Storage homes can also be obtained with the 
PersistentStoreBase::provide_storage_home operation, specifying the name as 
the operation parameter.
6-128 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

6.9.4 Local operations on persistent stores

Local operations in persistent store definitions have the same precise form in the 
persistent store’s equivalent local interface. Local operations must be implemented by 
the user, either by programmatically extending a skeleton generated by the CIF 
provider from the CIDL specification of the store, or with unspecified tools provided 
by the CIF provider.

It is expected that CIF providers will expose proprietary, storage-specific 
APIs on their implementations of PersistentStoreBase, and that user-pro-
vided implementations of local operations on the persistent store will 
employ these proprietary interfaces.

Language mappings must specify skeletons for type-specific persistent store definitions 
that allows users to implement any local operations defined on the store.

6.9.5 PersistentStoreBase interface

The PersistentStoreBase interface exposes the basic behavioral capabilities shared 
by all type-specific persistent stores. A persistent store performs the following 
functions:

¥ provide storage homes of the types specified in the persistent store’s definition

¥ mediate operations between the CIF interfaces supplied to an application (e.g., 
incarnations, storage homes, etc.) and an underlying storage engine in a way that 
provides the semantics required by this specification, including:

¥ maintaining correct, durable logical state of storage objects

¥ exposing correct views of storage object logical stage of through incarnations

¥ managing storage object life cycles

¥ maintaining assocations between storage objects, PIDs, and primary key values

¥ guaranteeing appropriate ACID properties of transactions

These behaviors are provided by the CIF vendor, in the form of an implementation of 
PersistentStoreBase. Specific persistent store types defined in CIDL extend this 
basic mechanism by inheritance, adding accessors for declared storage homes and 
implementing user-defined operations on the store.

The PersistentStoreBase interface is defined by the following IDL specification:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-129



6

module Components {
module Persistence {

struct Property {
string name;
any    value;

};

typedef sequence<Property> PropertyList;

typedef sequence<octet> PersistentId;
typedef sequence<PersistentId> PersistentIdList;

local PersistentStoreBase {

void open(in string name, in PropertylList params) 
raises(NoPermission);

void close();

StorageHomeBase provide_storage_home(in string home_name) 
raises(NotFound);

void flush() raises(PersistentStoreError);

void flush_by_pids(in PersistentStoreIdList pids) 
raises(PersistentStoreError);

void refresh() raises(PersistentStoreError);

void refresh_by_pids(in PersistentStoreIdList pids)
raises(PersistentStoreError);

};
};
};

open

This operation opens the target persistent store, associating it with a particular 
underlying store. The name parameter denotes the store (e.g., a particular data base) 
to which the persistent store will mediate access and updates. The form and meaning of 
the value of name are product-specific. The params parameter contains a list of 
name-value pair properties. The use of this parameter is product-specific. It is intended 
to allow the caller to define the required behaviors and characteristics of the 
underlying storgage enginer, or to provide additional information required by the 
product to open the underlying store. The 
Components::Persistence::NoPermission exception is raised if the user does not 
6-130 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

have permissions to open the specifed storage. A persistent store must be opened 
before it can be used. If any operation other than open is invoked before the persistent 
store is opened, the BAD_INV_ORDER system exception is raised.

provide_storage_home

The operation provide_storage_home returns the storage home denoted by the 
home_name parameter. The value of this parameter must be the name of a storage 
home provided by the persistent store, as declared in the persistent store’s SDL 
definition. The NotFound exception is raised if the name parameter does not denote a 
storage home provided by the persistent store.

close

This operation disassociates the persistent store from the underlying store. Any 
uncommitted transactions at the time of closure are marked for rollback. Cached state 
may be flushed, if the implementation of the persistent store deems it logically 
appropriate. The invocation of any operation other than open on the persistent store 
after it is closed will raise the BAD_INV_ORDER system exception. Any invocation 
on a storage home or an incarnation provided by the persistent store after the store is 
closed will raise an INV_OBJREF system exception.

flush

If the current transaction policy of the persistent store is NonTransactionalAccess, 
the flush operation makes durable all of the modifications to active incarnations 
managed by persistent store, regardless of the transactional context of the calling 
thread.

If the current transaction policy of the persistent store to is 
LocalTransactionalAccess or DistributedTransactionalAccess, flush behaves 
as follows:

¥ If the invoking thread is associated with a transaction context, flush makes durable 
all state modifications made in the current transactional scope for incarnations 
managed by persistent store, flushing them to the underlying store.

¥ If the invoking thread is not associated with a transactional context, the 
NoTransaction exception is raised.

If the persistent store implementation is unable to reconcile the changes and make 
them durable, then the PersistentStoreError exception is thrown.

flush_by_pids

If the current transaction policy of the persistent store is NonTransactionalAccess, 
the flush operation makes durable all of the modifications to active incarnations 
whose PIDs are contained in the pids parameter, regardless of the transactional 
context of the calling thread.

If the current transaction policy of the persistent store to is 
LocalTransactionalAccess or DistributedTransactionalAccess, 
flush_by_pids behaves as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-131



6

¥ If the invoking thread is associated with a transaction context, flush makes durable 
all state modifications made in the current transactional scope for incarnations 
whose PIDs are contained in the pids parameter, flushing them to the underlying 
store.

¥ If the invoking thread is not associated with a transactional context, the 
NoTransaction exception is raised.

If the persistent store implementation is unable to reconcile the changes and make 
them durable, then the PersistentStoreError exception is thrown.

refresh

If the current transaction policy of the persistent store is NonTransactionalAccess, 
the refresh operation refreshes the state of all active incarnations managed by the 
persistent store with the current durable state from the underlying store, regardless of 
the transactional context of the calling thread.

If the current transaction policy of the persistent store is LocalTransactionalAccess 
or DistributedTransactionalAccess, and the invoking thread is associated with a 
transactional context, denoted by Ti, refresh_by_pids causes the following behavior:

¥ the first time any thread in the transactional context Ti touches (i.e., invokes an 
accessor or mutator) an incarnation managed by the persistent store prior to teh 
refresh invocation, the state of that incarnation will have been refreshed prior to 
the refresh invocation before the access is allowed. This is true for all incarnations 
touched by threads in transactional context Ti.

If the current transaction policy of the persistent store is LocalTransactionalAccess 
or DistributedTransactionalAccess, and the invoking thread is not associated with 
a transactional context, the NoTransaction exception is raised.

If the persistent store implementation is unable to refresh the appropriate incarnations, 
the PersistentStoreError exception is thrown.

refresh_by_pids

If the current transaction policy of the persistent store is NonTransactionalAccess, 
the refresh_by_pids operation refreshes the state of all active incarnations whose 
PIDs appear in the pids parameter with the current durable state from the underlying 
store, regardless of the transactional context of the calling thread.

If the current transaction policy of the persistent store is LocalTransactionalAccess 
or DistributedTransactionalAccess, and the invoking thread is associated with a 
transactional context, denoted by Ti, refresh_by_pids causes the following behavior:

¥ the first time any thread in the transactional context Ti touches (i.e., invokes an 
accessor or mutator) an incarnation whose PID appears in the pids parameter prior 
to the refresh invocation, the state of that incarnation will have been refreshed 
prior to the refresh invocation before the access is allowed. This is true for all 
incarnations touched by threads in transactional context Ti.
6-132 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



6

If the current transaction policy of the persistent store is LocalTransactionalAccess 
or DistributedTransactionalAccess, and the invoking thread is not associated with 
a transactional context, the NoTransaction exception is raised.

If the persistent store implementation is unable to refresh the appropriate incarnations, 
the PersistentStoreError exception is thrown.

6.9.6 GenericPersistentStore

The GenericPersistentStore interface allows storage homes to be provided to an 
application without the need for an explicitly-defined persistent store type. PSS 
providers shall supply an implementation of GenericPersistentStore and make it 
available through the persistent store factory supplied with their product. The means by 
which specified storage home types are exposed through the 
GenericPersistentStore interface is unspecified.

The GenericPersistentStore interface is defined by the following IDL specification:

module Components {
module Persistence {

local GenericPersistentStore 
: PersistentStoreBase {

StorageHomeBase provide_storage_home_by_type(
in CORBA::RepositoryId type_id

) raises (NotFound);

};
};

The provide_storage_home_by_type operation returns a storage home of the type 
specified by the type_id parameter. If no storage home of the requested type is 
available, the NotFound execption is raised.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 6-133



6

6-134 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



The Container Programming Model 7
This chapter describes the container programming model offered for CORBA 
components.The container is the server’s runtime environment for a CORBA 
component implementation. This environment is implemented by a deployment 
platform such as an application server or a development platform like an IDE. A 
deployment platform typically provides a robust execution environment designed to 
support very large numbers of simultaneous users. A development platform would 
provide enough of a runtime to permit customization of CORBA components prior to 
deployment but perhaps support a limited number of concurrent users. From the point 
of view of the CORBA component implementation, such differences are “qualities of 
service” characteristics and have no effect on the set of interfaces the component 
implementor can rely on. This chapter is organized as follows:

¥ Section 7.2 on page 137 introduces the programming model and defines the 
elements that comprise it.

The container programming model is an API framework designed to simplify the 
task of building a CORBA application. Although the framework does not exclude 
the component developer from using any function currently defined in CORBA, it 
is intended to be complete enough in itself to support a broad spectrum of 
applications.

¥ Section 7.3 on page 140 describes the programming model the component 
implementor is to follow.

The programming model identifies the architectural choices which must be made to 
develop a CORBA component which can be deployed in a container.

¥ Section 7.4 on page 153 describes the interfaces seen by the component developer.

These interfaces constitute the contract between the container provider and the 
component implementor. Together with the client programming interfaces defined 
in Chapter 5 which can be used by servers as well as clients, they define the server 
programmer’s API.

¥ Section 7.5 on page 174 describes the client view of a CORBA component.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-135



7

The client programming model as defined by the IDL extensions has been 
described previously (Chapter 5). This section describes the specific use of CORBA 
required by a client, which is NOT itself a CORBA component, of a CORBA 
component written to the server programming model described in Section 7.4 on 
page 153.

7.1 Change History 

The following changes were made in the orbos/99-02-01 version of the document:

1. Container APIs to support persistence have been added.

2. Some interfaces and operations have been adjusted to more closely align with EJB. 
In addition rationale text has been added to contrast the component APIs with the 
EJB APIs and explain the differences where they exist.

3. Container-managed persistence has been added for process components. It 
previously was supported only for entity components.

4. Multiple servant lifetime policies are now supported for entity components. Entity 
components were previously restricted to only the transaction servant lifetime 
policy.

5. Interface names have been synchronized with those defined in the abstract model 
(Chapter 5) and Cookies have replaced Tokens for consistency.

6. Client programming examples have been changed from pseudo-code to Java.

7. Locality-constrained interfaces previously defined as valuetype have been changed 
to use the new local keyword.

8. The set_timeout operation has been added to Transaction. It was inadvertently 
omitted in previous versions.

9. IDL identifier names were changed to conform to the OMG IDL Style Guide 
(ab/98-06-03).

10. Miscellaneous clarifications have been made to the text.

The following changes have been made since orbos/99-02-01:

1. An introduction section was added to summarize the key elements of the 
programming model as seen by the component developer, the component client, and 
the container provider.

2. The client programming model section was moved to the end of the chapter since it 
depends on the server programming model and is not a normative description of 
what the client ORB must do.

3. The server programming model was expanded to more clearly identify which data 
comes from which source and what effect it has on the container’s behavior at 
runtime.
7-136 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

4. The event model was updated to include both shared notification channels and 
dedicated notification channels

5. The persistence section was elaborated to more clearly describe the various 
persistence choices supported for CORBA components.

6. Added a new component category called session, which supports transient state 
with multiple servant lifetime policies similar to an MTS component, has been 
added. The previous session component has been renamed to service which more 
accurately describes its properties.

7. We’ve made a lot more rationale text into the rationale font.

8. Miscellaneous clarifications have been made to the text.

All changes are clearly marked with change bars. In general existing text which was 
moved will not have change bars.

7.2 Introduction

The container programming model is made up of several elements:

¥ The external types which define the interfaces available to a component client

¥ The container type which defines the API framework used by the component 
developer

¥ The container implementation type which defines the interactions between the 
container and the rest of CORBA (including the POA, the ORB and the CORBA 
services)

¥ The component category which is the combination of the container type (i.e. the 
server view) and the external types (i.e. the client view) 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-137



7

The overall architecture is depicted in Figure 7-1 below::

Figure 7-1 The Architecture of the Container Programming Model

The external types are defined by the component IDL including the home 
specification. These interfaces are righteous CORBA objects and are stored in the 
Interface Repository for client use.

The container type is a framework made up of internal interfaces and callback 
interfaces used by the component developer. These are defined using the new local 
keyword in IDL for specifying locality-constrained interfaces. The container type is 
selected using CIDL which describes component implementations.

The container implementation type is controlled by policies which specify distinct 
interaction patterns with the POA and a set of CORBA services. These are defined 
using XML in the component descriptor and used by the container factory to create a 
POA when the container is created.

The component category is a specific combination of external types and container 
type used to implement an application with the CORBA component technology.

CORBA
Component

Container

Home

Callbacks

Transactions Security Persistence Events

ORB

External

C

l
i

e
n
t

P
O

A

Internal
7-138 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

7.2.1 External Types

The external types of a component are the contract between the component developer 
and the component client. We distinguish between two forms of external types: the 
home interface and the application interfaces. Home interfaces support operations 
which allow the client to obtain references to one of the application interfaces the 
component implements. From the client’s perspective, two design patterns are 
supported - factories for creating new objects and finders for existing objects. These 
patterns are distinguish by the presence of a primaryKey parameter in the home IDL 
declaration. 

¥ A home interface with a primaryKey declaration supports finders and is a 
PrimaryKeyVisibility client. 

¥ A home interface without a primaryKey declaration does not support finders and is 
a NoKeyVisibility client. All home types support factory operations.

These external types are righteous CORBA objects which are seen as remote 
interfaces by a client. They are defined in IDL and represented in the Interface 
Repository. 

These are analogous to the EJBHome and EJBObject interfaces of 
Enterprise Java Beans.

7.2.2 Container Type

A container type defines the API framework between the component and its container. 
This specification defines two distinct base types which define the common APIs and 
a set of derived APIs which provide additional function. The transient container type 
defines a framework for components using transient object references. The persistent 
container type defines a framework for components using persistent object references.

7.2.3 Container Implementation Type

A container implementation type specifies the required interaction pattern between 
the container, the POA and the CORBA services. We define three interaction patterns 
as part of this specification:

¥ stateless - which uses transient object references in conjunction with a POA servant 
which can support any ObjectId

¥ conversational - which uses transient references in conjunction with a POA servant 
that is dedicated to a specific ObjectId

¥ durable - which uses persistent references in conjunction with a POA servant that 
is dedicated to a specific ObjectId

It should be obvious that the fourth possibility (persistent references with a 
POA servant that can support any ObjectId) makes no sense and is there-
fore not included.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-139



7

7.2.4 Component Categories

The component categories are defined as the valid combinations of external types, 
container type, and container implementation type. The following table should make 
this clear:

7.3 The Server Programming Environment

The component container provides interfaces to the component. These interfaces 
support access to CORBA services (transactions, security, notification, and 
persistence) and to other elements of the component model. This section describes the 
features of the container which are selected by the deployment descriptor packaged 
with the component implementation. These features comprise the design decisions to 
be made in developing a CORBA component. Details of the interfaces provided by the 
container are provided in Section 7.4 on page 153. 

7.3.1 Component Containers

Containers provide the run-time execution environment for CORBA components. A 
container is a framework for integrating transactions, security, events, and persistence 
into a component’s behavior at runtime. A container provides the following functions 
for its component:

¥ all component instances are created and managed at runtime by its container

¥ containers provide a standard set of services to a component, enabling the same 
component to be hosted by different container implementations 

Components and homes are deployed into containers with the aid of container specific 
tools. These tools generate additional programming language and metadata artifacts 
needed by the container. The tools provide the following services:

¥ editing the configuration metadata

¥ editing the deployment metadata

¥ generating the implementations needed by the containers to support the component

The container framework defines two forms of interfaces:

Table 7-1 Definition of the Component Categories 

Container 
Implementation Type

Container 
Type

Primary 
Key

Component 
Categories

EJB Bean 
Type

stateless transient No Service -

conversational transient No Session Session

durable persistent No Process -

durable persistent Yes Entity Entity
7-140 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

¥ Internal interfaces - These are locality-constrained interfaces defined as local 
types which provide container functions to the CORBA component. 

These are similar to the EJBContext interface in Enterprise Java Beans.

¥ Callback interfaces - These are also local types invoked by the container and 
implemented by a CORBA component. 

These interfaces provide functions analogous to the SessionBean and 
EntityBean interfaces defined by Enterprise Java Beans. 

This architecture is depicted in Figure 7-1 on page 138.

We define a small set of container types to support a broad spectrum of component 
behavior with their associated internal and callback interfaces as part of this 
specification. These container types are defined using the new local keyword in IDL 
introduced in Section 4.1 on page 19 for specifying locality-constrained interfaces.

Additional component behavior is controlled by policies specified in the deployment 
descriptor.This specification defines policies which support POA interactions 
(container implementation type), servant lifetime management, transactions, security, 
events, and persistence. See the deployment chapter (Chapter 9), specifically Section 
9.4 on page 243, for details of how container policies are specified.

CORBA containers are designed to permit their use as Enterprise Java Beans 
containers. This allows a CORBA infrastructure to be the foundation of EJB, enabling 
a more robust implementations of the EJB specification. To support EJBs natively 
within a CORBA container, the container must support both sets of APIs. This 
architecture is defined in Chapter 11 of this specification.

7.3.2 Container Implementation Type

The CORBA Component Specification defines a set of container implementation 
types which create either TRANSIENT or PERSISTENT object references and use 
either a 1:1 or 1:N mapping of Servant to ObjectId. These container 
implementation types are summarized in Table 7-2 below. A given component 
implementation supports one and only one container implementation type.

A container implementation type is specified using CIDL and is used to either create 
or select a component container at deployment time.

Table 7-2 Container Implementation Type Definitions

Container 
Implementation Type Object Reference Servant:OID Mapping

stateless TRANSIENT 1:N

conversational TRANSIENT 1:1

durable PERSISTENT 1:1

(Invalid) PERSISTENT 1:N
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-141



7

7.3.2.1 Component References

TRANSIENT objects support only the factory design pattern. They are created by 
operations on the home interface defined in the component declaration.

PERSISTENT objects support either the factory design pattern or the finder design 
pattern, depending on the component category. PERSISTENT objects support 
component-managed or container-managed persistence. PERSISTENT objects can 
be used with CORBA persistence or any user-defined persistence mechanism. When 
CORBA persistence is used, servant management is aligned with a PersistentId as 
defined in Chapter 6 and the container supports the transformation of an ObjectId to 
and from a PersistentId. A PersistentId provides a persistent handle for a class of 
objects whose permanent state resides in a persistent store (e.g. a database).

References are exported for client use by registering them with a HomeFinder which 
the client subsequently interrogates. The finder design pattern may also export 
references by binding them to the CORBA naming service in the form of externally 
visible names.

7.3.2.2 Servant to ObjectId Mapping

Component implementations may use either the 1:1 or 1:N mapping of Servant to 
ObjectId with TRANSIENT references (stateless and conversational container 
implementation type, respectively) but may use only the 1:1 mapping with 
PERSISTENT references.

¥ A 1:N mapping allows a Servant to be shared among all requests for the same 
interface and therefore requires the object to be stateless (i.e. it has no identity).

¥ A 1:1 mapping binds a Servant to a specific ObjectId for an explicit servant 
lifetime policy (see Section 7.3.5 on page 143) and therefore is stateful.

7.3.2.3 Threading Considerations

CORBA components support two threading models: serialize and multithread. A 
threading policy of serialize means that the component implementation is not thread 
safe and the container will prevent multiple threads from entering the component 
simultaneously. A threading policy of multithread means that the component is 
capable of mediating access to its state without container assistance and multiple 
threads will be allowed to enter the component simultaneously. Threading policy is 
specified in the component’s deployment descriptor.

A threading policy of serialize is required to support an EJB since EJB’s 
are defined to be single-threaded.

7.3.3 Component Factories

A home is a component factory, responsible for creating instances of all interfaces 
exported by a component. Factory operations are defined on the home interface using 
the factory declaration. A default factory is automatically defined whose 
7-142 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

implementation may be generated by tools using the information provided in the 
component IDL. Specialized factories (e.g. factories that accept user-defined input 
arguments) must be implemented by the component developer. Factory operations are 
typically invoked by clients but may also be invoked as part of the implementation of 
the component. A CORBA component implementation can locate its home interface 
using an interface provided by the container. 

7.3.4 Component Activation

CORBA components rely on the automatic activation features of the POA to tailor the 
behavior of the components using information present in the component’s deployment 
descriptor. Once references have been exported, clients make operation requests on the 
exported references. These requests are then routed by the ORB to the POA that 
created the reference and then the component container. This enables the container to 
control activation and passivation for components, apply policies defined in the 
component’s descriptor, and invoke callback interfaces on the component as necessary.

7.3.5 Servant Lifetime Management

Servants are programming language objects which the POA uses to dispatch operation 
requests based on the ObjectId contained in the object key. The server programming 
model for CORBA components includes facilities to efficiently manage the memory 
associated with these programming objects. To implement this sophisticated memory 
management scheme requires the server programmer to make several design choices:

¥ The container type must be chosen.

¥ The container implementation type must be chosen.

¥ A servant lifetime policy is selected. CORBA components support four servant 
lifetime policies (method, transaction, component, and container).

¥ The designer is required to implement the callback interface associated with his 
choice.

The servant lifetime policies are defined as follows:

method

The method servant lifetime policy causes the container to activate the component on 
every operation request and to passivate the component when that operation has 
completed. This limits memory consumption to the duration of an operation request 
but incurs the cost of activation and passivation most frequently.

transaction

The transaction servant lifetime policy causes the container to activate the component 
on the first operation request within a transaction and leave it active until the 
transaction completes and which point the component will be passivated. Memory 
remains allocated for the duration of the transaction. 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-143



7

component

The component servant lifetime policy causes the container to activate the component 
on the first operation request and leave it active until the component implementation 
requests it to be passivated. After the operation which requests the passivation 
completes, the component will be passivated by the container. Memory remains 
allocated until explicit application request.

container

The container servant lifetime policy causes the container to activate the component 
on the first operation request and leave it active until the container determines it needs 
to be passivated. After the current operation completes, the component will be 
passivated by the container. Memory remains allocated until the container decides to 
reclaim it.

The following table shows the relationship between the container implementation 
type, the container type, and the servant lifetime policies:

7.3.6 Transactions

Transaction policies are defined in the component’s deployment descriptor. The 
container uses these descriptions to make the proper calls to the CORBA transaction 
service. The transaction policy defined in the component’s deployment descriptor is 
applied by the container prior to invoking the operation.

The following table summarizes the effect of the various transaction policy attributes 
and the presence or absence of a client transaction on the transaction which is used to 
invoke the requested operation on the component: 

Table 7-3 Servant Lifetime Policies by Container Type

Container Implementation Type Container Type Valid Servant Lifetime Policies

stateless transient method

conversational transient method, transaction, component, container

durable persistent method, transaction, component, container

Table 7-4 Effects of Transaction Policy Attribute

Transaction Attribute Client Transaction Component’s Transaction

NOT_SUPPORTED - -

T1 -

REQUIRED - T2

T1 T1

SUPPORTS - -

T1 T1
7-144 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

not_supported

This component does not support transactions. If the client does not provide a current 
transaction the operation is invoked immediately. If the client provides a current 
transaction, it is suspended (CosTransactions::Current::suspend) before the 
operation is invoked and resumed (CosTransactions::Current::resume) when the 
operation completes. 

required

This component requires a current transaction to execute successfully. If one is 
supplied by the client, it is used to invoke the operation. If one is not provided by the 
client, the container starts a transaction (CosTransactions::Current::begin) before 
invoking the operation and attempts to commit the transaction 
(CosTransactions::Current::commit) when the operation completes.

supports

This component will support transactions if one is available. If one is provided by the 
client, it is used to invoke the operation. If one is not provided by the client. the 
operation is invoked immediately.

requires_new

This component requires its own transaction to execute successfully. If no transaction 
is provided by the client, the container starts one 
(CosTransactions::Current::begin) before invoking the operation and tries to 
commit it (CosTransactions::Current::commit) when the operation completes. If a 
transaction is provided by the client, it is first suspended 
(CosTransactions::Current::suspend), a new transaction is started 
(CosTransactions::Current::begin), the operation invoked, the component’s 
transaction attempts to commit (CosTransactions::Current::commit), and the 
client’s transaction is resumed (CosTransactions::Current::resume). 

mandatory

The component requires that the client be in a current transaction before this operation 
is invoked. If the client is in a current transaction, it is used to invoke the operation. If 
not, the TRANSACTION_REQUIRED exception is raised.

REQUIRES_NEW - T2

T1 T2

MANDATORY - EXC (TRANSACTION_REQUIRED)

T1 T1

NEVER - -

T1 EXC (INVALID_TRANSACTION)

Table 7-4 Effects of Transaction Policy Attribute

Transaction Attribute Client Transaction Component’s Transaction
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-145



7

never

This component requires that the client not be in a current transaction to execute 
successfully. If no current transaction exist, the operation is invoked. If a current 
transaction exists, the INVALID_TRANSACTION exception is raised.

EJB has all of the above transaction policies except for “never.” Their def-
inition in EJB is identical to their definition in CORBA Components. The 
“never” policy is added for completeness. EJB also has a bean-managed 
transaction policy which requires policing the transaction APIs in the con-
tainer. Rather than add that directly to the CORBA component model, we 
inject the enforcement code into the glue required to make an EJB run in a 
CORBA container.

7.3.7 Security

Security policy is applied consistently to all categories of components. The container 
extracts the requested security policy from the deployment descriptor, checks the 
active credentials for invoking operations, and, if necessary adjusts the credentials to 
accommodate the requested policy. The security policy remains in effect until changed 
by a subsequent invocation on a different component having a different policy.

7.3.8 Events

CORBA components use a simple subset of the CORBA notification service to emit 
and consume events. The subset can be characterized by the following attributes:

¥ Events are represented as valuetypes to the component implementor and the 
component client

¥ The event data structure is mapped to an any in the body of a structured event 
presented to and received from CORBA notification.

¥ The fixed portion of the structured event is added to the event data structure by the 
container on emitting and removed from the event data structure when consuming

¥ Components support two forms of event generation and consumption

¥ a component may be an exclusive supplier or an exclusive consumer of a given 
type of event.

¥ a component may supply or consume events from a channel that other CORBA 
notification users are also utilizing

¥ A CORBA component emits events using the push model.

¥ A CORBA component consumes events using the push model.

¥ Events may have transactional behavior depending on both container 
implementation type and policy data in the deployment descriptor.

¥ All channel management is implemented by the container, not the component.

¥ Filters are set administratively by the container, not the component

¥ Quality of service characteristics are specified in the deployment descriptor.
7-146 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

Because events can be emitted and consumed by clients as well as component 
implementations, the operations for emitting and consuming events are generated from 
the specifications in component IDL The container is responsible for mapping these 
operations to the CORBA notification service to provide a robust event distribution 
network.

Quality of service policies are defined for both events to be emitted and for events to 
be consumed. The policies must be valid for the container implementation type the 
component is to be deployed in. The possible values are as follows:

normal

A normal event policy indicates the event should be emitted or consumed outside the 
scope of a transaction. If a current transaction is active, it is suspended before sending 
the event or invoking the operation on the proxy object provided by the component.

default

A default event policy indicates the event should be emitted or consumed regardless of 
whether a current transaction exists. If a current transaction is active, the operation is 
transactional. If not, it is non-transactional

transaction

A transaction policy indicates the event should be emitted or consumed within the 
scope of a transaction. If a current transaction is not active, a new one is initiated 
before sending the event or invoking the operation on the proxy object provided by the 
component. The new transaction is committed as soon as the operation is complete.

7.3.9 Persistence

A persistent container type supports the use of a persistence mechanism for making 
component state durable, e.g. storing it in a persistent store like a database. A 
persistent container type defines two forms of persistence support:

¥ container-managed persistence where the component developer simply defines 
the state which is to be made persistence and the container (in conjunction with 
generated code) automatically saves and restores state as required.

Container-managed persistence is selected by defining the abstract state associated 
with a component segment using the storage declaration defined in Chapter 6 and 
connecting that storage to a component segment using CIDL.

¥ component-managed persistence where the component developer assumes the 
responsibility of saving and restoring state when requested to do so by the 
container.

Component-managed persistence is selected via CIDL declaration and triggered by 
the container invoking the callback interfaces defined later in this chapter (Section 
7.4 on page 153) which the component must implement. 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-147



7

Container-managed persistence may be accomplished using the CORBA persistence 
mechanism or any user-defined persistence mechanism. When the CORBA persistence 
mechanism is used, it is possible to provide automatic code generation for the storage 
factories, finders, and some callback operations.

If container-managed persistence is to be accomplished with a user-defined persistence 
mechanism, the component developer must implement the various persistence classes 
defined in the persistence framework (see Chapter 6 for more details).

Component-managed persistence is also supported by the persistent container type. 
Like container-managed persistence, the component developer has two choices: to use 
the CORBA persistence mechanism or some user-defined persistence mechanism. But 
since no declarations are available to support code generation, the component 
developer is responsible for implementing both the callback interfaces and the 
persistence classes. The container may, but is not obliged to, provide the component 
with a connection to a persistent store, but no standard way to do this is defined in this 
specification.

Table 7-5 below summarizes the choices and their required responsibilities:

7.3.10 Application Operation Invocation

The application operations of a component are specified on either the component’s 
supported interface or one of the provided interfaces. Since CORBA components 
support multiple interfaces, these operations are normal CORBA object invocations.

In Enterprise Java Beans, all remote invocations are made on the EJBOb-
ject interface which intercepts the object-dispatch and delegates applica-
tion operation invocations to a particular bean instance. CORBA 
components support multiple interfaces eliminating the need for delega-
tion, and use the facilities of the POA to intercept object dispatch. This 
eliminates the need for an equivalent concept in CORBA components, 
reducing the number of artifacts which need to be generated, installed, and 
activated/passivated. 

Table 7-5 Persistence Support for persistent container type

Persistence 
Support

Persistence 
Mechanism Responsibility

Persistence 
Classes

Callback 
Interfaces

Container 
Managed

CORBA Container Generated 
Code

Generated 
Code

Container 
Managed

User Container Component 
implements

Generated 
Code

Component 
Managed

CORBA Component Generated 
Code

Component 
implements

Component 
Managed

User Component Component 
implements

Component 
implements
7-148 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

Application operations may raise exceptions, both application exceptions (i.e. those 
defined as part of the IDL interface definition) and system exceptions (those that are 
not). Exceptions defined as part of the IDL interfaces defined for a component (that 
includes both provided interfaces and supported interfaces) are raised back to the client 
directly and do not affect the current transaction. All other exceptions raised by the 
application are intercepted by the container which then raises the 
TRANSACTION_ROLLEDBACK exception to the client, if a transaction is active. 
Otherwise they are reported back to the client directly.

7.3.11 Component Implementations

A component implementation consists of one or more executors as described in 
Chapter 6. Each executor describes the implementation characteristics of a particular 
component segment. The transient container type consists of a single executor with a 
single segment which is activated in response to an operation request on any 
component interface. The persistent container type can be made up of multiple 
segments, each of which is associated with a different storage. Each segment is 
independently activated when an operation request on an interface associated with that 
segment is received.

7.3.12 Component Categories

As indicated in Section 7.2.4 on page 140, this specification defines four component 
categories whose behavior is specified by the two container types. Additionally we 
reserve a component category to describe the empty container (i.e. a container type 
which does not use one of the API frameworks defined in this specification). The four 
component categories are described briefly in the following sections:

7.3.12.1 The Service Component

The service component is a CORBA component with the following properties:

¥ no state

¥ no identity

¥ behavior

The lifespan of a service component is equivalent to the lifetime of a single operation 
request (i.e. method) so it is useful for functions such as command objects which have 
no persistence beyond the lifetime of a single client interaction with them. A service 
component can also be compared to a traditional TP monitor program like a Tuxedo 
service or a CICS transaction. A service component provide a simple way of wrapping 
existing procedural applications.

At first glance, a service component looks like a stateless EJB Session-
Bean, however we do not model it that way so that we can optimize the 
runtime performance of service components by reducing the number of 
callback operations supported. Instead we model an EJB stateless Session-
Bean as a session component with a servant lifetime policy of method.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-149



7

The following table (Table 7-6) summarizes the characteristics of service component 
as seen by the server programmer:

Because of its absence of state, any programming language servant can service any 
ObjectId, enabling such servants to be managed as a pool or dynamically created as 
required, depending on usage patterns. Because a service component has no identity, 
ObjectIds can be managed by the POA, not the component implementor, and the 
client sees only the factory design pattern.

7.3.12.2 The Session Component

The session component is a CORBA component with the following properties:

¥ transient state

¥ identity which is not persistent

¥ behavior

The lifespan of a session component is specified using the servant lifetime policies 
defined in Section 7.3.5 on page 143. A session component (with a transaction 
lifetime policy) is similar to an MTS component and is useful for modeling things like 
iterators, which require transient state for the lifetime of a client interaction but no 
persistent store.

The session component is used to implement the SessionBean of EJB. 
Stateless SessionBeans have a servant lifetime policy of method and state-
ful SessionBeans have a servant lifetime policy of transaction or con-
tainer, depending on whether transactions are used or not.

Table 7-6 A service component design characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus

TransientOrigin

Callback Interfaces ServiceComponent

Container Implementation Type stateless

External Types NoKeyVisibility

Client Design Pattern Factory

Persistence No

Servant Lifetime Policy method

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional 

Executor Single segment with a single servant and no storage
7-150 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

The following table (Table 7-7) summarizes the characteristics of session component 
as seen by the server programmer:

A programming language servant is allocated to an ObjectId for the duration of the 
servant lifetime policy specified. At that point, the servant can be returned to a pool 
and re-used for a different ObjectId. Alternatively, servants may be dynamically 
created as required, depending on usage patterns. Because a session component has no 
persistent identity, ObjectIds can be managed by the container, not the component 
implementor, and the client sees only the factory design pattern.

7.3.12.3 The Process Component

The process component is a CORBA component with the following properties:

¥ persistent state which is not visible to the client and is managed by the process 
component implementation or the container

¥ persistent identity which is managed by the process component and is made visible 
to the client only through user-defined operations

¥ behavior which may be transactional. 

The process component is intended to model objects that represent business processes 
(e.g. applying for a loan, creating an order, etc.) rather than entities (e.g. customers, 
accounts, etc.). The major difference between process components and entity 
components is that the process component does not expose its persistent identity to the 
client (except through user-defined operations).

Table 7-7 A Session Component Design Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base Set plus 

TransientOrigin

Callback Interfaces SessionComponent plus (optionally)

Synchronization

container implementation type conversational

Client Design Pattern Factory

External Types NoKeyVisibility

Persistence No

Servant Lifetime Policy Any

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional 

Executor Single segment with a single servant and no storage
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-151



7

The process component could be used to implement the stateful Session-
Bean defined by EJB (which does not have identity) when its behavior is 
non-transactional. However, we choose to use the session component 
instead. When a process component exhibits transactional behavior, it is 
more like the EntityBean. 

The following table (Table 7-8) summarizes the characteristics of process component 
as seen by the server programmer:

A process component may have transactional behavior. The persistent container will 
interact with the CORBA transaction service to participate in the commit process. 

The process component can use container-managed or component-managed 
persistence using either CORBA persistence or a user-defined persistence mechanism. 
The implications of the various choices are described in Section 7.3.9 on page 147. 
The persistent container uses callback interfaces which enable the process component’s 
implementation to retrieve and save state data at activation and passivation, 
respectively.

7.3.12.4 The Entity Component

The entity component is a CORBA component with the following properties:

¥ persistent state which is visible to the client and is managed by the entity 
component implementation or the container

¥ identity which is architecturally visible to its clients through a primaryKey 
declaration

Table 7-8 The Process Component Characteristics

Design Characteristic Property

External Interfaces As defined in component IDL

Internal Interfaces Base set plus

PersistentOrigin

Callback Interfaces PersistentComponent

container implementation type durable

Client Design Pattern Factory

External Types NoKeyVisibility

Persistence Component-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction

Events Non-transactional or transactional events

Executor Multiple segments with associated storage
7-152 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

¥ behavior which may be transactional. 

As a fundamental part of the architecture, entity components expose their persistent 
state to the client as a result of declaring a primaryKey value on their home 
declaration.

The entity component is used to implement the EntityBean in the Enter-
prise Java Beans specification. 

The following table (Table 7-9) summarizes the characteristics of entity component as 
seen by the server programmer:

The entity component can use container-managed or component-managed 
persistence using either CORBA persistence or a user-defined persistence mechanism. 
The implications of the various choices are described in Section 7.3.9 on page 147. 
The persistent container uses callback interfaces which enable the entity component’s 
implementation to retrieve and save state data at activation and passivation, 
respectively.

7.4 Server Programming Interfaces

This section defines the local interfaces used and provided by the component 
developer. These interfaces are then grouped as follows:

¥ interfaces common to both container types

¥ interfaces supported by the transient container type only

Table 7-9 The Entity Component Characteristics

Design Characteristic Property

External Interfaces As defined in the component IDL

Internal Interfaces Base set plus

PersistentOrigin

Callback Interfaces PersistentComponent

container implementation type durable

Client Design Pattern Factory or Finder

External Types PrimaryKeyVisibility

Persistence Component-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy Any

Transactions May use, and can be included in current transaction

Events Non-transactional or transactional events

Executor Multiple segments with associated storage
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-153



7

¥ interfaces supported by the persistent container type only

Unless otherwise indicated, all of these interfaces are defined within the Server 
module embedded within the Components module (See appendix A.1 on page 399 
for the proposed naming structure for CORBA 3.0 suggested by this specification).

7.4.1 Component Interfaces

All components deal with three sets of interfaces:

¥ internal interfaces which are used by the component developer and provided by the 
container to assist in the implementation of the component’s behavior, 

¥ external interfaces which are used by the client and implemented by the component 
developer, and 

¥ callback interfaces which are used by the container and implemented by the 
component, either in generated code or directly, in order for the component to be 
deployed in the container.

A container type defines a base set of internal interfaces which the component 
developers use in their implementation. These interfaces are then augmented by others 
that are unique to the component category being developed.

¥ ComponentContext - which serves as a bootstrap and provides accessors to the 
other internal interfaces.

Each container type has it’s own specialization of ComponentContext which we 
refer to as a context.

¥ ComponentId - which masks the difference between references created by 
CORBA persistence and references created by other persistence mechanisms.

Only the persistent container type supports the ComponentId interface.

¥ BaseOrigin - which supports operations for managing servant lifetime policy as 
well as for creating and managing object references in conjunction with the POA.

Each container type has it’s own specialization of BaseOrigin which we refer to 
as a context.

¥ Transaction - which wraps the demarcation subset of the CORBA transaction 
service required by the application developer.

¥ Storage - which wraps the persistence mechanism for both CORBA persistence 
and user-defined persistence mechanisms .

¥ Security - which wraps a subset of CORBA security to enable the application to 
validate requests against the credentials in effect for CORBA security.

All components implement a callback interface which is determined by the component 
category.

When a component instance is instantiated in a container, it is passed a reference to its 
context, a local interface used to invoke services. 

The context interfaces serves the same role in CORBA components that the 
7-154 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

EJBContext interface does in Enterprise Java Beans, viz. it provides the 
component implementation with access to the runtime services imple-
mented by the container. 

These services include transactions, security, events, and persistence. The component 
uses this reference to invoke operations required by the implementation at runtime 
beyond what is specified in its deployment descriptor.

7.4.2 Interfaces Common to both Container Types

This section describes the interfaces and operations provided by both container types 
to support all categories of CORBA components.

7.4.2.1 The ComponentContext Interface

The ComponentContext is an internal interface which provides a component 
instance with access to the common container-provided runtime services applicable to 
both container types. It serves as a “bootstrap” to the various services the container 
provides for the component. 

The ComponentContext is intended to be the analogue of EJBContext in 
Enterprise Java Beans.

The ComponentContext provides the component access to the various services 
provided by the container. It enables the component to simply obtain all the references 
it may require to implement its behavior.

exception IllegalState { };

local ComponentContext {
CORBA::Object get_reference ()

raises (IllegalState);
HomeBase get_home();
Transaction get_transaction();
HomeRegistration get_home_registration ();
Security get_security();
Events get_events();

}; 

get_reference

The get_reference operation is used to obtain the reference used to invoke the 
component. If this operation is issued outside of the scope of a callback operation, the 
IllegalState exception is returned.

get_home

The get_home operation is used to obtain a reference to the home interface. The home 
is the interface which supports factory and finder operations for the component and is 
defined by the home declaration in component IDL.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-155



7

get_transaction

The get_transaction operation is used to access the Transaction interface. The 
Transaction interface is used to implement component-managed transactions.

get_home_registration

The get_home_registration operation is used to obtain a reference to the 
HomeRegistration interface. The HomeRegistration is used to register component 
homes so they may be located by the HomeFinder.

get_security

The get_security operation is used to access the Security interface. The Security 
interface is used to access the current CORBA security credentials or test them against 
a required set of credentials.

get_events

The get_events operation is used to obtain a reference to the Events interface. The 
Events interface is used by the component to emit or publish events for external 
consumption or to subscribe to events it needs to process.

EJB uses its context interface for both accessors to services and operations 
on those services. It also specializes the EJBContext for use by the Session-
Bean (SessionContext) and the EntityBean (EntityContext). CORBA com-
ponents defines the context interfaces based on container type and uses 
the accessed interfaces to support operations for transactions, security, 
events, and persistence.

7.4.2.2 The Home Interface

A home is an external interface which supports factory and finder operations for the 
component. These operations are generated from the home IDL declaration (see 
Section 5.8 on page 62). The context supports an operation (get_home) to obtain a 
reference to the component’s home interface.

7.4.2.3 The BaseOrigin Interface

The BaseOrigin is an internal interface used by the component to request passivation 
when the current operation completes. Each container type specializes the 
BaseOrigin to add additional operations.The lifetime of a origin is equal to the 
lifetime of the container that implements it. The derived context interfaces support an 
operation to obtain a reference to a container type specific origin interface.

exception PolicyMismatch { };

local BaseOrigin {
void req_passivate ()

raises (PolicyMismatch);
};
7-156 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

req_passivate

The req_passivate operation is used by the component to inform the container that it 
wishes to be passivated when its current operation completes. To be valid, the 
component must have a servant lifetime policy of component or container. If not the 
PolicyMismatch exception is raised.

The BaseOrigin interface and its derived interfaces have no analogue in 
EJB. This is because CORBA has persistent object references which Java 
does not. EJB uses the Handle to emulate a persistent reference much like 
COM uses Monikers.

7.4.2.4 The Transaction Interface

A server component may be either transaction-unaware or transaction-aware. A 
transaction-unaware component implementation relies on the transaction policy 
declarations packaged with the deployment descriptor and contains no transaction APIs 
in its implementation code. 

This is similar to the default processing of an Enterprise Java Bean or a 
MTS component. 

A transaction-aware component may use the CORBA transaction service directly to 
manipulate the current transaction or it may choose to use a simpler API, defined by 
this specification, which exposes only those transaction demarcation functions needed 
by the component implementation. 

Manipulation of the current transaction must be consistent between the client, the 
transaction policy specified in the deployment descriptor, and the component 
implementation. 

For example, if the client or the container starts a transaction, the compo-
nent may not end it (commit or rollback). The rules to be used are defined 
by the CORBA transaction service. 

If the component uses the CosTransactions::Current interface, all operations 
defined for Current may be used as defined by the CORBA transaction service with 
the following exceptions:

¥ The Control object returned by suspend may only be used with resume. 

¥ Operations on Control are not supported with CORBA components and may raise 
the NO_IMPLEMENT system exception. 

The Control interface in the CORBA transaction services supports acces-
sors to the Coordinator and Terminator interfaces. The Coordinator is 
used to build object versions of XA resource managers. The Terminator is 
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of 
CORBA transactions used with CORBA components, we allow CORBA 
transaction services implementations used with CORBA components to 
raise the NO_IMPLEMENT exception. This provides the same level of 
function as the bean-managed transaction policy in Enterprise Java 
Beans. 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-157



7

The Transaction is an internal interface implemented by the container. Because the 
Transaction is a wrapper over CosTransactions::Current, it is thread specific. 
The Transaction exposes a simple demarcation subset of the CORBA transaction 
service to the component. The context supports an operation (get_transaction) to 
obtain a reference to the Transaction interface. The Transaction interface is defined 
by the following IDL:

exception NoTransaction { };
exception InvalidCookie{ };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK

};

local LocalCookie {
boolean same_as (in LocalCookie cookie);

};

local Transaction {
void begin ();
void commit ()

raises (NoTransaction);
void rollback ()

raises (NoTransaction);
void set_rollback_only ()

raises (NoTransaction);
boolean get_rollback_only()

raises (NoTransaction);
LocalCookie suspend ()

raises (NoTransaction);
void resume (in LocalCookie cookie)

raises (InvalidCookie);
Status get_status();
void set_timeout (in long to);

};

begin

The begin operation is used by a component to start a new transaction and associate it 
with the current thread. When begin is issued by a component, it results in a 
CosTransaction::Current::begin being issued to the CORBA transaction service. 
The rules for the use of this operation are equivalent to the rules of its corresponding 
CORBA transaction service operation.
7-158 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

commit

The commit operation is used by a component to terminate an existing transaction 
normally. If no transaction is active, the NoTransaction exception is raised. When 
commit is issued by a component, it results in a 
CosTransaction::Current::commit being issued to the CORBA transaction service. 
The rules for the use of this operation are equivalent to the rules of its corresponding 
CORBA transaction service operation.

rollback

The rollback operation is used by a component to terminate an existing transaction 
abnormally. If no transaction is active, the NoTransaction exception is raised. When 
rollback is issued by a component, it results in a 
CosTransaction::Current::rollback being issued to the CORBA transaction 
service. The rules for the use of this operation are equivalent to the rules of its 
corresponding CORBA transaction service operation.

get_rollback_only

The get_rollback_only operation is used by a component to test if the current 
transaction has been marked for rollback. The get_rollback_only operation returns 
TRUE if the transaction has been marked for rollback, otherwise it returns FALSE. If 
no transaction is active, the NoTransaction exception is raised. When 
get_rollback_only is issued by a component, it results in a 
CosTransaction::Current::get_status being issued to the CORBA transaction 
service and the status value returned being tested for the MARKED_ROLLBACK 
state.

In EJB, this operation is defined on the EJBContext (javax.ejb.EJBCon-
text) interface, rather than the UserTransaction (javax.jts.UserTransac-
tion) interface. We have chose to define only accessor operations in the 
context.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing 
transaction for abnormal termination. If no transaction is active, the NoTransaction 
exception is raised. When set_rollback_only is issued by a component, it results in a 
CosTransaction::Current::rollback_only being issued to the CORBA transaction 
service. The rules for the use of this operation are equivalent to the rules of its 
corresponding CORBA transaction service operation.

In EJB, this operation is defined both on the EJBContext (javax.ejb.EJB-
Context) interface and the UserTransaction (javax.jts.UserTransaction) 
interface. We have chosen to define only accessor operations in the Com-
ponentContext and thus a single set_rollback_only API.

suspend

The suspend operation is used by a component to disconnect an existing transaction 
from the current thread. If no transaction is active, the NoTransaction exception is 
raised. The suspend operation returns a cookie which can only be used in a subsequent 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-159



7

resume operation. When suspend is issued by a component, it results in a 
CosTransaction::Current::suspend being issued to the CORBA transaction 
service. The rules for the use of this operation are more restrictive than the rules of its 
corresponding CORBA transaction service operation:

¥ Only one transaction may be suspended

¥ The suspended transaction is the only transaction that may be resumed.

resume

The resume operation is used by a component to reconnect a transaction previously 
suspended to the current thread. The cookie identifies the suspended transaction which 
is to be resumed. If the transaction identified by cookie has not been suspended, the 
InvalidCookie exception is raised. When resume is issued by a component, it results 
in a CosTransaction::Current::resume being issued to the CORBA transaction 
service. The rules for the use of this operation are more restrictive than the rules of its 
corresponding CORBA transaction service operation since the suspended transaction is 
the only transaction that may be resumed.

get_status

The get_status operation is used by a component to determine the status of the current 
transaction. If no transaction is active, it returns the NoTransaction status value. 
Otherwise it returns the state of the current transaction. When get_status is issued by 
a component, it results in a CosTransaction::Current::get_status being issued to 
the CORBA transaction service. The status values returned by this operation are 
equivalent to the status values of its corresponding CORBA transaction service 
operation.

set_timeout

The set_timeout operation is used by a component to associate a time-out value with 
the current transaction. The timeout value (to) is specified in seconds. When 
set_timeout is issued by a component, it results in a 
CosTransaction::Current::set_timeout being issued to the CORBA transaction 
service. The rules for the use of this operation are equivalent to the rules of its 
corresponding CORBA transaction service operation.

The Transaction interface is equivalent to the UserTransaction interface 
(javax.jts.UserTransaction) in EJB with the addition of 
get_rollback_only, suspend and resume operations. 

7.4.2.5 The HomeRegistration Interface

The HomeRegistration is an internal interface which may be used by the CORBA 
component to register its home so it can be located by a HomeFinder.

The HomeRegistration interface allows a component implementation to 
advertise a home instance that can be used to satisfy a client’s 
Þnd_home_by_type request. It may also be used by an administrator to do 
the same thing. It is likely that the combination of HomeRegistration and 
7-160 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

HomeFinder interfaces will work within the domain of a single container 
provider unless multiple implementations used other shareable directory 
mechanisms, e.g. an LDAP global directory. Federating HomeFinders is a 
similar problem to federating CORBA security domains and we defer to the 
security people for an architecture for such federation rather than attempt-
ing to specify such an architecture in this specification.

The HomeRegistration interface is defined by the following IDL:

local HomeRegistration {
void register_home (in HomeBase home);
void unregister_home (in HomeBase home);

};

register_home

The register_home operation is used to register a component home with the 
HomeFinder so it can be located by a component clients. The home parameter 
identifies the home being registered. 

unregister_home

The unregister_home operation is used to remove a component home from the 
HomeFinder. Once unregister_home completes, a client will never be returned a 
reference to the home specified as being unregistered. The home parameter identifies 
the home being unregistered. 

7.4.2.6 The RemoteHomeRegistration Interface

The RemoteHomeRegistration is an internal interface, derived from 
HomeRegistration, which can be used by the CORBA component to register a 
remote home (i.e. one that is NOT collocated with the component) so it can be 
returned by a HomeFinder. The RemoteHomeRegistration interface is defined by 
the following IDL:

exception UnknownActualHome { };
exception RemoteHomeNotSupported { };

local RemoteHomeRegistration : HomeRegistration {
void register_remote_home (

in HomeBase rhome,
in HomeBase ahome)
raises (UnknownActualHome, RemoteHomeNotSupported);

};

register_remote_home

The register_remote_home operation is used to register a component home, not 
collocated with the instances that it can create, with the HomeFinder so it can be 
located by component clients. The rhome parameter identifies the home being 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-161



7

registered. If the ahome is not known, the UnknownActualHome exception is 
raised. If this component does not support remote homes, the 
RemoteHomeNotSupported exception is raised.

7.4.2.7 The Security Interface

Security on the server is primarily controlled by the security policy in the deployment 
descriptor for this component. The component may use CORBA security directly to 
determine the credentials associated with an operation or it may use the Security 
interface provided by the container. The context supports an operation (get_security) 
to obtain a reference to the Security interface. Because the Security is a wrapper 
over SecurityLevel2::Current, it is also thread specific. The Security interface is 
defined by the following IDL:

typedef SecurityLevel2::Credentials Principal;

local Security {
Principal get_caller_identity();
boolean is_caller_in_role (in Principal role);

};

get_caller_identity

The get_caller_identity operation obtains the CORBA security credentials in effect 
for the caller.

is_caller_in_role

The is_caller_in_role operation is used by the CORBA component to compare the 
current credentials to the credentials defined by the role parameter. If they match, 
TRUE is returned. If not, FALSE is returned.

This section of the EJB specification is in the process of being changed for 
EJB 1.1. We’ve defined a simple API for use by CORBA components, pri-
marily to retrieve the credentials set by the client or the container using the 
deployment descriptor. We will need to harmonize this with EJB during the 
P-spec RTF.

The Security APIs in EJB (which are the same as those defined above) are 
defined on the EJBContext interface (javax.ejb.EJBContext). We have 
chosen instead to define a distinct Security interface (like both EJB and 
CORBA components does for transactions) which has an accessor opera-
tion on the context.

7.4.2.8 The Events Interface

The Events is an external interface which supports operations for emitting and 
publishing events and for subscribing to events emitted or published by others. These 
operations are generated from the emits, publishes, and consumes declaration in the 
component’s IDL (see Section 5.7 on page 52). The context supports an operation 
(get_events) to obtain a reference to the Events interface.
7-162 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

EJB does not have an event API yet, but one is under development. The 
Java Programming Environment (JPE) does however have a messaging 
API (JMS) which supports publish/subscribe. This is another area that will 
need to be harmonized with EJB during the P-spec RTF.

7.4.2.9 The EnterpriseComponent Interface

All CORBA components must implement an interface derived from the 
EnterpriseComponent interface to be housed in a component container. 
EnterpriseComponent is a callback interface which defines no operations.

EnterpriseComponent is equivalent to the EnterpriseBean interface of 
Enterprise Java Beans.It supports operations to associate the context with 
the component. 

local EnterpriseComponent {
};

7.4.3 Interfaces Supported by the Transient Container Type

This section describes the interfaces supported by the transient container type. This 
includes both internal interfaces provided by the container and callback interfaces 
which must be implemented by components deployed in this container type.

7.4.3.1 The TransientContext Interface

The TransientContext is an internal interface which provides a component instance 
with access to the container-provided runtime services. It serves as a “bootstrap” to the 
various services the container provides for the component. 

The TransientContext is intended to be the analogue of SessionContext 
in Enterprise Java Beans.

The TransientContext provides the component access to the various services 
provided by the container. It enables the component to simply obtain all the references 
it may require to implement its behavior.

local TransientContext : ComponentContext {
TransientOrigin get_transient_origin();

}; 

EJB uses its context interfaces for both accessors to services and opera-
tions on those services. EJB specializes the EJBContext for use by the Ses-
sionBean (SessionContext). CORBA components defines the context 
interfaces based on container type and uses the accessed interfaces to 
support operations for transactions, security, events, and persistence.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-163



7

get_transient_origin

The get_transient_origin operation is used to obtain a reference to the 
TransientOrigin interface. The TransientOrigin interface is used to create and 
manage object references for the transient container type.

7.4.3.2 The TransientOrigin Interface

The TransientOrigin is an internal interface that extends the BaseOrigin interface 
by adding operations to create references for components deployed in a transient 
container type. It adds the ability to create references for these component categories. 
The TransientOrigin is defined by the following IDL:

local TransientOrigin : Origin {
CORBA::Object create_ref (

in CORBA::RepositoryId repid)
}; 

create_ref

The create_ref operation is used to create a reference to be exported to clients to 
invoke operations. The repid parameter identifies the RepositoryId associated with 
the interface for which a reference is being created.

7.4.3.3 The ServiceComponent Interface

The ServiceComponent interface is derived from the EnterpriseComponent 
interface and must be implemented by service components. ServiceComponent is a 
callback interface which provides a context to a service component to be used to 
access container services during its invocation.

ServiceComponent is similar to the SessionBean interface of Enterprise 
Java Beans but it is optimized for the service component which is always 
stateless. The EJB SessionBean may be stateless or stateful so we map it to 
the session component and not the service component. 

local ServiceComponent : EnterpriseComponent {
void set_transient_context (in TransientContext ctx);

};

set_transient_context

The set_transient_context operation is used to set the TransientContext of the 
component. The container calls this operation after a component instance has been 
created. This operation is called outside the scope of an active transaction.
7-164 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

7.4.3.4 The SessionComponent Interface

The SessionComponent is a callback interface implemented by a session CORBA 
component. It provides operations for disassociating a context with the component and 
to manage servant lifetimes for a session component. 

The SessionComponent is analogous to the SessionBean interface of 
Enterprise Java Beans.

local SessionComponent : ServiceComponent {
void activate();
void passivate();
void remove ();

};

activate

This operation is called by the container to notify a session component that it has been 
made active. The component instance should perform any initialization required prior 
to operation invocation.

passivate

This operation is called by the container to notify a session component that it has been 
made inactive. The component instance should release any resources it acquired at 
activation time.

remove

The remove operation is called by the container when the servant is about to be 
destroyed. It informs the component that it is about to be destroyed.

7.4.3.5 The Synchronization Interface

The Synchronization interface is a callback interface which may optionally be 
implemented by the session component. It permits the component to be notified of 
transaction boundaries by its container. 

The Synchronization interface is the analogue of the SessionSynchroni-
zation interface in EJB.

local Synchronization {
void before_completion ();
void after_completion (

in boolean committed);
};
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-165



7

before_completion

The before_completion operation is called by the container just prior to the start of the 
two-phase commit protocol. The container implements the 
CosTransactions::Synchronization interface of the CORBA transaction service 
and invokes the before_completion operation on the component before starting its 
own processing.

after_completion

The after_completion operation is called by the container after the completion of the 
two-phase commit protocol. If the transaction has committed the committed value is 
set to TRUE. If the transaction has been rolled back, the committed value is set to 
FALSE. The container implements the CosTransactions::Synchronization 
interface of the CORBA transaction service and invokes the after_completion 
operation on the component after completing its own processing.

The EJB SessionSynchronization interface also has an after_begin oper-
ation which notifies the bean that a new transaction has begun. It is not 
obvious how this is to be used but it is obvious that such an operation 
would require a modification to the CORBA transaction service to imple-
ment. Consequently, we have not defined this operation for CORBA compo-
nents. If subsequent analysis determines this to be of value, we will add it to 
CORBA components along with a change to the CORBA transaction ser-
vice to support it.

7.4.4 Interfaces Supported by the Persistent Container Type

This section describes the interfaces supported by the persistent container type. This 
includes both internal interfaces provided by the container and callback interfaces 
which must be implemented by components deployed in this container type.

7.4.4.1 The PersistentContext Interface

The PersistentContext is an internal interface which provides a component instance 
with access to the container-provided runtime services. It serves as a “bootstrap” to the 
various services the container provides for the component. 

The PersistentContext is intended to be the analogue of EntityContext in 
Enterprise Java Beans.

The PersistentContext provides the component access to the various services 
provided by the container. It enables the component to simply obtain all the references 
it may require to implement its behavior.
7-166 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

exception IllegalState { };

local PersistentContext : ComponentContext {
ComponentId get_component_id ()

raises (IllegalState);
PersistentOrigin get_persistent_origin();
Storage get_storage ();

}; 

get_component_id

The get_component_id operation is used to obtain a reference to the ComponentId 
interface. The ComponentId interface encapsulates a persistence identifier which can 
be used to access the component’s persistence state. If this operation is issued outside 
of the scope of a callback operation, the IllegalState exception is returned.

get_persistent_origin

The get_persistent_origin operation is used to obtain a reference to the 
PersistentOrigin interface. The PersistentOrigin interface is used to create and 
manage object references for the persistent container type.

get_storage

The get_storage operation is used to access the Storage interface. The Storage 
interface is used by the component to implement component-managed persistence.

EJB uses the EntityContext interface for both accessors to services and 
operations on those services. CORBA components restricts the context 
interface to accessors and uses the referenced interfaces to support opera-
tions for transactions, security, events, and persistence. 

7.4.4.2 The ComponentId Interface

The ComponentId interface is an internal interface provided by the persistent 
container type to locate a component’s persistent state in a persistent store. A 
ComponentId is encapsulated in every object reference associated with a component 
(i.e. the component reference, any supported references, and all the provided 
references). The ComponentId interface supports the use of a CORBA persistence 
mechanism as well as any user-defined mechanisms (e.g. ODBC) for accessing 
persistent stores. The ComponentId interface is defined by the following IDL:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-167



7

exception DuplicateSegment { };
exception NoSuchSegment { };

const StoreType USER=0;
const StoreType PSS=1;

union StoreId switch StoreType {
case USER : ApplId aid;
case PSS : Persistence::PersistentId pid;

};

struct SegmentDescr {
long segment;
StoreId sid;

}:

typedef sequence<SegmentDescr> SegmentList;

local ComponentId {
void add_segment (in long segment,

in StoreId sid)
raises (DuplicateSegment);

void set_segment (in long segment)
raises (NoSuchSegment);

long get_segment ();
StoreId get_store_id ();
StoreId get_component_id ();
StoreId get_store_id_for_segment (in long segment)

raises (NoSuchSegment);
SegmentList get_segment_list ();

};

add_segment

The add_segment operation associates a new entity in a persistent store (sid) with the 
segment identified as segment. Segments are defined in Chapter 6. If this sid is 
already associated with a different segment, the DuplicateSegment exception is 
raised.

set_segment

The set_segment operation is used to associate this ComponentId with a new 
segment identified by segment. If the segment does not exist, the NoSuchSegment 
exception is raised.

get_segment

The get_segment operation is used to retrieve the segment associated with this 
ComponentId.
7-168 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

get_store_id

The get_store_id operation is used to retrieve the persistence identifier associated with 
this ComponentId. For storage managed by CORBA persistence, this will be a 
PersistentId. For storage managed by other mechanisms, this will be the ApplId 
used by the component to create the ComponentId.

get_component_id

The get_component_id operation is used to retrieve the persistence identifier 
associated with the component interface of this ComponentId. For storage managed 
by CORBA persistence, this will be a PersistentId. For storage managed by other 
mechanisms, this will be the ApplId used by the component to create the 
ComponentId.

get_store_id_for_segment

The get_store_id_for_segment operation is used to retrieve the persistence identifier 
associated with a specific segment (identified by segment) of this ComponentId. For 
storage managed by CORBA persistence, this will be a PersistentId. For storage 
managed by other mechanisms, this will be the ApplId used by the component to 
create the ComponentId. If the segment is not defined, the NoSuchSegment 
exception is returned.

get_segment_list

The get_segment_list operation returns a sequence of segments associated with this 
ComponentId.

7.4.4.3 The PersistentOrigin Interface

The PersistentOrigin is an internal interface that extends the BaseOrigin interface 
by adding operations for creating and obtaining object references. Object references for 
components deployed in a persistent container type can choose to use the CORBA 
persistence mechanism or some other user defined mechanism. The ComponentId 
interface (defined in Section 7.4.4.2 on page 167) encapsulates this distinction when a 
reference is to be used. Operations for creating references are defined for both 
persistence mechanisms. The PersistentOrigin is defined by the following IDL:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-169



7

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,
NOT_CREATED_WITH_AID,
NOT_CREATED_WITH_PID

};

exception BadComponentReference {
BadComponentReferenceReason reason

};

typedef sequence<octet> ApplId
typedef CORBA::NVList Criteria;

local PersistentOrigin : BaseOrigin {
ComponentId create_cid_from_aid (

in ApplId aid);
ComponentId create_cid_from_pid (

in Persistence::PersistentId pid);
HomeBase get_home_by_cid (

in ComponentId cid);
CORBA::Object create_ref_from_cid (

in CORBA::RepositoryId repid,
in ComponentId cid,
in Criteria crit);

ComponentId get_cid_from_ref (
in CORBA::Object ref)
raises (BadComponentReference);

ApplId get_aid_from_cid (
in ComponentId cid)
raises (BadComponentReference);

Persistence::PersitentId get_pid_from_cid (
in ComponentId cid)
raises (BadComponentReference);

};

create_cid_from_aid

The create_cid_from_aid operation is used by a persistent component to create a 
ComponentId for persistent state managed by some user-defined persistence 
mechanism. The ApplId value aid is a user-managed identifier for the location of the 
state data in some persistent store.

create_cid_from_pid

The create_cid_from_pid operation is used by a persistent component to create a 
ComponentId for persistent state managed by the CORBA persistence mechanism. 
The PersistentId value pid identifies the incarnation in some persistent store.
7-170 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

get_home_by_cid

The get_home_by_cid operation is used to locate the home interface for this 
ComponentId. The home interfaces supports factory and finder operations for this 
component. A home interface needs to be narrowed to a type specific home from the 
HomeBase reference returned by this operation.

create_ref_from_cid

The create_ref_from_cid operation is used by a component factory to create an object 
reference which can be exported to clients. The cid parameter specifies the 
ComponentId value to be placed in the object reference and made available (using 
the get_component_id operation on the context) when the PersistentComponent 
callback operations are invoked. The repid parameter identifies the RepositoryId 
associated with the interface for which a reference is being created. The crit parameter 
specifies user-supplied parameters which can be used in creating the reference.

The semantics of the crit parameter are determined by container-specific 
configuration data not defined in this specification. The parameter is sup-
ported portably in the sense that all references returned can be used by the 
client regardless of who created them. Individual implementations may 
interpret the crit parameter to place information in the object key that adds 
value to their implementation. An example of such a use would be the par-
titioning of a persistent store by key range and returning references to com-
ponent servers that exploit that key range partitioning. 

get_cid_from_ref

The get_cid_from_ref operation is used by a persistent component to retrieve the 
ComponentId encapsulated in the reference (ref). The ComponentId interface 
supports operations to locate the state in some persistent store. The 
BadComponentReference exception can be raised if the input reference is not local 
(NON_LOCAL_REFERENCE), not a component reference 
(NON_COMPONENT_REFERENCE), or created by some other container 
(WRONG_CONTAINER).

get_pid_from_cid

The get_pid_from_cid operation is used by a component that uses CORBA 
persistence to manage its state to retrieve the PersistentId (pid) it provided when the 
ComponentId was created. The PersistentId provides a persistent handle to an 
incarnation in the persistent store.The BadComponentReference exception can be 
raised if the input ComponentId was not created from a PersistentId 
(NOT_CREATED_WITH_PID).

get_aid_from_cid

The get_aid_from_cid operation is used by a persistent component that manages its 
own state without using CORBA persistence to retrieve the ApplId (id) it provided 
when the ComponentId was created. The ApplId provides a persistent handle to an 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-171



7

application-defined location of the persistent state. The BadComponentReference 
exception can be raised if the input ComponentId was not created from a ApplId 
(NOT_CREATED_WITH_AID).

7.4.4.4 The Storage Interface

The Storage is an internal interface which can be used by the CORBA component to 
access operations related to the CORBA persistence service. The Storage interface is 
a wrapper on a CORBA persistence mechanism required by CORBA components. 

The StorageHome interface defined in Chapter 6 of this specification iden-
tifies all the function required by CORBA components. If a CORBA persis-
tence specification is ultimately adopted which supports all the operations 
defined in Chapter 6, the Storage interface can remain as defined below. If 
not, we will isolate ourselves from the details of the CORBA persistence 
service by adding the equivalent operation on StorageHome to the Stor-
age interface which will have to map between these APIs and the CORBA 
persistence APIs.

The Storage interface is defined by the following IDL:

exception InvalidCategory { };

local Storage {
Persistence::StorageHomeBase get_storage_home (

in Persistence::StorageHomeId homeid)
raises (InvalidCategory, 

Persistence::HomeNotAvailable);
PrimaryKey get_primary_key ()

raises (InvalidCategory);
};

get_storage_home

The get_storage_home operation provides the component access to the persistence 
provider. It returns a StorageHomeBase interface which supports operations for 
managing incarnations in a persistent store. The StorageHomeId identifies the 
persistent store to be used. These interfaces are defined in Chapter 6. If the 
get_storage_home operation is issued by a session component, the InvalidCategory 
exception is raised.

get_primary_key

The get_primary_key operation is used by an entity component to access the primary 
key value declared for this component. This operation is equivalent to issuing the same 
operation on the component’s HomeBase interface. If the get_primary_key 
operation is issued by a session or process component, the InvalidCategory 
exception is raised.
7-172 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

7.4.4.5 The PersistentComponent Interface

The PersistentComponent is a callback interface implemented by both process and 
entity components. It contains operations to manage the persistent state of the 
component. 

PersistentComponent is equivalent to the EntityBean interface in Enter-
prise Java Beans.

local PersistentComponent : EnterpriseComponent {
void set_persistent_context (in PersistentContext ctx);
void unset_persistent_context ();
void activate ();

            void load ();
           void store ();
            void passivate ();
            void remove ();
 };

set_persistent_context

The set_persistent_context operation is used to set the PersistentContext of the 
component. The container calls this operation after a component instance has been 
created. This operation is called outside the scope of an active transaction.

unset_persistent_context

The unset_persistent_context operation is used to remove the PersistentContext of 
the component. The container calls this operation just before a component instance is 
destroyed. This operation is called outside the scope of an active transaction.

activate

The activate operation is called by the container to notify the component that it has 
been made active. When container-managed persistence is implemented using CORBA 
persistence, this operation can be implemented in generated code. The component 
instance should perform any initialization required prior to operation invocation.

load

The load operation is called by the container to instruct the component to synchronize 
its state by loading it from its underlying persistent store. If CORBA persistence is 
being used, the component can extract its PersistentId from the ComponentId to 
locate its state in the persistent store. If CORBA persistence is not being used, the 
component can extract its Applid from the ComponentId to locate its state in the 
persistent store. This operation executes within the scope of the active transaction.

store

The store operation is called by the container to instruct the component to synchronize 
it state by saving it in its underlying persistent store. If CORBA persistence is being 
used, the component can extract its PersistentId from the ComponentId to 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-173



7

determine where to save its state in the persistent store. If CORBA persistence is not 
being used, the component can extract its ApplId from the ComponentId to 
determine where to save its state in the persistent store. This operation executes within 
the scope of the active transaction.

passivate

The passivate operation is called by the container to notify the component that it has 
been made inactive. When container-managed persistence is implemented using 
CORBA persistence, this operation can be implemented in generated code. The 
component instance should release any resources it acquired at activation time.

remove 

The remove operation is called by the container when the servant is about to be 
destroyed. It informs the component that it is about to be destroyed. This operation is 
always called outside the scope of a transaction.

The PersistentComponent interface is equivalent to the EntityBean in 
Enterprise Java Beans. Container-managed persistence with CORBA per-
sistence supports automatic code generation for activate and passivate. 
The component implementor can augment this with other data in the load 
and store methods. Since both process and entity components can have 
persistent state and container-managed persistence, the same callback 
interfaces can be used.

7.5 The Client Programming Model

This section describes the architecture of the component programming model as seen 
by the client programmer. The client programming model as defined by the IDL 
extensions has been described previously (Chapter 5). This chapter focuses on the use 
of standard CORBA by the client who wishes to communicates with a CORBA 
component implemented in a Component Server.

This material serves the same purpose at the “ Enterprise JavaBeans to 
CORBA Mapping” specification does for EJB. It enables a CORBA client 
who is not itself a CORBA component, to communicate with a CORBA 
component using standard CORBA. 

The client interacts with a CORBA component through two forms of external 
interfaces - a home interface and one or more application interfaces. Home interfaces 
support operations which allow the client to obtain references to an application 
interface which the component implements.

From the client’s perspective, the home supports two design patterns - factories for 
creating new objects and finders for existing objects. These are distinguish by the 
presence of a primaryKey parameter in the home IDL.

¥ if a primaryKey is defined, the home supports both factories or finders and the 
client may use both.

¥ if a primaryKey is not defined, the home supports only the factory design pattern 
and the client must create new instances.
7-174 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

Two forms of clients are supported by the CORBA component model:

¥ Component-aware clients - These clients know they are making requests against a 
component (as opposed to an ordinary CORBA object) and can therefore avail 
themselves of unique component function, e.g. navigation among multiple 
interfaces and component type factories.

¥ Component-unaware clients - These clients do not know that the interface they are 
making requests against is implemented by a CORBA component so they can only 
invoke functions supported by an ordinary CORBA object, e.g. looking up a name 
in a Naming or Trader service, searching for a particular type of factory using a 
factory finder, etc.

7.5.1 Component-aware Clients

Clients that are defined using the IDL extensions in Chapter 5 are referred to as 
component-aware clients. Such clients can avail themselves of the unique features of 
CORBA components which are not supported by ordinary CORBA objects. The 
interaction between these clients and a CORBA component are outlined in the 
following sections. A component-aware client interact with a component through one 
or more CORBA interfaces:

¥ the interface associated with the component IDL declaration,

¥ zero or more supported interface declared on the component specification.

¥ zero or more interfaces defined by the provides clauses in the component 
definition, 

¥ the home interface which supports factory and finder operations

Furthermore a component-aware client locates those interfaces using the 
Components::HomeFinder or a naming service. The starting point for client 
interactions with the component is the resolve_initial_references operation on 
CORBA::ORB which provides the initial set of object references.

7.5.1.1 Initial References

Initial references for all services used by a component client are obtained using the 
CORBA::ORB::resolve_initial_references operation. This operation currently 
supports the following references required by a component client:

¥ Name Service (“NameService”)

¥ Transaction Current (“TransactionCurrent”)

¥ Security Current (“SecurityCurrent”)

¥ Notification Service (“NotificationService”)

¥ Interface Repository (“InterfaceRepository”) for DII clients.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-175



7

Additionally, this specification adds Components::HomeFinder. This reference is 
obtained using a new ObjectID, “ComponentHomeFinder” with 
CORBA::ORB::resolve_initial_references. The client uses this operation to obtain 
a reference to the HomeFinder interface. This requires the following enhancement to 
the ORB interface definition:

module CORBA {

interface ORB {
        Object resolve_initial_references (in ObjectID identifier)
                 raises (InvalidName);
         };
};

The string, “ComponentHomeFinder” is added to the list of valid ObjectID values.

7.5.1.2 Factory Design Pattern

For factory operations, the client invokes a create operation on the home. Default 
create operations are defined for each category of CORBA components for which code 
can be automatically generated. These operations return an object of type 
CORBA::Component which must be narrowed to the specific type. Alternatively, 
the component designer may specify custom factories as part of the component 
definition to define a type-specific signature for the create operation. Because these 
operations are defined in IDL, operation names can be chosen by the component 
designer. All that is required is that the operations return an object of the appropriate 
type.

A client using the factory design pattern uses the HomeFinder to locate the 
component factory (HomeBase) by interface type. The HomeFinder returns a type-
specific factory reference which can then be used to create new instances of the 
component interface. Once created, the client makes operation requests on the 
reference representing the interface. This is illustrated by the following code fragment 
below:
7-176 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

// Resolve HomeFinder
org.omg.CORBA.Object objref = 
orb.resolve_initial_references(“ComponentHomeFinder”);

ComponentHomeFinder ff = 
ComponentHomeFinderHelper.narrow(objref);

org.omg.CORBA.Object of = 
ff.find_home_by_type(AHomeHelper.id());

AHome F = AHomeHelper.narrow (of);
org.omg.Components.ComponentBase AInst = F.create();
A Areal = AHelper.narrow (AInst);

// Invoke Application Operation
answer = A.foo(input);

7.5.1.3 Finder Design Pattern

A component-aware client wishing to use an existing component instance (rather than 
create a new instance) uses a Þnder operation. Finders are supported for entity 
components only. Client’s may use the HomeFinder as described in Section 5.9 on 
page 73 to locate the component’s home or they may use CORBA naming to look up a 
specific instance of the home by symbolic name. 

The latter choice is equivalent to the EJB model where the client uses 
JNDI (the Java version of CORBA naming) to look up EJBHome (which 
provides client interfaces to factory and Þnder services for Enterprise Jav-
aBeans). 

A client using the finder design pattern uses the CosNaming::NamingContext 
interface to lookup a symbolic name. The naming service returns an object reference of 
the type previously bound. The client then makes operation requests on the reference 
representing the interface. This is illustrated by the following code fragment below:

org.omg.CORBA.Object objref = 
orb.resolve_initial_references(“NamingService”);

NamingContext ncRef = NamingContextHelper.narrow(objref);

// Resolve the Object Reference in Naming
NameComponent nc = new NameComponent(“A“,””);
NameComponent path[] = {nc};
A aRef = AHelper.narrow(ncref.resolve(path));

// Invoke Application Operation
answer = A.foo(input);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-177



7

7.5.1.4 Transactions

A component-aware client may optionally define the boundaries of the transaction to 
be used with CORBA components. If so, it uses the CORBA transaction service to 
ensure that the active transaction is associated with subsequent operations on the 
CORBA component. 

The client obtains a reference to CosTransactions::Current by using the 
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of 
“TransactionCurrent”. This permits the client to define the boundaries of the 
transaction, i.e. how many operations will be invoked within the scope of the client’s 
transaction. All operations defined for Current may be used as defined by the 
CORBA transaction service with the following exceptions:

¥ The Control object returned by get_control and suspend may only be used with 
resume. 

¥ Operations on Control may raise the NO_IMPLEMENT exception with CORBA 
components.

The Control interface in the CORBA transaction services supports acces-
sors to the Coordinator and Terminator interfaces. The Coordinator is 
used to build object versions of XA resource managers. The Terminator is 
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of 
CORBA transactions used with CORBA components, we allow CORBA 
transaction services implementations used with CORBA components to 
raise the NO_IMPLEMENT exception.

The following code fragment shows a typical usage:

org.omg.CORBA.Object objref = 
orb.resolve_initial_references(“TransactionCurrent”);

Current txRef = CurrentHelper.narrow(objRef);
txRef.begin();
// Invoke Application Operation
answer = A.foo(input);
txRef.commit();

7.5.1.5 Security

A component-aware client uses the existing CORBA security mechanism to manage 
security for a CORBA component. There are two scenarios possible:

¥ Use of SSL for establishing client credentials

CORBA security today does not define a standard API for clients to use with SSL 
to set the credentials which will be used to authorize subsequent requests. The 
credentials must be set in a way which is proprietary to the client ORB.

¥ Use of SECIOP by the client ORB.
7-178 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

In this case, CORBA security does define an API and it must be used by the client 
to establish the credentials to be used to authorize subsequent requests.

Security processing for CORBA components uses a subset of CORBA security. For 
SECIOP, the client sets the credentials to be used with subsequent operations on the 
component by using operations on the SecurityLevel2::PrincipalAuthenticator. 
The client obtains a reference to SecurityLevel2::Current by using the 
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of 
“SecurityCurrent”. This permits the client to access the PrincipalAuthenticator 
interface to associate security credentials with subsequent operations. The following 
code fragment shows a typical usage:

org.omg.CORBA.Object objref = 
orb.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.PrincipalAuthenticator secRef = 
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow 
(objRef);

secRef.authenticate(...);

// Invoke Application Operation
answer = A.foo(input);

7.5.1.6 Events

Component-aware clients wishing to emit or consume events use the component APIs 
defined in Chapter 5. Alternatively, they may use the CORBA Notification service 
APIs directly and conform to the subset supported by CORBA components (see 
Section 7.3.8 on page 146 for details). 

7.5.2 Component-unaware Clients

CORBA components can also be used by clients who are unaware that they are making 
requests against a component. Such clients can see only a single interface (the 
supported interface of a component) and do not support navigation.

7.5.2.1 Initial References

Component-unaware clients obtain initial references using existing CORBA 
mechanisms, viz. CORBA::ORB::resolve_initial_references. It is unlikely, 
however, that this mechanism would be used to obtain a reference to the 
HomeFinder.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-179



7

7.5.2.2 Factory Design Pattern

The factory design pattern can be used by component-unaware clients only if the 
supported interface has application operations defined. This permits existing CORBA 
objects to be easily converted to CORBA components, transparently to their existing 
clients. The following techniques can be used:

¥ The reference to a factory finder (typically the CosLifeCycle::FactoryFinder) 
can be stored in the Naming or Trader service and looked up by the client before 
creating the instance.

¥ A reference to the home interface can be obtained from the Naming service.

This technique is equivalent to the EJB client programming model which 
uses JNDI to look up a reference to EJBHome by name.

¥ The reference to the home interface can be obtained from a Trader service.

¥ After locating a factory finder, the factory can be located using the existing 
Þnd_factories operation or by using the new Þnd_factory operation on the 
CosLifeCycle::FactoryFinder interface. The Þnd_factory is defined in Chapter 
14.

The current CosLifeCycle Þnd_factories operation returns a sequence 
of factories to the client requiring the client to choose the one which will 
create the instance. To allow the server (i.e. the FactoryFinder) to make the 
selection, we also add a new Þnd_factory operation to CosLifeCycle 
which allows the server to choose the “best” factory for the client request 
based on its knowledge of workload, etc.

A factory finder will return an Object. A component-unaware client may 
expect to narrow this to CosLifeCycle::GenericFactory and use 
the generic create operation. This will fail unless the component imple-
mentor has specialized HomeBase and mixed in and implemented the 
GenericFactory interface. 

¥ A stringified object reference can be retrieved from a file known by the component-
unaware client.

Once a reference to the home has been obtained, the client can create component 
instances and make operation requests on the component. Each component exports at 
least one IDL interface. The supported interface must be used by the client to invoke 
the component’s application operations. Provided interfaces cannot be located using 
the factory design pattern.

7.5.2.3 Finder Design Pattern

A component-unaware client can use the CORBA Naming service to locate an existing 
entity component. Unlike the factory design pattern, the name to be looked up by the 
client can be either the supported interface or any of the provided interfaces. The 
following techniques can be used:

¥ A symbolic name associated with the component’s home can be looked up in a 
Naming service to make an invocation of the Þnder operations.
7-180 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



7

This technique is equivalent to the EJB client programming model which 
uses JNDI to look up a reference to EJBHome by name.

¥ Alternatively, the reference to the home interface can be obtained from a Trader 
service.

¥ the Þnder operation can be invoked on the entity component to return a reference 
to the client.

7.5.2.4 Transactions

This is the same as component-aware clients (See Section 7.5.1.4 on page 178). 
However, the possibility of the NO_IMPLEMENT exception being raised for 
operations on Control may have a more serious impact, since the component-unaware 
client may not be expecting that to happen.

7.5.2.5 Security

This is the same as component-aware clients (See Section 7.5.1.5 on page 178).

7.5.2.6 Events

Component-unaware clients wishing to emit or consume events must use the 
equivalent CORBA Notification services interfaces and stay within the subset 
supported by CORBA components (see Section 7.3.8 on page 146 for details). This is 
illustrated by the following code fragment:

org.omg.CORBA.Object objref = 
orb.resolve_initial_references(“NotificationService”);

org.omg.CosNotififyChannelAdmin.EventChannelFactory evfRef = 
org.omg.EventChannelFactoryHelper.narrow(objRef);

// Create an Event Channel
org.omg.CosNotifyChannelAdmin.EventChannel evcRef = 
evfRef.create_channel(...);

// Obtain a SupplierAdmin
org.omg.CosNotifyChannelAdmin.SupplierAdmin publisher = 
evcRef.new_for_suppliers (...);

// And a ConsumerProxy
org.omg.CosNotifyComm.ProxyConsumer proxy = 
publisher.obtain_notification_push_comsumer (...);

// Publish a structured event
proxy.push_structured_event(...);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 7-181



7

7-182 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Container Architecture 8
This chapter describes the architecture of the component container as seen by the 
container provider. The container is a server-side framework built on the ORB, the 
Portable Object Adaptor (POA), and a set of CORBA services which provides the 
runtime environment for a CORBA component. A component container may be 
implemented by an existing ORB vendor or by companies not in that business today 
using the facilities of a CORBA_3 ORB enhanced to support the core changes 
identified in this specification (see Section 14.1 on page 387 for details).

The container architecture in this chapter is described in terms of a specific design for 
building the container on the POA using a ServantLocator. Other design are also 
possible although there are specific combinations of POA policies that cannot be made 
to work. These are indicated in the text as rationale in the body of the chapter. A 
container implementation that exhibits the same behavior as the one presented in this 
chapter is conformant, even if it implements the container differently.

Unless otherwise noted, all interfaces in this chapter are defined within the Container 
module embedded within the Components module (see appendix A.1 on page 399 
for the proposed naming structure for CORBA 3.0 suggested by this specification).

8.1 Change History

The following changes have been made since the December 1998 version of the 
document (orbos/98-12-02) was posted:

1. Persistence has been factored into the container architecture.

2. The ContainerFactory interface has been introduced to explain the initial creation 
of component containers.

3. The Empty Container has been introduced to allow the component machinery to be 
used without any constraints on the existing CORBA_3 architecture.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-183



8

4. The container creation mechanism has been made extensible to allow other 
specialized containers to be defined in the future. This includes partitioning the 
container space into OMG-defined and vendor-defined containers.

5. Since the process and entity containers use the same ServantLocator, the 
ServantLocator is no longer isomorphic with the container category so they have 
been renamed to TransientServantLocator and PersistentServantLocator 
which more accurately captures their essential differences.

6. Interface names have been synchronized with those defined elsewhere in the 
document and Cookies have replaced Tokens for consistency.

7. Miscellaneous clarifications have been made to the text.

The following changes have been made since the February version of the document 
(orbos/98-02-01):

1. The ServantLocator designed presented in this chapter has been made an example 
rather than the only way to implement the container.

2. There are now two component categories which use TRANSIENT references. This 
requires a new POA to manage the servant to oid ratio properly, but it can use the 
same ServantLocator.

3. The executor has been incorporated in place of the servant where appropriate.

4. Operations for creating containers and installing components have been removed 
and are now specified in Chapter 9. As a result, none of the IDL defined in this 
chapter is normative.

5. Terminology has been updated to be consistent with the rest of the document

6. Additional details on the container requirements for interacting with the persistence 
mechanism including serializations and caching requirements have been added.

7. Threading requirements and the containers responsibility have been documented.

8. Miscellaneous clarifications have been made to the text.

All changes are clearly marked with change bars. In general existing text which was 
moved will not have change bars.

8.2 Component Server

A Component Server is a process which includes an arbitrary number of Component 
Containers. Each container type has an associated container implementation type 
which describes its interaction with the POA and the ORB. Each container type is 
capable of managing a specific set of component categories. Each container type 
includes a specialized POA1 managed by a Container Manager which is responsible 
for creating and destroying the containers based on descriptive information packaged 

1.The term “POA” is used to refer to not only the interface Poa, but all the related interfaces 
(ServantManager, ServantLocator, etc.) necessary to create references and activate object 
instances in response to client requests.
8-184 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

with the component. Container Managers are factories which support the creation of 
Component Containers and are created as part of the installation and deployment 
process for CORBA components. The details of deployment are described in Section 
9.9 on page 282. The overall architecture is depicted in Figure 8-1 below:

Figure 8-1 A Component Server

A component container is created as a result of component deployment as outlined in 
Chapter 9. The container specification is translated by the Container Manager into a set 
of POA policies, a container API framework, and a set of CORBA service bindings 
that will be used by the container. This enables the container to implement internal 
interfaces which offer services to the component and invoke callback interfaces which 
the component developer must implement.

8.2.1 POA Creation

A POA is used to create references that will be exported to clients and to handle 
activation of component instances when operation requests are received. Creating a 
container usually involves the creation of a POA2 which the container will use. The 
container implementation type associated with a particular container type determines 
some of the policies which must be associated with the POA. These have been 
previously described in Section 7.3 on page 140. Others which are orthogonal to the 
container functionality (e.g. the use of firewall proxies) can be passed as input to 
create_container. It is the responsibility of the create_container operation to then 
create a POA which satisfies these requirements.

2.It may be possible in some cases to actually use the root POA. This is not excluded, but has 
not been validated.

Container Manager

Session
Container

Entity
Container

Other 
Container

Service
Container

POA1 POA2 POA3 POA4

ORB

Transactions Security Persistence Events
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-185



8

CORBA::ORB::resolve_initial_references with an ObjectID of “RootPOA” is 
used to locate the root POA. The component category determines the container 
implementation type to be created. The container factory uses this information to 
create a POA and its associated interfaces and to bind the container API framework 
associated with the container type.

The create_container design for creating a POA described below uses a 
ServantLocator architecture which enables specialized ServantManager 
interfaces to implement the container function by being on the invocation 
path for all requests directed to the component. The API frameworks and 
their associated deployment descriptors defined for the container types in 
this specification require the container to intervene before and after each 
operation request to implement the required function. This precludes cer-
tain POA policy choices, e.g. the use of a ServantActivator which is only 
called when the requested object is not in the POA’s active object map. 
While other designs using different POA policies may be possible, this one 
was chosen because it best describes how the container behavior needs to 
be implemented.

The steps required are as follows:

¥ The CORBA::Policy objects required by the POA are created with the proper 
values. The container implementation type requires or (in some cases) suggests 
specific POA policies. An example of a set that will work for each container 
implementation type can be found in Section 8.3 on page 189.

¥ A POA is created using the POA:create_poa operation specifying a sequence of 
the Policy objects created in the previous step as input. The complete set of Policy 
objects includes the mandatory set (dictated by the container implementation 
type), the orthogonal set (specified as input to container creation), and the 
implementation-specific set (chosen by the container provider to deliver the proper 
semantics).

¥ The container type value is used to determine which ServantManager should be 
assigned to the POA (POA::set_servant_manager).

¥ For the fwork-a container type, the ServantManager is set to the 
TransientServantLocator (see Section 8.6.1 on page 223).

¥ For the fwork-b container type, the ServantManager is set to the 
PersistentServantLocator (see Section 8.6.2 on page 225).

¥ The newly created POA is then activated (POA::activate)

The container implementation is actually provided by the ServantManager interface. 
A ServantLocator is used to allow the container to be on the invocation path for 
every operation request. These POAs specify the USE_SERVANT_MANAGER 
policy, enabling a ServantManager to be used to associate a servant with the request 
to instantiate the object. Normally the ServantManager interface is implemented by 
user applications, but in this design, it is implemented by the container provider.

To install a CORBA component in a container a handshake is required between the 
component and the container to exchange references between the component 
implementation and the container.
8-186 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

8.2.2 Binding the Container to CORBA services

The container type identifies which CORBA services will be used by the container. 
The container types defined in this specification use the following CORBA services:

¥ security

¥ transactions

¥ persistence

¥ notification

¥ naming

As part of container creation, accessibility to these CORBA services must be 
established and bindings created. At a minimum, this includes the use of the 
resolve_initial_references operation on CORBA::ORB to obtain initial references to 
these services. It also includes processing any container specific configuration data 
required for a particular service, e.g. 

¥ setting up the channels to be used for emitting and consuming events,

¥ creating and initializing database connections to be used for persistence, and

¥ determining the naming context to be used to resolve component local names.

8.2.3 Container API Frameworks

The container types defined by this specification provide frameworks into which a 
CORBA component is deployed. We define two container types and their associated 
APIs in this specification. The framework manages interactions with the ORB, the 
POA, and the CORBA services on behalf of the CORBA component, allowing the 
component developer to concentrate on application logic. The major functions handled 
by the API frameworks (in association with the ORB, POA, and the CORBA services) 
include:

¥ creating object references

¥ factories and finders

¥ transactions

¥ security

¥ events

¥ persistence

A brief description of each of these is provided in the following sections.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-187



8

8.2.3.1 Creating Object References

In CORBA, object references are created and managed by the POA. A component 
container creates these reference with specialized information which comes from either 
the container provider, the component implementor, or the persistence provider, 
depending on both the component category and the deployment options specified.

8.2.3.2 Factories and Finders

Factory and finder operations are declared using the home IDL declaration and are 
associated with the component’s home interface. The container provides access to this 
interface at runtime and supports a set of operations for externalizing component 
homes for use by external clients.

8.2.3.3 Transactions

The container interacts with the CORBA transaction service on behalf of the 
component. Transaction policies, defined in the deployment descriptor, are translated 
into CORBA transaction service operations. The container also provides the 
Transaction interface, a simplified form of the demarcation part of the CORBA 
transaction service which the component implementor uses to support transaction 
functions at runtime.

8.2.3.4 Security

The container interacts with the CORBA security service on behalf of the component. 
Security policies, defined in the deployment descriptor, are translated into CORBA 
security service operations. The container also provides the Security interface, a 
simplified form of the application part of CORBA security which the component 
implementor uses to support security functions at runtime.

8.2.3.5 Events

The container provider is responsible for setting up and managing the event channels 
used by CORBA notification to support the component event model. The component 
event model relies on configuration information, local to the container implementor, to 
handle quality of service properties, filters, and the number and types of event 
channels.The container also provides access to the Events interface, which is defined 
by the component IDL specification, to allow the component to both generate and 
process events. Integrating the component event model with CORBA notification is 
addressed in Section 8.5 on page 221.
8-188 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

8.2.3.6 Persistence

Persistence is supported with the fwork-b container type. The fwork-a container type 
does not support persistence. The container also provides the Storage interface, a set 
of APIs which provides the functions required of CORBA persistence for the 
component implementor to use to implement component-managed persistence. 
Persistence considerations are covered in more detail in Section 8.4 on page 218.

8.2.3.7 Threading

CORBA components support two forms of thread safety: serialize, and multithread. 
These choices are described in Section 7.3.2.3 on page 142. The container implements 
these choices by either ensuring that only a single thread enter a component at a time 
(serialize) or by allowing multiple threads to enter a component simultaneously 
(multithread).

8.3 Containers Categories

This specification defines container categories corresponding to the four component 
categories with their associated framework APIs and an empty container to support 
creation of user-defined frameworks:

¥ The Empty container makes the entire suite of interfaces defined for CORBA_3 
available to a component’s implementation without restriction. 

¥ The Service container which manages the service component designed for high-
performance access to stateless CORBA components.

¥ The Session container which manages the session component for stateful CORBA 
components with transient state.

¥ The Process container which manages stateful process components which 
encapsulates all data access in the server using any persistence mechanism. 

¥ The Entity container which manages stateful entity components which shares data 
access responsibility between the client and the server using any persistence 
mechanism. 

The container categories are one to one with their component categories. The 
relationship between component categories, container types and container 
implementation types was described previously in Section 7.2 on page 137. The 
following sections describe each of the container categories in more detail.

8.3.1 The Empty Container

The Empty container exposes all CORBA functions directly to the component 
developer. No framework is provided to simplify programming, however all the tools 
necessary to build such a framework are available to the component developer. The 
component developer can choose any function currently defined in CORBA.The empty 
container is the means by which the advanced functions of CORBA components (e.g. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-189



8

multiple interfaces, packaging, and deployment) are made available to any CORBA 
applications, including those that do not fit the profiles of the other containers.This is 
illustrated in Figure 8-2 below:

Figure 8-2 The Empty Container

Note that a CORBA component deployed in the empty container can use 
any arbitrary set (including the null set) of CORBA services. This specifi-
cation places no constraints on what can be used within the existing 
CORBA architecture.

8.3.2 The Service Container

The service container implements the runtime environment for a service component. A 
service container can be implemented using a POA with the following policies:

Table 8-1 POA Policies for a Service Container

Policy Name Required Value

Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

ObjectId Uniqueness MULTIPLE_ID

ID Assignment SYSTEM_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED

Service 1 Service 2 Service n Service n+1

CORBA Component Implementation

ORB
......

in the Empty Container

POA
8-190 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

Thread

The choice of ORB_CTRL__MODEL allows the container to serialize access to 
components that are not thread safe (serialize). Thread safe components (multithread) 
will not be protected from multiple threads entering the component simultaneously.

Lifespan

Since service components have neither state nor identity, the use of TRANSIENT 
object references is the appropriate choice.

ObjectId uniqueness

A policy of MULTIPLE_ID allows the service container to assign any servant to any 
ObjectId. Since service components are stateless, any servant is capable of supporting 
any ObjectId

ObjectId assignment

A policy of SYSTEM_ID allows the POA to assign ObjectId values. Since service 
components have no identity, the service container has no need to manage ObjectId 
assignment. 

implicit activation

This policy has no relevance to component containers hence it is set to 
NO_IMPLICIT_ACTIVATION.

servant retention

A policy of NO_RETAIN is required to use a ServantLocator.

transaction policy

A policy of ALLOWS_SHARED permits the container to set transaction policy based 
on the component’s deployment descriptor.

request processing

The choice of USE_SERVANT_MANAGER allows the container to be implemented 
in the ServantManager.

Request Processing USE_SERVANT_MANAGER

Servant Manager TransientServantLocator

Table 8-1 POA Policies for a Service Container

Policy Name Required Value
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-191



8

8.3.2.1 Creating Object References

For service components, ObjectIds have no meaning since a service component has 
neither state or identity. 

8.3.2.2 Factories and Instances

A component home implementation for a service component creates object references 
and component instances in response to the client’s create requests. A service 
component’s implementation registers its home with the HomeFinder to make it 
available to clients through find operations. For service components, the component 
instance and its home need not be collocated. Since instances have no state, they can 
be created anywhere when a request is received. The HomeFinder can also be located 
anywhere since it is a righteous CORBA object. Object references for both the 
component’s supported interfaces and any provided interface are created by the POA 
within the service container. 
8-192 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

8.3.2.3 Invoking an Operation 

Figure 8-3 below outlines the steps necessary to make an operation invocation on a 
service component: 

Figure 8-3 Using a Service Component

1. Component implementation registers a service component factory with the 
HomeFinder (HomeRegistration.register_home).

2. Client uses ORB.resolve_initial_references to get a reference to the 
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object, 
it’s implementation may be located anywhere.

3. Client uses the HomeFinder.Þnd_home_by_type operation to find a factory 
(Zhome) that creates component instances of type Z.

Operation foo on Component Z

Client Client ORB Z Z_impl

resolve_initial_references

ComponentHomeFinder

register_home(ZHome)

HomeFinder.find_home_by_type(ZHome)

ZHome

ZHome.create

Z

foo.Z

(2)

(3)

(4)

(5)

(1)

Home

POA
TransientServant

Locator

(6)

(7)

(8)

pre_invoke

post_invoke

invoke(foo)

lookup_servant

HomeRegistration
HomeFinder

release_servant
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-193



8

4. Client invokes a create operation on the factory (ZHome.create). Since Z is a 
service component, the factory creates a reference and defers activation.

5. Client invokes the foo operation on Z (Z.foo). 

6. The POA invokes the TransientServantLocator and requests an executor to 
process the request (TransientServantLocator.pre_invoke).The 
TransientServantLocator locates an appropriate executor or creates a new one 
using the ExecutorFactory. It returns the associated servant to the POA.

7. The POA dispatches the request to the component implementation (Invoke Z.foo).

8. After the request completes, the POA invokes the TransientServantLocator 
(TransientServantLocator.post_invoke). The TransientServantLocator 
releases the associated executor to the pool.

8.3.2.4 Servant Lifetime Management

The service container supports a servant lifetime policy of method. A servant with a 
method lifetime policy is activated on the first pre_invoke prior to an operation being 
dispatched on the component’s interface and passivated in the post_invoke following 
the operation invocation. This behavior is shown in Figure 8-4 below: 

Figure 8-4 Service Container with a Method Lifetime Policy

1. Client invokes foo operation on Z (Z.foo).

2. POA invokes pre_invoke operation on ServantManager 
(TransientServantLocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

(1)

(2)

(3)

(4)

(5)

(6)

Z.foo

Z.foo

pre_invoke

post_invoke

set_context

lookup_servant

Client POA ServantLocator ZTransient

release_servant
8-194 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

4. POA then dispatches foo operation to Z.

5. When foo operation completes, POA invokes post_invoke operation on 
ServantLocator (TransientServantLocator.post_invoke). 

6. POA then returns foo response back to client Since the servant lifetime policy is 
method, the executor is released.

8.3.3 The Session Container

The session container implements the runtime environment for a session component. A 
session container can be implemented using a POA with the following policies:

Thread

The choice of ORB_CTRL__MODEL allows the container to serialize access to 
components that are not thread safe (serialize). Thread safe components (multithread) 
will not be protected from multiple threads entering the component simultaneously.

Lifespan

Since session components have transient state and identity, the use of TRANSIENT 
object references is the appropriate choice.

ObjectId uniqueness

Since session components have identity, a policy of UNIQUE_ID is required to allow 
the container to distinguish between multiple instances of the same type.

Table 8-2 POA Policies for a Service Container

Policy Name Required Value

Thread ORB_CTRL_MODEL

Lifespan TRANSIENT

ObjectId Uniqueness UNIQUE_ID

ID Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED

Request Processing USE_SERVANT_MANAGER

Servant Manager TransientServantLocator
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-195



8

ObjectId assignment

The session container will assign unique ObjectIds without input from the component 
implementation. This supports a structuring of ObjectId values which the container 
can exploit within its implementation.

implicit activation

This policy has no relevance to component containers hence it is set to 
NO_IMPLICIT_ACTIVATION.

servant retention

A policy of NO_RETAIN is required to use a ServantLocator.

transaction policy

A policy of ALLOWS_SHARED permits the container to set transaction policy based 
on the component’s deployment descriptor.

request processing

The choice of USE_SERVANT_MANAGER allows the container to be implemented 
in the ServantManager.

8.3.3.1 Creating Object References

For session components, ObjectIds are managed by the session container without 
involvement from the component implementor. The container implementor is 
responsible for maintaining uniqueness. This permits ObjectIds to be encapsulated by 
the container provider in implementation specific ways.

8.3.3.2 Factories and Instances

The home implementation for a session component creates object references and 
component instances in response to the client’s create requests. A session component’s 
implementation registers its home with the HomeFinder to make it available to 
clients through find operations. For session components, the component instance and 
the factory must be collocated. The HomeFinder, however, can be located anywhere 
since it is a righteous CORBA object. Object references for both the component’s 
supported interfaces and any provided interface are created by the POA within the 
session container. 
8-196 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

8.3.3.3 Invoking an Operation 

Figure 8-3 below outlines the steps necessary to make an operation invocation on a 
session component: 

Figure 8-5 Using a Session Component

1. Component implementation registers a session component’s home with the 
HomeFinder (HomeRegistration.register_home).

2. Client uses ORB.resolve_initial_references to get a reference to the 
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object, 
it’s implementation may be located anywhere.

Operation foo on Component A

Client Client ORB A A_impl

resolve_initial_references

ComponentHomeFinder

register_home(AHome)

HomeFinder.find_home_by_type(AHome)

AHome

AHome.create

A

foo.A

(2)

(3)

(4)

(5)

(1)

Home

POA
TransientServant

Locator

(6)

(7)

(8)

pre_invoke

post_invoke

invoke(foo)

lookup_servant

HomeRegistration
HomeFinder

release_servant

(9)

(10)
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-197



8

3. Client uses the HomeFinder.Þnd_home_by_type operation to find a factory 
(Ahome) that creates component instances of type A.

4. Client invokes a create operation on the factory (AHome.create). Since A is a 
session component, the factory creates a reference and may defer activation until 
the first operation invocation.

5. Client invokes the foo operation on A (A.foo). 

6. The POA invokes the TransientServantLocator and requests an executor to 
process the request (TransientServantLocator.pre_invoke).The 
TransientServantLocator locates an appropriate executor or creates a new one 
using the ExecutorFactory. It returns the associated servant to the POA.

7. The POA dispatches the request to the component implementation (Invoke A.foo).

8. After the request completes, the POA invokes the TransientServantLocator 
(TransientServantLocator.post_invoke). 

9. POA then returns foo response back to client.

10. Steps [5] through [9] are repeated until the operation following the expiration of the 
servant lifetime policy. At that point, the TransientServantLocator releases the 
associated executor to the pool.

8.3.3.4 Servant Lifetime Management

The session container supports multiple servant lifetime policy values. An executor is 
activated on the first pre_invoke prior to an operation being dispatched on the 
component’s interface and is passivated in the post_invoke following the expiration of 
the servant lifetime policy. This is illustrated in the following sections:
8-198 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

Method Lifetime

A session component with a method lifetime policy has its executor activated on every 
pre_invoke and passivated on every post_invoke. This behavior is shown in 
Figure 8-6: 

Figure 8-6 Session component with a Method Lifetime Policy

1. Client invokes foo operation on A (A.foo).

2. POA invokes pre_invoke operation on ServantManager 
(TransientServantLocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

4. ServantLocator then invokes activate callback operation. The component 
developer must implement the activate operation. 

5. POA then dispatches foo operation to A.

6. When foo operation completes, POA invokes post_invoke operation on 
ServantLocator (TransientServantLocator.post_invoke).

7. ServantLocator then invokes passivate callback operation. The component 
developer must implement this operation. 

8. POA then returns foo response back to client and releases executor.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

A.foo

A.foo

pre_invoke

post_invoke

set_context

lookup_servant

Client POA ServantLocator ATransient

activate

passivate

(8) release_servant
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-199



8

Transaction Lifetime

A session component with a transaction lifetime policy is activated on the first 
pre_invoke within a new transaction. Subsequent pre_invoke operations do not cause 
activation. Passivation occurs when the current transaction completes (successfully or 
unsuccessfully). The TransientServantLocator implements this policy using the 
CORBA transaction service CosTransactions::Synchronization interface. This 
behavior is shown in Figure 8-7: 

Figure 8-7 Session Component with a Transaction Lifetime Policy

(2)

(4)

(5)

(6)

(7)

(9)

A.foo1

A.foo1

pre_invoke

post_invoke

set_context

Client POA
TransientServant

ALocatorOTS

(1)
Current.begin

(10) A.foo2
pre_invoke(11)

(12)

(13)

(14)

A.foo2

post_invoke

(15)

Current.commit

(3)

(16)

(17)

Coordinator.register_synchronization

Synchronization.before_completion

(18)

lookup_servant

activate

passivate

(8)
8-200 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

1. Client begins a transaction with the CORBA transaction service (Current.begin)

2. Client invokes foo1 operation on A (A.foo1).

3. POA invokes pre_invoke operation on ServantLocator 
(TransientServantLocator.pre_invoke).

4. ServantLocator registers a Synchronization object with the CORBA 
transaction service (Coordinator.register_synchronization) to be called by the 
CORBA transaction service at the start of the commit process.

5. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

6. ServantLocator then invokes activate callback operation. The component 
developer must implement the activate operation. 

7. POA then dispatches foo1 operation to A.

8. When foo1 operation completes, POA invokes post_invoke operation on 
ServantLocator (TransientServantLocator.post_invoke).

9. POA then returns foo1 response back to client.

10. Client invokes foo2 operation on A.

11. POA invokes pre_invoke operation on ServantLocator 
(TransientServantLocator.pre_invoke). Since A is already active, the 
ServantLocator returns to the POA.

12. POA then dispatches foo2 operation to A.

13. When foo2 operation completes, POA invokes post_invoke operation on 
ServantLocator (TransientServantLocator.post_invoke).

14. POA then returns foo2 response back to client.

15. Client attempts to terminate the transaction by calling commit (Current.commit)

16. CORBA transaction service notifies ServantLocator prior to the start of phase 
one of commit (Synchronization.before_completion).

17. ServantLocator then invokes passivate callback operation. The component 
developer must implement this operation. 

18. CORBA transaction service continues the two-phase commit process.

Component Lifetime

A session component with a component lifetime policy is activated on the first 
pre_invoke prior to an operation being dispatched on the component’s interface. 
Passivation occurs either in the post_invoke following an application requested 
passivation or when the process terminates, whichever occurs first. This behavior is 
shown in Figure 8-8 below.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-201



8

Container Lifetime

A session component with a container lifetime policy is activated on the first 
pre_invoke prior to an operation being dispatched on the component’s interface. 
Passivation occurs either in the post_invoke following an application-requested 
passivation or in the post_invoke following an operation when the system needs to 
reclaim the memory, whichever occurs first. This behavior is identical to process 
behavior, except that failures can be simulated when the container determines that it 
needs to reclaim the memory associated with this component making it more likely 
that the final response will be returned to the client. This behavior is captured in 
Figure 8-8 below. 

Figure 8-8 A Session Component with Component or Container Lifetime Policy

1. Client invokes foo1 operation on A (A.foo1).

2. POA invokes pre_invoke operation on ServantLocator 
(TransientServantLocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

(1)

(2)

(3)

(5)

(6)

(7)

A.foo1

A.foo1

pre_invoke

post_invoke

Client POA
TransientServant

ALocator

passivate

post_invoke

req_passivateFailure OR
(8)

(9)

(11)

(4) activate

(10)

set_context

A.foo2
8-202 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

4. ServantLocator then invokes activate callback operation. The component 
developer must implement the activate operation. 

5. POA then dispatches foo1 operation to A.

6. When foo1 operation completes, POA invokes post_invoke operation on 
ServantLocator (TransientServantLocator.post_invoke). Since activation 
policy is component or container, the ServantLocator just returns to the POA.

7. POA then returns foo1 response back to client.

8. Client continues invoking foo2 operation (A.foo2). Either a failure occurs or A 
requests to be passivated (Origin.req_passivate).

9. When foo2 operation completes, POA invokes post_invoke operation on 
ServantLocator (TransientServantLocator.post_invoke).

10. ServantLocator then invokes passivate callback operation. The component 
developer must implement this operation. 

11. POA then returns foo2 response back to client (if possible).

8.3.4 The Process Container

The process container implements the runtime environment for a process component. 
A process container can be implemented using a POA with the following policies:

Table 8-3 POA Policies for a Process Container

Policy Name Required Value

Thread ORB_CTRL_MODEL

Lifespan PERSISTENT

ObjectId Uniqueness UNIQUE_ID

ID Assignment USER_ID

Implicit Activation NO_IMPLICIT_ACTIVATION

Servant Retention NO_RETAIN

Transaction Policy ALLOWS_SHARED

Request Processing USE_SERVANT_MANAGER

Servant Manager PersistentServantLocator
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-203



8

Thread

The choice of ORB_CTRL__MODEL allows the container to serialize access to 
components that are not thread safe (serialize). Thread safe components (multithread) 
will not be protected from multiple threads entering the component simultaneously.

Lifespan

Since process components have both state and identity, the use of PERSISTENT 
object references is the appropriate choice.

ObjectId uniqueness

A policy of UNIQUE_ID allows the process container to distinguish between multiple 
equivalent instances.

ObjectId assignment

The process container will assign unique ObjectIds with input from the component 
implementation and the persistence mechanism. This not only supports a structuring of 
ObjectId values which the container can exploit within its implementation, but also 
makes it possible for the component implementor or the persistence mechanism to 
locate state from the ObjectId.

implicit activation

This policy has no relevance to component containers hence it is set to 
NO_IMPLICIT_ACTIVATION.

servant retention

A policy of NO_RETAIN is required to use a ServantLocator.

transaction policy

A policy of ALLOWS_SHARED permits the container to set transaction policy based 
on the component’s deployment descriptor.

request processing

The choice of USE_SERVANT_MANAGER allows the container to be implemented 
in the ServantManager.

8.3.4.1 Creating Object References

The process container is responsible for creating and managing unique ObjectIds 
which can be used to locate an external copy of the component’s persistent state. That 
state can be explicitly declared and managed by the container (container-managed 
persistence) or not declared and managed by the application (component-managed 
persistence). These ObjectIds are opaque both to the client and to the container, and 
may or may not use the CORBA persistence mechanism. This attribute makes it 
8-204 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

possible to have factories for process components which create only object references 
and defer instance creation until an operation request is actually received. This enables 
workload to be distributed among several functionally equivalent servers.

8.3.4.2 Factories and Instances

The process component’s home is responsible for creating references and exporting 
them to clients. Component instances are created on demand when a reference is used 
to invoke an operation.

Factory operations are typically invoked by clients but may also be invoked as part of 
the implementation of a specific interface provided by the component. A CORBA 
component implementation locates its home (which supports the factory operations) 
using the context provided by its container. Object references for both the component’s 
interfaces and any provided interface are created by the POA which supports the 
container for that component.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-205



8

8.3.4.3 Invoking an Operation 

Figure 8-9 outlines the steps necessary to make an operation request on a process 
component:

Figure 8-9 Using the Process Container

1. Component implementation registers a process component home with the 
HomeFinder (HomeRegistration.register_factory).

2. Client uses ORB.resolve_initial_references to get a reference to the 
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object, 
it’s implementation may be located anywhere.

3. Client uses the HomeFinder.Þnd_home_by_type operation to find a factory 
(BHome) that creates component instances of type B.

Operation foo on Component B Flow

Client Client ORB B B_impl

resolve_initial_references

ComponentHomeFinder

register_home(Bhome)

HomeFinder.find_home_by_type(BHome)

BHome

BHome.create

B

foo.B

(1)

(2)

(3)

(4)

(5)

POA

pre_invoke

PersistentServant
Locator

invoke (B)

lookup_servant_factory
(6)

(7)

HomeBase

HomeRegistration
HomeFinder

post_invoke

(8)
8-206 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

4. Client invokes a create operation on the factory (BHome.create). Since B is 
process component, the factory need only create a reference; instance creation can 
be deferred until an operation is requested.

5. Client invokes the foo operation on B (B.foo). Since B is not active, the POA 
invokes the pre_invoke operation on the appropriate ServantManager 
(PersistentServantLocator.pre_invoke). 

6. The PersistentServantLocator locates the ExecutorFactory and creates a new 
executor to handle the request. It then returns the associated servant to the POA to 
process the request.

7. The POA then dispatches the request to the servant (invoke(B))

8. After the request completes, the POA invokes the PersistentServantLocator 
(PersistentServantLocator.post_invoke). 

9. Steps [5] through [8] are repeated until the operation following the expiration of the 
servant lifetime policy. At that point, the PersistentServantLocator releases the 
associated executor to the pool.

8.3.4.4 Servant Lifetime Management

The process component can have multiple servant lifetime policies specified in its 
deployment descriptor. The PersistentServantLocator implements these different 
policies by making activation decisions during pre_invoke and passivation decisions 
during post_invoke. This is illustrated in the following sections:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-207



8

Method Lifetime

A process component with a method lifetime policy has its executor activated on 
every pre_invoke and passivated on every post_invoke. This behavior is shown in 
Figure 8-10: 

Figure 8-10 A Process Component with a Method Lifetime Policy

1. Client invokes foo operation on B (B.foo).

2. POA invokes pre_invoke operation on ServantManager 
(PersistentServantLocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

4. ServantLocator creates a new B and invokes activate callback operation. If the 
component has declared its abstract state using CORBA persistence, this callback 
will be executed as generated code. If no abstract state is declared, the generated 
code simply returns. If abstract state is declared not using CORBA persistence, the 
component developer must implement the activate operation. 

5. ServantLocator then invokes load callback operation. This enables B to locate its 
persistent state which is not declared and retrieve it from external storage.

6. POA then dispatches foo operation to B.

(1)

(2)

(3)

(5)

(6)

(7)

(8)

B.foo

B.foo

pre_invoke

post_invoke

activate

passivate

lookup_servant_factory

Client POA ServantLocator BPersistent

load

store

(9)

(10)

set_context

(4)

unset_context

(11)
8-208 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

7. When foo operation completes, POA invokes post_invoke operation on 
ServantLocator (PersistentServantLocator.post_invoke).

8. ServantLocator then invokes store callback operation. This enables B to save its 
persistent state, not explicitly declared, in some external storage location.

9. ServantLocator then invokes passivate callback operation. If the component has 
declared its abstract state using CORBA persistence, this callback will be executed 
as generated code. If no abstract state is declared, the generated code simply 
returns. If abstract state is declared not using CORBA persistence, the developer 
must implement this operation. 

10. ServantLocator invokes unset_context callback operation and releases the 
executor.

11. POA then returns foo response back to client.

Transaction Lifetime

A process component with a transaction lifetime policy has its executor activated on 
the first pre_invoke within a new transaction. Subsequent pre_invoke operations do 
not cause activation. Passivation occurs when the current transaction completes 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-209



8

(successfully or unsuccessfully). The PersistentServantLocator implements this 
policy using the CORBA transaction service CosTransactions::Synchronization 
interface. This behavior is shown in Figure 8-11: 

Figure 8-11 A Process Component with a Transaction Lifetime Policy

1. Client begins a transaction with the CORBA transaction service (Current.begin)

2. Client invokes foo1 operation on B (B.foo1).

(2)

(4)

(5)

(7)

(8)

(10)

B.foo1

B.foo1

pre_invoke

post_invoke

activate

Client POA
PersistentServant

BLocatorOTS

(1)
Current.begin

(11) B.foo2
pre_invoke(12)

(13)

(14)

(15)

B.foo2

post_invoke

(16)

Current.commit

(3)

(17)

(19)

Coordinator.register_synchronization

Synchronization.before_completion

(20)

lookup_servant

load

store

passivate

(9)

(21)

set_context

(6)

unset_context

(18)
8-210 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

3. POA invokes pre_invoke operation on ServantLocator 
(PersistentServantLocator.pre_invoke).

4. ServantLocator registers a Synchronization object with the CORBA 
transaction service (Coordinator.register_synchronization) to be called by the 
CORBA transaction service at the start of the commit process.

5. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

6. ServantLocator creates a new B and invokes activate callback operation. If the 
component has declared its abstract state using CORBA persistence, this callback 
will be executed as generated code. If no abstract state is declared, the generated 
code simply returns. If abstract state is declared not using CORBA persistence, the 
component developer must implement the activate operation. 

7. ServantLocator then invokes load callback operation.This enables B to locate it’s 
persistent state and retrieve it from external storage.

8. POA then dispatches foo1 operation to B.

9. When foo1 operation completes, POA invokes post_invoke operation on 
ServantLocator (PersistentServantLocator.post_invoke).

10. POA then returns foo1 response back to client.

11. Client invokes foo2 operation on B.

12. POA invokes pre_invoke operation on ServantLocator 
(PersistentServantLocator.pre_invoke). Since B is already active, the 
ServantLocator returns to the POA.

13. POA then dispatches foo2 operation to B.

14. When foo2 operation completes, POA invokes post_invoke operation on 
ServantLocator (PersistentServantLocator.post_invoke).

15. POA then returns foo2 response back to client.

16. Client attempts to terminate the transaction by calling commit (Current.commit)

17. CORBA transaction service notifies ServantLocator prior to the start of phase 
one of commit (Synchronization.before_completion).

18. ServantLocator then invokes store callback operation. This enables B to save its 
persistent state in some external storage location.

19. ServantLocator then invokes passivate callback operation. If the component has 
declared its abstract state using CORBA persistence, this callback will be executed 
as generated code. If no abstract state is declared, the generated code simply 
returns. If abstract state is declared not using CORBA persistence, the developer 
must implement this operation.

20. ServantLocator invokes unset_context callback operation and releases the 
executor.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-211



8

21. CORBA transaction service continues the two-phase commit process.

Component Lifetime

A process component with a component lifetime policy has its executor activated on 
the first pre_invoke prior to an operation being dispatched on the component’s 
interface. Passivation occurs either in the post_invoke following an application 
requested passivation or when the process terminates, whichever occurs first. This 
behavior is shown in Figure 8-12 below.

Container Lifetime

A process component with a container lifetime policy has its executor activated on the 
first pre_invoke prior to an operation being dispatched on the component’s interface. 
Passivation occurs either in the post_invoke following an application-requested 
passivation or in the post_invoke following an operation when the system needs to 
reclaim the memory, whichever occurs first. This behavior is identical to process 
behavior, except that failures can be simulated when the container determines that it 
8-212 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

needs to reclaim the memory associated with this component making it more likely 
that the final response will be returned to the client. This behavior is captured in 
Figure 8-12 below. 

Figure 8-12 Process Component with Component or Container Lifetime Policies

1. Client invokes foo1 operation on B (B.foo1).

2. POA invokes pre_invoke operation on ServantLocator 
(PersistentServantLocator.pre_invoke).

3. ServantLocator finds an available executor and returns associated servant to the 
POA, and invokes set_context callback operation.

4. ServantLocator invokes activate callback operation. If the component has 
declared its abstract state using CORBA persistence, this callback will be executed 
as generated code. If no abstract state is declared, the generated code simply 
returns. If abstract state is declared not using CORBA persistence, the component 
developer must implement the activate operation. 

5. ServantLocator then invokes load callback operation.This enables B to locate it’s 
persistent state and retrieve it from external storage.

(1)

(2)

(3)

(6)

(7)

(8)

B.foo1

B.foo1

pre_invoke

post_invoke

activate

Client POA
PersistentServant

BLocator

passivate

post_invoke

req_passivate
Failure OR

(9)

(10)

(11)

(13)

(5) load

store

(12)

set_context

(4)

(14)

unset_context

B.foo2
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-213



8

6. POA then dispatches foo1 operation to B.

7. When foo1 operation completes, POA invokes post_invoke operation on 
ServantLocator (PersistentServantLocator.post_invoke). Since activation 
policy is process, the ServantLocator just returns to the POA.

8. POA then returns foo1 response back to client.

9. Client invokes foo2 operation on B (B.foo2). Either a failure occurs or B requests 
to be passivated (Origin.req_passivate).

10. When foo2 operation completes, POA invokes post_invoke operation on 
ServantLocator (PersistentServantLocator.post_invoke).

11. ServantLocator then invokes store callback operation. This enables B to save its 
persistent state in some external storage location.

12. ServantLocator then invokes passivate callback operation. If the component has 
declared its abstract state using CORBA persistence, this callback will be executed 
as generated code. If no abstract state is declared, the generated code simply 
returns. If abstract state is declared not using CORBA persistence, the developer 
must implement this operation.

13. ServantLocator invokes unset_context callback operation and releases the 
executor.

14. POA then returns foo response back to client (if possible).

8.3.5 The Entity Container

The entity container provides the runtime environment for the entity component. The 
entity container can be implemented using the same POA policies as the process 
container. These were described in Table 8-3 on page 203.

8.3.5.1 Creating Object References

The entity container supports operations for associating primary keys with a 
PersistentId (pid). Every entity component instance is associated with one and only 
one primary key. The entity container provides operations on its 
PersistentServantLocator to create an ObjectId from a pid.

8.3.5.2 Factories and New Instances

A entity component’s home is responsible for both creating references and creating 
new instances of entity components. Since entity components are also incarnations in 
a persistent store, creating a new instance of the entity component has the effect of 
creating a new record in a persistent store.

Factory operations are typically invoked by clients but may also be invoked as part of 
the implementation of a specific interface provided by the component. The entity 
component implementation locates its home (which supports the factory operations) 
8-214 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

using the context provided by its container. Object references for both the component’s 
interfaces and any provided interface are created by the POA which supports the 
container for the entity component.

8.3.5.3 Invoking an Operation on a New Instance

Figure 8-13 shows the necessary steps to make an operation request on a new entity 
component:

Figure 8-13 Using the Entity Container to Create new Entity Components

Operation foo on a new Component C Flow

Client Client ORB C_impl

resolve_initial_references

ComponentHomeFinder

register_home(CHome)

HomeFinder.find_home_by_type(CHome)

CHome

CHome.create(primary_key)

foo.C

(1)

(2)

(3)

(4)

(6)

POA

pre_invoke

PersistentServant
Locator

invoke (C)

(7)

(8)

PSS

C

(9)

(10)

create(key)
C

(5)

create_key

HomeBase

HomeRegistration
HomeFinder

post_invoke

(11)
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-215



8

1. Component implementation registers the entity component home with the 
HomeFinder (HomeRegistration.register_factory).

2. Client uses ORB.resolve_initial_references to get a reference to the 
ComponentHomeFinder. Since the HomeFinder is a righteous CORBA object, 
it’s implementation may be located anywhere.

3. Client uses the HomeFinder.Þnd_home_by_type operation to find a factory 
(CHome) that creates component instances of type C.

4. Client invokes a create operation on the factory (CHome.create) using a primary 
key. Since C is an entity component, the factory must talk to a persistence 
mechanism to create a new record in the persistent store using the same primary 
key.

5. A reference to C is returned to the client.

6. Client invokes the foo operation on C (C.foo). Since C is not active, the POA 
invokes the pre_invoke operation on the appropriate ServantManager 
(PersistentServantLocator.pre_invoke). 

7. The PersistentServantLocator talks to the persistence mechanism to find the 
incarnation associated with this request. The persistence mechanism finds the 
appropriate incarnation and returns it to the PersistentServantLocator.

8. The PersistentServantLocator locates the ExecutorFactory (not shown) and 
creates a new executor to handle the request. The associated servant is returned to 
the POA to process the request.

9. The POA then dispatches the request to the servant (invoke(C))

10. After the request completes, the POA invokes the PersistentServantLocator 
(PersistentServantLocator.post_invoke). 

11. Steps [6] through [10] are repeated until the operation following the expiration of 
the servant lifetime policy. At that point, the PersistentServantLocator releases 
the associated executor.

8.3.5.4 Finders and Existing Instances

The entity component may also correspond to an existing element in a persistent store. 
If so, a finder is responsible for locating the PersistentId and associating an 
incarnation with an instance of the entity component. The home interface for entity 
components supports finder operations.

The client will use either the HomeFinder or the Naming service to locate the home 
interface. A CORBA component implementation can locate its home interface using 
the context provided by its container. 
8-216 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

8.3.5.5 Invoking an Operation on an Existing Instance

Figure 8-14 shows the necessary steps to make an operation request on an existing 
entity component:

Figure 8-14 Using the Entity Container to Locate Existing Entity Components

1. Component implementation binds the entity component home to a string 
(ÒnamestringÓ) with CosNaming.

Operation foo on an Existing Component C Flow

Client Client ORB
Name

Service Origin C_impl

resolve_initial_references

NamingService

bind(CHome,”namestring”)

NamingContext.lookup(CHome,”namestring”)

CHome

CHome.find(primary_key)

foo.C

(1)

(2)

(3)

(4)

(6)

POA

pre_invoke

PersistentServant
Manager

invoke (C)

(7)

(8)

PSS

C

(10)

(11)

find(key)
C

(5)

find

post_invoke
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-217



8

2. Client uses ORB.resolve_initial_references to get a reference to the 
NamingService. Since the NamingContext is a righteous CORBA object, its 
implementation may be located anywhere.

3. Client uses the NamingContext.lookup operation to find the home (CHome) 
that finds component instances of type C.

4. Client invokes a find operation on the home (CHome.Þnd) using a primary key. 
Since C is an entity component, the factory must talk to the persistence mechanism 
to locate an element in the persistent store with the same primary key.

5. A reference to C is returned to the client.

6. Client invokes the foo operation on C (C.foo). Since C is not active, the POA 
invokes the pre_invoke operation on the appropriate ServantManager 
(PersistentServantLocator.pre_invoke). 

7. The PersistentServantLocator talks to the persistence mechanism to find the 
incarnation associated with this request. The persistence mechanism find the 
appropriate incarnation and returns it to the PersistentServantLocator.

8. The PersistentServantLocator locates the ExecutorFactory (not shown) and 
creates a new executor to handle the request. The associated servant is returned to 
the POA.

9. The POA then dispatches the request to the servant (invoke(C))

10. After the request completes, the POA invokes the PersistentServantLocator 
(PersistentServantLocator.post_invoke). 

11. Steps [6] through [10] are repeated until the operation following the expiration of 
the servant lifetime policy. At that point, the PersistentServantLocator releases 
the associated executor to the pool.

8.3.5.6 Servant Lifetime Management

The entity container supports multiple servant lifetime policies.Support for multiple 
servant lifetime policies is equivalent to the process container as described in Section 
8.3.4.4 on page 207.

8.4 Persistence Integration

Component containers support persistence for the fwork-b container type. The 
container architecture permits the persistence provider to be separate from the 
container provider since we expect that these functions will often be provided by 
different vendors. This section describes the various forms of persistence support 
available for CORBA components and the responsibilities of the container, the 
persistence provider, and the component developer.

The fwork-b container type provides two forms of component persistence:
8-218 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

¥ Container-managed persistence where the container provider interacts with the 
persistence provider and

¥ Component-managed persistence where the component developer must interact with 
the persistence provider.

These are described more fully in the subsequent sections.

8.4.1 Container Managed Persistence

Container-managed persistence supports the declaration of abstract state associated 
with the component and/or its provided interfaces. This abstract state is declared using 
the storage declaration defined in Chapter 6. State which is to be container-managed 
can use a CORBA persistence provider or it may use some other persistence 
mechanism. When CORBA persistence is used, code can be generated to support the 
activate and passivate operations on the fwork-bComponent interface. If CORBA 
persistence is not used, the component developer must implement these operations as 
well as provide implementations for all factory and finder methods defined on the 
storage’s home.

With container-managed persistence, it is still possible for the component to augment 
the abstract state definition with its own private state. The load and store operations 
on fwork-bComponent support this function. The container also supports the 
Storage interface which provides run time access to the primary key (for entity 
components) and to the required persistence functions implemented by a persistence 
provider to enable the component to save and restore its private state. If other 
mechanisms are used for persistence, it is the responsibility of the component 
developer to provide the required access.

8.4.2 Component Managed Persistence

Component-managed persistence is also provided by the fwork-b container type. 
Component-managed persistence is selected by not declaring abstract state for a 
particular component. With component-managed persistence, automatic code 
generation for saving and restoring state is not possible, so the responsibility lies 
completely with the component developer. Again, the developer may chose between a 
CORBA persistence provider and its own defined persistence mechanism. The 
Storage interface provides run time access to the persistence provider. The 
component developer must use the operations on fwork-bOrigin to create a 
ComponentId that encapsulates the location of the persistent state. These operations 
are defined in Section 7.4.4.3 on page 169.

8.4.3 Interactions between the Container and the Persistence Provider

The design for CORBA components assumes the likelihood that containers and 
persistence solutions will be provided by different vendors. The impact of that 
assumption on the generated code was covered in Chapter 6. This assumption also 
effects both the component developer and the container provider. The component 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-219



8

developer is isolated from the persistence provider by the Storage interface defined in 
Section 7.4.4.4 on page 172. The container provider has several other responsibilities 
for persistence integration. These include:

¥ establishing connection to the persistence mechanism, 

¥ managing DB connections with the persistence store, and 

¥ synchronizing component state with durable state.

These subjects are covered in the next sections.

8.4.3.1 Connecting to the Persistence Mechanism

As part of creating the fwork-b container type, connectivity to the persistence 
mechanism must be established. This includes getting any initial references which the 
persistence provider makes available through the ORB, connecting to the persistence 
provider (including exchanging any security information required), and obtaining 
references from the persistence provider to allow the operations on the container’s 
Storage interface to be delegated to the proper interface in the persistence service 
implementation. We assume most of this information will come from container-
specific configuration data, although some of it may be standardized if and when the 
OMG adopts a specification for CORBA persistence.

By ensuring that the component developer has access to all required per-
sistence functions, the unspecified configuration data effects only the con-
tainer implementation. This can be elaborated if and when a CORBA 
persistence specification is adopted.

8.4.3.2 Managing DB Connections

Most persistence providers today require that a DB connection be allocated by a client 
before any data access operations can be invoked. Typically, this is a very expensive 
process, which must be done infrequently to achieve reasonable system performance. 
We expect container implementations to manage a pool of such connections, which 
they have initially created as part of the container creation process and allocate these to 
the component implementation as needed, typically for the duration of a transaction, 
although a connection may be retained longer if the container does not need it for some 
other component. As a result, component implementations will not have to deal with 
this function directly. Since the container is wrapping the persistence API (using the 
Storage interface), the DB connection can be assigned to a component when its initial 
request to the persistence provider is made.

8.4.3.3 Synchronization of Component State with Persistence State

The Storage interface defines a ßush operation (on StorageHome) which can be 
used by the component developer to transfer state from the container domain to the 
persistence domain. For component-managed persistence, the component developer 
assumes this responsibility as part of the store callback operation. For container-
managed persistence, the container assumes this responsibility. Two strategies are 
possible depending on the functions supported by the persistence provider:
8-220 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

¥ the generated code which implements the passivate callback invokes the ßush 
operation for each segment of the component.

¥ the container itself invokes the ßush operation for a specific transaction if the 
persistence provider supports that functionality.

Either technique guarantees that the persistence provider, and not the component 
developer or the container, assumes the responsibility for durability of persistent state.

8.5 Event Management Integration

CORBA components define a simple event model which supports two forms of event 
communication:

¥ events which can only be provided by a single supplier 

¥ events which are published anonymously for any subscriber

The container is responsible for mapping those semantics on to the CORBA 
notification service. Although it is possible to connect event consumers and suppliers 
directly (to support the first case), delivering such events through a notification 
channel ensure a more robust event distribution mechanism and allows transaction 
semantics defined with the event deployment descriptor to be applied to both the 
delivery of the event to the channel and the removal of the events from the channel.

A component event is represented as a CORBA valuetype. This permits event emitters 
and publishers to be matched with their consumers by the event types they wish to 
exchange. The event architecture as described in Section 5.7 on page 52 requires that 
the valuetype be able to be transmitted as a CORBA any through an event channel. 
This makes it possible for the container to use untyped channels for transmitting the 
actual event. The containers responsibility can be broken into three major area and is 
summarized in the next few sections:

¥ setting up the channels to be used, including all required proxies

¥ accepting a CORBA component event and pushing it to an event channel as a 
structured event

¥ receiving an event from an event channel and converting it to a CORBA component 
event

8.5.1 Channel setup

When a component is installed in a container, the deployment descriptor contains 
information about the types of events it can emit and whether they are intended for 
general consumption or are targeted explicitly for another component. The container is 
responsible for initializing the CORBA notification service and establishing the event 
channels to be used. The actual channel names are not defined in the deployment 
descriptors and must be made available to the container in a container-specific 
configuration file. This allows the installation to configure shared channels to be used 
by other notification service users as well as component implementations. The 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-221



8

container must create a unique channel for events which are designated as emanating 
from this component only. The technique by which uniqueness is ensured is not 
specified. 

There are several possible schemes that could be made to work. Channels 
could be given unique names using something like a UUID to ensure 
uniqueness. Hierarchical names is another possibility, where all channels 
created by a specific container would be prefixed by the name of the con-
tainer (perhaps a URL). CORBA Security could also be used to prevent 
events from being pushed to a channel which is dedicated to component 
events. Other schemes are also possible.

The CORBA notification service supports filters on both the supply side and the 
consume side of a channel and allows them to be configured on the channel itself, or 
on the proxy being used to supply or consume events. This specification allows the 
container provider to setup filters in any way it chooses since they too must be made 
available to the container at start-up through a container-specific configuration file.

8.5.2 Transmitting an event

When a CORBA component emits or publishes an event (using the push operation on 
<event_ type>Consumer), the operation is delegated to the container by the 
generated code so that the container can actually push this event to the proper channel. 
The following steps are required:

¥ channel lookup - for published events, this is the channel configured for general use 
at container start-up, for emitted events, this is the channel established by the 
container for the purpose of pushing this event type.

¥ Constructing the notification EventHeader - The EventHeader consists of some 
static information, including the event_type and event_name (not to be confused 
with the <event_type> of the CORBA valuetype which holds the event). For 
CORBA components the event_type is set to the value of <event_type> and the 
event_name is set to <source_name>.

¥ If configuration-defined filterable data is to be associated with this event, it is 
placed in the portion of the structured event header defined by the CORBA 
notification service (CosNotification::FilterableEventBody). Container 
implementations are not required to insert filerable data.

¥ The valuetype representing the actual event data is placed into the any portion of 
the structured event.

¥ A CosNotifyCom::push_structured_event is issued to CORBA notification.

8.5.3 Receiving an event

In order to receive an event, the container must connect its proxy to the event channel 
the event is to be received on and implement the 
CosNotifyComm::structured_push_consumer interface. The container connects 
to the channel as a result of a either a subscribe_<source_name> or a 
connect_<source_name> operation on the component interface. The container 
8-222 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

performs a CosNotifyChannelAdmin::connect_structured_push_consumer 
operation on behalf of the component. The subscribe operation receives all events from 
the channel, subject to filter constraints; the connect operation receives only those 
events emitted by the component supplier.

When the container’s structured_push_consumer interface is invoked, it performs the 
following processing:

¥ It extract the event data from the any portion of the structured event and converts it 
to a CORBA valuetype which represents the event.

¥ It extracts the event_type and event_name from the FixedEventHeader and 
converts them back to the <event_type> name of the component event

¥ It invokes <event_type>Consumer::push passing in the valuetype 
<event_type>.

8.6 Servant Locators for CORBA Components

This specification defines two derived ServantLocator interfaces to implement the 
two container types:

¥ The TransientServantLocator is used to implement the fwork-a container type 
which supports service and session component categories.

¥ The PersistentServantLocator is used to implement the fwork-b container type 
which supports process and entity component categories.

8.6.1 The TransientServantLocator

The ServantManager for a fwork-a container type is the 
TransientServantLocator. The TransientServantLocator implements both the 
service and session component interfaces defined in Section 7.4.3 on page 163. The 
TransientServantLocator supports the use of a pool of pre-registered executors and 
the creation of new executors and their associated servants on demand using a 
ExecutorFactory. The ExecutorFactory has an ExecutorFactoryId which 
corresponds to an interface name. An executor and its associated servant (whether 
created dynamically by the ExecutorFactory or statically by the fwork-a container) 
can be shared across a set of ObjectIds associated with the same ServantId 
(typically an interface name). 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-223



8

The TransientServantLocator is used with both the poa-x and poa-y container 
implementation types, which means it will support both variations of POAs. This is 
depicted in Figure 8-15 below:

Figure 8-15 TransientServantLocator

The fwork-a container is responsible for allocating component instances from a pool 
of equivalent, reusable instances which are created and managed by the 
TransientServantLocator, the specialized ServantManager for the fwork-a 
container type. The TransientServantLocator is derived from 
PortableServer::ServantLocator and provides operations for managing executors 
and their associated servants for both service and session components.

native ExecutorFactory;
typedef sequence<octet> ExecutorFactoryId;
typedef sequence<octet> ServantId;

interface TransientServantLocator : PortableServer::ServantLocator {
PortableServant::Servant register_servant (

in ServantId sid,
in PortableServer::Servant svt);

void unregister_servant (
in PortableServer::Servant svt);

PortableServer::Servant lookup_servant (in ServantId sid);
ExecutorFactory register_executor_factory (

in ExecutorFactoryId sfid,
in ExecutorFactory factory);

void unregister_executor_factory (in ExecutorFactoryId sfid);
ExecutorFactory lookup_executor_factory (

in ExecutorFactoryId sfid);
};

servant mgr

POA

ServantId
ServantId
ServantId
ServantId

TransientServantLocator
servant

TRANSIENT
MULTIPLE_ID, UNIQUE_ID
SYSTEM_ID, USER_ID
NO_IMPLICIT_ACTIVATION
NO_RETAIN
USE_SERVANT_MANAGER

pre_invoke
post_invoke
8-224 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

register_servant

The register_servant operation associates a ServantId (sid) and a servant (svt) with 
a specific POA. When subsequent requests arrive for that servant, the servant 
identified by sid will be dispatched to process them. Although the use of sid is not 
specified, a typical use by a container implementation could be to treat sid as an 
interface name, allowing a group of servants to be used based on the interface 
identifier.

unregister_servant

The unregister_servant operation removes the servant (svt) from the pool of 
registered servants. If the servant identified by svt is not registered, it has no effect. 
The register_servant and unregister_servant operations allow a pre-allocated 
collection of servants to be managed as a pool.

lookup_servant

The lookup_servant operation is used to allocate a particular servant (identified by 
sid) to process this request. It returns a PortableServer::Servant to be used by the 
POA.

register_executor_factory

The register_executor _factory operation associates a ExecutorFactoryId (sÞd) 
with a specific ExecutorFactory (factory). The ExecutorFactory will be 
subsequently located by its ExecutorFactoryId to create a servant to process 
subsequent requests. A typical use would be to define a ExecutorFactory (sÞd) for 
each interface name. The ExecutorFactory is implemented by the InternalHome.

unregister_executor_factory

The unregister_executor_factory operation removes the ExecutorFactory 
(identified by sÞd) from the list of registered ExecutorFactory. If the 
ExecutorFactory identified by sÞd is not registered, it has no effect.

lookup_executor_factory

The lookup_executor_factory operation is used to locate a particular 
ExecutorFactory (by sÞd). The ExecutorFactory is used to create a servant to 
process this request.

8.6.2 The PersistentServantLocator

The ServantManager for the fwork-b container type is the 
PersistentServantLocator. The PersistentServantLocator implements both the 
process and entity component interfaces defined in Section 7.4.4 on page 166. The 
PersistentServantLocator associates an ObjectId with a dedicated executor. The 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-225



8

servant which supports the ObjectId is identified to the container after it creates an 
object reference and before it is exported for client use. This is depicted in Figure 8-16 
below:

Figure 8-16 PersistentServantLocator

The fwork-b container type is responsible for both creating unique object references 
and creating and managing component instances to support those references. These 
instances are created on demand and managed by the PersistentServantLocator, the 
specialized ServantManager for the fwork-b container type. The 
PersistentServantLocator is derived from PortableServer::ServantLocator and 
supports the creation of ObjectIds usable with or without the CORBA persistence 
service. The PersistentServantLocator is defined by the following IDL:

native ExecutorFactory;
typedef sequence<octet> ExecutorFactoryId;

interface PersistentServantLocator : 
PortableServer::ServantLocator {

PortableServer::ObjectId create_oid_from_cid (
in ExecutorFactoryId sfid,
in Server::ComponentId cid);

Server::ComponentId get_cid_from_oid (
in PortableServer::ObjectId);

ExecutorFactory register_executor_factory (
in ExecutorFactoryId sfid,
in ExecutorFactory factory);

void unregister_executor_factory (in ExecutorFactory Id sfid);
ExecutorFactory lookup_executor_factory (

in ExecutorFactoryId sfid);
void register_servant (in PortableServer::Server svt);

};

servant mgr

POA

ObjectId
ObjectId
ObjectId
ObjectId

PersistentServantLocator
servant

PERSISTENT
UNIQUE_ID
USER_ID
NO_IMPLICIT_ACTIVATION
NO_RETAIN
USE_SERVANT_MANAGER

pre_invoke
post_invoke
8-226 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



8

create_oid_from_cid

The create_oid_from_pid operation creates an ObjectId that includes state to be 
managed by some persistence mechanism. The state declaration is defined by the 
ComponentId (cid) which encapsulates either a PersistentId for CORBA 
persistence or an ApplId for other persistence mechanisms, and the ExecutorFactory 
(sÞd) is the factory for creating a servant of this type. The ExecutorFactory is 
implemented by the InternalHome.

get_cid_from_oid

The get_cid_from_oid operation retrieves a ComponentId interface (cid) from the 
ObjectId (oid). The ComponentId (cid) encapsulates either a PersistentId for 
CORBA persistence or an ApplId for other persistence mechanisms and is used to 
locate the component’s persistent state.

register_executor_factory

The register_executor_factory operation associates a ExecutorFactory (factory) 
with a ExecutorFactoryId (sÞd).The ExecutorFactory (factory) is responsible for 
creating a servant of the required type.

unregister_executor_factory

The unregister_executor_factory operation removes the ExecutorFactory (sÞd) 
from the list of registered factories. If the ExecutorFactory identified by sÞd is not 
registered, it has no effect.

lookup_executor_factory

The lookup_executor_factory operation is used to locate a particular 
ExecutorFactory (sÞd) to create an executor and its associated servant of the 
required type. It returns a ExecutorFactory which can create a servant for use by the 
POA.

register_servant

The register_servant operation is used to register a servant (svt) created by a 
ExecutorFactory with the POA. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 8-227



8

8-228 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



Packaging and Deployment 9
Component implementations may be packaged and deployed.

A CORBA Component package represents one or more implementations of an abstract 
component. It may be installed on a computer or grouped together with other 
components to form an assembly. A component assembly is a group of interconnected 
components represented by an assembly package. 

A package, in general, consists of a descriptor and a set of files. The descriptor 
describes the characteristics of the package and points to its various files. The files that 
make up a package, including the descriptor may be grouped together in an archive file 
or stored separately. When stored separately, the descriptor contains pointers to the 
location of each file.

The component package is a special kind of software package. This software 
packaging scheme, described here, could be used to package arbitrary software entities. 
In fact it is inspired by the Open Software Description (OSD) proposal to the W3C 
from Marimba and Microsoft. OSD is an XML vocabulary for describing software 
packages and their dependencies. We have extended OSD slightly, without loss of 
generality, to support component packaging.

A component package may be deployed, as is, or it may be included in a component 
assembly package and deployed as part of the assembly.

A component assembly is a set of interrelated components and component homes 
represented by an assembly package. A component assembly package consists of a set 
of component packages and an assembly descriptor. The assembly descriptor specifies 
the components that make up the assembly, partitioning constraints, and connections. 
Connections are between provides and uses ports and emits and consumes ports. The 
assembly package is used as input to a deployment tool. 

A deployment tool deploys individual components and assemblies of components to an 
installation site.The user of the tool guides where each component should be installed. 
The components within an assembly may be installed on a single machine or scattered 
across a network. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-229



9

The deployment tool uses installation objects on each host to install and activate 
component instances. It then configures each component’s properties and connections. 

9.1 Change History

The major changes to the Packaging and Deployment chapter are:

1. Changed name of “componentinstanceÓ element in assembly descriptor to 
“componentplacementÓ. The use of component instance was confusing, especially 
since we use the term elsewhere in the document to mean an instance of a 
component type.

2. Added deployment details.

Changes in March 1st draft:

1. Added properties file descriptor.

2. Changed name of “container” descriptor to “CORBA component” descriptor.

3. Expanded the scope of the component descriptor.

4. Specified Java and C++ entry points.

5. Reorganized descriptor sections to list elements alphabetically.

6. Added some elements to the chapter which were defined in the DTD but not in this 
text.

9.2 Component Packaging

A CORBA Component implementation is described by a software package. A software 
package is represented by a descriptor and a set of files. The descriptor and associated 
files may be loosely coupled or grouped together in a ZIP archive file. These software 
archive files are distinguished by a “.car” extension.

9.3 Software Package Descriptor

CORBA component implementations are described by a software package descriptor. 
The descriptor consists of general information about the software followed by one or 
more sections describing implementations of that software. An XML vocabulary, 
derived from the Open Software Description proposal, is used to describe component 
software packages. The descriptor file has a “.csd” extension. CSD stands for CORBA 
Software Descriptor. When used in an archive, the CSD file for the archive is placed in 
a top level directory called “meta-inf”.

The structure and intent of the descriptor can be better understood by looking at an 
example.
9-230 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.3.1 A softpkg Descriptor Example

<softpkg name="Bank" version="1,0,1,0">
<pkgtype>CORBA Component</pkgtype>
<title>Bank</title>
<author> 

                <company>Acme Component Corp.</company>
                <webpage href="http://www.acmecomponent.com/>

</author> 
<description>Yet another bank example</description>

        <license href="http://www.acmecomponent.com/license.html" />     
        <idl id="IDL:M1/Bank:1.0" ><link href=”ftp://x/y/Bank.idl”/></idl>

 <propertyfile><fileinarchive name="bankprops.cpf"/></propertyfile>     

        <implementation id=”DCE:700dc518-0110-11ce-ac8f-0800090b5d3e”>
                <os name="WinNT" version="4,0,0,0" />
                <os name="Win95" />
                <processor name="x86" />
                <compiler name="MyFavoriteCompiler" />
                <programminglanguage name="C++" />

                <dependency type=”ORB”><name>ExORB</name></dependency> 

                <descriptor type=”CORBA Container”>
<fileinarchive>processcontainer.ccd</fileinarchive>

               </descriptor> 

               <code type=”DLL”>
<fileinarchive name="bank.dll"/>
<entrypoint>createBankHome</entrypoint> 

               </code> 

                <threadsafety level=”class”/>

               <dependency type=”DLL”>
<localfile name="rwthr.dll"/>

               </dependency>      

        </implementation>

        <implementation> <!-- another implementation --> </implementation>
</softpkg> 

9.3.2 The Software Package Descriptor XML Elements

This section describes the XML elements that make up a software package descriptor. 
The section is organized starting with the root element of the package descriptor 
document, softpkg, followed by all subordinate elements, in alphabetical order. The 
complete softpkg DTD may be found in the appendix.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-231



9

9.3.2.1 The softpkg Root Element

The softpkg element is the root element of the document. As well, it is a child element 
of dependency. It contains a set of general child elements that describe the software 
package. This is followed by one or more implementation specifications. 

A softpkg archive may contain multiple implementations of a component. This might 
be necessary to specialize implementations for different operating systems, compilers, 
or ORBs, or to provide different programming language implementations of the 
component. Each implementation is represented in the softpkg descriptor as a distinct 
implementation element.

<!ELEMENT softpkg 
     ( title

 | pkgtype
   | author

 | description
 | license 
 | idl 
 | propertyfile 
 | dependency
 | descriptor
 | implementation
 | extension

   )* >
<!ATTLIST softpkg 
  name ID #REQUIRED
   version CDATA #OPTIONAL >

The attributes are as follows:

name

Uniquely identifies the package within the package.

version

Specifies the version of the component. The format of the version string is numerical 
major and minor version numbers separated by commas (e.g., “1,0,0,0”).
9-232 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.3.2.2 The author Element

The author element is used to identify the author of the softpkg. It may contain name, 
company, and webpage child elements.

<!ELEMENT author 
     ( name
  | company

| webpage
)* >

9.3.2.3 The code Element

The code element points to a file in the archive which implements the component. This 
could be, for example, a DLL, a .so, or a .class file. The Þleinarchive child element is 
used to indicate the code file within the archive. codebase and link are used to point to 
code files outside of any archive. The optional entrypoint child element is used to 
specify an entry point or usage of the code.

<!ELEMENT code 
     ( codebase 

 | fileinarchive
  | link
   ) 
     , entrypoint?) >
<!ATTLIST code
    type CDATA #IMPLIED

The type specifies the type of code.

9.3.2.4 The codebase Element

The codebase element is used to specify a resource. If the resource isn’t available in 
the local environment, then a link specifies where it may be obtained. codebase has an 
EMPTY content model.

<!ELEMENT codebase EMPTY >
<!ATTLIST  codebase 
    filename CDATA #IMPLIED
     %simple-link-attributes; >

codebase has two attributes: name - the name of the resource, and href--as defined in 
simple-link-attributes--the link. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-233



9

9.3.2.5 The company Element

The company element, an optional child element of author, specifies the company 
that created the softpkg. It contains string data.

<!ELEMENT company ( #PCDATA ) >

9.3.2.6 The compiler Element

The optional compiler element specifies the compiler used to create an 
implementation. compiler has an empty content model. 

<!ELEMENT compiler EMPTY >
<!ATTLIST compiler 
     name    CDATA #REQUIRED
     version CDATA #IMPLIED >

The required attribute name, specifies the name of the compiler and the optional 
version the version of the compiler. The version is specified in a “w,x,y,z” format.

9.3.2.7 The dependency Element

The dependency element is used to specify environmental or other dependencies. The 
type of dependency is specified by the type attribute. The dependency element is a 
child element of both the softpkg element and implementation elements. When used 
as a child of softpkg, it specifies general dependencies applicable to all 
implementations. When used as a child of implementation, it specifies 
implementation specific dependencies.

<!ELEMENT dependency 
 ( softpkg 
 | codebase

     | fileinarchive
     | localfile

 | name
 ) >

<!ATTLIST dependency 
   type   CDATA #IMPLIED
     action (assert | install)"assert">

The type attribute specifies the type of the resource required. This may be set to, for 
example, “DLL”, “.so”, or “.class”.

When action is set to assert, the installation process must verify that the dependency 
exists in the environment. If action is set to install, the installation process must install 
the dependency if it does not already exist.
9-234 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.3.2.8 The description Element

The description element contains a string description. It is used to describe its parent 
element. It contains string content. 

<!ELEMENT description ( #PCDATA ) >

9.3.2.9 The descriptor Element

The descriptor element is used to refer to descriptor files associated with a softpkg or 
implementation. In a CORBA Component softpkg, it is used to point to the container 
descriptor.

<!ELEMENT descriptor 
     ( link
     | fileinarchive
     ) >
<!ATTLIST descriptor
     type   CDATA  #IMPLIED>

9.3.2.10 The entrypoint Element

The entrypoint element specifies the entry point to a software package. See section 
9.9.8 for information on CORBA component entry points.

<!ELEMENT entrypoint ( #PCDATA ) >

9.3.2.11 The extension Element

The extension element is used to add experimental or vendor specific elements to the 
softpkg DTD. The content model of the extension element is ANY, meaning that it can 
have character data or any combination of element types defined in the DTD, in any 
order. 

An effort has been made to make the extension element an optional child element of 
all non-trivial elements. Processors may ignore extension elements that they do not 
recognize.

<!ELEMENT extension ANY >
<!ATTLIST extension
     class     CDATA #REQUIRED
     origin   CDATA #REQUIRED  
     id        ID        #IMPLIED
     extra     CDATA #IMPLIED
     html-form CDATA #IMPLIED >

The attributes of the extension element are as follows:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-235



9

class

Used to distinguish this extension element usage. A processing application identifies 
extension elements that it understands by examining an extension element’s class and 
origin attributes. 

origin

An origin attribute is required to identify the party responsible for the extension; for 
example, an ORB vendor. 

id

An optional ID attribute which must be unique in the file. 

extra

An extra attribute that may be used however the originator wishes. 

html-form

The html-form element is used for formatting. The content will be formatted per the 
html element type indicated, e.g., “<em>”. 

9.3.2.12 The fileinarchive Element

The Þleinarchive element is used to specify a file in the same archive as the 
descriptor. The optional link element may be used to point to an external archive, in 
which case the file will be looked for in that file.

<!ELEMENT fileinarchive 
     ( link? ) >
<!ATTLIST fileinarchive 
    name CDATA #REQUIRED >

The name attribute specifies the name or path of the element in the archive.

9.3.2.13 The idl Element

The idl element points to the description of the interface that the softpkg implements.

The idl element specifies the id of the component and the file or repository where it is 
defined. 

<!ELEMENT idl (link | fileinarchive | repository) >
<!ATTLIST idl 
     id CDATA #REQUIRED>

The id attribute specifies the id for the component; e.g., a repository id.
9-236 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.3.2.14 The implementation Element

The implementation element contains descriptive information about a particular 
implementation of the software represented by the softpkg descriptor. An 
implementation is described by platform dependencies, container policies, 
dependencies, code filename, entry points and other characteristics.

<!ELEMENT implementation 
     ( description
     | code 
     | compiler 
     | dependency 
     | descriptor 

| extension
     | programminglanguage 
     | humanlanguage 

| os
| propertyfile

     | processor 
     | runtime
    | threadsafety 
     )* >
<!ATTLIST implementation 
     id ID #IMPLIED >

The id attribute is a DCE UUID which uniquely identifies the implementation.

9.3.2.15 The license Element

The license child element of softpkg is used to point to the text of a usage license. The 
license is pointed to by an href attribute. The license element may have arbitrary string 
content.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-237



9

<!ELEMENT license ( #PCDATA ) >
<!ATTLIST license 
     %simple-link-attributes; >

9.3.2.16 The link Element

The link element is used to specify a generic link. The href attribute indicates the link. 
The element can have string content. 

<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link 
    %simple-link-attributes; >

9.3.2.17 The localfile Element

The localÞle element is used to specify a file that is expected to be found in the local 
environment. 

<!ELEMENT localfile EMPTY >
<!ATTLIST localfile 
     name CDATA #REQUIRED >

The name of the file is specified in the name attribute.

9.3.2.18 The name Element

The name element, as an optional child element of author, specifies the name of the 
author. It has string content.

<!ELEMENT name ( #PCDATA ) >

9.3.2.19 The naturallanguage Element

The naturallanguage element specifies a human language. naturallanguage has an 
EMPTY content model.

<!ELEMENT naturallanguage EMPTY >
<!ATTLIST naturallanguage 
     name CDATA #REQUIRED >

The natural language name is specified in the name attribute.

9.3.2.20 The os Element

The os element is used to specify a particular operating system that the implementation 
will work with. This can be specified multiple times if the implementation will work 
on more than one os. 
9-238 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT os EMPTY >
<!ATTLIST os 
     name    CDATA #REQUIRED
     version CDATA #IMPLIED>

The name attribute specifies the name of the operating system. 

The version attribute specifies the version of the os in “w,x,y,z” format.

Legal values include:

¥ AIX 

¥ BSDi 

¥ VMS

¥ DigitalUnix

¥ DOS 

¥ HPBLS 

¥ HPUX 

¥ IRIX 

¥ Linix 

¥ MacOS 

¥ OS/2

¥ AS/400

¥ MVS

¥ SCO CMW 

¥ SCO ODT 

¥ Solaris 

¥ SunOS 

¥ UnixWare 

¥ VxWorks

¥ Win95 

¥ WinNT 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-239



9

9.3.2.21 The pkgtype Element

The pkgtype element is used to identify the type of software that the softpkg 
represents. This specification reserves package types “CORBA Component” and 
“CORBA Interface Impl” for the packaging of CORBA component and interface 
implementations.

<!ELEMENT pkgtype ( #PCDATA ) > 

9.3.2.22 The processor Element

The processor element indicates the type of processor that the implementation must 
run on, if there is any such constraint. 

<!ELEMENT processor EMPTY >
<!ATTLIST processor 
     name CDATA #REQUIRED >

The name of the processor is indicated in the name attribute.

Legal values include:

¥ x86 

¥ mips 

¥ alpha 

¥ ppc 

¥ sparc 

¥ 680x0 

¥ vax

¥ AS/400

¥ S/370

9.3.2.23 The programminglanguageElement

The programminglanguage element specifies the type of the component 
implementation. programminglanguage has an empty content model. 
programminglanguage is a child element of implementation.

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage 
     name CDATA #REQUIRED
     version  CDATA #IMPLIED >

The required programminglanguage name and optional version attributes specify the 
programming language used to implement the component.
9-240 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.3.2.24 The propertyfile Element

The propertyÞle element is used to refer to a property file associated with the softpkg 
or implementation.

<!ELEMENT propertyfile 
     ( fileinarchive 
     | link) >

9.3.2.25 The repository Element

The repository element is used to refer to an interface repository in which the idl 
definition can be found. repository has an empty content model.

<!ELEMENT repository EMPTY >
<!ATTLIST repository 
     type CDATA #IMPLIED 

 %simple-link-attributes; >

The interface repository location is specified by an href attribute (as specified in the 
simple-link-attributes entity). An optional type attribute is allowed if the type of 
repository is different than the default for the given component.

9.3.2.26 The runtime Element

The runtime element specifies a runtime required by a component implementation. An 
example of a runtime is a Java VM. 

<!ELEMENT runtime EMPTY >
<!ATTLIST runtime 
     name    CDATA #REQUIRED
     version CDATA #IMPLIED>

The name and version of the runtime are specified in the name and version 
attributes. The version is specified in “w,x,y,z” format.

9.3.2.27 The softpkg Element

This is the root element of the descriptor. See section 9.3.2.1.

9.3.2.28 The simple-link-attributes Entity

The simple-link-attributes entity is used to specify link attributes. The default link 
form is a simple link. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-241



9

<!ENTITY % simple-link-attributes "
     xml:link      CDATA               #FIXED 'SIMPLE'
   href          CDATA               #REQUIRED

">     

The user of an element that uses these link attributes will likely only need to be 
concerned with the href attribute. However the user may specify other attributes if 
desired. 

To demonstrate the usage of an element that employs the simple-link-attributes entity, 
consider the following element definition:

<!ELEMENTexampleelement EMPTY >
<!ATTLIST  exampleelement 
    %simple-link-attributes; >

This could be used as follows:

<exampleelement href=“http://www.abc.com/xyz” />

Issue Ð The W3C XLL work is still in progress at the time of this writing. 
This entity deÞnition will be modiÞed if necessary when the W3C work 
completes.

9.3.2.29 The threadsafety Element

The threadsafety element is used to indicate the level of thread safety of the 
implementation. threadsafety has an empty content model.

<!ELEMENT threadsafety EMPTY >
<!ATTLIST threadsafety 
     level (none|class|instance) #REQUIRED >

The thread safety is specified in the level attribute to be either none, class, or instance.

none - means that no thread safety can be assumed.

class - means that the code is reentrant and that any global, static, or class data will be 
protected when accessed by multiple threads. 

instance - means that instance data of the component will be protected when 
simultaneously accessed by multiple threads.
9-242 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.3.2.30 The title Element

The title element is used to specify the friendly, or tool name of the softpkg. The title 
element contains string data.

<!ELEMENT title ( #PCDATA ) >

9.3.2.31 The webpage Element

The webpage element, an optional child element of author, specifies a web page 
associated with the author.

<!ELEMENT webpage ( #PCDATA ) >
<!ATTLIST webpage 
    %simple-link-attributes; >

9.4 CORBA Component Descriptor

The CORBA Component descriptor describes a component. It is referred to by a 
<descriptor type=”CORBAContainer> element in a softpkg descriptor describing 
a CORBA component.The CORBA Component descriptor specifies component 
characteristics, used at assembly and deployment time. 

The component descriptor provides information at component assembly time about the 
interfaces that a component supports and its ports. For the purpose of component 
packaging and deployment we will define ports as the interfaces that the component 
uses and provides and the events that it emits and consumes. A component descriptor 
file has a recommended “.ccd” extension, standing for CORBA Component Descriptor.

At deployment time, the component descriptor is used to determine the type of 
container in which the component needs to be installed.

The component descriptor has two main parts. The first part describes general 
information about the component and characteristics of the component that are 
important at deployment time. 

The second part of the component descriptor describes the structure of the component 
with respect to supported interfaces, inherited components, and uses and provides 
ports. This information allows a tool to display the features of a component and to 
connect components together based on those features. For example, a component 
which uses interface Z could be connected to another component that provides Z based 
on information in the two components descriptors. 

The component descriptor is generated by the CIDL compiler. This is convenient as the 
CIDL compiler has much of the necessary information at hand. However, the compiler 
doesn’t have all of the information required. The user will have to modify the 
generated descriptor. This could be done manually, but it is more likely to be done with 
the help of a tool.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-243



9

The component descriptor is described using an XML vocabulary. The complete XML 
DTD for the descriptor is in the appendix. This chapter will discuss each element in 
detail. But before we do that, familiarize yourself with the following example.
9-244 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.4.1 CORBA Component Descriptor Example

<corbacomponent>
    <corbaversion> 3.0 </corbaversion>
    <repositoryid id="IDL:BookStore:1.0" />
    <componentkind>
        <entity>
            <servant lifetime="process" />
            <persistence responsibility="container" usepss="true">
                <persistentstoreinfo 
                    implementation="acmepss"
                    datastorename="oracle"
                    datastoreid="mainofficedb" />
            </persistence>
        </entity>                       
    </componentkind>
    <transaction use="supports" />
    <eventpolicy emit="normal" />
    <threading policy="multithread" />
    <configurationcomplete set="true" />
    
    <componentfeatures name="BookStore" repid="IDL:BookStore:1.0">     
        <inheritscomponent repid="IDL:Acme/Store:1.0" />
        <ports>
            <provides 
                providesname="book_search" 
                repid="IDL:BookSearch:1.0" />        
            <provides 
                providesname="shopping_cart" 
                repid="IDL:CartFactory:1.0" />        
            <uses 
                usesname="ups_rates"
                repid="IDL:ShippingRates:1.0" />        
            <uses 
                usesname="fedex_rates"
                repid="IDL:ShippingRates:1.0" />
            <emits 
                emitsname="low_stock" 
                eventtype="StockRecord"
                eventname="LowStock" />
        </ports>
    </componentfeatures>
    
    <componentfeatures name="Store" repid="IDL:Acme/Store">     
        <supportsinterface repid="IDL:Acme/GeneralStore" />                
        <ports>
            <provides 
                providesname="admin"
                repid="IDL:Acme/StoreAdmin:1.0" />
        </ports>                
    </componentfeatures>
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-245



9

    
    <interface name="BookSearch" repid="IDL:BookSearch:1.0">
        <inheritsinterface repid="IDL:SearchEngine:1.0" />
    </interface>        
    <interface name="SearchEngine" repid="IDL:SearchEngine:1.0"/>
    <interface name="CartFactory" repid="IDL:CartFactory:1.0"/>
    <interface name="ShippingRates" repid="IDL:ShippingRates:1.0"/>
    <interface name="StoreAdmin" repid="IDL:Acme/StoreAdmin:1.0"/>
    <interface name="GeneralStore" repid="IDL:Acme/GeneralStore:1.0"/>
</corbacomponent>

9.4.2 The CORBA Component Descriptor XML Elements

This section describes the XML elements that make up a component descriptor. The 
section is organized starting with the root element of the component descriptor 
document, corbacomponent, followed by all subordinate elements, in alphabetical 
order. The complete CORBA component descriptor DTD may be found in the 
appendix.

9.4.2.1 The corbacomponent Root Element

The corbacomponent element is the root element of the CORBA component 
descriptor.

<!ELEMENT corbacomponent
     ( corbaversion
     , repositoryid
     , componentkind
     , transaction
     , security?
     , eventpolicy?
     , threading
     , configurationcomplete
     , extendedpoapolicy*
     , repository?
     , componentfeatures+
     , interface*
     , extension*
     ) >

These elements must be provided in the order presented. 

¥ corbaversion tells which version of CORBA the component is assuming.

¥ repositoryid is the interface repository id of the component. It also refers to a 
componentfeatures element later in the descriptor.

¥ componentkind describes properties of the component which will determine what 
kind of container the component must reside in.

¥ security determines security policies.
9-246 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

¥ eventpolicy determines policies for emitted and consumed events.

¥ threadingpolicy determines whether calls to the component will be serialized or 
not.

¥ conÞgurationcomplete is set if the component expects for configuration_complete 
to be called on the component.

¥ extendedpoapolicy is used to set a poa policy for the component beyond the base 
poa policies. For example firewall policies.

¥ repository provides a reference to a repository, such as the interface repository.

¥ componentfeatures describes component inheritance, supported interfaces, uses 
and provides ports, and emits and consumes ports of the component. If the primary 
component inherits from other components, those components are described in 
separate componentfeature elements.

¥ interface describes the simple name and repository id of an interface and points to 
inherited interfaces. Between the componentfeatures and interface elements, one 
can navigate all of the interfaces that a component uses, provides, supports, and 
inherits.

¥ extension may be used by a user or vendor to provide proprietary information in the 
component descriptor. 

These are the top-level elements of the document. These descriptor elements are 
described in terms of attributes and other elements. The remainder of this section will 
describe the top-level and child elements in detail.

Elements are presented in alphabetical order so that they will be easy to locate. 

Note Ð A good strategy for examining an XML DTD is to recursively navigate from 
the root element, which in this case is corbacomponent, to each child element.

See appendix B.2 for the full text of the component descriptor DTD. Read ahead for 
information on individual elements.

9.4.2.2 The client Element

Child element of securitycredentialkind.

The credentials obtained by the client making the invocation are associated with the 
operation. This restricts authorization to operations permitted to the client by the 
security administrator. This is the default security policy.

<!ELEMENT client EMPTY >

9.4.2.3 The componentfeatures Element

Child element of corbacomponent.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-247



9

The componentfeatures element is used to describe a component with respect to the 
components that it inherits from, the interfaces that the component supports, and its 
provides, uses, emits, and consumes ports. A component has the features that it 
supports directly, plus the features that it inherits through other components. 
Additionally, supported interfaces may inherit from other interfaces. In essence a graph 
is formed from the primary component to a set of ports, supported interfaces, and other 
components. The primary component is identified by the repositoryid child element of 
corbacomponent.

The information obtained by traversing the componentfeatures graph may be displayed 
by graphical tools. But more importantly, it allows component assembly tools to make 
decisions about what interfaces on a component (supported or provided) are available 
to connect to uses ports on other components.

<!ELEMENT componentfeatures
    ( inheritscomponent ?
    , supportsinterface*
    , ports
    , extension*
    ) >
<!ATTLIST componentfeatures
    name CDATA #REQUIRED
    repid ID #REQUIRED >

The name attribute is the non-qualified name of the component. 

The repid attribute is the fully qualified repository id of the component. repid is also 
used to refer to this component from elsewhere in the descriptor, for example from the 
inheritscomponent element).

9.4.2.4 The componentkind Element

Child element of corbacomponent.

The componentkind element defines the component category. For more information on 
these categories, see the Container chapter.

<!ELEMENT componentkind
     ( service 
     | session 
     | process 
     | entity 
     | unclassified
     ) >

9.4.2.5 The configurationcomplete Element

Child element of corbacomponent.
9-248 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

The conÞgurationcomplete attribute is used to set whether configuration_complete 
should be called on the component after it has been fully configured.

<!ELEMENT configurationcomplete EMPTY >
<!ATTLIST configurationcomplete 
     set ( true | false ) #REQUIRED >

9.4.2.6 The consumes Element

Child element of ports.

A consumes port specifies an event that the component expects to receive. At 
deployment or creation time, the component will be connected via a channel to other 
components or entities that emit the event. 
<!ELEMENT consumes EMPTY>
<!ATTLIST consumes
     consumesname CDATA #REQUIRED 
     eventtype CDATA #REQUIRED 
     eventname CDATA #REQUIRED >

consumesname

The consumesname attribute identifies the name associated with the consumes 
statement in idl.

eventtype

The eventtype attribute identifies the eventtype as defined in CORBA notification that 
the component wishes to subscribe to.

eventname

The eventname attribute identifies the eventname as defined in CORBA notification 
that the component wishes to subscribe to.

9.4.2.7 The corbacomponent Element

The root element of this CORBA Component descriptor. See section 9.4.2.1.

9.4.2.8  The corbaversion Element

Child element of corbacomponent.

The corbaversion is used to identify the version of CORBA that the component 
implementation is assuming. The version is represented by a major and minor number 
separated by a “.”. For example, “<corbaversion>3.0</corbaversion>”.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-249



9

<!ELEMENT corbaversion (#PCDATA) >

9.4.2.9 The emits Element

Child element of ports.

A emits port specifies an event that the component generates. At deployment or 
creation time, the component will be connected to a channel in which it can be 
connected to consuming components.

<!ELEMENT emits EMPTY>
<!ATTLIST emits
     emitsname CDATA #REQUIRED 
     eventtype CDATA #REQUIRED 
     eventname CDATA #REQUIRED >

emitsname

The emitsname attribute identifies the name associated with the emits statement in idl.

eventtype

The event_type attribute identifies the event_type as defined in CORBA notification 
that the component wishes to subscribe to.

eventname

The event_name attribute identifies the event_name as defined in CORBA 
notification that the component wishes to subscribe to.

9.4.2.10 The entity Element

Child element of componentkind.

The entity component kind is described in Section 7.2.4 on 140.

<!ELEMENT entity
     ( servant
     , persistence
     ) >

9.4.2.11 The eventpolicy Element

Child element of corbacomponent.

Event policies define the quality of service associated with events emitted or consumed 
by this component. Event policies can also be used to statically define the specific 
events the component intends to consume.
9-250 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT eventpolicy EMPTY>
<!ATTLIST eventpolicy 
     emit ( normal | default | transaction ) #IMPLIED
     consume (normal | default | transaction ) #IMPLIED >

The possible values are defined Section 7.3.8 on 146

9.4.2.12 The extendedpoapolicy Element

Child element of corbacomponent.

The extendedpoapolicy element is a name-value pair used to specify POA policies 
beyond the base set of policies. It is for new policies, such as firewall, or future POA 
policies yet to be defined. The extendedpoapolicy element must not be used to specify 
any of the base poa policies. A set of poa policies is predefined for each component 
category, except for the unclassified category. Only the unclassified component type is 
flexible with respect to base poa policies; these are set using the poapolicies child 
element of the unclassified element.

<!ELEMENT extendedpoapolicy EMPTY>
<!ATTLIST extendedpoapolicy
     name CDATA #REQUIRED 
     value CDATA #REQUIRED >

The name attribute is the name of the poa policy as defined in the specification where 
it originated.

The value attribute is a valid attribute for the policy as defined in the specification 
where it originated.

9.4.2.13 The extension Element

Child element of corbacomponent, componentfeatures.

The extension element is used to add vendor or user specific information to the 
component descriptor.

<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension
     class     CDATA     #REQUIRED
     origin    CDATA     #REQUIRED  
     id        ID        #IMPLIED
     extra     CDATA     #IMPLIED
     html-form CDATA     #IMPLIED >

The class attribute defines the category of extension, what would be an element type if 
it could be added to the descriptor.

origin identifies the organization or group responsible for the extension. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-251



9

id, extra, and html-form are optional attributes that the originator of the extension 
may wish to employ.

9.4.2.14 The inheritscomponent Element

Child element of componentfeatures.

The inheritscomponent element specifies an inherited component.

<!ELEMENT inheritscomponent EMPTY>
<!ATTLIST inheritscomponent
    repid IDREF #REQUIRED>

The repid identifies is the repository id of the inherited component, and it is used to 
refer to the componentfeatures element of the inherited component, elsewhere in the 
descriptor.

9.4.2.15 The inheritsinterface Element

Child element of interface.

The inheritsinterface element is used to specify interface inheritance. This allows, for 
example, for a derivation chain to be followed from a supported or provided interface 
up to but excluding the Object interface.

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface
    repid IDREF #REQUIRED>

The repid identifies is the repository id of the inherited interface, and it is used to refer 
to the interface element of the inherited interface, elsewhere in the descriptor.

9.4.2.16 The ins Element

Child element of repository.

The ins element is used to specify an interoperable naming service name.

<!ELEMENT ins EMPTY>
<!ATTLIST ins
     name CDATA #REQUIRED >

name is the INS name.

9.4.2.17 The interface Element

Child element of corbacomponent.
9-252 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

Specifies an interface that the component, either directly or through inheritance, 
provides, uses, or supports.

<!ELEMENT interface ( inheritsinterface* ) >
<!ATTLIST interface
    name CDATA #REQUIRED
    repid ID #REQUIRED >

The name attribute is the non-qualified name of the interface. 

The repid attribute is the fully qualified repository id of the interface. repid is also 
used to refer to this interface from elsewhere in the descriptor, for example from the 
inheritsinterface element).

9.4.2.18 The objref Element

Child element of repository.

The objref element is used to specify a stringified object reference.

<!ELEMENT objref EMPTY>
<!ATTLIST objref

     string CDATA #REQUIRED >

The string attribute holds the stringified object reference.

9.4.2.19 The persistence Element

Child element of entity, process.

The persistence element is used to define persistence parameters: whether the 
component assumes container of component managed persistence and whether the 
CORBA Persistent State Service (PSS) is to be used.

<!ELEMENT persistence ( persistentstoreinfo? )>
<!ATTLIST persistence
     responsibility ( container | component ) #REQUIRED 
     usepss ( true | false ) #REQUIRED >

The responsibility attribute is used to specify container of component managed 
persistence.

The usepss attribute determines whether the PSS will be used or not.

9.4.2.20 The persistentstoreinfo Element

Child element of persistence, unclassiÞed.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-253



9

The persistentstoreinfo element is used to specify a persistence implementation, , the 
type of datastore, and a particular datastore.

<!ELEMENT persistentstoreinfo EMPTY>
<!ATTLIST persistentstoreinfo
     implementation CDATA #REQUIRED 
     datastorename CDATA #REQUIRED 
     datastoreid CDATA #REQUIRED >

The implementation attribute identifies a particular persistence implementation such 
as a particular vendor’s PSS implementation.

The datastorename attribute identifies the type of datastore, for example a particular 
vendor’s database.

The datastoreid identifies a particular instance of a datastore, for example the name of 
a database file.

9.4.2.21 The poapolicies Element

Child element of unclassiÞed.

The poapolicies element is used to identify poa creation parameters for an empty 
container in which an unclassified category component will reside.

<!ELEMENT poapolicies EMPTY>
<!ATTLIST poapolicies
     thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE ) #REQUIRED 
     lifespan (TRANSIENT | PERSISTENT ) #REQUIRED 
     iduniqueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED 
     idassignment (USER_ID | SYSTEM_ID) #REQUIRED 
     servantretention (RETAIN | NON_RETAIN) #REQUIRED 
     requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY 
                       |USE_DEFAULT_SERVANT
                       |USE_SERVANT_MANAGER) #REQUIRED 
     implicitactivation (IMPLICIT_ACTIVATION 
                        |NON_IMPLICIT_ACTIVATION) #REQUIRED >

The poapolicies attributes are as defined in the base POA specification. 

Note Ð Not all combinations of POA policies are valid. A good tool component 
packaging tool will not permit the user to specify invalid POA policy combinations. In 
case an invalid combination of policies is set on a the empty container, the 
container/POA should throw an exception.

9.4.2.22 The ports Element

Child element of componentfeatures.
9-254 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

The ports element describes what interfaces a component provides and uses, and what 
events it emits and consumes. Any number of uses, provides, emits, and consumes 
elements can be specified in any order.

<!ELEMENT ports 
     ( uses
     | provides
     | emits
     | consumes
     )* >

9.4.2.23 The process Element

Child element of componentkind.

The process component kind is described in Section 7.2.4 on 140.

<!ELEMENT process 
     ( servant
     , persistence 
     ) >

9.4.2.24 The provides Element

Child element of ports.

The provides element specifies an interface that is provided by the component.

<!ELEMENT provides EMPTY>
<!ATTLIST provides
     providesname CDATA #REQUIRED 
     repid IDREF #REQUIRED >

The providesname is the name given to the provides port in IDL.

The repid is the fully qualified repository id of the component. It is also used to 
reference an interface element elsewhere in the descriptor.

9.4.2.25 The repository Element

Child element of corbacomponent.

The repository element is used to point to a repository, such as the interface repository.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-255



9

<!ELEMENT repository ( ins | objref ) >
<!ATTLIST repository
     type CDATA #IMPLIED >

The type attribute specifies the type of repository. Currently, the only predefined value 
for type is “CORBA Interface Repository”.

9.4.2.26 The repositoryid Element

Child element of corbacomponent.

repositoryid identifies the repository id of the component described by this descriptor. 
The repository id also serves to point to the primary componentfeatures element for 
this component within the descriptor, so as to distinguish it from inherited components.

<!ELEMENT repositoryid EMPTY >
<!ATTLIST repositoryid
     repid IDREF #IMPLIED >

repid is the fully qualified repository id of the component.

9.4.2.27 The security Element

Child element of corbacomponent.

Security policies define the relationship between the client identity and the credentials 
associated with an operation invocation as seen by the CORBA security service. These 
credentials allow security to be applied to the CORBA component without application 
awareness. 

<!ELEMENT security 
     ( securitycredentialkind ) >

The possible values are defined Section 7.3.7 on 146.

9.4.2.28 The securitycredentialkind Element

Child element of security.

The securitycredentialkind is used to specify how credentials are associated with 
operations on the component. Three possible policies are defined.
9-256 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT securitycredentialkind 
     ( client
     | system
     | specified
     ) >

9.4.2.29 The servant Element

Child element of entity, process, session.

Servant lifetime policies control the lifetime of the servant which implements a 
component’s operations and provide an aid to efficiently manage storage of 
components within a server process. Servant lifetime policies are fixed for service 
components. Servant lifetime policies must be specified for session, process and entity 
components and are implemented by the component using APIs provided by the 
container. 

<!ELEMENT servant EMPTY >
<!ATTLIST servant 
     lifetime (process|method|transaction) #REQUIRED >

The possible values are defined in Section 7.3.5 on 143.

9.4.2.30 The service Element

Child element of componentkind.

Specifies that the component is of the service category. The service component kind is 
described in chapter 7.

Issue Ð Fix container chapter reference.

<!ELEMENT service EMPTY >

9.4.2.31 The session Element

Child element of componentkind.

Specifies that the component is of the session category. The session component 
category is described in chapter 7.

Issue Ð Fix container chapter reference.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-257



9

<!ELEMENT session
     ( servant ) >

9.4.2.32 The specified Element

Child element of securitycredentialkind.

The credentials associated with userid are associated with operations invocations. 
This restricts authorizations to operations permitted to the user specified by userid.

<!ELEMENT specified EMPTY >
<!ATTLIST specified 
     userid CDATA #REQUIRED >

9.4.2.33 The supportsinterface Element

Child element of componentfeatures.

Identifies an interface that the component supports, as defined in IDL.

<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface
     repid IDREF #REQUIRED >

The repid is the fully qualified repository id of the component. It is also used to 
reference an interface element elsewhere in the descriptor.

9.4.2.34 The system Element

Child element of securitycredentialkind.

The credentials associated with the container that houses the CORBA component are 
associated with operation invocations. In general this will allow a higher degree of 
privilege than that granted to the client. This is particularly useful when a connection 
to a database needs to be made on behalf of all clients using the container.

<!ELEMENT system EMPTY >

9.4.2.35 The threading Element

Child element of corbacomponent.

The threading element determines the threading policy of the container in which it is 
placed. 
9-258 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT threading EMPTY>
<!ATTLIST threading
     policy ( serialize | multithread ) #REQUIRED >

Setting the threading policy to serialize means that the container will serialize calls to 
the container; in this case, the implementation must have a threadsafety level of class 
or instance.

Setting the threading policy to multithread means that multiple threads of control can 
be active in the component at one time; in which case, the implementation must have a 
threadsafety level of instance.

9.4.2.36 The transaction Element

Child element of corbacomponent.

The Transaction Policy attribute controls the way transactions are managed by the 
container for this component. Six possible values can be selected by the component 
developer to provide maximum flexibility.

<!ELEMENT transaction EMPTY >
<!ATTLIST transaction 
     use (not-supported|required|supports|requires-new|mandatory|never) 
#REQUIRED > 

The possible values for use are defined Section 7.3.6 on 144.

9.4.2.37 The unclassified Element

Child element of componentkind.

The unclassiÞed element identifies that the component is of the unclassified sort. See 
the container chapter for more information on the unclassified component category.

Issue Ð Fix container chapter reference.

<!ELEMENT unclassified 
     ( poapolicies 
     , persistentstoreinfo
     ) >

9.4.2.38 The uses Element

Child element of ports.

The uses element specifies an interface that is used by the component, as specified in 
an IDL uses specification.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-259



9

<!ELEMENT uses EMPTY>
<!ATTLIST uses
     usesname CDATA #REQUIRED 
     repid IDREF #REQUIRED >

The usesname is the name given to the uses port in IDL.

The repid is the fully qualified repository id of the component. It is also used to 
reference an interface element elsewhere in the descriptor.
9-260 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.5 Component Assembly Packaging

If a component package is the vehicle for deploying a single component 
implementation, then a component assembly package is the vehicle for deploying a set 
of interrelated component implementations. It is a template or pattern for instantiating 
a set of components and introducing them to each other.

An assembly package consists of a descriptor and a set of component packages and 
property files. These files may by packaged together in an archive file or distributed. 
When distributed, the descriptor represents the package and holds links to its 
associated files.

The component assembly descriptor describes which components make up the 
assembly, how those components are partitioned, and how they are connected to each 
other. A component assembly descriptor is the recipe for deploying a set of 
interconnected components.

An assembly is normally created visually within a design tool, however it is possible to 
create assemblies using more primitive tools. 

Note Ð An assembly specifies an initial configuration. The actual connected graph of 
components may evolve beyond that initial configuration. The assembly does not 
address the evolution of this graph.

9.6 Component Assembly File

The component assembly archive file is a ZIP file containing a component assembly 
descriptor, a set of component archive files, and, if necessary, a set of component 
property files. The component assembly archive file has a “.aar” extension.

9.7 Component Assembly Descriptor

A component assembly descriptor is specified using an XML vocabulary. Each 
component assembly package must contain a single descriptor file. Component 
descriptors have a “.cad” extension. CAD stands for Component Assembly Descriptor.

The assembly descriptor describes a component assembly. It consists of elements 
describing component implementations used in the assembly, connection information, 
and partitioning information. 

Component “placements” are particular uses of a component implementation. A 
component placement may have a specialized property file.

Components, as reference by component placements, are connected by their provides 
and uses interfaces, or by their emits and consumes events. If one component provides 
an interface of a particular type and another component uses an interface of that type, 
then we can pass the reference of the provided interface to the component that uses it, 
in effect connecting the two components. In the same way, we connect two 
components where one emits an event that the other consumes.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-261



9

Sets of component instances may be partitioned. Components may be free or 
partitioned to a generic set of hosts and processes. This is really a process of 
conveying that specific components are to be collocated within a single process or 
host. Free components, components that are not used in a collocation may be deployed 
in any manner at deployment time.

When used in an archive, the CAD file for the archive is placed in a top level directory 
called “meta-inf”.

9.7.1 Component Assembly Descriptor Example

The following example illustrates how to write a component assembly descriptor. For 
further information, see the element descriptions that follow and the XML DTDs in the 
appendix.

Issue Ð Nail down the DOCTYPE speciÞcation.
9-262 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!--
<!DOCTYPE componentassembly PUBLIC "-//OMG//DTD 
componentassembly v1.0 //EN" 
"http://www.omg.org/dtds/componentassembly1_0.dtd">
-->
<!DOCTYPE componentassembly SYSTEM "componentassembly.dtd">
<componentassembly id="ZZZ123">
        <componentfiles>
                <componentfile id="A">
                        <fileinarchive name="ca.car"/>
                </componentfile>                                             
                <componentfile id="B">
                        <fileinarchive name="cb.car"/>
                </componentfile>
                <componentfile id="C">
                        <fileinarchive name="cc.car">
                                <link href="ftp://www.xyz.com/car/cc.car"/>
                        </fileinarchive>                                             
                </componentfile>                                             
                <componentfile id="D">
                        <fileinarchive name="cd.car"/>
                </componentfile>                                             
                <componentfile id="E">
                        <fileinarchive name="ce.car"/>
                </componentfile>                                             
                <componentfile id="F">
                        <fileinarchive name="cf.car"/>
                </componentfile>                                             
        </componentfiles>

        <partitioning>
               
                <componentplacement id="Aa">
                        <componentfileref idref="A"/>
                </componentplacement>
               
                <processcollocation cardinality="*">
                        <usagename>Example process collocation</usagename>
                        <programminglanguage name="C++" />  <!-- optional -->
                        <componentplacement id="Bb">
                                   <componentfileref idref="B"/>
                        </componentplacement>
                        <componentplacement id="Cc">
                                   <componentfileref idref="C"/>
                        </componentplacement> 
                </processcollocation>
               
                <hostcollocation cardinality="1">
                        <usagename>Example host collocation</usagename>
                        <processcollocation cardinality="*">
                                <componentplacement id="Dd">
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-263



9

                                        <componentfileref idref="D"/>
                                </componentplacement>
                                <componentplacement id="Ee">
                                        <componentfileref idref="E"/>
                                </componentplacement>
                        </processcollocation>
                        <componentplacement id="Ff" cardinality="*">
                                <componentfileref idref="F"/>
                        </componentplacement>
                </hostcollocation>
               
                <componentplacement id="Aaa">
                        <usagename>Example placement</usagename>
                        <componentfileref idref="A"/>
                        <componentimplref idref="ghi"/> <!-- optional -->
                        <propertiesfile>
                                <fileinarchive name="aProperties.cdr"/>
                        </propertiesfile>
                        <registerwithnaming name="sink"/> 
                        <registerwithtrader>
                                <traderproperties>
                                        <traderproperty>
                                                <traderpropertyname>rate</traderpropertyname>
                                                <traderpropertyvalue>10</traderpropertyvalue>
                                        </traderproperty>
                             </traderproperties>
                        </registerwithtrader>
                </componentplacement>
          
        </partitioning>
    
        <connections>
                <connectinterface>
                        <usingcomponent idref="Aa">
                                <usesidentifier>abc</usesidentifier>
                        </usingcomponent>
                        <providingcomponent idref="Bb">
                                <providesidentifier>abc</providesidentifier>
                                <findby><namingservice/></findby>
                        </providingcomponent>
                </connectinterface>
                <connectevent>
                        <emitingcomponent idref="Ee">
                                <emitsidentifier>mno</emitsidentifier>
                                <findby><stringifiedobjectref/></findby>          
                        </emitingcomponent> 
                        <consumingcomponent idref="Aaa">
                                <consumesidentifier>pqr</consumesidentifier>
                        </consumingcomponent> 
                </connectevent>
        </connections>
9-264 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

</componentassembly> 

9.7.2 Component Assembly Descriptor XML Elements

This section describes the XML elements that make up a component assembly 
descriptor. The section is organized starting with the root element of the descriptor 
document, componentassembly, followed by all subordinate elements, in alphabetical 
order. The complete component assembly DTD may be found in the appendix.

9.7.2.1 The componentassembly Root Element

The componentassembly element is the root element of the component assembly 
descriptor. It has three child elements that serve to define the assembly: 
componentÞles, partitioning and connections. The extension element can be used to 
add proprietary or experimental elements to the component assembly document.

<!ELEMENT componentassembly 
     ( componentfiles 
     | partitioning 
    | connections 
     | extension 
     )* >
<!ATTLIST componentassembly 
     id ID #IMPLIED >

The id attribute specifies an identifier for the componentassembly. 

Issue Ð Should this be a UUID?

9.7.2.2 The codebase Element

See section 9.3.2.4.

9.7.2.3 The componentfile Element

The componentÞle element refers to a component archive file or a software descriptor. 
The component file may be part of the component assembly archive or external to the 
archive. componentÞle elements are referenced by componentplacement elements. 

componentÞle contains either a Þleinarchive, link or codebase element.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-265



9

<!ELEMENT componentfile 
     ( fileinarchive

| codebase
    | link
     ) >     
<!ATTLIST componentfile 
     id ID #REQUIRED >

The id attribute must uniquely identify the componentÞle element within the 
descriptor.

9.7.2.4 The componentfileref Element

The componentÞleref element refers to a particular componentÞle element in the 
componentÞles block. 

<!ELEMENT componentfileref EMPTY >
<!ATTLIST componentfileref 
     idref IDREF #REQUIRED >

The idref attribute corresponds to a unique componentÞle id attribute.

9.7.2.5 The componentfiles Element

The componentÞles element is used to list all of the component files that are used in 
the assembly. At least one component file must be listed. 

Each component file is uniquely identified and referred to by component instances 
used in the assembly. Multiple component instances may refer to a single component 
file.

<!ELEMENT componentfiles 
( componentfile+ 

     ) > 

9.7.2.6 The componentimplref Element

The componentimplref element is used to refer to a particular implementation in a 
component file. 

<!ELEMENT componentimplref EMPTY >
<!ATTLIST componentimplref 
     idref CDATA #REQUIRED >  

The idref attribute refers to a unique implementation id in the component descriptor.
9-266 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.7.2.7 The componentplacement Element

This componentplacement element describes a particular deployment of a component 
instance or home. The componentplacement element may be a direct child of the 
partitioning element which states that it has no collocation constraints; or a 
componentplacement may be a child element of the hostcollocation or 
processcollocation elements which states a collocation constraint with other 
component placements.

The usagename child element is used to specify a name for the placement, possibly for 
use in a tool. The stringiÞedobjectref element is used in the construction of a specific 
object reference. The componentÞleref element specifies the component file. The 
componentimplref element refers to a specific implementation in the component file. 
The propertiesÞle element refers to a state file associated with this placement. The 
registerwithnaming element instructs the installation process to register this 
component or home with a naming service. The registerwithtrader element instructs 
the installation process to register this component or home with a trader service.

<!ELEMENT componentplacement
     ( usagename? 
     , componentfileref 
     , componentimplref? 
     , propertiesfile?
     , stringifiedobjectref? 
     , registerwithnaming* 
     , registerwithtrader*
     , extension*
     ) >
<!ATTLIST componentplacement 

id          ID    #IMPLIED 
     cardinality CDATA "1" >

The id attribute is a unique identifier within the assembly descriptor for the 
component. The id is used to refer to the component instance in the connect block.The 
cardinality attribute specifies how many instantiations of this component may be 
deployed. Possible values for cardinality are a specific number, a “+” to specify 1 or 
more, or a “*” to specify 0 or more. The default cardinality is “1”. 

Note that if the cardinality is greater than 1 and there are any connections to this 
componentplacement then connections will be made to each instance of the 
component or component home.

The id attribute is a unique identifier within the assembly descriptor.

9.7.2.8 The connectevent Element

The connectevent element is used as a child of the connections element to specify a 
connection between two components based on emitted and consumed events.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-267



9

The emitingcomponent element refers to the component emiting the event. The 
consumingcomponent refers to the component that receives the event. 

<!ELEMENT connectevent 
     ( emitingcomponent 
     , consumingcomponent ) >
<!ATTLIST connectevent 
     id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor.

9.7.2.9 The connectinterface Element

The connectinterface element is used as a child element of the connections element to 
specify a connection between two components based on provided and used interfaces.

The providingcomponent element refers to the component providing the interface. 
The usingcomponent refers to the component that has a need to use the provided 
interface. 

<!ELEMENT connectinterface 
     ( usingcomponent 
     , providingcomponent ) >
<!ATTLIST connectinterface 
     id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor.

9.7.2.10 The connections Element

The connections element is used to specify connections between component instances. 
A connection may be made from a provided interface port to a used interface port, or 
from an emitted event port to a consumed event port, or from a uses interface port to a 
home interface. It is the matching of a supplier to a consumer.

If the component on one end of a connection has a cardinality greater than 1 or if it is 
part of a process or host collocation with a cardinality greater than 1 then multiple 
connections will be realized from or to each instance of the component or home.

The connections element is used to specify interface and event connections between 
component instances in the assembly. The connectinterface child element is used to 
make connections between uses and provides interfaces. The connectevent element is 
used to make connections between emits and consumes events. 
9-268 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT connections 
     ( connectinterface 
     | connectevent 
     | extension
     )* >

9.7.2.11 The consumesidentifier Element

A child element of consumingcomponent, consumesidentiÞer identifies which 
consumes “port” on the component is to participate in the relationship. The type of the 
consumes event must match the type of the connected emits event. 

<!ELEMENT consumesidentifier ( #PCDATA ) >

9.7.2.12 The consumingcomponent Element

Specifies the event-consuming side of an event connection relationship.The 
consumesidentiÞer child element identifies the particular consumes port. 

<!ELEMENT consumingcomponent 
     ( consumesidentifier 
     , findby* )>
<!ATTLIST consumingcomponent 
     idref IDREF #REQUIRED >

The idref attribute identifies the consuming component instance.

9.7.2.13 The emitingcomponent Element

Specifies the event-emitting side of an event connection relationship.The 
emitsidentiÞer child element identifies the particular emits identifier in the component 
IDL. 

<!ELEMENT emitingcomponent 
     ( emitsidentifier 
     , findby* )>
<!ATTLIST emitingcomponent 
     idref IDREF #REQUIRED > 

The idref attribute identifies the emitting component instance.

9.7.2.14 The emitsidentifier Element

A child element of emitingcomponent, emitsidentiÞer identifies which emits “port” 
on the component is to participate in the relationship. The type of the emits event must 
match the type of the connected consumes event. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-269



9

<!ELEMENT emitsidentifier ( #PCDATA ) >

9.7.2.15 The extension Element

See section 9.3.2.11.

9.7.2.16 The fileinarchive Element

See section 9.3.2.11.

9.7.2.17 The findby Element

The findby element is used to resolve a connection between two components. It tells 
the installation agent how to locate the components involved in the relationship. In the 
simplest case, the installer will know where the components are because it was the one 
responsible for installing those components. But if the components already exist in the 
installation environment the installer must know how to locate the said components. It 
could locate a component in a naming service, in a trader, or by a stringified object 
reference. The purpose of the findby element is to provide such information.
<!ELEMENT findby 
     ( namingservice 
     | stringifiedobjectref 
     | installprocess 
     | traderquery 
     | extension 
     ) >

9.7.2.18 The hostcollocation Element

A hostcollocation specifies a group of component instances that are to be deployed 
together to a single host. The child elements are an optional usagename, an optional 
impltype, and a list of processcollocation and componentplacement elements. If 
impltype is specified then each of the component instances must have implementations 
supporting the implementation type. If impltype is not specified, then at deployment 
time each of the collocated components must have implementations supporting the 
target deployment platform.
9-270 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT hostcollocation 
     ( usagename?
     , impltype?
     , ( componentplacement
       | processcollocation
       | extension
       )+
     ) >
<!ATTLIST hostcollocation 
     id          ID    #IMPLIED 
     cardinality CDATA "1" >

The id attribute uniquely identifies this host collocation in the component assembly 
file. The cardinality attribute specifies how many instances of this host collocation 
may be deployed. Possible values for cardinality are a specific number, a “+” to 
specify 1 or more, or a “*” to specify 0 or more. The default cardinality is “1”.

Note that if the cardinality is greater than 1, and there are connections to components 
within the hostcollocation, then connections will be made to the corresponding 
components or component homes within each instance of the collocation.

9.7.2.19 The impltype Element

Issue Ð May not be necessary.

9.7.2.20 The installprocess Element

The installprocess is used to indicate that a component should be locatable by the 
installing agent. 

<!ELEMENT installprocess EMPTY >

Issue Ð This could also be implicit by the absence of a Þndby statement. So 
this may go away.

9.7.2.21 The link Element

See section 9.3.2.16.

9.7.2.22 The namingservice Element

The naming service element is used to indicate that a component should be found 
using a naming service.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-271



9

<!ELEMENT installprocess EMPTY >

9.7.2.23 The partitioning Element 

Component partitioning specifies a deployment pattern of components to generic 
processes and hosts. The pattern is expressed via collocation constraints. A particular 
usage of a component instance or a component home is called a component placement. 
A component placement can be collocated with other component placements in a 
process. Processes and component placements can be collocated within a logical host. 
A component placement that is not part of a process or host collocation may be 
deployed without constraint.

Within a partitioning element, component instances are declared and component 
collocation constraints are specified. The componentplacement child element 
specifies a freely deployable component instance or home. The processcollocation and 
hostcollocation child elements are used to group component placements together into 
deployable units. 

A component placement may be declared as part of a host or process collocation or by 
itself. The actual host and process will be determined at deployment time. Component 
instances, process collocations, and host collocations all have an associated cardinality. 
The default cardinality is “1”. A cardinality greater than 1 allows or mandates that the 
deployable unit be deployed multiple times.

<!ELEMENT partitioning 
     ( componentplacement 
     | processcollocation
     | hostcollocation
     | extension 
     )* >

9.7.2.24 The processcollocation Element

The processcollocation element specifies a group of component instances that are to 
be deployed together to a single process. The child elements are an optional 
usagename, an optional impltype, and a list of componentplacement elements. If 
impltype is specified then each of the component instances must have implementations 
supporting the implementation type. If impltype is not specified, then at deployment 
time each of the collocated components have implementations supporting the target 
deployment platform.
9-272 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT processcollocation 
     ( usagename?
     , impltype?
     , ( componentplacement
       | extension
       )+
     ) >
<!ATTLIST processcollocation 

id          ID    #IMPLIED 
     cardinality CDATA "1" >

The id attribute uniquely identifies this process collocation in the component assembly 
file. The cardinality attribute specifies how many instances of this process collocation 
may be deployed. Possible values for cardinality are a specific number, a “+” to 
specify 1 or more, or a “*” to specify 0 or more. The default cardinality is “1”.

Note that if the cardinality is greater than 1, and there are connections to components 
within the processcollocation, then connections will be made to corresponding 
components or component homes within each instance of the collocation.

9.7.2.25 The propertiesfile Element

The propertiesÞle element specifies a property file for a component. If the component 
file has a default property file in the component package, the component property file 
overrides the default. The property file may be specified by either a Þleinarchive or a 
codebase child element. The format of the property file is described in section 9.8.

<!ELEMENT propertiesfile 
     ( fileinarchive
     | codebase
     ) >

9.7.2.26 The providesidentifier Element

A child element of providingcomponent, providesidentiÞer identifies which provides 
“port” on the component is to participate in the relationship. The type of the provided 
interface must match the type of the connected uses interface. 

<!ELEMENT providesidentifier ( #PCDATA ) >

9.7.2.27 The providingcomponent Element

Specifies the interface-providing side of an interface connection relationship. The 
providingidentiÞer child element identifies the particular provides identifier in the 
component IDL. 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-273



9

<!ELEMENT providingcomponent 
     ( providesidentifier 
     , findby* )>
<!ATTLIST providingcomponent 
     idref IDREF #REQUIRED >

The idref attribute identifies the providing component instance.

9.7.2.28 The registerwithnaming Element

The registerwithnaming element tells the installer to register a component instance or 
home with a naming service after it is created.

<!ELEMENT registerwithnaming EMPTY >
<!ATTLIST registerwithnaming 
     name CDATA #REQUIRED >

The name attribute is the naming service name.

9.7.2.29 The registerwithtrader Element

The registerwithtrader element tells the installer to register a component instance or 
home with a trader after it is created.

<!ELEMENT registerwithtrader 
     ( traderproperties ) >
<!ATTLIST registerwithtrader 
     tradername CDATA #IMPLIED >

9.7.2.30 The stringifiedobjectref Element

The stringifiedobjectref element is used to locate a component by its object reference.

<!ELEMENT stringifiedobjectref ( #PCDATA ) >

9.7.2.31 Trader elements

The trader elements are used to register a component or home with a trader and to find 
a component or home using a trader query. The trader elements closely parallel trader 
functionality in name and purpose.
9-274 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<!ELEMENT traderconstraint ( #PCDATA ) >
     
<!ELEMENT traderexport 
     ( traderservicetypename
     , traderproperties
     ) >
     
<!ELEMENT traderpolicy 
     ( traderpolicyname
     , traderpolicyvalue 
     ) >
     
<!ELEMENT traderpolicyname ( #PCDATA ) >
     
<!ELEMENT traderpolicyvalue ANY >
     
<!ELEMENT traderpreference ( #PCDATA ) >
     
<!ELEMENT traderproperties 
     ( traderproperty+ ) >
     
<!ELEMENT traderproperty 
     ( traderpropertyname
     , traderpropertyvalue
     ) >
     
<!ELEMENT traderpropertyname ( #PCDATA ) >
     
<!ELEMENT traderpropertyvalue ANY >
     
<!ELEMENT traderquery 
     ( traderservicetypename
     , traderconstraint
     , traderpreference?
     , traderpolicy*
     , traderspecifiedprop*
     ) >
     
<!ELEMENT traderservicetypename ( #PCDATA ) >
     
<!ELEMENT traderspecifiedprop ( #PCDATA ) >

Note Ð These still need to be explained in text. In the mean time, look at the trader 
spec. The correspondence should be obvious.

9.7.2.32 The usagename Element

A user defined “friendly” name.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-275



9

<!ELEMENT usagename ( #PCDATA ) >

9.7.2.33 The usesidentifier Element

A child element of usingcomponent, usesidentiÞer identifies which using “port” on 
the component is to participate in the relationship. The type of the using interface must 
match the type of the connected provides interface. 

<!ELEMENT usesidentifier ( #PCDATA ) >

9.7.2.34 The usingcomponent Element

Specifies the interface-using side of an interface connection relationship. The 
usingidentiÞer child element identifies the particular uses port. 

<!ELEMENT usingcomponent 
     ( usesidentifier 
     , findby* )>
<!ATTLIST usingcomponent 
     idref IDREF #REQUIRED >

The idref attribute identifies the using component instance.

9.8 Property File Descriptor

The property file details component or home attribute settings. Properties are described 
using an XML vocabulary described below. The property file is used at deployment 
time to configure a home or component instance. A configurator uses the property file 
to determine how to set component and component home property attributes. 

The property file may be edited using a text editor or with the help of a GUI tool. A 
component may be shipped with a set of default properties that may be altered by the 
end user.

The suggested file extension for property files is “.cpf”, for Component Property File. 

9.8.1 Property File Example

The following property descriptor example has 3 properties: bufferSize, niceGuys, 
and sanityTestTime.. The bufferSize parameter is a long type; the niceGuys property 
is a sequence of strings; and the sanityTestTime property is a structure of type 
timestruct, containing 3 shorts.
9-276 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

<properties>
    <simple name=bufSize type="long">
        <description>Size of Whizitron input buffer</description>
        <value>4096</value>
        <defaultvalue>256</defaultvalue>
    </simple>
    <sequence name="niceGuys" type="sequence<string>">
        <simple type="string"><value>Dave</value></simple>
        <simple type="string"><value>Ed</value></simple>
        <simple type="string"><value>Garrett</value></simple>
        <simple type="string"><value>Jeff</value></simple>
        <simple type="string"><value>Jim</value></simple>
        <simple type="string"><value>Martin</value></simple>
        <simple type="string"><value>Patrick</value></simple>
    </sequence>
    
    <struct name="sanityTestTime" type="timestruct">
        <description>Time to start daily sanity check</description>
        <simple name="hour" type="short"><value> 24 </value></simple>
        <simple name="minute" type="short"><value> 0 </value></simple>
        <simple name="second" type="short"><value> 0 </value></simple>
    </struct>
</properties>

The properties document has 3 major elements: simple, sequence and struct.

The simple element describes a single primitive idl type. The sequence element 
corresponds to an IDL sequence, and the struct element corresponds to an IDL struct.

9.8.2 Property File XML Elements

This section describes the XML elements that make up a properties file. The section is 
organized starting with the root element of the properties document, properties, 
followed by all subordinate elements, in alphabetical order. The complete properties 
file DTD may be found in the appendix.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-277



9

9.8.2.1 The properties Root Element

The properties element the root element of the properties document. The properties 
element contains an optional description and any combination of simple, sequence, 
and struct elements.

<!ELEMENT properties 
     ( description?
     , ( simple 
       | sequence 
       | struct 
       )* 
     ) >

9.8.2.2 The choice Element

<!ELEMENT choice ( #PCDATA ) >

The choice element is used to specify a valid simple property value.

9.8.2.3 The choices Element

<!ELEMENT choices ( choice+ ) >

The choices element is a list of one or more choice elements.

9.8.2.4 The defaultvalue Element

<!ELEMENT defaultvalue ( #PCDATA ) >

The defaultvalue element is used to specify a default simple property value.

9.8.2.5 The description Element

<!ELEMENT description ( #PCDATA ) >

The description element is used to provide a description of its enclosing element.

9.8.2.6 The properties Element

The root element of the properties file. See section 9.8.2.1.
9-278 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.8.2.7 The simple Element

The simple element is used to specify an attribute value of a primitive type. simple 
contains a mandatory value element, and optional description, choices, and 
defaultvalue elements. 

The value element is used to specify the value of the simple type. If the value element 
is empty, the value is deemed unspecified. If the value is unspecified, and there is a 
defaultvalue defined, then the default value will be used. 

The description, choices and defaultvalue child elements may be used to provide 
guidance to the end user in deciding how to set the attributes. 

<!ELEMENT simple
     ( description?
     , value
     , choices?
     , defaultvalue?
     ) >
<!ATTLIST simple 
     name CDATA #IMPLIED 
     type ( boolean 
          | char 
          | double 
          | float 
          | short 
          | long 
          | objref 
          | octet
          | short 
          | string 
          | ulong
          | ushort
          ) #REQUIRED >

name

The name attribute specifies the name of the attribute as it appears in IDL. The name 
attribute is required, except when the property is used in a sequence.

type

The type attribute specifies the type of the corresponding attribute. Property types are 
either an IDL primitive data type, or an objref. 

Note Ð The objref is in its stringified form in the property element. The stringified 
object reference is converted into a proper object reference before being assigned to its 
corresponding attribute.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-279



9

9.8.2.8 The sequence Element

The sequence element is used to represent a sequence of similar types. It may be a 
sequence of simple types, a sequence of structs, or a sequence of sequences. The order 
of the sequence elements in the property file is preserved in the constructed sequence. 
An optional description may be used to describe the sequence property.

<!ELEMENT sequence 
     ( description?
     , ( simple* 
       | struct* 
       | sequence* 
       ) 
     ) >
<!ATTLIST sequence 
     name CDATA #IMPLIED
     type CDATA #REQUIRED >

name

The name attribute specifies the name of the sequence as it appears in IDL. The name 
attribute is required, except when the sequence property is used in another sequence.

type

The type attribute specifies the type of the corresponding IDL sequence. The type of 
each element in the sequence must match the sequence type. 

9.8.2.9 The struct Element

The struct element corresponds to an IDL structure. It may be composed of simple 
properties, sequences, or other structs.

<!ELEMENT struct 
     ( description?
     , ( simple 
       | sequence 
       | struct 
       )* 
     ) >
<!ATTLIST struct 
     name CDATA #IMPLIED 
     type CDATA #REQUIRED >

name

The name attribute specifies the name of the struct attribute as it appears in IDL. The 
name attribute is required, except when the structure property is used in a sequence.
9-280 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

type

The type attribute specifies the type of the corresponding IDL struct. 

9.8.2.10 The value Element

The value element is used to specify a simple value.

<!ELEMENT value ( #PCDATA ) >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-281



9

9.9 Component Deployment

Components, component homes, and component assemblies are deployed on target 
hosts in a network using a deployment tool provided by an ORB or tool vendor. The 
deployment application is a CORBA client which communicates with cooperating 
CORBA objects on target installation platforms.

The aim of deployment is to install and “hook-up” a logical component topology to a 
physical computing environment. The deployment is specified by an assembly file, or 
in the degenerate case, an individual component file. When a component is deployed, 
either the home for that component is created alone or the home is created and then an 
instance of the component is created.

Issue Ð Someone might want to create a component but not register its home 
with a factory Þnder. 

The basic steps in the deployment process are:

1. Identify on which hosts the components are to be installed. This information will 
most likely come from an interaction between tool and user. Components are 
deployed either singly or together with other components as part of a process or 
host collocation.

2. Install component implementations on each platform where corresponding 
component instances are to be deployed. If a component implementation, uniquely 
identified by a UUID, is already installed on a host then it does not have to be 
installed again.

3. Instantiate components and component homes on particular hosts. The mapping for 
doing so was determined in step 1.

4. Connect components as specified in the assembly descriptor’s connect block.

Keep in mind that a stand-alone component files may deployed as well as assembly 
files. In that case, step 4 does not apply. Unless otherwise noted, all interfaces defined 
in the subsequent sections are in the Deployment module which is imbedded within 
the Components module (see Appendix A.1 on 399 for a description of the naming 
structure proposed by this specification).

9.9.1 Participants in Deployment

The deployment of a component or component assembly is carried out by a 
deployment application in conjunction with a set of helper objects. The helper objects 
include component repositories, assembly and component factories, an object 
representing an assembly itself, and a container.

To familiarize yourself with the deployment participants, and their role in deploying 
components and assemblies, look at the following class diagram and attendant 
scenario.
9-282 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

9.9.1.1 Deployment Class Diagram

Figure 9-1 Deployment Class (Interface) Diagram

9.9.1.2 Deployment Scenario

Let’s go through the steps of deploying and activating a component assembly.

1. The deployment application has a conversation with the user to determine where 
each component or collocation is to be placed. Information about where 
components are to be located is recorded in a copy of the component assembly 
descriptor. This marked-up assembly descriptor will be used later by the Assembly 
object to direct the creation of the assembly.

2. Next the component implementations are installed on the platforms where they are 
to be used. The deployment application calls install on the Installation object, 
passing the component implementation id and a string denoting the address of the 

AssemblyFactory Assembly

ComponentServer

ServerActivator

Component
Installation

Container

Deployment
Application

<<instantiate>>

Component
Home

Component

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<instantiate>>
March 2, 1999 7:49 pm CORBA Components - orbos/99-02-05 9-283



9

component file. If the component has not already been installed on the target 
platform, then the Installation object retrieves the component file and makes it 
available in the local environment.

3. The deployment application then creates an Assembly object. Assembly objects 
coordinate the creation and destruction of component assemblies. Each assembly 
object represents an assembly instantiation. Assembly objects are created by calling 
an AssemblyFactory object on the host where the assembly object is to be 
created. The assembly factory is passed a string pointing to the assembly descriptor 
file.If necessary, the assembly factory brings the assembly descriptor into the local 
environment and makes its location known to the assembly object.

4. The assembly descriptor uses the assembly descriptor as a recipe for creating the 
assembly. The descriptor specifies which components and component homes to 
create, where they are to be located, what components are to be collocated with 
each other, and what components are to be connected with each other. Based on this 
information the Assembly object creates each component and component home 
and “hooks-up” the assembly. 

5. In creating a component, the Assembly object must create a component server, 
create a container within the server, install a home object within the container, and 
then use the home to create the component. This work is completed with the help of 
a set of objects on each host. These are ServerActivator, ComponentServer, 
Container, and the ComponentHome.

Issue Ð We probably want to call Container something different.

6. The Assembly object first calls the ServerActivator on the target host to create 
the component server. There is one instance of the ServerActivator object on each 
host. The Assembly object creates the component server by calling the 
create_component_server operation on the server activator object. This operation 
creates an empty server process and returns a reference to the ComponentServer 
object of the newly created process.

Issue Ð How does the Assembly object Þnd the ServerActivator on the target 
host? Some kind of naming scheme?

7. Each server contains a single ComponentServer object. It is used by the 
Assembly object to create containers within the server. A container is created 
when the Assembly object calls create_container on the ComponentServer 
object, passing in a container identifier or list of container attributes. The 
create_container operation returns a reference to the Container interface of the 
newly created container.

8. The Assembly object uses the Container interface to install the component home 
into the container. This is accomplished by calling install_home on the Container 
object. The install_home operation takes a component id parameter and returns a 
reference to the home interface. 
9-284 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

Issue Ð What about Remote Homes?

9. In order to create the home, the Container must load the DLL, shared object file, 
or .class file into the container process. To determine the path or the or fully 
qualified name of the component implementation, the container calls the 
get_implementation operation of the Installation object. It passes in the id of the 
component implementation and is returned the absolute location or name of the 
component implementation. The container then loads the implementation and 
instantiates the home object. The home object reference is then returned to the 
Assembly object.

Note Ð TODO: Specify DLL, .so, and .class entry points (in separate section).

10. The Assembly object uses the component’s home object to create the component 
instance. The instance is created by calling create_component on the home 
reference. create_component returns a ComponentBase object reference. 

Issue Ð Is there a need to create or Þnd a component with a primary key at 
deployment time?

11. If applicable, a configurator is applied to the component.

Issue Ð Are ConÞgurators custom or generic? If custom, then how are they 
packaged? If generic, then does the property Þle format have to be speciÞed?

12. Once all of the components are installed, the Assembly object connects 
components in the assembly based on the information in the connect block of the 
assembly descriptor. It does this by calling the receptacle connect operation on the 
ComponentBase reference.

Issue Ð How do we connect events? It should be as straight forward as 
connecting interfaces, and we must be able to connect events on a 
component basis, not on a container basis.

13. Following the successful consummation of each connection in the assembly, the 
Assembly object calls conÞguration_complete on each object in the assembly to 
signal that all of its initial connections have been fixed.

9.9.2 Installation Interface

The Installation object is used to install, query, and remove component 
implementations on a single platform. There is at most one Installation object per 
host.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-285



9

It is intended that this interface be general enough to encompass a wide range of 
underlying implementations, from ad hoc, to Windows Registry based, to commercial 
software distribution infrastructure based.

exception UnknownImplId { };
exception InvalidLocation { };

interface Installation {
boolean install(in string implGUID, in string cmpntloc)

raises InvalidLocation;
boolean replace(in string implGUID, in string cmpntloc)

raises InvalidLocation;
boolean remove(in string implGUID)

raises UnknownImplId;
string get_Implementation(in string implGUID)

raises UnknownImplId;
string get...(in string key); // TBD

};

Issue Ð On the get... methods we want to be able to get the implementation, 
such as a DLL or a .class Þle, as well as other implementation speciÞc 
dependencies. One possibility is to have get take a string key and return a 
location for that item. The component factory would have to look in the 
component descriptor to determine these dependencies and make sure that 
they are available to the implementation.

Issue Ð Need operation descriptions

9.9.3 AssemblyFactory Interface

The AssemblyFactory interface is used to create Assembly objects. A single 
AssemblyFactory object must be present on each host where Assembly objects are 
to be created.

exception InvalidLocation { };
exception InvalidAssembly { };

interface AssemblyFactory {
Cookie create(in string assemblyloc)

raises InvalidLocation;
Assembly lookup(in Cookie c)

raises InvalidAssembly;
boolean destroy(in Cookie c)

raises InvalidAssembly;
};
9-286 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

Issue Ð Specify cookies and operation descriptions

9.9.4 Assembly Interface

The Assembly interface represents an assembly instantiation. It is used to build up 
and tear down component assemblies. Building the assembly means that it is going to 
instantiate all of the components in the assembly and create connections between them 
as specified in the assembly descriptor. Tearing the assembly down means removing all 
connections and destroying the components in the assembly.

enum AssemblyState {INACTIVE, INSERVICE};

interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();

};

Issue Ð Need operation descriptions

9.9.5 ServerActivator Interface

The ServerActivator is a singleton on each host supporting components. It is used to 
create the servers in which containers and components reside. The 
create_component_server operation returns a ComponentServer reference that 
represents the newly created server process.

interface ServerActivator {
ComponentServer create_component_server();

};

Issue Ð The ServerActivator interface probably belongs in the Container 
chapter and we need operation descriptions

9.9.6 ComponentServer Interface

There is one ComponentServer object per component server process. It is used to 
create containers within the server.

interface ComponentServer {
Container create_container(...); // params TBD

};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-287



9

Issue Ð Nail down create_container parameters.

Issue Ð The ComponentServer interface probably belongs in the Container 
chapter and we need operation descriptions

9.9.7 Container Interface

The Container interface is used to install component homes into a container.

interface Container {
HomeBase install_home();

};

Issue Ð The Container interface probably belongs in the Container chapter. 
A different name might be in order too.

9.9.8 Component Entry Points (Component Home Factories)

Each component package contains a component implementation. A component 
implementation is a dynamically loadable module such as a DLL, a shared library, or a 
Java .class file. The component implementation file contains the code for the 
component implementation and its associated home implementation.

To load a component into a container, the home for the component must first be 
created. The home is then used to create component instances. The component’s home 
is created by calling a well known entry point in the component implementation file.

The entry point is an operation or function whose existence and signature is common 
across all component implementation files. The generic entry point function allows a 
container to create a component home without having to have specific knowledge of 
that home or its associated component implementation.

Entry points are programming language specific. Depending on the language, it is 
either a function or static method. The signature and semantics of the operation are 
specified for Java and C++.

Entry Points in Java

In Java, the entry point is the name of a class and static method which may be invoked 
to create a servant which implements the component home. The method must have the 
following signature:
9-288 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



9

public static HomeExecutorBase
foo();

For instance, if one wrote the following code for the entry point:
package bigbank.corbacomponents.Account;
public class AccountHomeFactory {

public static HomeExecutorBase create() {
return new AccountHomeImpl();

}
}

Then the string representing the entry point string would be 
“bigbank.corbacomponents.Account.AccountHomeFactory.create”.

Entry Points in C++

In C++, the entry point is the symbol in a shared library or DLL which should be 
invoked to return the HomeExecutorBase for the component’s home 
implementation. It should have “C” linkage (i.e. no name-mangling) and have the 
following signature:

HomeExecutorBase* (*)();

So for example:
extern "C" {

HomeExecutorBase* createAccountHome() {
return new AccountHomeImpl();

};
};

In this case, the entry point would simply be “createAccountHome”.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 9-289



9

9-290 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



Component Meta-Model 10
10.1 Introduction

This Chapter provides metamodel representations of the Components Model and 
Component Descriptors based on the OMG Meta-Object Facility (MOF). The MOF 
defines a standard means for metamodel definition. It also shows the Document Type 
Definitions (DTDs) generated from the two metamodels, based upon the XML 
Metadata Interchange (XMI). 

The XMI DTDs and the IDL generated for the metamodels is contained in Appendix 
C, along with XMI streams that encode the state of the metamodels according to the 
MOF DTD contained in the XMI specification.

The XMI DTD and MOF-compliant IDL for the CORBA IR metamodel are contained 
in Appendix C.

10.2 Change History

The following changes have been made since the previous document (orbos/99-02-01) 
was posted in February:

1. A MOF-base metamodel of the packaging and deployment architecture has been 
added.

2. The MOF-based metamodel of the Interface Repository has been streamlined 
resulting in a significantly smaller XMI stream.

The following changes have been made since the previous document (orbos/98-12-02) 
was posted in December:

1. The MOF descriptive text was greatly reduced.

2. An introduction to XMI was added to understand the DTDs.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-291



10
3. A MOF-based model for the existing Interface Repository has been added to allow 
the specification of a model for the component extensions.

4. A MOF-based model for the component IDL extensions has been added based on 
the prior version of this specification (orbos/98-12-02). It will be updated before the 
final submission.

5. Miscellaneous clarifications have been made to improve the quality of the text.

All changes are clearly marked with change bars. In general existing text which was 
moved will not have change bars.
10-292 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.3 An Overview of the MOF 

Because the OMG Meta Object Facility (MOF) was adopted by the OMG fairly 
recently, the majority of the OMG membership is not yet familiar with it. Thus, this 
chapter includes this MOF overview. 

The MOF is a generic framework for describing and representing meta-information in 
an CORBA-based environment. In this context, the term meta-information covers any 
information that in some sense describes other information. This is intended to include 
such things as:

¥ Interface definitions for CORBA objects, COM objects, DCE services and so on, 

¥ Service types for the CORBA Trader, 

¥ Meta-data for databases and information retrieval systems, 

¥ Models and project management information for software development tools, 

¥ Mapping descriptions for interoperability tools; e.g. application level bridges. 

The MOF is designed to support many different kinds of meta-information. This is 
achieved by treating the meta-information as information, and formally modeling each 
distinct kind of meta- information. These formal models are expressed using the meta-
modeling constructs provided by the MOF Model1.

The MOF specification also defines an IDL mapping which allows models expressed 
using MOF Model constructs to be translated into interfaces – CORBA-based meta-
information services. These interfaces can be implemented by hand, or using non-
standard server generation tools.

The mapped interfaces for a meta-model all inherit from a standard Reflection module 
that supports introspection and meta-model independent access and update. The 
interfaces can be used within a MOF Repository framework, or deployed 
independently.

10.3.1 The MOF Model 

The MOF Model is similar to the concepts of UML2. The three kinds of building 
blocks for a meta-information model are 

¥ objects (described by MOF Classes), 

¥ links that connect objects (described by MOF Associations), and 

¥ data values (described by CORBA IDL types). 

Instances of these constructs are organized as MOF Packages.

1. The MOF Model can be thought of as an object modeling language with a standardized 
abstract syntax and a variety of non-standardized concrete syntaxes or notations.

2. The two were defined in parallel, as a collaborative effort, with the goal of close alignment.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-293



10
10.3.2 The MOF-IDL Mapping 

Simply describing a meta-model using the MOF Model does not mean that a client can 
store and retrieve the meta-information described by the meta-model. To achieve this 
in the CORBA context, there need to be a set of CORBA IDL interfaces for a meta-
information service, and a server that implements that interface. Furthermore, if meta-
information services for a given meta-model are to be interoperable, the corresponding 
interfaces need to conform to an agreed specification. 

To this end, the MOF specification defines a standard mapping from meta-models 
defined using the MOF Model onto server interfaces. The interfaces themselves are 
expressed in CORBA IDL that can be generated by instantiating templates defined in 
the MOF specification. The intended semantics of these interfaces are also defined in 
the specification.

The MOF IDL mapping rules are defined under the assumption that a “top-level” (i.e. 
un-nested) Package and its contents are mapped onto CORBA IDL as a single unit. 
The mapping for MOF Model constructs is as follows: 

¥ Packages: each MOF Package maps onto a CORBA IDL module that contains the 
IDL for all of the Package's contained elements. The module also contains 
interfaces for Package “instance” (i.e. schema) objects, and for a factory object for 
these schema objects. The details are as follows: 

¥ If a Package inherits another Package, there is a corresponding inheritence 
relationship between the IDL interfaces for the schema objects. 

¥ If a Package imports another Package, a #include statement is inserted at the 
appropriate point. All references to elements in the imported Package use suitably 
qualified names. 

¥ If a Package is nested within another Package, the corresponding modules are 
also nested. 

¥ The Package schema interface has IDL attributes that give the object references 
for the Package's class proxy and association instance objects, and for the schema 
objects for nested schemas. 

¥ Classes: each MOF Class (say Method) in a meta-model maps onto two CORBA 
IDL interfaces: 

¥ The Method interface represents the instances of the MOF Class. This has IDL 
operations and attributes for each instance-level MOF Attribute and Operation, 
and each MOF Reference defined for the Class. The Method interface inherits 
MethodClass 

¥ The MethodClass interface represents the class proxy for the MOF Class. This 
has IDL operations and attributes for each classifier level MOF Attribute and 
Operation defined for the Class. It also has a factory operation for “Foo” 
instances, and sequence attributes giving all Method or Method subtype instances 
created in the Package. 

¥ The Method and MethodClass interfaces inherits the interfaces corresponding to 
the MOF Classes supertypes. 
10-294 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
¥ Associations: each MOF Association in a meta-model maps onto a CORBA IDL 
interface. This defines the operations for querying and updating the links belonging 
to an association instance. The links are not represented as CORBA object 
references, but as struct data types with two fields. 

The various interfaces also contain IDL typedefs, exceptions and constants as required 
by the Package. The scoping of the IDL reflects the scoping of the meta-model 
definition. 

For more details of the IDL mapping, please refer to the MOF specification. 

10.4 An Overview of XMI

The main purpose of  the XML Metadata Interchange (XMI) is to enable easy 
interchange of metadata among modeling tools and OMG MOF based metadata 
repositories in distributed heterogeneous environments.  XMI integrates two key 
industry standards:

¥ XML - eXtensible Markup Language, a W3C standard

¥ MOF - Meta Object Facility, an OMG metamodeling and metadata repository 
standard 

The integration of these standards into XMI marries the best of OMG and W3C 
metadata and modeling technologies, allowing developers of distributed systems to 
share object models and other metadata over the Internet. XMI, together with MOF 
and UML form the core of the OMG metadata repository architecture.  

XMI was submitted in response to the Stream-based Model Interchange Format RFP, 
and approved by the Architecture Board in January, 1999.  Typically, users of XML 
define a specific Document Type Definition (DTD) corresponding to a specific 
category or domain of metadata. XMI, however, is applicable across all categories and 
domains of metadata. To be interchangeable via XMI, the metadata must have its 
metamodel defined using the MOF elements.

XMI  mainly consists of:

¥ A set of XML Document Type Definition (DTD) production rules for transforming 
MOF based metamodels into XML DTDs

¥ A set of XML Document production rules for encoding and decoding MOF based 
metadata 

¥ Design principles for XMI based DTDs and XML streams

¥ Concrete DTDs for UML and MOF 

XMI enhances metadata management and metadata interoperability in distributed 
object environments in general and in distributed development environments in 
particular. While this response addresses stream based metadata interoperability in the 
object analysis and design domain, XMI is equally applicable to metadata in many 
other domains.   Examples include metamodels that cover the application development 
life cycle as well as additional domains such as data warehouse management, 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-295



10
distributed objects and business object management. OMG is expected to issue new 
RFPs for MOF-compliant metamodels to cover these additional domains. 

The adoption of the UML and MOF specifications in 1997 was a key step forward for 
the OMG and the industry in terms of achieving consensus on modeling technology 
and repositories after years of failed attempts to unify both areas. The adoption of XMI 
is expected to reduce the plethora of proprietary metadata interchange formats and 
minimally successful attempts of the Meta Data Coalition (Meta Data Interchange 
Specification) and Case Data Interchange Format (EIA CDIF) because of widespread 
adoption of W3C (XML) and OMG (UML, MOF) standards. XMI is also expected to 
ease the integration of CORBA, XML, Java, and COM based development 
environments which are evolving towards similar extensible repository architectures 
based on standard information models, repository interfaces and interchange formats. 

Figure 10-1 below illustrates the manner in which XMI supports interchange. For any 
MOF-defined metamodel, XMI specifies a DTD. For any model conforming to that 
metamodel, XMI defines an XML document representing that model. That XML 
document will conform to the DTD generated from the metamodel.

Figure 10-1 Production of Metamodel DTD and Model Streams

10.5 A MOF-Based Interface Repository Metamodel 

The first goal of the MOF-compliant metamodel is to express the extensions to IDL 
defined by the CORBA Component Model.  Since these extensions are derived from 
the previously-existing IDL base, it is not possible to define a MOF-compliant 
metamodel for the extensions without defining a MOF-compliant metamodel for the 
IDL base.

Metamodel

Model

DTD

XML

conforms to

conforms to

conforms to

produced 
according to XMI

produced 
according to XMI

MOF Model
10-296 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10

e 

ulti-
allow 
r, 
s 

 the 
sion 
Thus, the first MOF Package defined, entitled BaseIDL, is a MOF-compliant 
description of the pre-existing CORBA Interface Repository, while the second 
Package, entitled ComponentIDL, expresses the Component Model extensions.  As 
shown by the following package diagram (Figure 10-2), the ComponentIDL Package is 
dependent upon the BaseIDL Package:

Figure 10-2 The Two Packages for the IDL Metamodel

10.5.1 BaseIDL Package

The base CORBA Interface Repository (IR) is described in the CORBA Core in th
form of CORBA IDL. Because the MOF is more expressive than IDL, a range of 
legitimate MOF-compliant metamodels are equivalent to this IDL.  For instance, m
valued attributes and references expressed in IDL could be ordered or unordered, 
an instance to be contained in the collection only once or more than once, Furthe
specific multiplicity constraints could be specified. Can the sequence be empty? I
there an upper bound?

As can be seen from an examination of the portion of the metamodel contained in
BaseIDL Package, many such questions are resolved via the more precise expres
that the MOF enables.

ComponentIDL

BaseIDL
March 2, 1999 6:28 pm CORBA Components - orbos/99-02-05 10-297



10
10.5.1.1 A Structural Comparison of the BaseIDL Package with the 
Existing IR

Although the structure of the MOF-compliant CORBA IR is very similar to the 
existing CORBA IR, the submitters have taken this opportunity to do some 
streamlining.

¥ In the existing CORBA IR, elements that are "typed,” such as constants, attributes, 
etc., hold an attribute of type IDLType.  However, the same IDLType can be the 
type for many elements, so an attribute (with its composition semantics) is not 
appropriate.  Instead, the MOF-compliant IR specifies the abstract Typed metaclass, 
and an Association between Typed and IDLType.  This change eliminates the need 
for repeating the type attribute, which returns a TypeCode, in 6 different 
metaclasses.

¥ In the existing CORBA IR, StructField, Parameter, and UnionField are datatypes 
(structs). The MOF-compliant IR specifies them as full-blown metaclasses so that 
they can participate as derivations of the Typed metaclass.

¥ The MOF-compliant IR does not have to represent a repository since MOF-based 
servers inherently have such a construct.  Thus, the MOF-compliant IR has no 
Repository metaclass and it specifies Container as a sub(meta)class of Contained, 
simplifying the hierarchy.

¥ The existing IR’s IRObject provides a def_kind readonly attribute.  This information 
would be redundant in a MOF server, which inherently carries information 
describing the type of a metaobject.  Thus, there is no IRObject metaclass in the 
MOF-compliant IR. However, it can be derived for a CORBA IR layer.

¥ In the existing IR, UnionDef, StructDef, ExceptionDef, and OperationDef inherit 
from Container.  Since they each contain only a single type of object, it makes less 
sense for them to have a reference to a collection of Contained metaobjects.  
Instead, in the MOF-compliant IR they each hold their set of fields or parameters as 
attributes.

¥ As a simplification the two-stated enums AttributeMode and OperationMode have 
been eliminated. Attributes typed as AttributeMode or OperationMode have been 
turned into boolean-typed attributes.

¥ Basic CRUD operations for creating, reading, updating, and deleting metaobjects 
are generally not included in the metamodel, since these are generated automatically 
by the MOF-IDL mapping, which takes a MOF-compliant metamodel as input and 
deterministically derives the IDL for representing the metamodel in a repository.

¥ The existing IR duplicates many of the interfaces representing basic IR elements 
with structs representing the same elements. This duplication supports the ability to 
get a large collection of information required by a DII client without requiring the 
client to subsequently make repeated, possibly remote requests to objects in order to 
process the collection of information. Since the DII is optimized for the existing IR, 
this submission assumes that an IR layer will continue to service DII clients and 
thus does not attempt to provide this functionality in the MOF-compliant IR.
10-298 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-3 shows all of the metaclasses and relationships defined in the BaseIDL 
Package. 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-299



10
Figure 10-3 BaseIDL Package--All Elements

Al
ia

sD
ef

an
y

<<
pr

im
itiv

e>
>

Ar
ra

yD
ef

bo
un

d 
: u

ns
ig

ne
d 

lo
ng

bo
ol

ea
n

<<
pr

im
itiv

e>
>

Co
ns

ta
nt

De
f

co
ns

tV
al

ue
 : 

an
y

De
fin

itio
nK

in
d

<<
en

um
er

at
io

n>
>

En
um

De
f

<<
or

de
re

d 
[1

..*
]>

> 
m

em
be

rs
 : 

st
rin

g

Fi
el

d

id
en

tif
ie

r :
 s

tri
ng

Fi
xe

dD
ef

di
gi

ts
 : 

un
sig

ne
d 

sh
or

t
sc

al
e 

: s
ho

rt

lo
ng

<<
pr

im
itiv

e>
>

M
od

ul
eD

ef

pr
ef

ix 
: s

tri
ng

Pa
ra

m
et

er
De

f

id
en

tif
ie

r :
 s

tri
ng

di
re

ct
io

n 
: P

ar
am

et
er

M
od

e

Pa
ra

m
et

er
M

od
e

<<
en

um
er

at
io

n>
>

Pr
im

itiv
eD

ef

kin
d 

: P
rim

itiv
eK

in
d

Pr
im

itiv
eK

in
d

<<
en

um
er

at
io

n>
>

Se
qu

en
ce

De
f

bo
un

d 
: u

ns
ig

ne
d 

lo
ng

sh
or

t
<<

pr
im

itiv
e>

>
st

rin
g

<<
pr

im
itiv

e>
>

St
rin

gD
ef

bo
un

d 
: u

ns
ig

ne
d 

lo
ng

St
ru

ct
De

f

<<
or

de
re

d 
 [1

..*
]>

> 
m

em
be

rs
 : 

Fi
el

d

Ty
pe

Co
de

<<
pr

im
itiv

e>
>

Ty
pe

de
fD

ef

Un
io

nF
ie

ld

id
en

tif
ie

r :
 s

tri
ng

la
be

l :
 a

ny

un
sig

ne
d 

lo
ng

<<
pr

im
itiv

e>
>

un
sig

ne
d 

sh
or

t
<<

pr
im

itiv
e>

>

Va
lu

eB
ox

De
f

Va
lu

eM
em

be
rD

ef

isP
ub

lic
M

em
be

r :
 b

oo
le

an

W
st

rin
gD

ef

bo
un

d 
: u

ns
ig

ne
d 

lo
ng

Ty
pe

d

Un
io

nD
ef

<<
or

de
re

d 
[1

..*
]>

> 
un

io
nM

em
be

rs
 : 

Un
io

nF
ie

ld

ID
LT

yp
e

/ t
yp

eC
od

e 
: T

yp
eC

od
e

0.
.*

1.
.1

+t
yp

ed

0.
.*

+i
dl

Ty
pe 1.

.1

Ty
pe

d

0.
.*

1
+u

ni
on

De
f

0.
.*

+d
isc

rim
in

at
or

Ty
pe

1

Di
sc

rim
in

at
ed

By

In
te

rfa
ce

De
f

isA
bs

tra
ct

 : 
bo

ol
ea

n

0.
.*

0.
.*

+b
as

e

0.
.*

In
te

rfa
ce

De
riv

ed
Fr

om

+d
er

ive
d

0.
.*

Va
lu

eD
ef

isA
bs

tra
ct

 : 
bo

ol
ea

n
isC

us
to

m
 : 

bo
ol

ea
n

isT
ru

nc
at

ab
le

 : 
bo

ol
ea

n

0.
.*

0.
.1

+v
al

ue
De

f
0.

.*

+i
nt

er
fa

ce
De

f

0.
.1Su

pp
or

ts

0.
.1

0.
.*

+b
as

e

0.
.1 Va

lu
eD

er
ive

dF
ro

m

+d
er

ive
d

0.
.*

0.
.*

0.
.*

+a
bs

tra
ct

De
riv

ed
0.

.*

Ab
st

ra
ct

De
riv

ed
Fr

om

+a
bs

tra
ct

Ba
se0.

.*

O
pe

ra
tio

nD
ef

isO
ne

wa
y 

: B
oo

le
an

<<
or

de
re

d 
 [0

..*
]>

> 
pa

ra
m

et
er

s 
: P

ar
am

et
er

De
f

<<
or

de
re

d 
 [0

..*
]>

> 
co

nt
ex

ts
 : 

st
rin

g

At
tri

bu
te

De
f

isR
ea

do
nl

y 
: b

oo
le

an

Ex
ce

pt
io

nD
ef

<<
un

ch
an

ge
ab

le
>>

 / 
ty

pe
Co

de
 : 

Ty
pe

Co
de

<<
or

de
re

d 
 [0

..*
]>

> 
m

em
be

rs
 : 

Fi
el

d

0.
.*

0.
.*

+o
pe

ra
tio

nD
ef

0.
.*

+e
xc

ep
tio

nD
ef

0.
.*

Ca
nR

ai
se

0.
.*

0.
.*

+g
et

At
tri

bu
te0.
.*

+g
et

Ex
ce

pt
io

n

0.
.*

G
et

Ra
ise

s

0.
.*

0.
.*

+s
et

At
tri

bu
te

0.
.*

Se
tR

ai
se

s

+s
et

Ex
ce

pt
io

n
0.

.*

Co
nt

ai
ne

d

id
en

tif
ie

r :
 s

tri
ng

re
po

sit
or

yI
d 

: s
tri

ng
ve

rs
io

n 
: s

tri
ng

<<
un

ch
an

ge
ab

le
>>

 / 
ab

so
lu

te
Na

m
e 

: s
tri

ng

Co
nt

ai
ne

r

<<
[0

..*
]>

> 
lo

ok
up

Na
m

e(
)

lo
ok

up
()

<<
[0

..*
]>

> 
ge

tF
ilte

re
dC

on
te

nt
s(

)

0.
.*

0.
.1

+c
on

te
nt

s
0.

.*
Co

nt
ai

ns
+d

ef
in

ed
In

0.
.1
10-300 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.5.1.2 Typing

As mentioned earlier in this chapter (A Structural Comparison of the BaseIDL Package 
with the Existing IR on page 298), the two critical elements of the BaseIDL Package 
supporting the typing of IR entities are the Typed and IDLType metaclasses. A Typed 
element references an IDLType, which has an attribute of type TypeCode.

Figure 10-4 IDL Typing

AliasDef

ArrayDef

bound : unsigned long

ConstantDef

constValue : any

Field

identifier : string

FixedDef

digits : unsigned short
scale : short

ParameterDef

identifier : string
direction : ParameterMode

PrimitiveDef

kind : PrimitiveKind

SequenceDef

bound : unsigned long

StringDef

bound : unsigned long

UnionField

identifier : string
label : any

ValueMemberDef

isPublicMember : boolean

WstringDef

bound : unsigned long

Typed

IDLType

/ typeCode : TypeCode

0..*

1

0..*

+idlType1

TypedefDef

ValueDef

isAbstract : boolean
isCustom : boolean
isTruncatable : boolean

0..1

0..*

+base

0..1

ValueDerivedFrom

0..*

0..*

0..*

0..*

AbstractDerivedFrom

+abstractBase

0..*

InterfaceDef

isAbstract : boolean

0..*

0..*

+base
0..*

InterfaceDerivedFrom

0..*

0..*

0..1

0..*

+interfaceDef

0..1

AttributeDef

isReadonly : boolean

OperationDef

isOneway : Boolean
<<ordered  [0..*]>> parameters : ParameterDef
<<ordered  [0..*]>> contexts : string
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-301



10
10.5.1.3 Containment

Many elements in the metamodel descend from Container or Contained, in keeping 
with the structure of the original CORBA Interface Repository. As mentioned in the 
previous section, the metamodel also derives Container from Contained so that an 
element that is logically a container and at the same time is defined in another 
container does not have to inherit directly from both Container and Contained. 
However, this change requires that a constraint be written such that ModuleDef and 
only ModuleDef does not have to be defined in a Container. This constraint is included 
in the next section on containment constraints.

Figure 10-5 expresses the containment hierarchy.

Figure 10-5 Containment Hierarchy

ConstantDef

constValue : any

ModuleDef

TypedefDef

ValueMemberDef

InterfaceDef

ValueDef

AttributeDef

isReadonly : boolean

OperationDef

ExceptionDef

Contained

identifier : string
repositoryId : string
version : string
<<unchangeable>> / absoluteName : string

Container

<<[0..*]>> lookupName()
lookup()
<<[0..*]>> getFilteredContents()

0..*0..1

+contents

0..*

Contains

+definedIn

0..1
10-302 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.5.1.4 Containment Constraints

The Association between Container and Contained is named Contains. Contains is 
very general and is inherited by sub(meta)classes of Container and Contained. Unless 
further constrained, Contains would allow any Container to directly contain any 
Contained element. For example, a ModuleDef could contain an OperationDef and a 
ValueDef could contain an InterfaceDef. Clearly, the Contains Association must be 
constrained. 

Figure 10-6 and Figure 10-7 express the containment constraints formally via the 
OMG’s Object Constraint Language (OCL). They also supplement the formal 
expressions with English natural language equivalents.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-303



10
Figure 10-6 Containment Constraints--Subclasses of Contained

ConstantDef

constValue : any

TypedefDef

ValueMemberDef

**Constraints in English**
[3] an AttributeDef can must be defined within an InterfaceDef or within a ValueDef

**Constraints in OCL **
[3] { definedIn.oclIsKindOf (InterfaceDef) or  definedIn.oclIsKindOf (ValueDef)  }

**Constraints in English**
[4] an OperationDef must be defined within an InterfaceDef or within a ValueDef

**Constraints in OCL **
[4] { definedIn.oclIsKindOf (InterfaceDef) or  definedIn.oclIsKindOf (ValueDef)  }

**Constraints in English**
[5] a ValueMemberDef must be defined within a ValueDef

**Constraints in OCL **
[5] { definedIn.oclIsTypeof  (ValueDef)  }

**Constraints in English**
[1] a ConstantDef must be defined in a Container

**Constraints in OCL **
[1] { definedIn.notEmpty  }

**Constraints in English**
[2] a TypedefDef must be defined in a Container

**Constraints in OCL **
[2] { definedIn.notEmpty  }

AttributeDef

OperationDef

ExceptionDef

ContainedContainer

0..*

0..1 +contents

0..*+definedIn

0..1
Contains

**Constraints in English**
[6] an ExceptionDef must be defined in a Container

**Constraints in OCL **
[6] { definedIn.notEmpty  }
10-304 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-7 Containment Constraints--Subclasses of Container

Contained

ModuleDef

InterfaceDef

ValueDef

**Constraints in English**
[7] if ModuleDef is defined in a Container, this Container must be another ModuleDef  

**Constraints in OCL **
[7] { definedIn.notEmpty implies  (definedIn.oclIsKindOf (ModuleDef) and definedIn <> self)  }

**Constraints in English**
[8] an InterfaceDef must be defined within a ModuleDef

**Constraints in OCL **
[8] { definedIn.oclIsKindOf (ModuleDef)  }

**Constraints in English**
[9] a ValueDef must  be defined within a ModuleDef

**Constraints in OCL **
[9] { definedIn.oclIsKindOf (ModuleDef)  }

Container 0..*

0..1 +contents

0..*+definedIn

0..1

Contains
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-305



10
10.5.1.5 Typedef and Type Derivations

Figure 10-8 expresses the hierarchy of derivatives of Typedef and Typed.

Figure 10-8 Derivations from Typedef and Type

AliasDef

EnumDef

<<ordered [1..*]>> members : string

Field

identifier : string

StructDef

<<ordered  [1..*]>> members : Field

TypedefDef

UnionField

identifier : string
label : any

ValueBoxDef

Typed

UnionDef

<<ordered [1..*]>> unionMembers : UnionField

IDLType

/ typeCode : TypeCode
0..*

1

0..*
+idlType

1

Typed

0..*

1

0..*

+discriminatorType

1

DiscriminatedBy

Contained

identifier : string
repositoryId : string
version : string
<<unchangeable>> / absoluteName : string
10-306 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.5.1.6 Exceptions

Figure 10-9 shows the formal definition of the ExceptionDef metaclass. Note the 
inclusion of the newly-defined (in this submission) ability for attribute accessors and 
mutators to raise user-defined exceptions.

Figure 10-9 Exceptions

Contained

identifier : string
repositoryId : string
version : string
<<unchangeable>> / absoluteName : string

OperationDef

isOneway : Boolean
<<ordered  [0..*]>> parameters : ParameterDef
<<ordered  [0..*]>> contexts : string

AttributeDef

isReadonly : boolean

ExceptionDef

<<unchangeable>> / typeCode : TypeCode
<<ordered  [0..*]>> members : Field

0..*

0..*

0..*

+exceptionDef

0..*

0..*

0..*

0..*

+getException
0..*

0..*

0..*

0..*

SetRaises

+setException

0..*

CanRaise

GetRaises
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-307



10
10.5.1.7 Value Types

CORBA 2.3 provided a model for types of objects that can be passed by value. The 
Objects By Value specification expanded the grammar of IDL and the structure of the 
Interface Repository to accommodate value types. Figure 10-10 focuses on the 
definition of value types in the MOF-compliant IR metamodel.

Figure 10-10 Value Types

ValueMemberDef

isPublicMember : boolean
Typed

IDLType

/ typeCode : TypeCode

0..*

1

0..*

+idlType

1

Typed

InterfaceDef

isAbstract : boolean

0..*

0..*

+base
0..*

InterfaceDerivedFrom

0..*

ValueDef

isAbstract : boolean
isCustom : boolean
isTruncatable : boolean

0..*

0..1

0..*

+interfaceDef
0..1

Supports

0..1

0..*

+base

0..1

ValueDerivedFrom

0..*

0..*

0..*

0..*

AbstractDerivedFrom

+abstractBase

0..*

ValueBoxDef

TypedefDef

**Constraints in English**
[13] Abstract InterfaceDefs may only derive from other abstract InterfaceDefs

**Constraints in OCL
[13]{  isAbstract implies base->forAll (isAbstract) }

**Constraints in English**
[10] Abstract ValueDefs may only derive from other abstract ValueDefs
[11] base (if any) refers to a concrete ValueDef
[12] abstractBase refers only to abstract ValueDefs

**Constraints in OCL
[10]{  isAbstract implies base->isEmpty }
[11]{ base->notEmpty implies not base.isAbstract }
[12]{ abstractBase->forAll(isAbstract) }

Contained

identifier : string
repositoryId : string
version : string
<<unchangeable>> / absoluteName : string

Container

<<[0..*]>> lookupName()
lookup()
<<[0..*]>> getFilteredContents()

0..*0..1

+contents

0..*

+definedIn

0..1 Contains
10-308 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.5.1.8 Naming

Figure 10-11 focuses on the aspects of the metamodel that concern naming.

Figure 10-11 Naming

**Constraints in English**
[14] Contained elements have unique names within their Container

**Constraints in OCL **
[14] { contents->forAll (c0, c1 | c0 <> c1 implies c0.identifier <> c1.identifier)  }

Contained

identifier : string
repositoryId : string
version : string
<<unchangeable>> / absoluteName : string

Container

<<[0..*]>> lookupName()
lookup()
<<[0..*]>> getFilteredContents()

0..*

0..1

+contents

0..*

Contains

+definedIn
0..1
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-309



10
10.5.1.9 Operations

As mentioned earlier in this chapter (A Structural Comparison of the BaseIDL Package 
with the Existing IR on page 298), the metamodel generally does not declare CRUD 
operations for the metaclasses, due to the fact that the MOF automatically generates 
such operations based on the structural metamodel. However, a few convenience 
operations are defined on the Container metaclass, as illustrated by Figure 10-12.

Figure 10-12 Convenience Operations

Container

<<[0..*]>> lookupName(searchName : string, levelsToSearch : long, limitToType : DefinitionKind, excludeInherited : boolean) : Contained
lookup(searchName : string) : Contained
<<[0..*]>> getFilteredContents(limitToType : DefinitionKind, includeInherited : boolean) : Contained
10-310 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.5.2 ComponentIDL Package

10.5.2.1 Overview

The following UML class diagram describes a metamodel representing the extensions 
to IDL defined by the CORBA Component Model.  Just as these extensions are 
dependent on the base IDL defined in the CORBA Core, so is this metamodel 
dependent on a metamodel representing the base IDL.

Figure 10-13 ComponentIDL Package - Main Diagram

OperationDef
(from BaseIDL)

FactoryDef FinderDefProvidesDef
UsesDef

multiple : boolean

InterfaceDef
(from BaseIDL)

1

0..*

+interface1

0..*
0..*

1

0..*

+interface1

HomeDef

1

0..*

1

+factory0..*

1

0..*

1

+finder0..*

PrimaryKeyDef

1

0..1

+home1

+key0..1EmitsDef ConsumesDef

ComponentDef

1

1..*

1

+provides 1..*

1

0..*

+manages 1

+home0..*

0..*

1

+uses
0..*

1

0..1

0..*

+supports 0..1

0..*

1

0..*

1

+emits
0..*

1

0..*

1

+consumes 0..*

ValueDef
(from BaseIDL)

1

0..*

+type

1

0..*

1

0..*

+event1

0..*

1

0..*

+event1

0..*

PublishesDef

1

0..*

1

+publishes 0..*

1

0..*

+event1

0..*
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-311



10
10.5.2.2 Containers and Contained Elements

The following UML class diagram (Figure 10-14) describes the derivation of the 
metamodel elements from the BaseIDL Container and Contained elements:

Figure 10-14 Containment Hierarchy

Each of the subtypes of Contained shown in Figure 10-14 can only be defined within 
certain subtypes of Container. Figure 10-15 formally specifies these constraints via the 
OMG’s Object Constraint Language (OCL), and supplements the OCL by expressing 
the constraints in natural language for the benefit of readers who are not familiar with 
OCL.

Container
(from BaseIDL) Contained

(from BaseIDL)

0..1 0..*+definedIn 0..1

+contents

0..*
Contains

FactoryDef

HomeDef

FinderDef

OperationDef
(from BaseIDL)

ProvidesDef

UsesDef

InterfaceDef
(from BaseIDL)

ComponentDef

PrimaryKeyDef

EmitsDef

ConsumesDef

ValueDef

(from BaseIDL)

PublishesDef
10-312 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-15 Constraints on Containment of Elements Defined In ComponentDef

ProvidesDef UsesDef

EmitsDef ConsumesDef

**Constraints in English**
[1] A ProvidesDef can be defined only 
within a ComponentDef

**Constraints in OCL **
[1] {definedIn.oclType = ComponentDef}

Container
(from BaseIDL)

Contained

identifier : string
repositoryId : string
version : string
absoluteName : string

(from BaseIDL)

0..1

0..*
+definedIn

0..1
+contents

0..*
Contains

**Constraints in English**
[2] A UsesDef can be defined only within 
a ComponentDef

**Constraints in OCL **
[2] {definedIn.oclType = ComponentDef}

**Constraints in English**
[3] An EmitsDef can be defined only 
within a ComponentDef

**Constraints in OCL **
[3] {definedIn.oclType = ComponentDef}

**Constraints in English**
[4] A ConsumesDef can be defined only 
within a ComponentDef

**Constraints in OCL **
[4] {definedIn.oclType = ComponentDef}

PublishesDef

**Constraints in English**
[5] A PublsihesDef can be defined only 
within a ComponentDef

**Constraints in OCL **
[5] {definedIn.oclType = ComponentDef}

FactoryDef FinderDef

PrimaryKeyDef

**Constraints in English**
[6] A FactoryDef can be defined only 
within a HomeDef

**Constraints in OCL **
[6] {definedIn.oclType = HomeDef}

**Constraints in English**
[7] A FinderDef can be defined only within 
a HomeDef

**Constraints in OCL **
[7] {definedIn.oclType = HomeDef}

**Constraints in English**
[8] A PrimaryKeyDef can be defined only 
within a HomeDef

**Constraints in OCL **
[8] {definedIn.oclType = HomeDef}
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-313



10
All of ComponentDef's composition Associations shown in the main diagram (Figure 
10-13) are derived from the BaseIDL metamodel’s Contains Association between 
Container and Contained. As shown by Figure 10-14, ComponentDef inherits that 
Association from InterfaceDef, which inherits it from Container.

The following class diagram (Figure 10-16) details these derived Associations. A "/" 
prefix in an Association name denotes that the Association is derived, and sets the 
MOF's "isDerived" property for the Association.  The constraints for each of the 
derived Associations are expressed in the OMG's Object Constraint Language and 
declare how the Associations are derived from the Contains Association.

The <<implicit>> stereotype is a standard UML stereotype that designates the 
Association as conceptual rather than manifest.  An <<implicit>> Association is 
ignored when generating IDL for the metamodel via the MOF-IDL mapping.  It is also 
ignored when deriving the XML DTD for the metamodel via the MOF-XML mapping 
specified by the XMI specification.  The Contains association is sufficient for 
generating the accessor methods in the IDL allowing the containments to be traversed.  
If these Associations were not marked as <<implicit>> then additional accessor 
methods would be generated to do the more focused traversals that they conceptualize.  
In the judgement of the submitters the generation of these additional accessor methods 
would expand the footprint of the IDL interfaces more than is warranted, given that the 
containments can be traversed by the single inherited Contains Association.

The fact that these <<implicit>> Associations are ignored when generating the IDL for 
the metamodel does not mean that they have no bearing on the contents of a repository. 
The “reflective” interfaces that all MOF metaobjects inherit have an operation called 
metaObject that returns a metaobject. This metaobject is part of the metamodel rather 
than part of a model; in other words, it is actually a meta-metaobject that is part of the 
description of the metamodel. The definitions of the <<implicit>> Associations in 
which a metaobject participates would be available via this meta-metaobject. The 
multiplicity constraints of these Associations would be available as well. Thus, for 
example, the fact that a ComponentDef aggregates zero or more UsesDef metaobjects 
is discoverable through such meta-metaobjects and thus serves as a formal constraint 
on the Contains Association from which the aggregation is derived.

Furthermore, when the state of the metamodel is streamed in conformance with the 
DTD for the MOF meta-metamodel, the state that specifies the <<implicit>> 
Associations are part of the stream. The DTD for the MOF meta-metamodel is 
contained in the XMI specification. XML streams conforming to that DTD and which 
contain the state of the IR metamodel are included in Appendix C of this submission.
10-314 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-16 Implicit Derived Containments with ComponentDef as the Composite

HomeDef’s composition Associations also are derived from the Contains Association. 
As shown in Figure 10-14, HomeDef descends from Container. All of the components 
of its composition Associations descend from Contained. As with the derived 
Associations in which ComponentDef plays the composite role, the derived 
Associations in which HomeDef plays the composite role are marked as <<implicit>> 
to prevent excess IDL generation. Figure 10-17 formally defines the constraints that 
define the semantics of the derivations.

Container

(from BaseIDL)

Contained

(from BaseIDL)

0..1

0..*
+definedIn

0..1
+contents

0..*
Contains

ProvidesDef

EmitsDef

UsesDef

ConsumesDefPublishesDef

ComponentDef

1..*

1

+provides
1..*

+component1

/Component_Provides

<<implicit>>

0..*

1

+emits 0..*

+component

1

/Component_Emits
<<implicit>>

0..*

1

+uses 0..*

+component1

/Component_Uses
<<implicit>>

0..*

1

+consumes

0..*

+component1

/Component_Consumes

<<implicit>>

0..*

1

+publishes 0..*

+component
1

/Component_Publishes

<<implicit>>

**Constraints in English**
[9] All of the ProvidesDef metaobjects that 
populate this Association also populate the 
ComponentDef's inherited Contains Association

**Constraints in OCL**
[9] {component.contents->includesAll (provides)}

**Constraints in English**
[10] All of the UsesDef metaobjects that 
populate this Association also populate the 
ComponentDef's inherited Contains 
Association

**Constraints in OCL**
[10] {component.contents->includesAll (uses)}

**Constraints in English**
[11] All of the EmitsDef metaobjects that populat
e this Association also populate the Component
Def's inherited Contains Association

**Constraints in OCL**
[11] {component.contents->includesAll (emits)}

**Constraints in English**
[12] All of the PublishesDef metaobjects that populate 
this Association also populate the ComponentDef's 
inherited Contains Association

**Constraints in OCL**
[12] {component.contents->includesAll (publishes)}

**Constraints in English**
[13] All of the ConsumesDef metaobjects that populate 
this Association also populate the ComponentDef's 
inherited Contains Association

**Constraints in OCL**
[13] {component.contents->includesAll (consumes)}
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-315



10
Figure 10-17 Implicit Derived Containments with HomeDef as the Composite

10.5.2.3 ValueDef Constraints

The ValueDef metaclass, which is part of the BaseIDL Package, participates in a 
number of Associations defined by the ComponentIDL Package. The emits, publishes, 
and consumes declarations that are part of the component model IDL extensions all 
reference a ValueDef. Furthermore, the primaryKey declaration within home 
declarations references a ValueDef. However, the IDL type of the ValueDef is 
constrained, as explained in Section 6.8.4 on 119 of this submission.

Figure 10-18 expresses the ValueDef constraints formally. Note that it uses an OCL 
technique of defining a side-effect free operation in order to support recursion, which 
is required in order to traverse the transitive closure of a ValueDef’s inheritance 
hierarchy.

FactoryDef
FinderDef

HomeDef

1

0..*

+home1

+factory
0..*

/Home_Factory

<<implicit>>

1

0..*

+home
1

+finder
0..*

/Home_Finder
<<implicit>>

PrimaryKeyDef

1

0..1

+home1

+key0..1

/Home_Key
<<implicit>>

**Constraints in English**
[14] All of the FactoryDef metaobjects that populate this 
Association also populate the HomeDef's inherited 
Contains Association

**Constraints in OCL**
[14] {home.contents->includesAll (factory)}

**Constraints in English**
[15] All of the FinderDef metaobjects that populate this 
Association also populate the HomeDef's inherited 
Contains Association

**Constraints in OCL**
[15] {home.contents->includesAll (finder)}

**Constraints in English**
[16] If there is a PrimaryKeDef populating this Association then it 
also populates the HomeDef's inherited Contains Association

**Constraints in OCL**
[16] {key->notEmpty implies home.contents->includes (key)}
10-316 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-18 Constraints on ValueDefs in Associations

PrimaryKeyDefEmitsDef ConsumesDef

ValueDef

(from BaseIDL)

1

0..*

+type
1

0..*

1

0..*

+event1

0..*

1

0..*

+event1

0..*

PublishesDef

1

0..*

+event1

0..*

Contained

identifier : string
repositoryId : string
version : string
absoluteName : string

(from BaseIDL)

**Additional OCL Operation**
•
descendsFrom(absoluteName : string) : boolean
{• 
•  descendsFrom (absoluteName) = 
•••if self.absoluteName = absoluteName  then
      true
   else 
      if base->isEmpty then 
         false
      else
          if base.descendsFrom(absoluteName) then
             true
          else
             false
          endif
      endif
   endif
}

**Constraints in English**
[17]] The ValueDef specified as the event must descend 
directly or indirectly from Components::EventBase

**Constraints in OCL**
[17] {event.descendsFrom("Components::EventBase")}

**Constraints in English**
[18] The ValueDef specified as the event must descend 
directly or indirectly from Components::EventBase

**Constraints in OCL**
[18] [{event.descendsFrom("Components::EventBase")}

**Constraints in English**
[19] The ValueDef specified as the event must descend 
directly or indirectly from Components::EventBase

**Constraints in OCL**
[19] {event.descendsFrom("Components::EventBase")}

**Constraints in English**
[20] The ValueDef specified as the event must descend 
directly or indirectly from Components::EventBase

**Constraints in OCL**
[20] {type.descendsFrom("Components::PrimaryKeyBase")}
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-317



10
10.5.2.4 Miscellaneous Constraints

Figure 10-19 defines additional constraints on the ComponentDef, HomeDef, 
FactoryDef, and FinderDef metaclasses.

Figure 10-19 Miscellaneous Constraints

**Constraints in English**

[23] A ComponentDef C may be dervied from at 
most one base. 

[24] Furthermore, that one base must be a 
ComponentDef
  
[25] If A ComponentDef C is derived from a base 
ComponentDef then C may not support an 
interface

[26] A ComponentDef may not define operations

**Constraints in OCL**

[23] {base->size <= 1}

[24], [25]
{base->notEmpty implies
  (
    (base->forAll (oclType = ComponentDef)  and

    (supports->isEmpty) 
  )
}

[26] {contents->forAll (oclType <> OperationDef)}

OperationDef
(from BaseIDL)

**Constraints in English**
[21] The return type must be the 
same as the type of the 
component that  the FactoryDef's 
home manages.

**Constraints in OCL**
[21] {type = home.manages.type}

**Constraints in English**
[22] The return type must be the 
same as the type of the 
component that the FinderDef's 
home manages.

**Constraints OCL**
[22] {type = home.manages.type}

IDLType
(from BaseIDL)

Typed
(from BaseIDL)

10..*

+type

10..*

FinderDefFactoryDef

HomeDef

1

0..*

+home1

+finder0..*

1

0..*

+home1

+factory0..*

InterfaceDef
(from BaseIDL)

0..*

0..*

+base0..*

+derived
0..*

ComponentDef 1

0..*

+manages1

+home0..*

0..1

0..*

+supports 0..1

+components

0..*

Component_Supports

**Constraints in English**

[27] A HomeDef may be dervied from at most one base. 

[28] Furthermore, that one base must be a HomeDef
  
**Constraints in OCL**

[27] {base->size <= 1}

[28] {base->notEmpty implies  (base->forAll (oclType = HomeDef)}
10-318 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
10.6 Packaging and Deployment Metamodel

Chapter 9 describes the semantics of metadata “descriptors” describing the packaging 
and deployment of CORBA components. This section presents a MOF-compliant 
metamodel of the same information, allowing an XMI-compliant DTD to be generated 
along with IDL representing an active, message-based, MOF-compliant repository for 
this metadata.

The metamodel is comprised of five MOF Packages, as illustrated by Figure 10-20. 
These packages correspond to the organization of the descriptors in Chapter 9.

Figure 10-20 MOF Packages Comprising the Packaging and Deployment Metamodel

¥ PDGeneral contains general elements used by the other Packages. 

¥ Softpkg concerns the packaging of component implementations.

¥ Component contains a subset of the information about a component that is 
contained in the Interface Repository, in order to support configuration and 
deployment without necessitating accessing the Interface Repository.

¥ Assembly provides information required to plug components together and 
coordinate their deployment.

¥ PropertySet models the contents of a properties file used to hold component 
configurations.

The metamodel reflects the XML contained in the Packaging and Deployment chapter 
closely, except that in a number of cases XML DTD Elements were expressed as 
attributes in the metamodel for efficiency. The metamodel also does some 
consolidation via inheritance, whereas XML does not support inheritance.

Softpkg Component Assembly

PDGeneral

PropertySet
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-319



10
10.6.1 The PDGeneral MOF Package

This Package corresponds to the “General Purpose Elements and Entities” described in 
Chapter 9. However, the Repository element was also placed in this Package because it 
is used by both the Softpkg and Component Packages.

Figure 10-21 General Elements

10.6.2 The Softpkg MOF Package

This package corresponds to the Softpkg Descriptor described in  Section 9.3 on 230.

CodeBase

<<[0..1]>> filename : string
href : string

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

LocalFile

name : string

FileInArchive

name : string

Link

href : string
1 0..11

+link

0..1

Repository

<<[0..1]>> type : string
<<[0..1]>> href : string
<<[0..1]>> objectReference : string
10-320 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-22 Softpkg Top-Level Elements

PropertyFile

Dependency

<<[0..1]>> name : string
<<[0..1]>> type : string
<<[0..1]>> version : string
action : ActionKind

Descriptor

type : string

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

Author

<<[0..1]>> name : string
<<[0..1]>> Company : string
<<[0..1]>> WebPage : string

Implementation

UUID : string
<<[0..1]>> type : string
<<[0..1]>> abstract : string
<<[0..*]>> processor : string
threadSafety : ThreadSafetyKind
<<[0..1]>> humanLanguage : string

Softpkg

name : string
<<[0..1]>> version : string
<<[0..1]>> title : string
<<[0..1]>> pkgtype : string
<<[0..1]>> abstract : string
<<[0..1]>> licenseURL : string

1

0..*

1

+propertyFile

0..*

1

0..*

1

+dependency

0..*

1

0..*

1

+descriptor0..*

1

0..*

1
+extension

0..*

1

0..*

1

+author

0..*

1

0..*

1

+implementation

0..*

IDL

id : string

1

0..*

1

+IDL0..*

**Constraints in English**
[1] The id of an Extension must be unique within a Softpkg 

**Constraints in OCL**
[1] extension->forAll (ext | ext.id->notEmpty implies extension->count(ext.id) = 1)
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-321



10
Figure 10-23 The Implementation Element

ProgrammingLanguage

name : string
<<[0..1]>> version : string

OS

name : string
<<[0..1]>> version : string

Code

<<[0..1]>> type : string

Compiler

name : string
<<[0..1]>> version : string

Dependency

<<[0..1]>> name : string
<<[0..1]>> type : string
<<[0..1]>> version : string
action : ActionKind

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

Descriptor

type : string

PropertyFile

Implementation

UUID : string
<<[0..1]>> type : string
<<[0..1]>> abstract : string
<<[0..*]>> processor : string
threadSafety : ThreadSafetyKind
<<[0..1]>> humanLanguage : string

1

1

1

+programmingLanguage
1

1

1

1

+OS1

1

0..1

1

+code
0..1

1

0..1

1

+compiler
0..1

1

0..*

1

+dependency

0..*

1

0..*

1

+extension

0..*

1

0..*

1 +descriptor

0..*

1

0..*

1

+propertyFile

0..*

RunTime

name : string
version : string

10..* 1

+runTime

0..*

ThreadSafetyKind

none
class
instance

<<enumeration>>

**Constraints in English**
[2] The id of an Extension must be unique within an Implementation

**Constraints in OCL**
[2] extension->forAll (ext | ext.id->notEmpty implies extension->count(ext.id) = 1)
10-322 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-24 The IDL and PropertyFile Elements

Repository

<<[0..1]>> type : string
<<[0..1]>> href : string
<<[0..1]>> objectReference : string

(from PDGeneral)

**Constraints in English**
[3] One and only one of repository, fileInArchive, and link 
must be non-empty

**Constraints in OCL**
[3]
{
   repository->notEmpty xor 
   fileInArchive->notEmpty xor 
   link->notEmpty
}

**Constraints in English**
[4] One and only one of fileInArchive and link must be 
non-empty

**Constraints in OCL**
[4] {fileInArchive->notEmpty xor link->notEmpty}

Softpkg

name : string
<<[0..1]>> version : string
<<[0..1]>> title : string
<<[0..1]>> pkgtype : string
<<[0..1]>> abstract : string
<<[0..1]>> licenseURL : string

Link

href : string

(from PDGeneral)

IDL

id : string

0..1

1

+repository
0..1

1

0..*

1

+IDL0..*

1

0..1

1
+link

0..1

1

Prop

0..*

1

+propertyFile0..*

1

0..1

1

+link

0..1

1

FileIn

name : string

(from PDGeneral)

0..1

1

+link0..1

1

1

0..1

1

+fileInArchive

0..1
1

0..1
1

+fileInArchive

0..1
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-323



10
Figure 10-25 The Dependency Element

Softpkg

name : string
<<[0..1]>> version : string
<<[0..1]>> title : string
<<[0..1]>> pkgtype : string
<<[0..1]>> abstract : string
<<[0..1]>> licenseURL : string

CodeBase

<<[0..1]>> filename : string
href : string

(from PDGeneral)

FileInArchive

name : string

(from PDGeneral)
LocalFile

name : string

(from PDGeneral)

Dependency

<<[0..1]>> name : string
<<[0..1]>> type : string
<<[0..1]>> version : string
action : ActionKind

0..*
0..*

+package

0..*
0..*

0..*

1

+codeBase
0..*

1

0..*

1

+fileInArchive
0..*

1

0..*

1
+localFile

0..*

1

ActionKind

assert
install

<<enumeration>>

**Constraints in English**
[5] One and only one of package, codeBase, fileInArchive, 
name (the attribute), or localfile is not empty

**Constraints in OCL**
[5]
{
   package->notEmpty xor
   codeBase->notEmpty xor
   localFile->notEmpty xor
   name->notEmpty xor
   fileInArchive->notEmpty
}

10-324 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-26 The Descriptor Element

**Constraints in English**
[6] One and only one of fileInArchive and link 
must be non-empty

**Constraints in OCL**
[6] {fileInArchive->notEmpty xor link->notEmpty}

Link

href : string

(from PDGeneral)

Descriptor

type : string

0..1

1

+link0..1

1

FileInArchive

name : string

(from PDGeneral)

0..11

+link

0..11

1

0..1

1

+fileInArchive0..1
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-325



10
Figure 10-27 The Code Element

**Constraints in English**
[7] Code contains either a CodeBase, a FileInArchive, 
or a Link

**Constrains in OCL**
[7]
{
   codeBase->notEmpty xor 
   fileInArchive->notEmpty xor
   link->notEmpty
}

CodeBase

<<[0..1]>> filename : string
href : string

(from PDGeneral)

EntryPoint

name : string

Link

href : string

(from PDGeneral)

Code

<<[0..1]>> type : string

0..1

1

+codeBase0..1

1

0..1

1

+entryPoint0..1

1

0..1

1

+link

0..1

1

FileInArchive

name : string

(from PDGeneral)

0..1

1

+link0..1

1

1

0..1

1

+fileInArchive

0..1
10-326 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-28 The OS Element

OS

name : string
<<[0..1]>> version : string

**Constraints in English"*
[8] The OS name must be on the list official list of OS 
names

**Constraints in OCL**
[8]
{
   name = "AIX" or
   name = "BSDi" or
   name = "VMS" or
   name = "DigitalUnix" or
   name = "DOS" or
   name = "HPBLS" or
   name = "HPUX" or
   name = "IRIX" or
   name = "Linux" or
   name = "MacOS" or
   name = "OS/2" or
   name = "AS/400" or
   name = "MVS" or
   name = "SCO CMW" or
   name = "SCO ODT" or
   name = "Solaris" or
   name = "SunOS" or
   name = "UnixWare" or
   name = "VxWorks" or
   name = "Win95" or
   name = "WinNT"
}

March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-327



10
10.6.3 The Component MOF Package

This Package corresponds to the Component Descriptor in  Section 9.4 on 243.

Figure 10-29 Component Top-Level Elements

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

SecuritySpecifier

userId : string

Servant

LifeTime : LifeTimeKind EventPolicy

<<[0..1]>> emit : EventPolicyKind
<<[0..1]>> consume : EventPolicyKind

ExtendedPOAPolicy

name : string
value : string

Interface

0..*

0..*

0..*

+base

0..*

Port

name : string

Persistence

responsibility : PersistenceResponsibilityKind
usePSS : boolean

POAPolicy

idAssignment : POAIdAssignmentPolicy
idUniqueness : POAIdUniquenessPolicy
implicitActivation : POAImplicitActivationPolicy
lifeSpan : POALifeSpanPolicy
requestProcessing : POARequestProcessingPolicy
servantRetention : POAServantRetentionPolicy
thread : POAThreadPolicy

PersistentStoreInfo

implementation : string
dataStoreName : string
dataStoreId : string

Component

name : string
repositoryId : string
corbaVersion : string
componentKind : ComponentKind
<<[0..1]>> transactionSupport : TransactionSupportKind
<<[0..1]>> securityCredentialKind : SecurityCredentialKind
containerThreading : ContainerThreadingKind
configurationComplete : boolean
<<[0..1]>> supportedInterfaceRepId : string

1

0..*

1

+extension

0..*

1

0..1

1

+securitySpecifier

0..1

1

0..1

1

+servant

0..1
1

0..1

1 +eventPolicy

0..1
1

0..1

1

+extPOAPolicy0..1

1

0..*

1

+supports
0..*

0..1

0..*

+base

0..1

0..*

1

1..*

1

+port1..*

1

0..1

1

+persistence
0..1

1

0..1

1

+poaPolicy0..1

1

0..1

1

+persistentStoreInfo0..1

Repository

<<[0..1]>> type : string
<<[0..1]>> href : string
<<[0..1]>> objectReference : string

(from PDGeneral)

1

0..1

1
+repository

0..1
10-328 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-30 Enumerations Used by Top-Level Elements

ComponentKind

service
session
process
entity
unclassified

<<enumeration>>
LifeTimeKind

process
method
transaction

<<enumeration>>

TransactionSupportKind

notSupported
required
supports
requiresNew
mandatory
never

<<enumeration>>

SecurityCredentialKind

client
system
specified

<<enumeration>>

EventPolicyKind

normal
default
transaction

<<enumeration>>

PersistenceResponsibilityKind

container
component

<<enumeration>>

POAThreadPolicy

ORB_CTRL_MODEL
SINGLE_THREAD_SAFE

<<enumeration>>

POALifeSpanPolicy

TRANSIENT
PERSISTENT

<<enumeration>>

POAIdUniquenessPolicy

UNIQUE_ID
MULTIPLE_ID

<<enumeration>>
POAIdAssignmentPolicy

USER_ID
SYSTEM_ID

<<enumeration>>

POAServantRetentionPolicy

RETAIN
NON_RETAIN

<<enumeration>>
POARequestProcessingPolicy

USE_ACTIVE_OBJECT_MAP_ONLY
USE_DEFAULT_SERVANT
USE_SERVANT_MANAGER

<<enumeration>>

POAImplicitActivationPolicy

IMPLICIT_ACTIVATION
NON_IMPLICIT_ACTIVATION

<<enumeration>>

ContainerThreadingKind

serialize
multithread

<<enumeration>>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-329



10
Figure 10-31 Constraints on Component

**Constraints in English**
[1] The id of an Extension must be unique within a Component
[2] A security specifier is required for a container whose SecurityCredentialKind is "specified" and is not valid for a container of any other SecurityCredential
Kind 
[3], [4], [5], [6], [7] Specification of servant, persistence, persistentStoreInfo, and poaPolicy specifiers is constrained as follows:
For a service: None of these e
For a session: One servant must be specified none of the others may be specified
For a process: Either a servant or persistence specifier may be specified and none of the others may be specified
For an entity: Either a servant or persistence specifier may be specified and none of the others may be specified
For an unclassified: Both a persistentStoreInfo and a poaPolicy must be specified and none of the others may be specified

**Constraints in OCL**
[1] {extension->forAll (ext | ext.id->notEmpty implies extension->count(ext.id) = 1)}
[2] {securityCredentialKind = specified xor securitySpecifier->isEmpty}
[3] {ComponentKind = service implies (servant->isEmpty and persistence->isEmpty and persistentStoreInfo->isEmpty and poaPolicy->isEmpty)}
[4] {ComponentKind = session implies (servant->notEmpty  and persistence->isEmpty and persistentStoreInfo->isEmpty and poaPolicy->isEmpty)}
[5] {ComponentKind = process implies ( servant->notEmpty and persistence->notEmpty and persistentStoreInfo->isEmpty and poaPolicy->isEmpty)}
[6] {ComponentKind = entity implies ( servant->notEmpty and persistence->notEmpty and persistentStoreInfo->isEmpty and poaPolicy->isEmpty)}
[7] {ComponentKind = unclassified implies (servant->isEmpty and persistence->isEmpty and persistentStoreInfo->notEmpty and poaPolicy->notEmpty)}

Servant

LifeTime : LifeTimeKind

SecuritySpecifier

userId : string

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

Persistence

responsibility : PersistenceResponsibilityKind
usePSS : boolean

POAPolicy

idAssignment : POAIdAssignmentPolicy
idUniqueness : POAIdUniquenessPolicy
implicitActivation : POAImplicitActivationPolicy
lifeSpan : POALifeSpanPolicy
requestProcessing : POARequestProcessingPolicy
servantRetention : POAServantRetentionPolicy
thread : POAThreadPolicy

PersistentStoreInfo

implementation : string
dataStoreName : string
dataStoreId : string

Component

name : string
repositoryId : string
corbaVersion : string
componentKind : ComponentKind
<<[0..1]>> transactionSupport : TransactionSupportKind
<<[0..1]>> securityCredentialKind : SecurityCredentialKind
containerThreading : ContainerThreadingKind
configurationComplete : boolean
<<[0..1]>> supportedInterfaceRepId : string

10..1 1

+servant

0..1

1 0..11

+securitySpecifier

0..1

1

0..*

1

+extension

0..*

0..1

1

+persistence0..1

1

0..1

1

+poaPolicy0..1

1

0..1

1

+persistentStoreInfo
0..1

1

10-330 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-32 Port and Related Elements

Port

name : string

EventPort

kind : EventPortKind

ValueType

1

0..*

1

+valueType0..*

InterfacePort

kind : InterfacePortKind

Interface

1

0..*

1

+interface0..*

InterfacePortKind

provides
uses

<<enumeration>>
EventPortKind

emits
publishes
consumes

<<enumeration>>

ObjectType

name : string
repositoryId : string
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-331



10
10.6.4 The Assembly MOF Package

Figure 10-33 Assembly Top Level Elements

ComponentFile

id : string

Partitioning

ConnectionsAssembly11..* 1

+componentFile

1..*

1

0..*

1

+partitioning0..*

1 0..*1

+connections

0..*

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

1

0..*

1

+extension0..*

**Constraints in English**

[1] The id of a ComponentFile must be unique within an Assembly descriptor

[2] The id of an Extension must be unique within an Assembly descriptor

**Constraints in OCL**

[1] componentFile->forAll (file | componentFile->count(file.id) = 1)

[2] extension->forAll (ext | ext->notEmpty implies extension->count(ext.id) = 1)
10-332 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-34 The ComponentFile Element

**Constraints in English**

[3] A component file contains either a 
FileInArchive, a Link, or a CodeBase

**Constraints in OCL**
[3]
{
   fileInArchive->notEmpty xor
   link->notEmpty xor
   codeBase->notEmpty
}

CodeBase

<<[0..1]>> filename : string
href : string

(from PDGeneral)

FileInArchive

name : string

(from PDGeneral)
Link

href : string

(from PDGeneral)

PropertiesFile

ComponentFile

id : string

1

0..1

1

+codeBase0..1

1

0..1

1

+fileInArchive0..1

1

0..1

1

+link0..1

1

0..10..1

1

+propertiesFile
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-333



10
Figure 10-35 The Partitioning Element

ComponentPlacement

id : string
<<[0..1]>> usageName : string
<<[0..1]>> objectReference : string
<<[0..*]>> registerWithNaming : string
cardinality : MultiplicityType

ProcessCollocation

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

Partitioning

1

0..*

1

+componentPlacement
0..*

1

0..*

1

+process0..*

1

0..*

1

+extension
0..*

HostCollocation

1

0..*

1

+host0..*

**Constraints in English**

[4] The id of a ComponentPlacement must be unique within a Partitioning descriptor

[5] The id of an Extension must be unique within a Partitioning descriptor

**Constraints in OCL**

[4] componentPlacement->forAll (cp | componentPlacement->count(cp.id) = 1)

[5] extension->forAll (ext | ext->notEmpty implies extension->count(ext.id) = 1)
10-334 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-36 Collocation

Note that MultiplicityType is a MOF construct that can be used for describing 
metamodels. It is used in the ComponentPlacement element to represent cardinality.

ComponentPlacement

id : string
<<[0..1]>> usageName : string
<<[0..1]>> objectReference : string
<<[0..*]>> registerWithNaming : string
cardinality : MultiplicityType

Collocation

id : string
usageName : string
<<[0..1]>> implementationType : string
cardinality : short

1

1..*

1

+placement1..*

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

1

0..*

1

+extension0..*

HostCollocationProcessCollocation

1

1..*

1+process

1..*
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-335



10
Figure 10-37 MultiplicityType as Defined by the MOF Specification

MultiplicityType

long : lower
long : upper
boolean : isOrdered
boolean : isUnique

<<DataType>>
UNBOUND

value = 999999

<<constant>>

**Constraints in English**

[8] The lower bound cannot be have the value of the constant UNBOUND
[9] The lower bound cannot be greater than the upper bound
[10] The upper bound must be greater than zero
[11] When the upper bounds is less than two (denoting a single-valued set), 
isOrdered and isUnique are not applicable Ð they must be each set to false

**Constraints in OCL**

[8] lower <> UNBOUND
[9] lower <= upper or upper = UNBOUND
[10] upper > 0
[11] upper < 2 implies (isOrdered = false and isUnique = false)
10-336 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-38 The Connections Element

ConnectEvent

Extension

class : string
origin : string
<<[0..1]>> id : string
<<[0..1]>> extra : string
<<[0..1]>> htmlForm : string

(from PDGeneral)

Connections

1

0..*

1

+connectEvent0..*

10..* 1

+extension

0..*

ConnectInterface

1

0..*

1

+connectInterface0..*

**Constraints in English**
[10] The id of an Extension must be unique within a Connections descriptor

**Constraints in OCL**
[10] extension->forAll (ext | ext->notEmpty implies extension->count(ext.id) = 1)
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-337



10
Figure 10-39 Connecting to a Component

Connect

id : string

Component
(from Component)

ComponentElementReference

elementIdentifier : string

1

0..*

+component1

0..*

sInterface UsesInterface EmitsEvent ConsumePublishesEvent

ConnectInterface

1

0..*

1

es 0..*

1

0..*

1

+uses 0..*

ConnectEvent

1

0..*

1

+emits 0..*

1

0..

1

+consumes 0..

1

0..*

1

+publishes 0..*

Connections

1

0..*

1

+connectInterface
0..* 0..*

1

+connectEvent
0..*

1

Assembly

0..*

1

+connections0..*

1

10-338 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-40 Connect id Uniqueness Constraint

Connect

id : string

**Constraints in English**
[11] A Connect id must be unique within an assembly descriptor

**Constraints in OCL**
[11]
{
   connections->forAll (c | c.connectInterface->forAll 
   (ci1, ci2 | ci <> ci2 implies 
       (ci1.id <> ci2.id and forAll 
          (c | c.connectEvent->forAll 
             (ce | ce.id <> ci1.id and ce.id <> ci2.id
             )
          )
       )
   )
}

ConnectInterface ConnectEvent

Connections

1

0..*

1

+connectInterface
0..* 0..*

1

+connectEvent
0..*

1

Assembly

0..*

1

+connections0..*

1

March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-339



10
10.6.5 The PropertySet MOF Package

This Package corresponds to the Properties Descriptor in Section 9.8 on 276. 
Properties files hold configuration properties for components. The PropertyFile 
element in the Softpkg Descriptor and metamodel represents the file itself and does not 
model the contents. The Properties Descriptor describes the contents, and this Package 
presents a corresponding metamodel. Figure 10-41describes all the elements of this 
Package.
10-340 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



10
Figure 10-41 The PropertySet Package--All Elements

SimpleType

boolean
char
double
float
short
long
objectReference
octet
short
string
ulong
ushort

<<enumeration>>

Complex

<<[0..1]>> name : string
type : string
<<[0..1>> description : string

**Constraints in English**
[1] One and only one of sequence, simple, or struct must be non-empty

**Constraints in OCL**
[1] {sequence->notEmpty xor simple->notEmpty xor struct->notEmpty)

Struct

1

0..*

1

+struct

0..*

Sequence
1

0..*

1

+simple0..*

10..* 1

+sequence

0..*

1 0..*1

+struct

0..*

Properties

<<[0..1]>> description : string1

0..*

1

+sequence0..*

1

0..*

1

+struct0..*

Simple

type : SimpleType
<<[0..1]>> defaultValue : string
value : string
<<[0..1]>> description : string
<<[0..*]>> choice : string

1

0..*

1

+simple0..*

1

0..*

1

+simple0..*

1

0..*

1

+simple0..*
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 10-341



10
10-342 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Mapping to Enterprise Java Beans 11
This chapter describes how an Enterprise Java Bean component can be used by 
CORBA Components. The EJB will have a CORBA Component style remote interface 
that is described by CORBA IDL (including the Component extensions).

Additionally, it suggests how an Enterprise Java Bean may be deployed in a CORBA 
Component server. The CORBA Component server (and associated tools) must provide 
the EJB Environment defined by the Enterprise JavaBeans Version 1.0 Specification in 
order to host EJBs. 

11.1 History of changes

11.1.1 Since 99-02-01

1. EJB Remote and Home and EJBObject and EJBHome interface mappings 
updated to the new IDL for Components added in 99-02-05.

2. Example updated to the new IDL and new mappings

3. Change history moved to the front of the chapter to match the other chapters.

4. The section on EJB deployment has been heavily edited and the tables introduced in 
99-02-01 have been relocated to this section. The tables relating to the client 
mapping have been removed as this is now described in the client mapping section.

11.1.2 Since 98-12-02

1. Change history section is introduced.

2. Tables are introduced comparing the EJB contracts with the corresponding CORBA 
Component contracts.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-343



11
3. Some advice is given about EJB hosting strategies for CORBA Component Server 
developers.

4. Terminology changes replaced “Remote” with EJBObject.

5. Font changes now have programming terms in 10 pt Arial bold font (IDL format).

6. Removed the discussion of local dispatch. RMI/IIOP is required. It is up to the 
vendors to implement it in an effective way when the dispatch is local.

7. Added information on deploying EJBs in a CORBA Component Server. Discussion 
of Session Bean deployment is TBD.

8. Editorial changes made in anticipation of the EJB 1.1 specification - principally the 
removal of issues that are being addressed in this specification.

11.2 Enterprise Java Beans Compatibility  Objectives and Requirements

The most important objective is to allow the creation of distributed applications which 
mix CORBA Components running in CORBA Component servers with EJBs running 
in EJB servers. These components are bound together by synchronous and 
asynchronous method invocations that are mediated by ORBs. This objective allows a 
developer to create an application by reusing existing Components of either kind. This 
requires that CORBA Components have EJB facades, and that EJB components have 
CORBA Component facades for their remotely accessible behaviors. It also requires 
that value objects of one kind (e.g. Keys for EJB) have counterpart value objects of the 
other kind. It also requires that CORBA Components accessible via CosNaming have 
their EJB facades accessible via JNDI, and vice versa.

The next most important objective is to allow a CORBA Component server to serve 
both CORBA Components and EJBs. This allows applications which mix CORBA 
Components and EJBs to reside in the same server for performance, security, and other 
reasons. This adds requirements to the server to manage both kinds of components and 
to provide local synchronous and asynchronous method calls.

The third most important objective is to allow CORBA Components written in Java 
and following the EJB patterns to be deployable in EJB servers. This allows a 
developer to create a component knowing that it is usable either as an EJB or as a 
CORBA Component. The practical consequence of this objective is that the CORBA 
Component is, in fact, an EJB. There are two possibilities:

¥ The component is just an EJB and no more;

¥ The component has an EJB personality and a CORBA Component personality and 
these are not the same. In the most general case, the component behaviors can be 
assigned to one of three sets: {EJB - CORBA Component}, {CORBA Component - 
EJB}, {CORBA Component and EJB}. The component must be capable of 
detecting its operating environment and enabling or disabling behaviors 
accordingly.
11-344 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
11.3 EJB Facades for EJBs

This facade allows an EJB deployed in a CORBA Component server to appear as an 
EJB Remote interface in another EJB (which may or may not be deployed in a 
CORBA Component server).

The JDK 1.2 from Sun provides an implementation of RMI/IIOP based on the Java 
Language to IDL Mapping (ptc/98-10-02, subsequently called RMI/IIOP). This 
implementation can be used by a Java client wishing to access EJBs hosted by a 
CORBA Component server.

An EJB running in an EJB server can access an EJB running in a CORBA Component 
server provided that the EJB server contains a CORBA ORB supporting the RMI/IIOP 
specification.

An EJB running in a CORBA Component server can access another EJB running in a 
CORBA Component server by way of the EJB remote interface implementation that is 
defined by the RMI/IIOP.

The container tools are expected to provide an implementation of the Handle class for 
an EJB. The Handle is expected to be able to locate an EJB unless it has been 
destroyed or is a Session Bean which has not survived a crash or server imposed 
lifetime. Thus Handle behavior may differ from one EJB server to the next.

11.4 CORBA Component facades for EJBs

This facade is based on the Java Language to IDL Mapping. However, it includes the 
Component extensions to IDL. There are two ways that this facade may be created:

1. A new RMI Compiler tool can be created which directly generates the Component 
style proxies by introspection of the Java classes and interfaces;

2. An existing RMI Compiler tool can be used to generate non-Component IDL which 
is then processed by a second tool to generate Component level IDL. The second 
tool may directly generate the Component style proxies or it may generate wrappers 
around non-Component proxies.

The specification does not restrict the implementors freedom to use either of these 
patterns or any other functionally equivalent pattern.

11.4.1 Java Language to IDL Mapping

An EJB has a natural mapping to CORBA IDL by way of the Java Language to IDL 
Mapping Specification. The reader is assumed to be familiar with this specification, 
whose major aspects are repeated here for convenience. The Home and Remote 
interfaces can be mapped to CORBA IDL without significant restrictions. 

¥ EJB requires the Remote and Home interfaces to inherit java.rmi.Remote. EJB 
requires all methods on the Remote and Home interfaces to throw 
java.rmi.RemoteException. These are requirements of the Java Language to 
IDL mapping also.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-345



11
¥ get- and set- name pattern names are translated to IDL attributes.

¥ IDL generated methods have only in parameters (but these can include object 
references to remote objects, allowing reference semantics normally obtained by 
using parameters of type java.rmi.Remote).

¥ Java objects that inherit from java.io.Serializable or java.io.Externalizable are 
mapped to a CORBA valuetype. All object types appearing in RMI remotable 
interfaces must inherit from these interfaces or from java.rmi.Remote. EJB Key 
and Handle types must inherit from java.io.Serializable. 

¥ However, the mapping does NOT require that methods on such objects or 
constructors be mapped to corresponding IDL operations on valuetypes and init 
specifications. The developer is expected to select those methods which should be 
mapped to IDL operations, and the method signatures must meet the requirements 
of the mapping.

¥ Objects which inherit from java.io.Externalizable or which implement 
writeObject are understood to perform custom marshalling and the 
corresponding custom marshallers must be created for the CORBA valuetype.

¥ Arrays are mapped to “boxed” CORBA valuetypes containing sequences because 
Java arrays are dynamic.

¥ Java exceptions are subclassable; IDL exceptions are not. Consequently a name 
pattern is used to map to IDL exceptions. The Java exception object is mapped to a 
CORBA valuetype. The CORBA valuetype has an inheritance hierarchy like that of 
the corresponding Java exception object.

¥ Some additional programming is required to define Java classes (including EJB 
implementations) that are accessible via RMI/IIOP. This is to account for the fact 
that IIOP does not support distributed garbage collection. However, note that these 
operations would normally be provided in the EJBObject implementation supplied 
by the EJB server.

11.4.2 EJB to CORBA Component IDL mapping

The rules for mapping the public interfaces to a CORBA Component declaration are 
also straightforward. In general, the CORBA Component will support an interface that 
is the RMI/IIOP map of the Remote interface of the EJB. However, this interface is 
named XXXDefault, where XXX is the name of the EJB Remote interface. In the 
following text, this generated interface will be referred to as the Default interface of 
the Component.

11.4.2.1 Operations on EJBObject

These operations must be mapped to the equivalent operations on ComponentBase and 
on the generated Component IDL default interface as follows:

¥ getEJBHome is mapped to get_home on ComponentBase.

¥ The getHandle operation on an EJB object reference is not available on the 
corresponding CORBA Component object reference.
11-346 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
EJB does not support persistent object references. The Handle object provides a 
storage form (via serialization) for the object reference it encapsulates. It also provides 
a getEJBObject operation to recreate the object reference from the reserialized 
Handle. These functions correspond closely to the CORBA string_to_object and 
object_to_string operations. There are differences in the behavior of Handles 
compared with the behavior of CORBA Object References. These details are discussed 
later in this chapter.

¥ The getPrimaryKey operation is mapped to a get_primary_key operation on the 
default interface supported by the CORBA Component, provided that the EJB 
Home declares the ÞndByPrimaryKey operation.

¥ The isIdentical operation is mapped to an RMI/IIOP equivalent operation on the 
default  interface supported by the CORBA Component.

¥ The remove operation is mapped to the destroy operation on ComponentBase.

11.4.2.2 Operations on EJBHome

¥ getEJBMetaData is mapped to get_component_def on HomeBase

EJBMetadata provides references to the Class objects for the Primary Key, Home 
and Remote interfaces of the EJB. The Class object supports reflection, allowing the 
user to determine the signature of the interfaces at runtime. The ComponentDef 
interface obtained from the Interface Repository provides the equivalent function for 
the CORBA Component programmer.

The Class object also supports dynamic dispatch (on the Remote interface proxy). The 
equivalent CORBA function would be to use DII on the Component/Home Object 
reference. CORBA does not support dynamic dispatch of operations on valuetypes, so 
there is no mechanism that would correspond to a Java dynamic dispatch of an 
operation on a Primary Key class.

EJBMetadata also allows navigation to the Home from the Metadata via the 
getEJBHome operation. This is unfortunate. If multiple Homes of the same type are 
deployed, each Home must have its own copy of the Metadata in spite of the fact that 
all copies are identical. This specification does not allow navigation from the 
ComponentDef to the HomeBase.

¥ remove (Handle handle) is not mapped.

¥ remove (Object key) is mapped to destroy_by_KKK (in KKK key) on the 
Component Home interface, provided that the EJB Home declares the 
ÞndByPrimaryKey operation. The remove (Object key) operation is also 
mapped to the destroy_component (in ComponentBase comp) operation on 
HomeBase.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-347



11
11.4.2.3 Operations on the Remote Interface

¥ The EJB Remote interface declaration is used to create a supports declaration and 
the  corresponding IDL for the primary interface of the Component. The identifier 
of this supported interface on the component is XXXDefault, where XXX is the 
name of the Remote interface. The form of the declaration is component XXX 
supports XXXDefault.

¥ Each operation on the Remote interface is mapped under RMI/IIOP to an equivalent 
operation on the XXXDefault interface. Note that pairs of getXXX and setXXX 
methods in the Remote interface will be mapped to IDL attributes. Because the IDL 
introduced by the Component proposal permits attributes to raise exceptions, it is 
now possible to map such method pairs even though they may raise exceptions.

11.4.2.4 Operations on the Home Interface

¥ The EJB Home operations prefixed  “create” are mapped into Home factory 
declarations in IDL. The full name of the operation, e.g. createXXX, becomes the 
factory operation identifier in the <factory_dcl>. The Java parameters of the 
operation are mapped to their corresponding IDL types and names as defined by 
RMI/IIOP.

¥ An EJB Primary Key class is mapped to a CORBA valuetype using the mapping 
rules in RMI/IIOP. This valuetype will be declared in the IDL for the Home as the 
primary key valuetype for the Component. The key valuetype will inherit from 
Components::PrimaryKeyBase. 

¥ The Home operation named “ÞndByPrimaryKey” is mapped into the 
find_by_key_name operation on the Component Home interface, where 
key_name is the name of the valuetype class that the EJB Primary Key is mapped 
into.

¥ The other Home operations prefixed “Þnd” are mapped into ComponentHome 
finder operations in IDL. The EJB operation name, e.g. “ÞndXXX” becomes the 
identifier of the corresponding finder declaration and the parameter types and 
names are mapped in accordance with RMI/IIOP.

¥ Finder and Creator EJB operations which return an RMI style object reference are 
mapped into Component IDL operations which return a CORBA Component Object 
Reference.

¥ Finder EJB operations which return a Java Enumeration are mapped into CORBA 
Component operations which return an IDL Object Reference to an interface of type 
Enumeration. This interface is declared as:

interface Enumeration {
       boolean has_more_elements();

      ComponentBase next_element();
       };

The Enumeration interface is just the RMI/IIOP image of the Java Enumer-
ation class as defined in the JDK 1.1.6+. Sun has said that they intend to 
replace this with the JDK 1.2 (Java 2.0) Collections in a future version of 
11-348 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
the EJB specification. Subsequent to such a specification being issued, the 
CORBA Components specification will be updated to correspond.
        

¥ In the EJB 1.0 specification, no operations other than creators and finders are 
allowed on Homes. We anticipate that this restriction will be relaxed or removed in 
some future EJB specification. Consequently all other Home operations are mapped 
into <export> declarations in IDL for the Home declaration, as specified by 
RMI/IIOP.

¥ The EJB Remote Interface name becomes the identifier of the 
<component_header>.

¥ The EJB Home Interface name becomes the identifier of the <home_header>. 

11.4.2.5 Other mapping rules

The EJB specification rules out the use of Java Bean style event programming, and 
hence event listeners on EJBs. Programmers may implement a similar facility by 
directly programming callbacks. Tools will not be able to recognize such patterns and 
represent them in component IDL  uses and provides or emits, publishes and 
consumes specifications. A tool may support the designation of operations in the EJB 
Remote interface which are to be mapped to CORBA Component Events. However, 
this specification does not specify how this is to be done.

It is likely that a future version of the EJB Specification will introduce the Java 
Messaging Service and allow EJBs to subscribe to message channels and send and 
receive messages. When this version is made public, the CORBA Component 
specification will be revised to define interoperability with JMS.

An RMI client of an EJB can determine whether the EJB has a primary key (by 
examining the remote interface of the EJB Home with the Java Reflection facility), but 
cannot determine any other characteristics of the EJB implementation (e.g. whether is 
it a stateful or stateless Session Bean). This assertion is also true for CORBA 
Components.

11.4.2.6 CORBA Component Facade Example

In this section we show a simple EJB together with the corresponding Component IDL. 
Note that the EJB deployment metadata is needed to generate the IDL; this is because 
the metadata binds together the Remote interface and the Home interface.

Below are the remote interfaces of the EJB.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-349



11
class CustInfo implements java.io.Serializable {
public int custNo;
public string custName;
public string custAddr;
};

class CustBal implements java.io.Serializable {
public int custNo;
public float acctBal;
};

interface CustomerInquiry extends javax.ejb.EJBObject {
CustInfo getCustInfo(int iCustNo) 

throws java.rmi.RemoteException;
CustBal getCustBal(int iCustNo)

throws java.rmi.RemoteException;
};

interface CustomerInquiryHome extends javax.ejb.EJBHome {
CustomerInquiry create()

throws java.rmi.RemoteException;
};

Below are the contents of the descriptor classes as they might be expressed in an 
equivalent XML document.

<DeploymentDescriptor>
<versionNumber> 1 </versionNumber>
<homeName> customer/CustomerInquiry </homeName>
<enterpriseBeanClassName> CustomerInquiryBean

</enterpriseBeanClassName>
<HomeInterfaceClassName> CustomerInquiryHome

</HomeInterfaceClassName>
<reentrant> true </reentrant>
<remoteInterfaceClassName> CustomerInquiry 

</remoteInterfaceClassName>
</DeploymentDescriptor>

The EJB is a SessionBean, and in this case, its create operation requires no 
parameters. The two operations take a key value and return values to the caller. The 
EJB implementation will use JDBC to retrieve the information to be returned by the 
operations on the CustomerInquiry EJB.

The serializable value classes are translated by RMI/IIOP into CORBA concrete 
valuetypes as follows:
11-350 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
valuetype CustInfo {
public:

long custNo;
::CORBA::wstring custName;
::CORBA::wstring custAddr;
};

valuetype CustBal {
public:

long custNo;
float custBal;
};

The information in the deployment descriptor and the Home and remote interface 
declarations is introspected and used to generate the following IDL.

interface CustomerInquiryDefault {
CustInfo getCustInfo(in long iCustNo);
CustBal getCustBal(in long iCustNo);

};

component CustomerInquiry supports CustomerInquiryDefault {
home {

factory create();
};

};

The IDL can be used to create CORBA Component proxies that allow the use of the 
EJB by CORBA Components.

11.4.3 EJB Facades for CORBA Components

This specification does not address such facades. It is expected that a subsequent 
revision of this specification will define a standard mapping for CORBA Components 
into an EJB Remote and Home interface. This mapping will only be possible for some 
CORBA Components. 

Until that time, an EJB developer wishing to use a CORBA Component may follow the 
guidelines listed inSection 7.5.2 on page 179 for Component Unaware Clients, 
assuming that his EJB implementation is using a Java CORBA proxy for the CORBA 
Component. If the client ORB is able to flow transactions and security information 
from the EJB server environment to the CORBA Component server ORB and the 
transaction and security services on the two servers interoperate, the resulting 
application should be both transactional and secure.

11.5 Enterprise Java Beans deployed to a CORBA Component Server

CORBA container providers will want to host EJBs. This non-normative section 
discusses strategies for hosting EJBs and presents the relationships between the EJB 
containment contracts and the CORBA Component Model containment contracts. The 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-351



11
EJB contracts with the container and other services are defined in the Enterprise 
JavaBeans Specification Version 1.0 and the reader is assumed to be familiar with this 
document.

11.5.1 EJB Hosting Strategies

The two primary strategies are:

¥ creating a container which provides both CORBA Component and EJB containment 
contracts and protocols - this is termed direct hosting;

¥ creating a set of adapter objects which make an EJB look like a CORBA 
Component - this is termed EJB adaptation.

Other strategies which mix these two basic strategies are possible.

11.5.1.1 Direct Hosting

In the direct hosting approach, the container provides both the CORBA Component 
and the EJB APIs. Where the ORB and container are both written in Java, deployment 
is simple and direct and no additional operations for interface adaptation need to be 
generated on the EJBObject and EJBHome. Where the ORB and container are not 
written in Java, the container’s EJB interfaces must have Java proxies, and the EJB’s 
interfaces must have compiled language proxies, since EJB presumes that multiple 
instances of the same EJB may be active with distinct identity and state.

11.5.1.2 EJB Adaptation

The EJB adaptation strategy has the unfortunate consequence of burdening the 
deployer with a number of artifacts to be created. In the normal case of EJB 
deployment, the deployer must create the EJBObject and the EJBHome 
implementations. For EJBs with Container Managed Persistence, one or two additional 
objects will need to be created. 

If the ORB is a Java ORB and the container is also written in Java, an EJBObject and 
an EJBHome implementation can be created which adapt to the corresponding 
CORBA Component container interfaces. These are dispatched from the ORB 
skeletons created from the Java to IIOP generation process.

On the other hand, if the ORB and container are not Java, skeletons and servants must 
be generated in a language acceptable to the ORB and container, and these must 
dispatch via the JNI into the Java VM. In addition, the EJBObject and EJBHome 
implementations must be created in Java. There are a number of complex trade-offs 
about whether activation, deactivation, and other container services are done in Java or 
in the container implementation language. Similar trade-offs exist for persistence 
support of Container Managed Persistence EJBs.
11-352 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
11.5.2 EJBObject

The EJB Specification requires the EJB container to generate an implementation of the 
EJBObject. The purpose of this object is to intercept the method invocation and 
register transactions, make authentication and authorization checks, activate the EJB 
Instance and obtain its persistent state if any, and to apply other qualities of service. In 
a CORBA Component server, the ORB and container cooperate to create an intercept 
of the operation invocation. For example, all of these operations may be done by a 
Servant Locator which serves the purpose of the EJBObject. Thus, the CORBA 
Component server deployment tools for EJB deployment may generate a 
ServantLocator instead of generating an EJBObject. Once the pre_invoke 
operation on the ServantLocator interface has returned, the ORB will dispatch on a 
skeleton which directly invokes the operation on the EJB instance.

11.5.3 Transactional State Management

Stateless Session EJBs have no transactional state and consequently can be used for 
any operation invocation regardless of what transaction ID it may carry. Stateful 
Session Beans may not have transactional state and thus may not be shared by multiple 
clients running under different transaction IDs. Entity Beans have transactional state. 
To insure consistency, Entity Beans must be locked until the transaction has committed 
or rolled back, or the container must manage transactional copies of two Beans with 
the same identity that are involved in different transactions and insure that the proper 
Bean instance receives the method invocation. The ServantLocator  or EJBObject 
interceptor allows the container the opportunity to select the proper Bean instance prior 
to dispatch and to check locks if necessary. Stateful Session Beans and Entity Beans 
are not thread safe; no more than one thread may be executing an operation in such a 
Bean instance at a time. It is the responsibility of the container to insure this. It is the 
responsibility of the Bean implementor not to create threads.

11.5.4 Container Managed Persistence

The following discussion assumes that the CORBA Component server’s persistence 
implementation will be used to provide persistence for Entity Beans with Container 
Managed Persistence (CMP). A CORBA Component server may elect to provide 
persistence for CMP Entity Beans in any other way which is consistent with the 
Enterprise Java Bean specification version 1.0.

A CMP Bean has fields listed in the EntityDescriptor for which persistence is 
provided. This pattern, termed the cached state pattern, assumes that the persistence 
service sets the fields before activating the Bean and pushes the values of the fields to 
the datastore at the time of commit or passivation. It also requires the container to 
manage transactional instances of the Entity Bean.

The CORBA Component Model provides persistence using the opposite pattern, 
termed delegated state, in which the Component instance is given a reference to a 
Storage incarnation from which it obtains its persistent values. The CCM also supports 
the cached state pattern in that the Component instance may copy information from the 
Storage into its instance variables. If it does this, it becomes transactional. If it does 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-353



11
not, the container may manage a single instance of the Component to serve multiple 
transactional entities by providing the reference to the Storage incarnation at the time 
it dispatches the public operation on the Component instance.

A CORBA Component which caches state could use a “push” protocol or a “pull” 
protocol to initialize and return its cached state. However, this proposal only supports 
the “pull” protocol. In this protocol, the Component is responsible for implementing 
the caching of state during or following the invocation of the load operation. 
Likewise, it must return its cached state prior to or during the store operation.

The CMP bean employs the “push” protocol. In this protocol, the persistence helper (a 
Storage in the CCM), is expected to set the state fields and then invoke the ejbLoad 
operation.This means that a special persistence helper will be needed for EJBs. This 
persistence helper will look to the CORBA Component server like a Container 
Managed Persistent Component. During the load operation, the helper will retrieve the 
state from the Storage and set the Entity Bean’s fields. After all the fields have been 
set, the persistence helper will invoke ejbLoad on the Entity Bean instance. The EJB 
persistence helper is constructed during the activation protocol and given a reference to 
the EJB instance. 

11.5.5 Bean Managed Persistence

Deploying an Entity Bean with Bean Managed Persistence will typically require the 
server to support JDBC. The CORBA Component server implementation of JDBC 
will need to be integrated with the transaction coordinator and the security service and 
may require a principal translation to a logon ID and password required to establish the 
JDBC connection. The JDBC 2.0 standard with the XA connection extensions 
provides this function.

11.5.6 EJBHome 

The EJB specification assigns to the container tools the responsibility of generating a 
Home implementation for all EJBs. In the case of the Entity Bean with Bean Managed 
Persistence, the Entity Bean provides some implementation of the Home operations 
and the container generated Home only needs to provide transactions, security, and 
other qualities of service.

A CORBA Component server which wishes to host EJBs must also provide tools for 
the construction of a Home implementation. This Home implementation may make use 
of a CORBA Component Model Home Executor and its corresponding 
StorageHome, or it may use some other form. The correspondence between the EJB 
Home and the CCM Home is discussed inSection 11.4.2.2 on page 347.

11.5.6.1 Container Managed Persistent Entity Beans

A CORBA Component Home may manage CMP Entity Beans. Such a Home must, in 
conjunction with the container, create or find a persistent incarnation for the persistent 
fields of the Bean. It must then instantiate a CMP persistence helper as described 
11-354 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
above and invoke the load operation. The CMP persistence helper will then initialize 
the persistent state of the CMP Bean. This activation pattern is very similar to the 
activation pattern for a Persistent CORBA Entity Component.

11.5.6.2 Bean Managed Persistent Entity Beans

A CORBA Component Home may manage BMP Entity Beans, but its implementation 
must meet the requirements for invoking the ejbCreateXXX and ejbFindXXX 
operations on the Bean. Container tools may generate the CORBA Component Home 
implementations.

11.5.6.3 Other Bean Types

A CORBA Component Home may manage other types of EJBs. The implementation of 
such a Home must be handcrafted from the documentation supplied with the Enterprise 
Java Bean.

11.5.7 Object References and Handles

EJB object references are not persistent; they are local references to a container 
generated object such as an EJBObject or an EJBHome implementation, or they are 
local references to an RMI style proxy. An EJB reference can be made persistent in 
two ways:

¥ Use getHandle on the remote interface to get a serializable local Handle class 
which can be made persistent by storing its serialization. The Handle class provides 
a getObject method which returns an object reference to the object if the object 
still exists and is locatable by whatever means the Handle provides.

¥ Make persistent the JNDI name of the Home and the Primary Key of an Entity 
Bean. Often this will be the state of the Handle, but it is not directly accessible 
from the Handle

When an EJB is presenting a CORBA Component facade and the EJB is an Entity 
Bean, its oid will contain information that allows a Servant to be found and the 
Primary Key to be extracted. Thus, persisting the object reference to the CORBA 
Component facade using object_to_string will work and be roughly equivalent to 
using the Home name and the Primary Key. 

Should the Home of the Entity Bean be renamed, the Handle will be broken, but the 
CORBA Object Reference will continue to work so long as the POA and Servant 
Manager remain the same. If the POA and/or Servant Manager are changed, the 
CORBA Object Reference will be broken, but the Handle will continue to work. 
Administrators must be careful to change the location of Entity Beans so that so that 
neither kind of reference breaks.

Sometimes, it is necessary to move an Entity Bean into a new Home. The EJB 
specification does not define the implementation of the Handle, but to the greatest 
extent possible, Handles should be able to cope with such moves which may change 
the JNDI name of the Home.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-355



11
CORBA Object References support redirection from the server. When the Entity 
Component is moved, the CORBA server is able to return an object reference to its 
new location.

If the SessionBean is destroyed for any reason, both the Handle getObject and the 
string_to_object operation will fail.

A CORBA server might implement a Handle using object_to_string and 
string_to_object.

11.5.8 EJB Context Interfaces

The CORBA Component container for hosting EJBs must provide each EJB instance 
with the proper context interface implementation. This will usually be a Java class 
which delegates to the same container code that would be executed by the 
corresponding CORBA component context interface.  Table 11-1 on page 357 shows 
the correspondences between operations on these interfaces.

11.5.9 EJB Implementation Interfaces

An EJB implementation is required to implement the EntityBean or SessionBean 
interface. A CORBA Component container may use those interfaces just as it would 
the corresponding CORBA Component Interfaces. Table 11-2 on page 358 shows the 
correspondences between operations on these interfaces. Table 11-3 on page 359 shows 
the correspondences between other interfaces that may be implemented by the EJB and 
the CORBA Component interfaces.

11.5.10 Environment Properties

Each EJB has access to a hash table of (name, value) data items. This hash table is 
defined by the DeploymentDescriptor and should not be changed by the EJB. A 
single instance of the hash table is provided to each instance of a deployed EJB. A 
CORBA Component container may implement this by deserializing the Deployment 
Descriptor and extracting the hash table, or it may use some other technique.

11.5.11 JNDI and CosNaming

EJBs that have names are Homes and singletons. Developers should create EJBs which 
rely on fetching the name strings or components from the Environment Properties. 
Where this is done, the EJB developer will hopefully have documented each such 
EnvironmentProperty so that the deployer can set it to an appropriate value. 

 JNDI name strings are also used for resources, e.g. for JDBC database connections. 
These name strings do not have to be mapped to CosNaming names. Again, the EJB 
documentation must describe these cases and EJB deployment will be a manual task.
11-356 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
11.5.12 CORBA Component and EJB 1.0 Containment Contracts

The CORBA Component container was designed to be a superset of the EJB container. 
The relationship between the interfaces provided by both containers is shown in the 
following tables.  Table 11-1 shows the relationship between the EJB context interfaces 
and EJB.

1. The EJB environment properties list is accomplished using the configurator 
mechanism for CORB components. Consequently, the get_environment operation 
is not mapped.

2. The get_reference operation is available by inheritance from 
ComponentContext.

Table 11-1 EJB to CCM Comparison - Context Interfaces

EJB Interface EJB Operation CCM Interface CCM Operations

EJBContext ComponentContext

getEJBHome get_home

getEnvironment Note 1

getCallerIdentity Security.getCallerIdentity

isCallerInRole Security.isCallerInRole

getRollbackOnly Transaction.get_rollback_only

setRollbackOnly Transaction.set_rollback_only

getUserTransaction get_transaction

get_reference

get_home_registration

get_security

get_events

SessionContext TransientContext

getEJBObject get_reference (Note 2)

get_transient_origin

EntityContext PersistentContext

getEJBObject get_reference (Note 2)

getPrimaryKey Storage.get_primary_key

get_component_id

get_persistent_origin

get_storage
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-357



11
Table 11-2 below compares the EJB callback interfaces with their CORBA components 
counterparts. 

3. The set_transient_context operation is supported by inheritance from 
ServiceComponent.

4. OTS does not provide this level of notification and it is not supported by many 
transaction managers 

Table 11-2 EJB to CCM Comparison - Callback Interfaces

EJB Interface EJB Operation CCM Interface CCM Operations

EnterpriseBean EnterpriseComponent

ServiceComponent

set_transient_context

SessionBean SessionComponent

setSessionContext set_transient_context (Note 3)

ejbRemove remove

ejbActivate activate

ejbPassivate passivate

EntityBean EntityComponent

setEntityContext set_persistent_context

unsetEntityContext unset_persistent_context

ejbRemove remove

ejbActivate activate

ejbPassivate passivate

ejbLoad load

ejbStore store

SessionSynchronization Synchronization

afterBegin Note 4

beforeCompletion before_completion

afterCompletion after_completion
11-358 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



11
Table 11-3 below compares the other EJB internal interfaces to the CORBA component 
equivalents.

11.5.13 Deployment Processes and Artifacts

In principle, EJB deployment tools for a CORBA Component Server could first 
examine the EJB jar file and produce CIDL. The CIDL to implementation translator 
could then be invoked to generate the necessary pieces to deploy the EJB. Some parts 
of these generated pieces must be completed by hand (e.g. the Home implementation). 
Since the parts are intended to adapt the CORBA Component container and services to 
the EJB, they are not the same as the usual parts that are generated from the CIDL 
translator. Consequently a command line flag or some other device will be needed to 
cause the CIDL translator to emit parts intended to adapt to EJBs. Some additional 
metadata not found in the CIDL will also be needed (to described the EJB interfaces).

It is simpler to have the EJB deployment tools produce the implementation artifacts 
that the CIDL translator would produce. This avoids an extra step in the development 
process and the need for a command line flag on the CIDL translator.

Table 11-3 EJB to CCM Comparison - Other Internal Interfaces

EJB Interface EJB Operation CCM Interface CCM Operations

UserTransactio
n

Transaction

begin begin

commit commit

rollback rollback

get_rollback_only

setRollbackOnly set_rollback_only

getStatus get_status

setTimeout set_timeout

JTS.Current.suspend suspend

JTS.Current.resume resume

Security

EJBContext.getCallerIdentit
y

get_caller_identity

EJBContext.isCallerInRole is_caller_in_role

Storage

EntityContext.getPrimaryKe
y

get_primary_key
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 11-359



11
11-360 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



C++ Language Mapping 12
12.1 Introduction

This chapter specifies the C++ language mappings for the CIDL storage construct.

12.2 Mapping for incarnations

An incarnation is a manifestation of a storage type in an excecution context. As such, 
the language mapping for a storage type is actually the language mapping for the 
incarnation. Throughout this chapter we will generally refer to a storage type in terms 
of its incarnation, since language mappings necessarily pertain to incarnations. 

The mapping for incarnation distinguishes between dependent and independent 
incarnations, as defined in Section 6.7.9 on page 107. An incarnation maps to the 
following C++ classes:

¥ an abstract state class that provides pure virtual member functions for storage 
member accessors and mutators, but no operations relating to storage object identity 
or life cycle. This abstract state class is used as the type of dependent members.

¥ an independent incarnation class that inherits both the storage type’s abstract state 
class and the Components::Persistence::IndependentBase class that 
provides identity and life cycle management member functions.

The independent incarnation class is an abstract base class that has the same name as 
the CIDL storage definition. CIF implementations are responsible for creating 
incarnations that are instances of concrete classes derived from either the abstract state 
class (for incarnations of dependent members) or the independent incarnation class (for 
independent incarnations). The concrete classes that the CIF instantiates are not 
exposed to applications. Applications obtain instances of incarnations from storage 
homes, and from other incarnations.

Applications manage incarnations via actual C++ pointers. 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-361



12
Because storage object semantics support the sharing indepdent incarnations within 
graphs of other incarnations, the lifetimes of C++ independent incarnations are 
managed via reference counting. Reference counting operations for C++ incarnations 
are directly implemented by those instances. CIF implementor are responsible for 
providing implementations of reference counting on incarnations. 

As for most other types in the C++ mapping, each incarnation type also has an 
associated C++ _var type that automates its reference counting.

For a storage type in the following form:

// CIDL
storage <storage_name> { ... };

The C++ mapping defines the following classes:

// C++
class <storage_name>AbstractState 
: public virtual Components::Persistence::IncarnationBase
{ ... };

class <storage_name> 
: public virtual 
<storage_name>AbstractState, 
Components::Persistence::IndependentBase 
{ ... };

Storage type inheritance corresponds to inheritance of abstract state classes. For 
storage definitions of the following forms:

// CIDL
storage <base_name> { ... };

storage <derived_name> : <base_name> { ... };

The C++ mapping defines the following classes:
12-362 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



12
// C++
class <base_name>AbstractState 
: public virtual Components::Persistence::IncarnationBase 
{ ... };

class <base_name> 
: public virtual 
<base_name>AbstractState, 
Components::Persistence::IndependentBase 
{ ... };

class <derived_name>AbstractState 
: public virtual <base_name>AbstractState
{ ... };

class <derived_name> 
: public virtual 
<derived_name>AbstractState, 
Components::Persistence::IndependentBase 
{ ... };

12.2.1 Incarnation members

For the purposes of this discussion, the terms accessors, modifiers, and referents are 
being used in precisely the same manner as the C++ language mapping specification, 
to refer to functions that provide read-only access, read-write access, and write access 
to state encapsulated by a class, respectively.

12.2.1.1 Atomic members

The C++ mapping for atomic members of incarnations is essentially identical in form 
to the current C++ mapping for public state members of value types. Storage members 
are mapped to public pure virtual accessor, modifier and (in some cases) referent 
functions on the C++ incarnation abstract state class, precisely as they would for public 
members of the same type in value type mappings.

Atomic member acessor and modifier functions on incarnations behave precisely as do 
the corresponding functions on C++ value types. Atomic member reference functions 
behave somewhat differently.

The implementation of the incarnation maintains the notion of an internal logical state, 
which consists of the initial state at the time of incarnation or the most recent refresh 
operation, plus the application of all modifier function invocations made in the current 
transactional context. Internal logical state is maintained an a per-transactional-context 
basis. Modifications made to values obtained through reference functions do not 
modify the internal logical state of the incarnation. The internal logical state must be 
maintained so that it does not “see” changes until they are explicitly changed via 
modifier functions. The following behaviors must be enforced:

¥ Values returned by read-only accessors shall return the current internal logical state.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-363



12
¥ Objects returned by a reference function shall be shared among all threads that 
belong to the same transactional context. Modifications made to those objects will 
be visible only within the transaction context, and they will not be reflected in the 
incarnation’s internal logical state.

¥ The internal logical state may only be modified by modifier functions.

Consistent application of these constraints requires the addition of a read-only accessor 
function for value types. Given the following CIDL:

// CIDL
valuetype <value_name> { ... };
storage <storage_name> {
<value_name> <value_member>;
};

the mapping for the value type member would be as follows:

// C++

class <value_type_name> : public virtual ValueBase { ... };

class <storage_name>AbstractState {
 public:

...
virtual const <value_name>* 
<value_member> () const = 0; // 1
virtual <value_name>* 
<value_member>Shared () const = 0; // 2
virtual void 
<value_member> (const <value_name>*) = 0; // 3
};

The const accessor on line 1 returns the value of the internal logical state of the 
incarnation. The non-const referent on line 2 returns the transient value shared by all 
threads in the same transactional context. The modifier in line 3 modifies the internal 
logical state.

12.2.1.2 Independent storage members

Independent storage members map to an pair of accessor and mutator functions whose 
signatures use the independent incarnation type (i.e., the type that inherits from 
IndependentBase). Given a storage definition of the following form:

// CIDL
storage <storage_name> {
strong <storage_name> <member_name>;
};

the mapping for the independent incarnation member would be as follows:
12-364 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



12
// C++
class <storage_name>;
class <storage_name>AbstractState : public virtual
Components::Persistence::IncarnationBase{ 
  public:
...
virtual <storage_name>* 
<member_name> () const = 0;

virtual void 
<member_name> (<storage_name>*) = 0;
};

class <storage_name> : public virtual 
<storage_name>AbstractState, 
Components::Persistence::IndependentBase 
{ ... };

The internal logical state of the incarnation that defines an independent member holds 
a reference for the member, which is a distinct storage object. The internal logical 
value of an independent member is, in essence, the PID of the storage object assigned 
by the member’s modifier.

The accessor function does not increment the reference count of the returned 
incarnation. This implies that the caller of the accessor does not adopt the return value. 
The modifier function increments the reference count of its argument, then decrements 
the reference count of the member incarnation it is replacing before returning.

12.2.1.3 Storage sequence members

As defined in Section 6.8.3 on page 118, independent members may specify a type 
name that denotes a sequence of storage types. As described there, the independent 
characteristic of the member declaration and the nature of the reference (strong or 
weak) apply to the elements of the sequence, not the sequence itself. In the C++ 
language mapping, incarnation members that are sequences of storage members behave 
much like dependent members, as follows:

¥ The incarnation that owns the sequence member maintains the sequence’s state ( 
i.e., the set of references to independent incarnations that constitutes the sequence) 
as part of its internal logical state. 

¥ The owning incarnation creates and manages the actual instance of the sequence 
class that it exposes through the accessor to the sequence member. This C++ object 
must be the same object throughout the life time of the incarnation.

¥ The modifier for the sequence member copies the state of its argument into the 
sequence maintained by the owning incarnation.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-365



12
¥ The sequence class that is created an maintained by the incarnation for storage 
sequence members has a programming interface that is a subset of the normal 
sequence mapping. The class defined by this mappings is an abstract base class. The 
CIF provider is free to define and construct any concrete class that provides the 
required semantics

Given a CIDL definition of the following form:

// CIDL
storage <storage_name> {
strong sequence < <storage_name> > <member_name>;
};

the mapping for the storage sequence member would be as follows:
12-366 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



12
// C++
class <storage_name>;

class <storage_name>Sequence {
public:
void length(ULong) = 0;
ULong length() const = 0;
<storage_name>* _element_at(ULong index) const;
void _set_element_at(<storage_name>*, ULong index);

protected:
<storage_name>Sequence();
virtual ~<storage_name>Sequence();

private:
<storage_name>Sequence(const<storage_name>Sequence&);
void operator=(const <storage_name>Sequence&);
};

class <storage_name>AbstractState {
public:
...
virtual <storage_name>Sequence* 
<member_name> () const = 0;
virtual void 
<member_name> (<storage_name>Sequence*) = 0;
virtual void
<member_name> (ULong length, <storage_name>**) = 0;
...
};

class <storage_name> : public virtual 
<storage_name>AbstractState, 
Components::Persistence::IncarnationBase 
{ ... };

12.2.1.4 Dependent members

Dependent members map to a pair of accessor and modifier functions whose signatures 
contain the abstract state classes for the specified storage type. Given a storage 
definition of the following form:

storage <storage_name> {
<storage_name> <member_name>;
};

the mapping for the dependent incarnation member would be as follows:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-367



12
// C++

class <storage_name>AbstractState {
 public:
...
virtual <storage_name>AbstractState* <member_name> 
() const = 0;
virtual void <member_name> (
<storage_name>AbstractState*) = 0;
};

The internal logical state of the incarnation that defines the dependent member 
maintains the dependent member by value, so that the values of the members of the 
dependent member are incorporated into its internal logical state. The modifier for a 
dependent member performs a deep copy of its argument. Note that an independent 
incarnation can be passed as the argument to a dependent member modifier. The value 
of the independent member is deep-copied into the value of the dependent member.

The accessor of a dependent member is never nil. Dependent members of newly-
created incarnations have intial values as described in Section 6.8.3 on page 118. The 
pointer returned by a a dependent member’s accessor shall be the same pointer for the 
life time of incarnation that owns the dependent member.

For example, assume the follow storage definition:

// CIDL
storage A {

string name;
long num;

};
storage B {

A depA;
strong A indepA;

};

// C++
// assume existence of BStorageHome
B* incarnB = BStorageHome->create();

incarnB->depA()->num(100); 
// this is the preferred usage;
// the value of num is incorporated into 
// the internal logical tate of incarnB

A_AbstractState* depIncarnA = incarnB->depA();
depIncarnA->name(“jeff”); 
// less obvious usage;
// the value “jeff” is incorporated into 
// the internal logical state of incarnB 
// in this case, too; all of the members 
// of depIncarnA are part of incarnB’s 
// internal logical state

A* incarnA = AStorageHome->create();
12-368 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



12
incarnA->name(“geoff”); 
incarnA->num(-100);
incarnB->indepA(incarnA);
// incarnB->indepA holds a reference 
// to incarnA 

incarnB->depA(incarnA);
// the values from incarnA are copied 
// into the members of depA in incarnB’s 
// internal logical state

12.2.2 Constructors, Assignment Operators, and Destructors

A C++ incarnation class defines a protected default constructor and a protected virtual 
destructor. The default constructor is protected to allow only derived class instances to 
invoke it, while the destructor is protected to prevent applications from invoking delete 
on pointers to incarnation instances instead of using reference counting operations. The 
destructor is virtual to provide for proper destruction of derived incarnation class 
instances when their reference counts drop to zero.

Portable applications shall not invoke an incarnation class copy constructor or default 
assignment operator. Due to the required reference counting, the default assignment 
operator for a storage type class shall be private and preferably unimplemented to 
completely disallow assignment of storage type instances.

12.2.3 _downcast operation

A static _downcast function is provided by each incarnation class to provide a 
portable way for applications to cast down the C++ inheritance hierarchy. If a null 
pointer is passed to _downcast, it returns a null pointer. Otherwise, if the 
incarnation pointed to by the argument is an instance of the incarnation class being 
downcast to, a pointer to the downcast-to class type is returned. If, however, the 
incarnation pointed to by the argument is not an instance of the incarnation class being 
downcast to, a null pointer is returned.

12.2.4 _type_id operation

A static _type_id operation is provided by each independent incarnation class. This 
operation returns the CIDL type identifier of the storage type definition corresponding 
to the incarnation class. CIDL type identifiers are described in Section 4.3.1 on page 
27.

12.2.5 Example

For example, consider the following CIDL storage definition:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-369



12
// CIDL
storage example {
short snum;
long lnum;
string str;
float fnum;
example dep;
strong example indep;
};

The C++ mapping for incarnations of this storage type is:
12-370 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



12
// C++
class exampleAbstractState 
: public virtual Components::Persistence::IncarnationBase {
  public:

virtual Short snum() const = 0;
virtual void snum(Short) = 0;

virtual Long lnum() const = 0;
virtual void lnum(Long) = 0;

virtual const char* str() const = 0;
virtual void str(const char*) = 0;
virtual void str(const String_var&) = 0;

virtual Float fnum() const = 0;
virtual void fnum(Float) = 0;

virtual exampleAbstractState* dep() const = 0;
virtual void dep(exampleAbstractState*) = 0;

virtual example* indep() const = 0;
virtual void indep(example*) = 0;

static exampleAbstractState*_downcast(
IncarnationBase*);

protected:
exampleAbstractState();
virtual ~exampleAbstractState();
private:
// private and unimplemented
void operator=(const exampleAbstractState&);
};

// C++
class example 
: public virtual exampleAbstractState,
Components::Persistence::IndependentBase {
  public:
static example*_downcast(IncarnationBase*);
static CORBA::RepositoryId _type_id();

protected:
example();
virtual ~example();
private:
// private and unimplemented
void operator=(const example&);
};
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-371



12
12.2.6 IncarnationBase

The IncarnationBase class serves as an abstract base class for all incarnations, 
both dependent and independent. The primary purpose of the IncarnationBase 
class is to support downcasting.

// C++
namespace Components {
namespace Persistence{

class IncarnationBase {
  public:
static IncarnationBase* _downcast(IncarnationBase*);

  protected:
IncarnationBase();
IncarnationBase(const IncarnationBase&);
virtual ~IncarnationBase();

  private:
void operator=(const IncarnationBase&);
};
};
};

12.2.7 IndependentBase and reference counting

The IndependentBase class serves as an abstract base class for all C++ indepdent 
incarnation classes. IndependentBase provides several pure virtual reference 
counting functions inherited by all independent incarnation classes:
12-372 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



12
// C++
namespace Components {
namespace Persistence {

class IndependentBase {
  public:
virtual PersistentId _get_pid()=0;
virtual PersistentStoreBase*
_get_persistent_store()=0;
virtual StorageHomeBase* _get_storage_home()=0;

virtual void _flush()=0;
virtual void _refresh()=0;

virtual _add_ref() = 0;
virtual _remove_ref() = 0;

virtual ULong _refcount_value() = 0;

  protected:
IndependentBase();
IndependentBase(const IndependentBase&);
virtual ~IndependentBase();

  private:
void operator=(const IndependentBase&);
};
};

_get_pid
This function returns the persistent ID of the storage object which the incarnation 
represents.

_get_persistent_store
This function returns a pointer to the persistent store object that created and manages 
the incarnation.

_get_storage_home
This function returns a pointer to the storage home object that created and manages the 
incarnation.

_flush
This function synchronizes the state of the incarnation with the underlying store.

_refresh 

This function refreshes the state of the incarnation with that of the underlying store.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 12-373



12
_add_ref
This function increments the reference count of an incarnation.

_remove_ref
This function decrements the reference count of an incarnation and deletes the 
incarnation when the reference count drops to zero. Note that the use of delete to 
destroy instances requires that all incarnations be allocated using new.

_refcount_value
This function returns the value of the reference count for the incarnation on which it is 
invoked.

The names of these functions begin with underscore to keep them from clashing with 
user-defined operations in derived incarnation classes.

IndependentBase also provides a protected default constructor, a protected copy 
constructor, and a protected virtual destructor. The copy constructor is protected to 
disallow copy construction of derived incarnations except from within derived class 
functions, and the destructor is protected to prevent direct deletion of instances of 
classes derived from IndependentBase.

With respect to reference counting, IndependentBase is intended to introduce 
only the reference counting interface. Depending upon the inheritance hierarchy of a 
incarnation class, its instances may require different reference counting mechanisms. 
12-374 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Java Language Mapping 13
13.1 Introduction

This section specifies the Java language mappings of the CIDL storage construct.

13.2 Mapping for incarnations

An incarnation is a manifestation of a storage type in an excecution context. As such, 
the language mapping for a storage type is actually the language mapping for the 
incarnation. Throughout this chapter we will generally refer to a storage type in terms 
of its incarnation, since language mappings necessarily pertain to incarnations. 

The mapping for incarnation distinguishes between dependent and independent 
incarnations, as defined in Section 6.7.10.6 on page 110 and. An incarnation maps to 
the following Java interfaces:

¥ an abstract state interface that provides accessor and mutator methods for the 
members of the storage type, but no methods relating to storage object identity or 
life cycle. This abstract state class is used as the type of dependent members. 
Abstract state interfaces extend the 
org.omg.Components.Persistence.IncarnationBase interface.

¥ an independent incarnation interface that inherits both the storage type’s abstract 
state interface and the 
org.omg.Components.Persistence.IndependentBase interface that 
provides identity and life cycle management methods.

The independent incarnation interface has the same name as the CIDL storage 
definition. CIF implementations are responsible for creating incarnations that are 
instances of concrete classes that implement either the abstract state interface (for 
incarnations of dependent members) or the independent incarnation interface (for 
independent incarnations). The concrete classes that the CIF instantiates are not 
exposed to applications. Applications obtain instances of incarnations from storage 
homes, and from other incarnations.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 13-375



13
For a storage type in the following form:

// CIDL
storage <storage_name> { ... };

The Java mapping defines the following classes:

// Java
interface <storage_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{ ... }

interface <storage_name> extends
<storage_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{ ... }

public class <storage_name>Helper {
public static String _type_id();
}

Storage type inheritance corresponds to inheritance of abstract state interfaces. For 
storage definitions of the following forms:

// CIDL
storage <base_name> { ... };

storage <derived_name> : <base_name> { ... };

The Java mapping defines the following interfaces:
13-376 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



13
// java
public interface <base_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{ ... };

public interface <base_name> extends
<storage_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{ ... };

public class <base_name>Helper {
public static String _type_id();
}

public interface <derived_name>_AbstractState extends 
<base_name>AbstractState, 
org.omg.Components.Persistence.IncarnationBase
{ ... };

public interface <derived_name> extends
<derived_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{ ... };

public class <derived_name>Helper {
public static String _type_id();
}

13.3 Incarnation members

In general, members map to accessor and mutor methods on the abstract state interface 
of the storage type. There are minor differences in how certain members map, 
depending on whether the members are independent or dependent members, or atomic 
members, or whether the type of the member maps to a Java primitive or reference 
type.

13.3.1 Atomic members

Atomic members whose IDL/CIDL types map to primitive (i.e., non-reference) Java 
types map to an accessor method and a mutator method. Both methods have the same 
name as the member in the storage definition. The accessor returns the mapped 
member type, and the mutator returns void, taking a single parameter of the mapped 
member type.

13.3.1.1 Primitive types

Given a storage type with an atomic member that maps to a Java primitive type, in the 
form:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 13-377



13
storage <storage_name> {
<member_type> <member_name>;
};

The resulting Java abstract state interface would have the following form:

// Java
public interface <storage_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{
public <mapped_member_type> <member_name> ();
public void <member_name> ( <mapped_member_type> );
}

public interface <storage_name> extends
<storage_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{}

public class <storage_name>Helper {
public static String _type_id();
}

13.3.1.2 Reference types

The implementation of the incarnation maintains the notion of an internal logical state, 
which consists of the initial state at the time of incarnation or the most recent refresh 
operation, plus the application of all modifier function invocations made in the current 
transactional context. Internal logical state is maintained an a per-transactional-context 
basis. Maintaining a consistent internal logical state is problematic when the type of 
the member is a reference type. Performing a deep copy of the value on every access 
may be extremely inefficient. The mapping for atomic members of reference types 
represents a compromise between programming simplicity and efficiency.

Atomic members whose types map to reference Java types map to three methods, a 
copy accessor method, a reference accessor method, and a mutator method. The copy 
accessor method returns a deep copy of the internal logical state of the member. The 
reference accessor returns a reference to a transient copy of the member’s state. The 
mutator method sets the internal logical state of the incarnation.

Modifications made to instances of reference types obtained from reference accessors 
do not modify the internal logical state of the incarnation. The internal logical state 
must be maintained so that it does not “see” changes until they are explicitly changed 
via mutator functions. The following behaviors must be enforced:

¥ Objects returned by copy accessors shall return a deep copy of the current internal 
logical state of the member.
13-378 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



13
¥ Objects returned by reference accessors shall be shared among all threads that 
belong to the same transactional context. Modifications made to those objects will 
be visible only within the transaction context, and they will not be reflected in the 
incarnation’s internal logical state.

¥ The internal logical state may only be modified by mutators.

Given a storage type with an atomic member that maps to a Java reference type, in the 
form:

storage <storage_name> {
<member_type> <member_name>;
};

The resulting Java abstract state interface would have the following form:

// Java
public interface <storage_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{
// copy accessor
public <mapped_member_type> <member_name> ();

// reference accessor name begins with underscore
public <mapped_member_type> _<member_name> ();

// mutator
public void <member_name> ( <mapped_member_type> );
}

public interface <storage_name> extends
<storage_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{}

public class <storage_name>Helper {
public static String _type_id();
}

13.3.2 Independent storage members

Independent storage members map to an pair of accessor and mutator methods whose 
signatures use the independent incarnation type (i.e., the type that inherits from 
IndependentBase). Given a storage definition of the following form:

// CIDL
storage <storage_name> {
strong <storage_name> <member_name>;
};

The resulting Java abstract state interface would have the following form:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 13-379



13
// Java
public interface <storage_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{
public <storage_name> <member_name> ();
public void <member_name> ( <storage_name> );
}

public interface <storage_name> extends
<storage_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{}

public class <storage_name>Helper {
public static String _type_id();
}

The internal logical state of the incarnation that defines an independent member holds 
a reference for the member, which is a distinct storage object. The internal logical 
value of an independent member is, in essence, the PID of the storage object assigned 
by the member’s mutator.

13.3.3 Storage sequence members

As defined in Section 6.7.5 on page 104, independent members may specify a type 
name that denotes a sequence of storage types. As described there, the independent 
characteristic of the member declaration and the nature of the reference (strong or 
weak) apply to the elements of the sequence, not the sequence itself. In theJava 
mapping, incarnation members that are sequences of storage members behave much 
like dependent members, as follows:

¥ The incarnation that owns the sequence member maintains the sequence’s state ( 
i.e., the set of references to independent incarnations that constitutes the sequence) 
as part of its internal logical state. 

¥ Storage sequences in the Java mapping are represented by interfaces that provide 
the same basic semantics as an array.

¥ The owning incarnation creates and manages the actual instance of the sequence 
class that it exposes through the accessor to the sequence member. This object must 
be the same object throughout the life time of the incarnation.

¥ The element mutator on the sequence interface copies the state of its argument into 
the sequence maintained by the owning incarnation, i.e., the internal logical state of 
the incarnation.

¥ The CIF provider is free to define and construct any concrete class that supports the 
appropriate sequence interface and provides the required semantics
13-380 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



13
13.3.3.1 Sequence interface

A sequence of a storage type is mapped to a Java collection interface whose name 
formed by the name of the storage class with the string “Sequence” appended. This 
interface is defined in the same package as the abstract state interface of the storage 
type contained in the sequence. This interface provides :

¥ an accessor to get an individual element

¥ a mutator to modify an individual element

¥ an accessor to return the current length

The semantics of the collection class is designed to be analogous to the semantics of 
Java arrays. An implementation of the class shall implement the semantics specified 
below in any manner it chooses:

¥ The setElement() method sets the specified element. Standard Java bounds 
checking is performed and standard Java runtime exceptions thrown as appropriate 
if the position is out of bounds.

¥ The elementAt() method returns the specified element. Standard Java bounds 
checking is performed and standard Java runtime exceptions thrown as appropriate 
if the position is out of bounds

It is the responsibility of the CIF implementation to persist sequence entries that have 
been touched by the application.

A sequence of Storagetype of the following form:

// CIDL

storage <element_type> {
...
};

storage <storage_name> {
strong sequence< <element_type> > <member_name>;
};

is mapped to:
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 13-381



13
// Java
interface <element_type>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{ ... }

interface <element_type> extends
<storage_name>AbstractState, 
org.omg.Components.Persistence.IndependentBase 
{ ... }

public class <element_type>Helper {
public static String _type_id();
}

public interface <element_type>Sequence {
public int length();
public <element_type> elementAt(int pos);
public void setElementAt(int pos,<element_type> element);
}

public interface <storage_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{
public <element_name>Sequence <member_name> ();
public void <member_name> (<element_name>Sequence seq);
public void <member_name> (<element_name>[] array);
}

The member mutator that takes the sequence parameter copies the contents of the 
parameter into the sequence maintained by the incarnation. The mutator that takes the 
array parameter copies the contents of the array into the sequence maintained by the 
incarnation.

13.3.4 Dependent members

Dependent members map to a pair of accessor and modifier functions whose signatures 
contain the abstract state classes for the specified storage type. Given a storage 
definition of the following form:

// CIDL
storage <storage_name> {
<storage_name> <member_name>;
};

The resulting Java abstract state interface with a dependent member would have the 
following form:
13-382 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



13
// Java
public interface <storage_name>AbstractState extends
org.omg.Components.Persistence.IncarnationBase
{
public <storage_name>AbstractState <member_name> ();
public void <member_name>(<storage_name>AbstractState s);
}

The internal logical state of the incarnation that defines the dependent member 
maintains the dependent member by value, so that the values of the members of the 
dependent member are incorporated into its internal logical state. The mutator for a 
dependent member performs a deep copy of its argument. Note that an independent 
incarnation can be passed as the argument to a dependent member mutator. The value 
of the independent member is deep-copied into the value of the dependent member.

The accessor of a dependent member is never nil. Dependent members of newly-
created incarnations have intial values as described in Section 6.8.3 on page 118. The 
pointer returned by a a dependent member’s accessor shall be the same pointer for the 
life time of incarnation that owns the dependent member.

For example, assume the follow storage definition:

// CIDL
storage A {

string name;
long num;

};
storage B {

A depA;
strong A indepA;

};

// Java
// assume existence of BStorageHome
B incarnB = BStorageHome.create();

incarnB,depA().num(100); 
// this is the preferred usage;
// the value of num is incorporated into 
// the internal logical tate of incarnB

AAbstractState depIncarnA = incarnB.depA();
depIncarnA.name(“jeff”); 
// less obvious usage;
// the value “jeff” is incorporated into 
// the internal logical state of incarnB 
// in this case, too; all of the members 
// of depIncarnA are part of incarnB’s 
// internal logical state

A incarnA = AStorageHome.create();
incarnA.name(“geoff”); 
incarnA.num(-100);
incarnB.indepA(incarnA);
// incarnB.indepA holds a reference 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 13-383



13
// to incarnA 

incarnB.depA(incarnA);
// the values from incarnA are copied 
// into the members of depA in incarnB’s 
// internal logical state

13.3.5 IncarnationBase

The IncarnationBase interface serves as an base interface for all incarnations, 
both dependent and independent. IncarnationBase is empty.

// Java
package org.omg.Components.Persistence;

public interface IncarnationBase { }

13.3.6 IndependentBase

The IndependentBase class serves as an base interface for all indepdent 
incarnation classes.

// Java
package org.omg.Components.Persistence; 

public interface IndependentBase {
public PersistentId _get_pid();
public PersistentStoreBase _get_persistent_store();
public StorageHomeBase _get_storage_home();

public void _flush();
public void _refresh();
};
};

_get_pid
This method returns the persistent ID of the storage object which the incarnation 
represents.

_get_persistent_store
This function returns a reference to the persistent store object that created and manages 
the incarnation.

_get_storage_home
This function returns a reference to the storage home object that created and manages 
the incarnation.
13-384 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



13
_flush
This function synchronizes the state of the incarnation with the underlying store.

_refresh 

This function refreshes the state of the incarnation with that of the underlying store.
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 13-385



13
13-386 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Changes to CORBA and Services 14
This chapter will provide instructions for the OMG editors as to where the new 
material which supports CORBA components will be placed in the existing OMG 
specifications. 

14.1 Changes to the CORBA Core

Known contents includes: 

¥ New resolve_initial_references ObjectID

¥ changes to CORBA::Object, 

¥ new abstract meta-class CORBA::Component 

¥ changes to the Interface Repository

¥ IDL changes

¥ local interfaces

14.1.1 Changes to the ORB interface

This specification adds the Components::HomeFinder to the list of initial 
references supported by the ORB. This reference is obtained using a new ObjectID, 
“ComponentHomeFinder” with CORBA::ORB::resolve_initial_references. 
The client uses this operation to obtain a reference to the HomeFinder interface. This 
requires the following enhancement to the ORB interface definition:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 14-387



14
module CORBA {

interface ORB {
        Object resolve_initial_references (in ObjectID identifier)
                 raises (InvalidName);
         };
};

The string, “ComponentHomeFinder” is added to the list of valid ObjectID values.

The HomeFinder interface allows the client to obtain the home that creates 
components of a specific type. 

14.1.2 Changes to the Object interface

The CORBA component specification extends the CORBA::Object pseudo interface 
with a single operation:

module CORBA {
interface Object { // PIDL

...
Object get_component ( );

};
};

If the target object reference is itself a component reference (i.e., it denotes the 
component itself), the get_component operation returns the same reference (or 
another equivalent reference). If the target object reference is a facet reference the 
get_component operation returns an object reference for the component. If the target 
reference is neither a component reference nor a provided reference, get_component 
returns a nil reference.

Implementation of get_component

As with other operations on CORBA::Object, get_component is implemented as a 
request to the target object. Following the pattern of other CORBA::Object 
operations (i.e., _interface, _is_a, and _non_existent; see section 15.4.1.2 of the 
CORBA 2.3 specification), the operation name in GIOP request corresponding to 
get_component shall be “_component”.

Programming skeletons generated by the Component Implementation Framework for 
components and facets shall provide standard implementations for get_component 
(i.e., the _component request).

14.1.3 Local interface types

This specification provides a new CORBA meta-type that is used to define 
programming interfaces for locality-constrained objects.  The syntax is similar to that 
of CORBA object interfaces, but the resulting type cannot be marshaled or remotely 
invoked.  The local meta-type is intended to obviate the need for PIDL, to obviate the 
14-388 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



14
need for defining special “locality-constrained” cases of CORBA interfaces or abstract 
value types, and to provide users with a language-independent mechanism for 
declaring programming interfaces on local objects that leverages the CORBA typing 
system.

The grammar for specifying local interfaces is defined by the following BNF:

<local> ::= <local_header> “{“ <local_member>* “}”

<local_header> ::= “local” [ <local_inheritance_spec> ]

<local_inheritance_spec> ::= “:”  <local_name> 
{ “,” <local_name> } *

<local_member> ::= <local_op_dcl>
| <attr_dcl>
| <type_dcl>
| <const_dcl>
| <except_dcl>

<local_op_dcl> ::= <op_type_spec> <identifier> <parameter_dcls> 
[ <raises_expr> ]

<local_name> ::= <scoped_name>

<local_base_type> ::= “localBase”

The semantics associated with local types are as follows:

¥ Local types cannot be marshaled. Consequently, local types (including sequences 
and arrays of local types) may not appear as parameters (or as components of any 
types that appear as parameters) of operations on CORBA Object interfaces. Local 
types (including sequences and arrays of local types) may not be members of 
structs, unions, or valuetypes.  Local types may not be inserted into values of type  
any.

¥ Local types may appear as parameters or return values of operations on local types, 
or as attributes on local types.

¥ Parameters and return values of operations on local types may be any CORBA type. 
Attributes on local types may be any CORBA type.

¥ Language mappings for local types shall consist of the minimal language construct 
that satisfies the requirements of local types.  In most object-oriented languages, it 
is expected that local types will be mapped to the language’s fundamental object 
type, if one exists. The semantics of invocations on local types are the semantics of 
function or method calls in the underlying programming languages.

¥ When possible, language mappings for local types shall be syntactically similar to 
the mappings for interfaces.  Inasmuch as possible, invocations on local types shall 
be consistent syntactically with invocations on CORBA objects with similar 
signatures.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 14-389



14
¥ Language mappings shall specify the form of skeletons for local types to be 
generated by ORB products, allowing ORB users to provide implementations of 
local types.  There is no specified generalized framework for managing the life 
cycles of user-defined local types (e.g., no standard factory mechanism).  The life 
cycles of user-defined local types are determined by the life cycle constructs of 
underlying programming languages for base object types (e.g., 
constructors/destructors, garbage collection. etc.)

¥ Instances of local types have no inherent identities beyond their identities as 
programming objects.  Specifically, there is no support for the concept of a 
reference to a local type, other than the basic programming language construct for 
referring to objects.

¥ Instances of local types defined as part of OMG specifications to be supplied by 
ORB products or object service products shall be exposed through the 
ORB::resolve_local operation or through some other local object obtained from 
resolve_local.

¥ The localBase keyword denotes the generalization of local types. When 
localBase is the formal type of a parameter in an operation, an instance of any 
specific local type may be passed as the actual parameter.

¥ Local types cannot be mapped to asynchronous invocation forms as specified by the 
CORBA Messaging Service specification.

14.1.4 resolve_local

This specification defines a new operation on the ORB pseudo-object that allows 
application programmers to obtain services expressed as local types. It is similar to 
ORB::resolve_initial_references, except that the operation return value is type 
localBase. The PIDL definition is as follows:

module CORBA {
// PIDL
interface ORB {
localBase resolve_local(in string name) 
raises (InvalidName);
};
};

The string parameter to the resolve_local operation denotes a specific local object 
that is managed and supplied by the ORB or by services cooperating with the ORB.  
Specifications that define local interfaces that are not implemented by applications 
shall specify unique strings that will denote well-known local objects that can be 
obtained from resolve_local.

14.1.5 Import

This specification extends IDL to provide a mechanism for importing external name 
scopes into IDL specifications.
14-390 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



14
The grammar for the import statement is described by the following BNF:

<specification> ::= <import>* <definition>+

<import> ::= “import” <imported_scope> “;”

<imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name 
denoting an IDL name scope, or a string containing the interface repository ID of an 
IDL name scope, i.e., a definition object in the repository whose interface derives from 
CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in 
terms of “file scopes”. This specification defines the concepts of a specification as a 
unit of IDL expression. In the abstract, a specification consists of a finite sequence of 
ISO Latin-1 characters that form a legal IDL sentence. The physical representation of 
the specification is of no consequence to the definition of IDL, though it is generally 
associated with a file in practice.

Any scoped name that begins with the scope token ( “::” ) is resolved relative to the 
global scope of the specification in which it is defined. In isolation, the scope token 
represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context a well-
defined set of IDL specifications whose union constitutes the space from within which 
name scopes are imported.  By “a well-defined set of IDL specifications”, we mean 
any identifiable representation of IDL specifications, such as an interface repository.  
The specific representation from which name scopes are imported is not specified, nor 
is the means by which importing is implemented, nor is the means by which a 
particular set of IDL specifications (such as an interface repository) is associated with 
the context in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

¥ The contents of the specified name scope are visible in the context of the importing 
specification. Names that occur in IDL declarations within the importing 
specification may be resolved to definitions in imported scopes. 

¥ Imported IDL name scopes exist in the same space as names defined in subsequent  
declarations in the importing specification. 

¥ IDL module definitions may re-open modules defined in imported name scopes. 

¥ Importing an inner name scope (i.e., a name scope nested within one or more 
enclosing name scopes) does not implicitly import the contents of any of the 
enclosing name scopes.

¥ When an name scope is imported, the names of the enclosing scopes in the fully-
qualified pathname of the enclosing scope are exposed within the context of the 
importing specification, but their contents are not imported.  An importing 
specification may not re-define or re-open a name scope which has been exposed 
(but not imported) by an import statement.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 14-391



14
¥ Importing a name scope recursively imports all name scopes nested within it.

¥ For the purposes of this specification, name scopes that can be imported (i.e., 
specified in an import statement) include the following: modules, interfaces, 
valuetypes, structures, unions, and exceptions.

¥ Redundant imports (e.g., importing an inner scope and one of its enclosing scopes 
in the same specification) are disregarded.  The union of all imported scopes is 
visible to the importing program.

¥ This specification does not define a particular form for generated stubs and 
skeletons in any given programming language.  In particular, it does not imply any 
normative relationship between units specification and units of generation and/or 
compilation for any language mapping.

14.1.6 Repository identity declarations 

This specification defines extensions to IDL to allow repository identifier values to be 
declared in a portable, standard manner. This mechanism is intended to obviate the 
#pragma mechanism currently specified (speaking in approximate terms) in section 
10.6, “RepositoryIds”, of the CORBA 2.3 specification. Should this specification be 
adopted, the #pragma mechanisms shall be deprecated.

The following grammatical productions shall be added to the IDL grammar:

<type_id_dcl> ::= “typeId” <scoped_name> <string_literal>

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

The syntax of a repository identity declaration is as follows:

<type_id_dcl> ::= “typeId” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

¥ the keyword typeId

¥ a <scoped_name> that denotes the named IDL construct to which the repository 
identifier is assigned

¥ a string literal that must contain a valid repository identifier value

The <scoped_name> is resolved according to normal IDL name resolution rules, based 
on the scope in which the declaration occurs. It must denote a previously-declared 
name of one of the following IDL constructs:

¥ module

¥ interface

¥ component

¥ home

¥ facet

¥ receptacle

¥ event sink
14-392 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



14
¥ event source

¥ finder

¥ factory

¥ value type

¥ value type member

¥ value box

¥ constant

¥ typedef

¥ exception

¥ attribute

¥ operation

¥ enum

¥ local

The value of the string literal is assigned as the repository identity of the specified type 
definition. This value will be returned as the RepositoryId by the interface repository 
definition object corresponding to the specified type definition. Language mappings 
constructs, such as Java helper classes, that return repository identifiers shall return the 
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition. 
An attempt to re-define the repository identity for a type definition is illegal, regardless 
of the value of the re-definition.

If no explicit repository identity declaration exists for a type definition, the repository 
identifier for the type definition shall be an IDL format repository identifier, as defined 
in section 10.6.1 of the CORBA 2.3 specification.

14.1.7 Repository identifier prefix declaration

The syntax of a repository identifier prefix declaration is as follows:

<type_prefix_dcl> ::= “typePrefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

¥ the keyword typeId

¥ a <scoped_name> that denotes an IDL name scope to which the prefix applies

¥ a string literal that must contains the string to be pre-fixed to repository identifiers 
in the specified name scope

The <scoped_name> is resolved according to normal IDL name resolution rules, based 
on the scope in which the declaration occurs. It must denote a previously-declared 
name of one of the following IDL constructs:

¥ module

¥ interface (including abstract interface)

¥ value type (including abstract, custom, and box value types)
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 14-393



14
¥ local interface

¥ specification scope ( :: )

The specified string is pre-fixed to the body of all repository identifiers in the specified 
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of a repository identifier”, we mean that the specified string 
is inserted into the default IDL format repository identifier immediately after the 
format name and colon ( “IDL:” ) at the beginning of the identifier. A forward slash ( 
‘/’ ) character is inserted between the end of the specified string and the remaining 
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly 
assigned by a typeId declaration. The prefix is applied to all such repository identifiers 
in the specified name scope, including the identifier of the construct that constitutes the 
name scope.

14.1.8 IDL Grammar modifications

In addition the extensions to IDL grammar specified in the previous sections, the 
following productions shall be modified to define the scopes in which local, typeId, 
and typePrefix may occur:

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <local> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

<export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
|<op_dcl> “ ;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

14.1.9 Keywords

This specification defines the following new keywords in IDL:
14-394 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



14
import local localBase typeId typePrefix

14.1.10 Changes to the Attribute declaration syntax

The CORBA Component specification modifies the existing definition of attributes to 
add the ability to raise independent exceptions on the attribute’s accessor and mutator 
operations. The modified syntax for attributes is as follows:

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> [ <raises_expr> ]
| <simple_declarator> { “,” <simple_declarator> }*

<attr_dcl> ::= [ “readonly” ] “attribute” <param_type_spec> 
<simple_declarator> { “,” <simple_declarator> }*

<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> { “,” <simple_declarator> }*

<attr_raises_expr> ::= <get_excep_expr> [ <set_excep_expr> ]
| <set_excep_expr>

<get_excep_expr> ::= “getRaises” <exception_list>

<set_excep_expr> ::= “setRaises” <exception_list>

<exception_list> ::= “(” <scoped_name> { “,” <scoped_name> } * “)”

These modifications to the existing attribute declaration syntax allow attribute get and 
set methods to raise user-defined exceptions. Note the following characteristics of the 
extended attribute declaration syntax:

¥ All existing attribute declarations using the previous syntax are still valid, and 
produce exactly the same results.

¥ When an attribute declaration raises an exception (on get, set or both), the 
declaration may not contain multiple declarators.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 14-395



14
14.2 Changes to Object Services

14.2.1 Life Cycle Service

To support the factory design pattern for creating a component instance and to allow 
the server, rather than a client, to select from a group of functionally equivalent 
factories based on load or other server-side visible criteria, the following operation is 
added to the FactoryFinder interface of the CosLifeCycle module:

module CosLifeCycle {
interface FactoryFinder {
Factory find_factory (in Key factory_key) raises (noFactory);
};

};

The parameters of the above operation are as defined by the LifeCycle service.

14.2.2 Transaction Service

No changes identified.

14.2.3 Security Service

No changes identified.

14.2.4 Name Service

No changes identified.

14.2.5 Notification Service

No changes identified.
14-396 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



Conformance Criteria 15
This chapter identifies the conformance points required for compliant implementations 
of the CORBA Component architecture.

15.1 Conformance Points

There are three conformance points that constitute CORBA Components

1. Changes to CORBA Core and COS Services.

Chapter 14 identifies changes to CORBA Core and COS Services; compliant 
implementations of each shall implement these changes. Note that a CORBA ORB 
vendor need not provide implementations of Components aside from the changes 
made to the Core to support components.

In Chapter 10, the MOF metamodel of the Interface Repository and the XMI format 
for the exchange of Interface Repository metadata is defined. The  IDL for a MOF-
compliant Interface Repository is defined as well. Support for the generation and 
consumption of the XMI metadata and for the MOF-compliant IDL is optional.

2. CORBA Components

A CORBA component vendor  shall support the following:

¥ IDL extensions to support the client and server side component model including 
CIDL

¥ A container for hosting CORBA components. 

¥ An installer object for deploying components. The installer object shall be 
capable of receiving XML deployment descriptors and associated zip files in the 
format defined in Section 9.4 on 243.

All CORBA components, containers, and installers must work in a CORBA 
environment defined by conformance point 1 above. This CORBA environment 
need not be provided by the Component vendor i.e. a container vendor does not 
have to be an ORB vendor, and vice-versa.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 15-397



15
Chapter 10 defines the MOF metamodel of the Packaging and Deployment 
descriptors for CORBA components. The XMI format for the exchange of 
Packaging and Deployment metadata is defined along with the MOF-compliant IDL 
for a packaging and deployment repository. Support for the generation and 
consumption of the XMI metadata and for the MOF-compliant IDL is optional.

3. EJB Support

Chapter 11 defines how an Enterprise Java Bean can be supported in a CORBA 
Component Container, how a CORBA Component may provide an EJB facade, and 
how an EJB may provide a CORBA Component facade. A CORBA Component 
vendor may support some, all or none of these features.

15.2 A Note on Tools

Component implementations are expected to be supported by tools. It is not possible to 
define conformance points for tools, since a particular tool may only support part of 
the component development and deployment life-cycle. Hence a suite of tools may be 
needed. The Component architecture contains a number of definitions that are relevant 
to tools, including zip files and XML formats, as well as IDL interfaces for 
customization and installation. Although it cannot be enforced, tools are expected to 
conform to the relevant areas with which they are dealing. For example, a tool that 
generates implementations for a particular platform is expected to generate XML 
according to the <implementation> clauses in the DTD defined in Chapter 9.
15-398 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



IDL Summary A
This appendix summarizes all the IDL defined for the CORBA component model. The 
Component model is assumed to be part of the CORBA_3 level of the CORBA 
specification. This is reflected in the module structure proposed by this specification. 
The complete structure is a recommendation to the OMG regarding the structuring of 
CORBA_3 definitions. Within this overall approach, the modules unique to CORBA 
components are summarized, as they are defined in the body of this specification.

A.1 Module Architecture

The component submitters suggest the following structure for CORBA_3:

module CORBA_3 {
// outer namespace for all CORBA_3 changes //;
module Core {

// namespace for changes to the CORBA Core //;
};
module Components {

// namespace for all changes introduced by CORBA components //;
// all interfaces visible to both clients and servers defined here //;
module Deployment { 

// interfaces used to deploy Components //;
};
module Server {

// interfaces used by the Server are defined in this namespace //:
};
module Container {

// interfaces used to implement Container on the POA //;
};

}:
};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-399



All of the changes to CORBA Core are defined with the Core module. Those changes 
introduced by the CORBA component specification will be summarized within this 
namespace in Appendix A.2. The submitters recommend that other changes to the Core 
introduce by new adopted technology (e.g. messaging) or a Core RTF also be defined 
this way.

The Components module is a namespace that includes all the additions for CORBA 
components defined by this specification. It includes two embedded module definitions 
for those interfaces defined for use by the component implementor (module Server) 
and the container implementor (module Container). Those interfaces which can be 
used by either the client or the component implementation are defined within the 
Components module.

A.2 The Core Module

The Core module defines all the changes made to the CORBA core to support 
components.

module CORBA {
interface Object { // PIDL

...
Object get_component ( );

};
};

A.3 The Components Module

The Components module defines all the interfaces used to access or implement a 
CORBA component. The Components module has the following structure:

module Components {
// namespace for all changes introduced by CORBA components //;
// all interfaces visible to both clients and servers defined here //;
module Server;
// interfaces used by the Server are defined in this namespace //:
};
module Deployment {
// interfaces used to install components in a container //;
}; 
module Container;
// interfaces used to implement Container on the POA //;
};

}:

A.3.1 Interfaces Defined Within the Components Module

The interfaces defined within the Components module are accessible by either 
component clients or component implementors. Those interfaces (described in Chapter 
5) are defined by the following IDL: 
A-400 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



module Components {

interface ComponentDef;

typedef string FeatureName;
typedef sequence<FeaureName> NameList;

valuetype Cookie {
private sequence<octet> cookieValue;

};

exception InvalidName { };
exception InvalidConnection { };
exception ExceededConnectionLimit { };
exception AlreadyConnected { };
exception NoConnection { };
exception CookieRequired { };
exception DuplicateKeyValue { };
exception UnknownKeyValue { };
exception BadEventType {

CORBA::RepositoryId expected_event_type
};
exception HomeNotFound { };

interface Navigation {

valuetype FacetDescription {
public RepositoryID InterfaceID;
public FeatureName Name;

};

valuetype Facet : FacetDescription {
public Object Ref;

};

typedef sequence<Facet> Facets;

typedef sequence<FacetDescription>
FacetDescriptions;

Object provide_facet( in FeatureName name ) 
raises (InvalidName);

FacetDescriptions describe_facets();

Facets provide_all_facets();

Facets provide_named_facets(in NameList names)
raises (InvalidName);

boolean same_component( in Object ref );
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-401



};

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

};

typedef sequence<ConnectionDescription> ConnectedDescriptions;

interface Receptacles {

Cookie connect ( 
in FeatureName name, 
in Object connection )

raises (
InvalidName, 
InvalidConnection, 
AlreadyConnected, 
ExceededConnectionLimit);

void disconnect ( 
in FeatureName name, 
in Cookie ck)

raises (
InvalidName, 
InvalidConnection, 
CookieRequired, 
NoConnection);

ConnectionList get_connections (in FeatureName name) 
raises (InvalidName);

};

struct Property {
PropertyName name;
PropertyValue value;

};

typedef sequence<Property> EventData;

abstract valuetype EventBase {};

interface EventConsumerBase {
void push_event(in EventBase evt) raises (BadEventType);

};

interface Events {
EventConsumerBase 
get_consumer(in FeatureName sinkName)

raises(InvalidName);
A-402 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



Cookie subscribe(in FeatureName publisherName, 
in EventConsumerBase subscriber) 
raises (InvalidName);

void unsubscribe(in FeatureName publisherName, 
in Cookie ck) 
raises(InvalidName, InvalidConnection);

void connect_consumer(in FeatureName emitterName, 
in EventConsumerBase consumer) 
raises (InvalidName, AlreadyConnected);

EventConsumerBase 
disconnect_consumer(in FeatureName sourceName) 

raises(InvalidName, NoConnection);

};

interface HomeBase {
ComponentDef get_component_def();
void destroy_component ( in ComponentBase comp);

};

interface KeylessHomeBase {
ComponentBase create_component();

};

interface HomeFinder {
HomeBase find_home_by_component_type (

in CORBA::RepositoryId comprepid)
raises (HomeNotFound);

HomeBase find_home_by_home_type (
in CORBA::RepositoryId homerepid)
raises (HomeNotFound);

HomeBase find_home_by_name (
in string home_name) 
raises (HomeNotFound);

};

interface Configurator {
void configure(in ComponentBase comp)
raises WrongComponentType;

};

valuetype ConfigValue {
FeatureName name;
any value;

};

typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-403



interface HomeConfiguration : HomeBase {
void set_configurator (in Configurator cfg);
void set_configuration_values(

in StandardConfigurator::ConfigValues config);
void complete_component_configuration(in boolean b);
void disable_home_configuration();

};

interface ComponentBase 
: Navigation, Receptacles, Events {

ComponentDef get_component_def ( );
HomeBase get_home( );
void configuration_complete( );
void destroy();

};

};

A.3.2 Interfaces Defined Within the Persistence Module

The Persistence Module is an embedded namespace within the Components 
module that defines those interfaces (described in Chapter 6) used to support 
persistence for CORBA components. It is defined by the following IDL:
A-404 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



module Persistence {

struct Property {
string name;
any    value;

};

typedef sequence<Property> PropertyList;
typedef sequence<octet> PersistentId;
typedef sequence<PersistentId> PersistentIdList;
typedef string PSSTypeId;

exception DoesNotExist {};

local StorageHomeBase {

TypeId managed_storage_type_id();
IncarnationBase incarnate(in PersistentID pid) 
raises (DoesNotExist);
void remove(in IncarnationBase inc) raises (DoesNotExist);
void remove_by_pid(in PersistentID pid) raises (DoesNotExist);
void flush() raises (PersistentStoreError);
void refresh() raises (PersistentStoreError);

};

local KeylessStorageHomeBase : StorageHomeBase {
PersistentID create_pid();

};

local PersistentStoreBase {
void open(in string name, in PropertylList params) 
raises(NoPermission);
void close();
StorageHomeBase provide_storage_home(in string home_name) 
raises(NotFound);
void flush() raises(PersistentStoreError);
void flush_by_pids(in PersistentStoreIdList pids) 
raises(PersistentStoreError);
void refresh() raises(PersistentStoreError);
void refresh_by_pids(in PersistentStoreIdList pids)
raises(PersistentStoreError);

};

local GenericPersistentStore 
: PersistentStoreBase {

StorageHomeBase provide_storage_home_by_type(
in CORBA::RepositoryId type_id)
raises (NotFound);
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-405



};
};

A.3.3 Interfaces Defined Within the Deployment Module

The Deployment Module is an embedded namespace within the Components 
module that defines those interfaces (described in Chapter 9) used to deploy CORBA 
components. It is defined by the following IDL:

module Deployment {

enum AssemblyState {INACTIVE, INSERVICE};
exception UnknownImplId { };
exception InvalidLocation { };
exception InvalidAssembly { };

interface Installation {
boolean install(in string implGUID, in string cmpntloc)

raises InvalidLocation;
boolean replace(in string implGUID, in string cmpntloc)

raises InvalidLocation;
boolean remove(in string implGUID)

raises UnknownImplId;
string get_Implementation(in string implGUID)

raises UnknownImplId;
string get...(in string key); // TBD

};

interface AssemblyFactory {
Cookie create(in string assemblyloc)

raises InvalidLocation;
Assembly lookup(in Cookie c)

raises InvalidAssembly;
boolean destroy(in Cookie c)

raises InvalidAssembly;
};

Issue Ð Specify cookies.

interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();

};

interface ServerActivator {
ComponentServer create_component_server();

};
A-406 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



interface ComponentServer {
Container create_container(...); // params TBD

};

interface Container {
HomeBase install_home();

};

};

A.3.4 Interfaces Defined Within the Server Module

The Server Module is an embedded namespace within the Components module that 
defines those interfaces used by the developer to implement a CORBA component. 
Those interfaces (described in Chapter 7) are defined by the following IDL:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-407



module Server {

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER,
NOT_CREATED_WITH_AID,
NOT_CREATED_WITH_PID

};

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,
PREPARING,
COMMITTING,
ROLLING_BACK

};

const StoreType USER=0;
const StoreType PSS=1;

union StoreId switch StoreType {
case USER : ApplId aid;
case PSS : Persistence::PersistentId pid;

};

struct SegmentDescr {
long segment;
StoreId sid;

}:

typedef sequence<SegmentDescr> SegmentList;
typedef SecurityLevel2::Credentials Principal;
typedef sequence<octet> ApplId;
typedef CORBA::NVList Criteria;

exception NotFound { };
exception IllegalState { };
exception PolicyMismatch { };
exception NoTransaction { };
exception InvalidCookie{ };
exception InvalidCategory { };
exception UnknownActualHome { };
exception RemoteHomeNotSupported { };
exception ChannelUnavailable { };
exception InvalidSubscription { };
exception DuplicateTarget { };
A-408 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



exception NoSuchTarget { };
exception BadComponentReference {

BadComponentReferenceReason reason
};
exception InvalidName { };
exception AlreadyBound { };

local ComponentContext {
CORBA::Object get_reference ()

raises (IllegalState);
HomeBase get_home();
Transaction get_transaction();
HomeRegistration get_home_registration ();
Security get_security();
Events get_events();

}; 

local BaseOrigin {
void req_passivate ()

raises (PolicyMismatch);
};

local LocalCookie {
boolean same_as (in LocalCookie cookie);

};

local Transaction {
void begin ();
void commit ()

raises (NoTransaction);
void rollback ()

raises (NoTransaction);
void set_rollback_only ()

raises (NoTransaction);
boolean get_rollback_only()

raises (NoTransaction);
LocalCookie suspend ()

raises (NoTransaction);
void resume (in LocalCookie cookie)

raises (InvalidCookie);
Status get_status();
void set_timeout (in long to);

};

local HomeRegistration {
void register_home (in HomeBase home);
void unregister_home (in HomeBase home);

};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-409



local RemoteHomeRegistration : HomeRegistration {
void register_remote_home (

in HomeBase rhome,
in HomeBase ahome)
raises (UnknownActualHome, RemoteHomeNotSupported);

};

local Security {
Principal get_caller_identity();
boolean is_caller_in_role (in Principal role);

};

local EnterpriseComponent {
};

local TransientContext : ComponentContext {
TransientOrigin get_transient_origin();

}; 

local TransientOrigin : Origin {
CORBA::Object create_ref (

in CORBA::RepositoryId repid)
}; 

local ServiceComponent : EnterpriseComponent {
void set_transient_context (in TransientContext ctx);

};

local SessionComponent : ServiceComponent {
void activate();
void passivate();
void remove ();

};

local Synchronization {
void before_completion ();
void after_completion (

in boolean committed);
};
A-410 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



local PersistentContext : ComponentContext {
ComponentId get_component_id ()

raises (IllegalState);
PersistentOrigin get_persistent_origin();
Storage get_storage ();

}; 

local ComponentId {
void add_segment (in long segment,

in StoreId sid)
raises (DuplicateSegment);

void set_segment (in long segment)
raises (NoSuchSegment);

long get_segment ();
StoreId get_store_id ();
StoreId get_component_id ();
StoreId get_store_id_for_segment (in long segment)

raises (NoSuchSegment);
SegmentList get_segment_list ();

};

local PersistentOrigin : BaseOrigin {
ComponentId create_cid_from_aid (

in ApplId aid);
ComponentId create_cid_from_pid (

in Persistence::PersistentId pid);
HomeBase get_home_by_cid (

in ComponentId cid);
CORBA::Object create_ref_from_cid (

in CORBA::RepositoryId repid,
in ComponentId cid,
in Criteria crit);

ComponentId get_cid_from_ref (
in CORBA::Object ref)
raises (BadComponentReference);

ApplId get_aid_from_cid (
in ComponentId cid)
raises (BadComponentReference);

Persistence::PersitentId get_pid_from_cid (
in ComponentId cid)
raises (BadComponentReference);

};

local Storage {
Persistence::StorageHomeBase get_storage_home (

in Persistence::StorageHomeId homeid)
raises (InvalidCategory, 

Persistence::HomeNotAvailable);
PrimaryKey get_primary_key ()

raises (InvalidCategory);
};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-411



local PersistentOrigin : Origin {
ComponentId create_cid_from_aid (

in ApplId aid);
ComponentId create_cid_from_pid (

in Persistence::PersistentId pid);
HomeBase get_home_by_cid (

in ComponentId cid);
CORBA::Object create_ref_from_cid (

in CORBA::RepositoryId repid,
in ComponentId id,
in Criteria crit);

ComponentId get_cid_from_ref (
in CORBA::Object ref)
raises (BadComponentReference);

ApplId get_aid_from_cid (
in ComponentId cid)
raises (BadComponentReference);

Persistence::PersitentId get_pid_from_cid (
in ComponentId cid)
raises (BadComponentReference);

};

local PersistentComponent : EnterpriseComponent {
void set_persistent_context (in PersistentContext ctx);
void unset_persistent_context ();
void activate ();

            void load ();
           void store ();
            void passivate ();
            void remove ();
 };

};

A.3.5 Interfaces Defined Within the Container Module

The Container Module is an embedded namespace within the Components module 
that defines those interfaces (described in Chapter 8) used by the container 
implementor for CORBA component. The Container module defines the specialized 
ServantManagers for the components specification. It is defined by the following 
IDL:
A-412 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



module Container {

native ServantFactory;
typedef short Category;
const Category EMPTY=0; 
const Category SESSION=1;
const Category PROCESS=2;
const Category ENTITY=3;
// values 4-16383 reserved for future use //;
// values 16384-32767 reserved for vendor extensions //
typedef sequence<octet> ServantFactoryId;
typedef sequence<octet> ServantId;

exception InvalidCategory { };
exception NoServantAvailable { };

interface ContainerFactory {
Container create_container (

in Category cat)
raises (InvalidCategory);

};

interface TransientServantLocator : PortableServer::ServantLocator {
PortableServant::Servant register_servant (

in ServantId sid,
in PortableServer::Servant svt);

void unregister_servant (
in PortableServer::Servant svt);

PortableServer::Servant lookup_servant (in ServantId sid);
ServantFactory register_servant_factory (

in ServantFactoryId sfid,
in ServantFactory factory);

void unregister_servant_factory (in ServantFactoryId sfid);
ServantFactory lookup_servant_factory (

in ServantFactoryId sfid);
};
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 A-413



interface PersistentServantLocator : 
PortableServer::ServantLocator {

PortableServer::ObjectId create_oid_from_cid (
in ServantFactoryId sfid,
in Server::ComponentId cid);

Server::ComponentId get_cid_from_oid (
in PortableServer::ObjectId);

ServantFactory register_servant_factory (
in ServantFactoryId sfid,
in ServantFactory factory);

void unregister_servant_factory (in ServantFactory Id sfid);
ServantFactory lookup_servant_factory (

in ServantFactoryId sfid);
void register_servant (in PortableServer::Server svt);

};

};
A-414 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



XML  DTDs B
B.1 softpkg.dtd

<!-- DTD for softpkg. Used to describe CORBA Component 
     implementations. The root element is <softpkg>. 
     Elements are listed alphabetically.
  -->
<!-- Simple xml link attributes based on W3C WD-xlink-19980303. 
     May change when XLL is finalized. -->
<!ENTITY % simple-link-attributes "
     xml:link      CDATA               #FIXED 'SIMPLE'
     href          CDATA               #REQUIRED
">     
     
<!ELEMENT author 
     ( name
     | company
     | webpage
     )* >
   
<!ELEMENT code 
     ( ( codebase 
       | fileinarchive
       | link
       ) 
       , entrypoint?
     ) >
<!ATTLIST code
     type CDATA #IMPLIED >
<!-- If file not available locally, then download via codebase link -->
<!ELEMENT codebase EMPTY >
<!ATTLIST codebase 
     filename CDATA #IMPLIED
     %simple-link-attributes; >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-415



<!ELEMENT compiler EMPTY >
<!ATTLIST compiler 
     name    CDATA #REQUIRED
     version CDATA #IMPLIED >

<!ELEMENT company ( #PCDATA ) >

<!ELEMENT dependency 
     ( softpkg 
     | codebase
     | fileinarchive
     | localfile
     | name
     ) >
<!ATTLIST dependency 
     type   CDATA              #IMPLIED
     action (assert | install) "assert">

<!ELEMENT description ( #PCDATA ) >

<!ELEMENT descriptor 
     ( link
     | fileinarchive
     ) >
<!ATTLIST descriptor
     type   CDATA  #IMPLIED>

<!ELEMENT entrypoint ( #PCDATA) >
     
<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension
     class     CDATA     #REQUIRED
     origin    CDATA     #REQUIRED  
     id        ID        #IMPLIED
     extra     CDATA     #IMPLIED
     html-form CDATA     #IMPLIED >
     
<!-- The "fileinarchive" element is used to specify a file in the 
archive. 
     If the file is in another archive then link 
     is used to point to the archive in which the file may be found. 
  -->
<!ELEMENT fileinarchive 
     ( link? ) >
<!ATTLIST fileinarchive 
     name CDATA #REQUIRED >

<!ELEMENT idl (link | fileinarchive | repository) >
<!ATTLIST idl 
     id CDATA #REQUIRED>
B-416 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



<!ELEMENT implementation 
     ( description
     | code 
     | compiler 
     | dependency 
     | descriptor 
     | extension
     | programminglanguage 
     | humanlanguage 
     | os
     | propertyfile 
     | processor 
     | runtime
     | threadsafety 
     )* >
<!ATTLIST implementation 
     id ID #IMPLIED >

<!ELEMENT humanlanguage EMPTY >
<!ATTLIST humanlanguage 
     name CDATA #REQUIRED >

<!ELEMENT license ( #PCDATA ) >
<!ATTLIST license 
     %simple-link-attributes; >

<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link 
     %simple-link-attributes; >
     
<!-- A file that should be available in the local environment -->
<!ELEMENT localfile EMPTY >
<!ATTLIST localfile 
     name CDATA #REQUIRED >

<!ELEMENT name ( #PCDATA ) >

<!ELEMENT os EMPTY >
<!ATTLIST os 
     name    CDATA #REQUIRED
     version CDATA #IMPLIED>
     
<!ELEMENT pkgtype ( #PCDATA ) > 
    
<!ELEMENT processor EMPTY >

<!ATTLIST processor 
     name CDATA #REQUIRED >

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage 
     name CDATA #REQUIRED
     version  CDATA #IMPLIED >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-417



<!ELEMENT propertyfile 
     ( fileinarchive 
     | link) >

<!ELEMENT repository EMPTY >
<!ATTLIST repository 
     type CDATA #IMPLIED 
     %simple-link-attributes; >

<!ELEMENT resource 
     ( localfile
     | codebase
     ) >

<!ATTLIST resource 
     type CDATA #IMPLIED >

<!ELEMENT runtime EMPTY >
<!ATTLIST runtime 
     name    CDATA #REQUIRED
     version CDATA #IMPLIED>

<!ELEMENT softpkg 
     ( title
     | pkgtype
     | author
     | description?
     | license 
     | idl 
     | propertyfile 
     | dependency
     | descriptor
     | implementation
     | extension
     )* >
<!ATTLIST softpkg 
     name    ID    #REQUIRED
     version CDATA #IMPLIED >
 
<!ELEMENT threadsafety EMPTY >
<!ATTLIST threadsafety 
     level (none|class|instance) #REQUIRED >

<!-- DEVNOTE: or should we specify level1,level2??? -->
<!ELEMENT title ( #PCDATA ) >

<!ELEMENT webpage ( #PCDATA ) >
<!ATTLIST webpage 
     %simple-link-attributes; >
B-418 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



B.2 corbacomponent.dtd
<!-- DTD for CORBA Component Descriptor. The root element is
     <corbacomponent>. Elements are listed alphabetically.
  -->
<!ELEMENT client EMPTY >
  
<!ELEMENT componentfeatures
    ( inheritscomponent? 
    , supportsinterface*
    , ports
    , extension*
    ) >
<!ATTLIST componentfeatures
    name CDATA #REQUIRED
    repid ID #REQUIRED >
    
<!ELEMENT componentkind
     ( service 
     | session 
     | process 
     | entity 
     | unclassified
     ) >

<!ELEMENT corbacomponent
     ( corbaversion
     , repositoryid
     , componentkind
     , transaction
     , security?
     , eventpolicy?
     , threading
     , configurationcomplete
     , extendedpoapolicy*
     , repository?
     , componentfeatures+
     , interface*
     , extension*
     ) >
     
<!ELEMENT configurationcomplete EMPTY >
<!ATTLIST configurationcomplete 
     set ( true | false ) #REQUIRED >
     
<!ELEMENT consumes EMPTY>
<!ATTLIST consumes
     consumesname CDATA #REQUIRED 
     eventtype CDATA #REQUIRED 
     eventname CDATA #REQUIRED >
 
<!ELEMENT corbaversion (#PCDATA) >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-419



<!ELEMENT emits EMPTY>
<!ATTLIST emits
     emitsname CDATA #REQUIRED 
     eventtype CDATA #REQUIRED 
     eventname CDATA #REQUIRED >
 
<!ELEMENT entity
     ( servant
     , persistence
     ) >
     
<!ELEMENT eventpolicy EMPTY>
<!ATTLIST eventpolicy 
     emit ( normal | default | transaction ) #IMPLIED
     consume (normal | default | transaction ) #IMPLIED >
   
<!ELEMENT extendedpoapolicy EMPTY>
<!ATTLIST extendedpoapolicy
     name CDATA #REQUIRED 
     value CDATA #REQUIRED >

<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension
     class     CDATA     #REQUIRED
     origin    CDATA     #REQUIRED  
     id        ID        #IMPLIED
     extra     CDATA     #IMPLIED
     html-form CDATA     #IMPLIED >
     
<!ELEMENT inheritscomponent EMPTY>
<!ATTLIST inheritscomponent
    repid IDREF #REQUIRED>
     
<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface
    repid IDREF #REQUIRED>
     
<!ELEMENT ins EMPTY>
<!ATTLIST ins
     name CDATA #REQUIRED >
     
<!ELEMENT interface ( inheritsinterface* ) >
<!ATTLIST interface
    name CDATA #REQUIRED
    repid ID #REQUIRED >

<!ELEMENT objref EMPTY>
<!ATTLIST objref
     string CDATA #REQUIRED >
     
<!ELEMENT persistence ( persistentstoreinfo? )>
<!ATTLIST persistence
     responsibility ( container | component ) #REQUIRED 
     usepss ( true | false ) #REQUIRED >
B-420 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



     
<!ELEMENT persistentstoreinfo EMPTY>
<!ATTLIST persistentstoreinfo
     implementation CDATA #REQUIRED 
     datastorename CDATA #REQUIRED 
     datastoreid CDATA #REQUIRED >

<!ELEMENT poapolicies EMPTY>
<!ATTLIST poapolicies
     thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE ) #REQUIRED 
     lifespan (TRANSIENT | PERSISTENT ) #REQUIRED 
     iduniqueness (UNIQUE_ID | MULTIPLE_ID) #REQUIRED 
     idassignment (USER_ID | SYSTEM_ID) #REQUIRED 
     servantretention (RETAIN | NON_RETAIN) #REQUIRED 
     requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY 
                       |USE_DEFAULT_SERVANT
                       |USE_SERVANT_MANAGER) #REQUIRED 
     implicitactivation (IMPLICIT_ACTIVATION 
                        |NON_IMPLICIT_ACTIVATION) #REQUIRED >

<!ELEMENT ports 
     ( uses
     | provides
     | emits
     | consumes
     )* >
     
<!ELEMENT process 
     ( servant
     , persistence 
     ) >
     
<!ELEMENT provides EMPTY>
<!ATTLIST provides
     providesname CDATA #REQUIRED 
     repid IDREF #REQUIRED >

<!ELEMENT repository ( ins | objref ) >
<!ATTLIST repository
     type CDATA #IMPLIED >
     
<!ELEMENT repositoryid EMPTY >
<!ATTLIST repositoryid
     repid IDREF #IMPLIED >
     
<!ELEMENT security 
     ( securitycredentialkind ) >

<!ELEMENT securitycredentialkind 
     ( client
     | system
     | specified
     ) >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-421



<!ELEMENT servant EMPTY >
<!ATTLIST servant 
     lifetime (process|method|transaction) #REQUIRED >

<!ELEMENT service EMPTY >
<!ELEMENT session
     ( servant ) >

<!ELEMENT specified EMPTY >
<!ATTLIST specified 
     userid CDATA #REQUIRED >
     
<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface
     repid IDREF #REQUIRED >
     
<!ELEMENT system EMPTY >

<!ELEMENT threading EMPTY>
<!ATTLIST threading
     policy ( serialize | multithread ) #REQUIRED >

<!ELEMENT transaction EMPTY >
<!ATTLIST transaction 
     use (not-supported|required|supports|requires-new|mandatory|never) 
#REQUIRED > 

<!ELEMENT unclassified 
     ( poapolicies
     , persistentstoreinfo
     ) >

<!ELEMENT uses EMPTY>
<!ATTLIST uses
     usesname CDATA #REQUIRED 
     repid IDREF #REQUIRED >
B-422 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



B.3 properties.dtd
<!-- DTD for CORBA Component property file. The root element 
     is <properties>. Elements are listed alphabetically.
  -->
<!ELEMENT choice ( #PCDATA ) >
<!ELEMENT choices ( choice+ ) >
<!ELEMENT defaultvalue ( #PCDATA ) >
<!ELEMENT description ( #PCDATA ) >
<!ELEMENT value ( #PCDATA ) >

<!ELEMENT properties 
     ( description?
     , ( simple 
       | sequence 
       | struct 
       )* 
     ) >
     
<!ELEMENT simple 
     ( description?
     , value
     , choices?
     , defaultvalue?
     ) >
<!ATTLIST simple 
     name CDATA #IMPLIED 
     type ( boolean 
          | char 
          | double 
          | float 
          | short 
          | long 
          | objref 
          | octet
          | short 
          | string 
          | ulong
          | ushort
          ) #REQUIRED >

<!ELEMENT sequence 
     ( description?
     , ( simple* 
       | struct* 
       | sequence* 
       ) 
     ) >
<!ATTLIST sequence 
     name CDATA #IMPLIED
     type CDATA #REQUIRED >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-423



<!ELEMENT struct 
     ( description?
     , ( simple 
       | sequence 
       | struct 
       )* 
     ) >
<!ATTLIST struct 
     name CDATA #IMPLIED 
     type CDATA #REQUIRED >
B-424 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



B.4 componentassembly.dtd

<!-- DTD for Component Assembly Descriptor. The root element
     is <componentassembly>. Elements are listed 
     alphabetically.
  -->
<!-- Simple xml link attributes based on W3C WD-xlink-19980303. 
     May change slightly when XLL is finalized. 
  -->
<!ENTITY % simple-link-attributes "
     xml:link      CDATA               #FIXED 'SIMPLE'
     href          CDATA               #REQUIRED " >

<!-- If file not available locally, then download via codebase link -->
<!ELEMENT codebase EMPTY >
<!ATTLIST codebase 
     filename CDATA #IMPLIED
     %simple-link-attributes; >

<!ELEMENT componentassembly 
     ( componentfiles 
     | partitioning 
     | connections 
     | extension 
     )* >
<!ATTLIST componentassembly 
     id ID #IMPLIED >

<!ELEMENT componentfile 
     ( fileinarchive
     | codebase
     | link
     ) >     
<!ATTLIST componentfile 
     id ID #REQUIRED >

<!ELEMENT componentfileref EMPTY >
<!ATTLIST componentfileref 
     idref IDREF #REQUIRED >
     
<!ELEMENT componentfiles 
     ( componentfile+ 
     ) > 

<!ELEMENT componentimplref EMPTY >
<!ATTLIST componentimplref 
     idref CDATA #REQUIRED > 
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-425



<!ELEMENT componentplacement
     ( usagename? 
     , componentfileref 
     , componentimplref? 
     , propertiesfile?
     , stringifiedobjectref? 
     , registerwithnaming* 
     , registerwithtrader*
     , extension*
     ) >
<!ATTLIST componentplacement 
     id          ID    #REQUIRED 
     cardinality CDATA "1" >
                 
<!ELEMENT connectevent 
     ( emitingcomponent 
     , consumingcomponent ) >
<!ATTLIST connectevent 
     id ID #IMPLIED >

<!ELEMENT connectinterface 
     ( usingcomponent 
     , providingcomponent ) >
<!ATTLIST connectinterface 
     id ID #IMPLIED >

<!ELEMENT connections 
     ( connectinterface 
     | connectevent 
     | extension
     )* >

<!ELEMENT consumesidentifier ( #PCDATA ) >

<!ELEMENT consumingcomponent 
     ( consumesidentifier 
     , findby* )>
<!ATTLIST consumingcomponent 
     idref IDREF #REQUIRED >

<!ELEMENT emitingcomponent 
     ( emitsidentifier 
     , findby* )>
<!ATTLIST emitingcomponent 
     idref IDREF #REQUIRED > 
     
<!ELEMENT emitsidentifier ( #PCDATA ) >
B-426 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



<!-- The "extension" element is used for vendor-specific extensions -->
<!ELEMENT extension (#PCDATA) >
<!ATTLIST extension
     class     CDATA     #REQUIRED
     origin    CDATA     #REQUIRED  
     id        ID        #IMPLIED
     extra     CDATA     #IMPLIED
     html-form CDATA     #IMPLIED >
<!-- The "fileinarchive" element is used to specify a file in the 
archive. 
     If the description file is independent of an archive then url 
     is used to point to the archive in which the file may be found. 
  -->
<!ELEMENT fileinarchive 
     ( url? ) >
<!ATTLIST fileinarchive 
     name CDATA #REQUIRED>

<!ELEMENT findby 
     ( namingservice 
     | stringifiedobjectref 
     | installprocess 
     | traderquery 
     | extension 
     ) >

<!ELEMENT hostcollocation 
     ( usagename?
     , impltype?
     , ( componentplacement
       | processcollocation
       | extension
       )+
     ) >
<!ATTLIST hostcollocation 
     id          ID    #IMPLIED 
     cardinality CDATA "1" >
     
<!ELEMENT impltype EMPTY >
<!ATTLIST impltype 
     language CDATA #REQUIRED
     version  CDATA #IMPLIED >

<!ELEMENT installprocess EMPTY >

<!ELEMENT link ( #PCDATA ) >
<!ATTLIST link
     %simple-link-attributes; >

<!ELEMENT namingservice EMPTY >

<!ELEMENT partitioning 
     ( componentplacement 
     | processcollocation
     | hostcollocation
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-427



     | extension 
     )* >
     
<!ELEMENT processcollocation 
     ( usagename?
     , impltype?
     , ( componentplacement
       | extension
       )+
     ) >
<!ATTLIST processcollocation 
     id          ID    #IMPLIED 
     cardinality CDATA "1" >

<!ELEMENT propertiesfile 
     ( fileinarchive
     | codebase
     ) >

<!ELEMENT providesidentifier ( #PCDATA ) >

<!ELEMENT providingcomponent 
     ( providesidentifier 
     , findby* )>
<!ATTLIST providingcomponent 
     idref IDREF #REQUIRED >

<!ELEMENT registerwithnaming EMPTY >
<!ATTLIST registerwithnaming 
     name CDATA #REQUIRED >

<!ELEMENT registerwithtrader 
     ( traderproperties ) >
<!ATTLIST registerwithtrader 
     tradername CDATA #IMPLIED >
              
<!ELEMENT stringifiedobjectref ( #PCDATA ) >

<!ELEMENT traderconstraint ( #PCDATA ) >
     
<!ELEMENT traderexport 
     ( traderservicetypename
     , traderproperties
     ) >
     
<!ELEMENT traderpolicy 
     ( traderpolicyname
     , traderpolicyvalue 
     ) >
     
<!ELEMENT traderpolicyname ( #PCDATA ) >
     
<!ELEMENT traderpolicyvalue ANY >
     
<!ELEMENT traderpreference ( #PCDATA ) >
B-428 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



     
<!ELEMENT traderproperties 
     ( traderproperty+ ) >
     
<!ELEMENT traderproperty 
     ( traderpropertyname
     , traderpropertyvalue
     ) >
     
<!ELEMENT traderpropertyname ( #PCDATA ) >
     
<!ELEMENT traderpropertyvalue ANY >
     
<!ELEMENT traderquery 
     ( traderservicetypename
     , traderconstraint
     , traderpreference?
     , traderpolicy*
     , traderspecifiedprop*
     ) >
     
<!ELEMENT traderservicetypename ( #PCDATA ) >
     
<!ELEMENT traderspecifiedprop ( #PCDATA ) >

<!ELEMENT usagename ( #PCDATA ) >

<!ELEMENT usesidentifier ( #PCDATA ) >
<!ELEMENT usingcomponent 
     ( usesidentifier 
     , findby* )>
<!ATTLIST usingcomponent 
     idref IDREF #REQUIRED >
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-01 B-429



B-430 CORBA Components - orbos/99-02-01 March 2, 1999 5:26 pm



MOF DTDs and IDL C
The XMI DTDs and IDL for the IR metamodel are presented in this appendix.  The 
DTD for the Packaging and Deployment metamodel is also included.  The DTDs are 
generated from the respective MOF-compliant metamodels described in Chapter 10 via 
the MOF-XML mapping contained in the OMG XMI specification.  The IDL  is 
derived from the IR metamodel via the MOF-IDL mapping contained in the OMG 
Meta Object Facility.

The IDL requires the inclusion of the reflective interfaces defined in ad/97-10-03 as 
part of the MOF specification.  It was validated with the Visibroker 3.2 and OrbixWeb 
3.0 IDL compilers.

C.1 IR Metamodel

C.1.1 XMI DTD
<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI is the top-level XML element for XMI transfer text          -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI (XMI.header, XMI.content?, XMI.difference*,
               XMI.extensions*) >
<!ATTLIST XMI
            xmi.version CDATA #FIXED "1.0"
            timestamp CDATA #IMPLIED
            verified (true | false) #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.header contains documentation and identifies the model,     -->
<!-- metamodel, and metametamodel                                    -->
<!-- _______________________________________________________________ -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-431



<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,
                      XMI.metametamodel*) >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- documentation for transfer data                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |
                             XMI.longDescription | XMI.shortDescription |
                             XMI.exporter | XMI.exporterVersion |
                             XMI.notice)* >

<!ELEMENT XMI.owner ANY >

<!ELEMENT XMI.contact ANY >

<!ELEMENT XMI.longDescription ANY >

<!ELEMENT XMI.shortDescription ANY >

<!ELEMENT XMI.exporter ANY >

<!ELEMENT XMI.exporterVersion ANY >

<!ELEMENT XMI.exporterID ANY >

<!ELEMENT XMI.notice ANY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.element.att defines the attributes that each XML element    -->
<!-- that corresponds to a metamodel class must have to conform to   -->
<!-- the XMI specification.                                          -->
<!-- _______________________________________________________________ -->

<!ENTITY % XMI.element.att
               'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid
                CDATA #IMPLIED ' >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.link.att defines the attributes that each XML element that  -->
<!-- corresponds to a metamodel class must have to enable it to      -->
<!-- function as a simple XLink as well as refer to model            -->
<!-- constructs within the same XMI file.                            -->
<!-- _______________________________________________________________ -->

<!ENTITY % XMI.link.att
               'xml:link CDATA #IMPLIED inline (true | false) #IMPLIED
                actuate (show | user) #IMPLIED href CDATA #IMPLIED role
                CDATA #IMPLIED title CDATA #IMPLIED show (embed | replace
                | new) #IMPLIED behavior CDATA #IMPLIED xmi.idref IDREF
                #IMPLIED xmi.uuidref CDATA #IMPLIED' >
C-432 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.model identifies the model(s) being transferred             -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.model ANY >
<!ATTLIST XMI.model
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.metamodel identifies the metamodel(s) for the transferred   -->
<!-- data                                                            -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.metamodel ANY >
<!ATTLIST XMI.metamodel
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.metametamodel identifies the metametamodel(s) for the       -->
<!-- transferred data                                                -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.metametamodel ANY >
<!ATTLIST XMI.metametamodel
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.content is the actual data being transferred                -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.content ANY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.extensions contains data to transfer that does not conform  -->
<!-- to the metamodel(s) in the header                               -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.extensions ANY >
<!ATTLIST XMI.extensions
            xmi.extender CDATA #REQUIRED
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-433



>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- extension contains information related to a specific model      -->
<!-- construct that is not defined in the metamodel(s) in the header -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.extension ANY >
<!ATTLIST XMI.extension
            %XMI.element.att;
            %XMI.link.att;
            xmi.extender   CDATA #REQUIRED
            xmi.extenderID CDATA #REQUIRED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.difference holds XML elements representing differences to a -->
<!-- base model                                                      -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |
                          XMI.replace)* >
<!ATTLIST XMI.difference
            %XMI.element.att;
            %XMI.link.att;
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.delete represents a deletion from a base model              -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.delete EMPTY >
<!ATTLIST XMI.delete
            %XMI.element.att;
            %XMI.link.att;
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.add represents an addition to a base model                  -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.add ANY >
<!ATTLIST XMI.add
            %XMI.element.att;
            %XMI.link.att;
            xmi.position CDATA "-1"
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.replace represents the replacement of a model construct     -->
C-434 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- with another model construct in a base model                    -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.replace ANY >
<!ATTLIST XMI.replace
            %XMI.element.att;
            %XMI.link.att;
            xmi.position CDATA "-1"
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.reference may be used to refer to data types not defined in -->
<!-- the metamodel                                                   -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.reference ANY >
<!ATTLIST XMI.reference
            %XMI.link.att;
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- This section contains the declaration of XML elements           -->
<!-- representing data types                                         -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.TypeDefinitions ANY >

<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >
<!ATTLIST XMI.enum
            xmi.value CDATA #REQUIRED
>

<!ELEMENT XMI.any ANY >
<!ATTLIST XMI.any
            %XMI.link.att;
            xmi.type CDATA #IMPLIED
            xmi.name CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |
                             XMI.CorbaTcSequence | XMI.CorbaTcArray |
                             XMI.CorbaTcEnum | XMI.CorbaTcUnion |
                             XMI.CorbaTcExcept | XMI.CorbaTcString |
                             XMI.CorbaTcWstring | XMI.CorbaTcShort |
                             XMI.CorbaTcLong | XMI.CorbaTcUshort |
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-435



                             XMI.CorbaTcUlong | XMI.CorbaTcFloat |
                             XMI.CorbaTcDouble | XMI.CorbaTcBoolean |
                             XMI.CorbaTcChar | XMI.CorbaTcWchar |
                             XMI.CorbaTcOctet | XMI.CorbaTcAny |
                             XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |
                             XMI.CorbaTcNull | XMI.CorbaTcVoid |
                             XMI.CorbaTcLongLong |
                             XMI.CorbaTcLongDouble) >
<!ATTLIST XMI.CorbaTypeCode
            %XMI.element.att;
>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcAlias
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcStruct
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcField
            xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |
                               XMI.CorbaRecursiveType) >
<!ATTLIST XMI.CorbaTcSequence
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaRecursiveType EMPTY >
<!ATTLIST XMI.CorbaRecursiveType
            xmi.offset CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcArray
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcObjRef EMPTY >
<!ATTLIST XMI.CorbaTcObjRef
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >
<!ATTLIST XMI.CorbaTcEnum
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
C-436 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >
<!ATTLIST XMI.CorbaTcEnumLabel
            xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >
<!ATTLIST XMI.CorbaTcUnionMbr
            xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*) >
<!ATTLIST XMI.CorbaTcUnion
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcExcept
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcString EMPTY >
<!ATTLIST XMI.CorbaTcString
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcWstring EMPTY >
<!ATTLIST XMI.CorbaTcWstring
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcFixed EMPTY >
<!ATTLIST XMI.CorbaTcFixed
            xmi.tcDigits CDATA #REQUIRED
            xmi.tcScale  CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-437



<!ELEMENT XMI.CorbaTcWchar EMPTY >

<!ELEMENT XMI.CorbaTcOctet EMPTY >

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: BaseIDL                                      -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % BaseIDL.ParameterMode
           ' XMI.value ( PARAM_IN| PARAM_OUT| PARAM_INOUT) #REQUIRED'>

<!ENTITY % BaseIDL.PrimitiveKind
           ' XMI.value ( PK_NULL| PK_VOID| PK_SHORT| PK_LONG| PK_USHORT| 
PK_ULONG|PK_FLOAT| PK_DOUBLE| PK_BOOLEAN| PK_CHAR| PK_OCTET|PK_ANY| 
PK_TYPECODE| PK_PRINCIPAL| PK_STRING| PK_OBJREF|PK_LONGLONG| 
PK_ULONGLONG| PK_LONGDOUBLE| PK_WCHAR| PK_WSTRING) #REQUIRED'>

<!ENTITY % BaseIDL.long
           ' XMI.value ( :) #REQUIRED'>

<!ENTITY % BaseIDL.DefinitionKind
           ' XMI.value ( DK_NONE| DK_ALL|DK_ATTRIBUTE| DK_CONSTANT| 
DK_EXCEPTION| DK_INTERFACE|DK_MODULE| DK_OPERATION| DK_TYPEDEF|DK_ALIAS| 
DK_STRUCT| DK_UNION| DK_ENUM|DK_PRIMITIVE| DK_STRING| DK_SEQUENCE| 
DK_ARRAY|DK_REPOSITORY|DK_WSTRING| DK_FIXED) #REQUIRED'>

<!-- *****    BaseIDL.Contains   *******  -->

<!ELEMENT BaseIDL.Container.contents ( BaseIDL.ConstantDef
  |BaseIDL.Contained
  |BaseIDL.ModuleDef
  |BaseIDL.Container
  |BaseIDL.TypedefDef
  |BaseIDL.InterfaceDef
  |BaseIDL.StructDef
  |BaseIDL.UnionDef
C-438 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



  |BaseIDL.EnumDef
  |BaseIDL.AliasDef
  |BaseIDL.ValueMemberDef
  |BaseIDL.ValueDef
  |BaseIDL.ValueBoxDef
  |BaseIDL.OperationDef
  |BaseIDL.ExceptionDef
  |BaseIDL.AttributeDef
  |ComponentIDL.ProvidesDef
  |ComponentIDL.FactoryDef
  |ComponentIDL.FinderDef
  |ComponentIDL.EmitsDef
  |ComponentIDL.ConsumesDef
  |ComponentIDL.PrimaryKeyDef
  |ComponentIDL.UsesDef
  |ComponentIDL.PublishesDef )* >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.Typed                                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.Typed.idlType (BaseIDL.IDLType
  |BaseIDL.TypedefDef
  |BaseIDL.InterfaceDef
  |BaseIDL.StructDef
  |BaseIDL.UnionDef
  |BaseIDL.EnumDef
  |BaseIDL.AliasDef
  |BaseIDL.StringDef
  |BaseIDL.WstringDef
  |BaseIDL.FixedDef
  |BaseIDL.SequenceDef
  |BaseIDL.ArrayDef
  |BaseIDL.PrimitiveDef
  |BaseIDL.ValueDef
  |BaseIDL.ValueBoxDef) >

<!ENTITY % BaseIDL.TypedAssociations '(BaseIDL.Typed.idlType )' > 

<!ELEMENT BaseIDL.Typed ((XMI.extension* ,   %BaseIDL.TypedAssociations; ) 
)?>

<!ATTLIST BaseIDL.Typed %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ParameterDef                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ParameterDef.identifier (#PCDATA|XMI.reference)*>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-439



<!ELEMENT BaseIDL.ParameterDef.direction EMPTY>
<!ATTLIST BaseIDL.ParameterDef.direction %BaseIDL.ParameterMode;>

<!ENTITY % BaseIDL.ParameterDefProperties 
'(BaseIDL.ParameterDef.identifier  
   ,BaseIDL.ParameterDef.direction  )' > 

<!ENTITY % BaseIDL.ParameterDefAssociations 
'(%BaseIDL.TypedAssociations;)' > 

<!ELEMENT BaseIDL.ParameterDef ( %BaseIDL.ParameterDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ParameterDefAssociations; ) )?>

<!ATTLIST BaseIDL.ParameterDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.Contained                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.Contained.identifier (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL.Contained.repositoryId (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL.Contained.version (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL.Contained.definedIn (BaseIDL.ModuleDef
  |BaseIDL.Container
  |BaseIDL.InterfaceDef
  |BaseIDL.ValueDef)?>

<!ENTITY % BaseIDL.ContainedProperties '(BaseIDL.Contained.identifier  
   ,BaseIDL.Contained.repositoryId  
   ,BaseIDL.Contained.version  )' > 

<!ENTITY % BaseIDL.ContainedAssociations '(BaseIDL.Contained.definedIn?)' 
> 

<!ELEMENT BaseIDL.Contained ( %BaseIDL.ContainedProperties;
       ,(XMI.extension* ,   %BaseIDL.ContainedAssociations; ) )?>

<!ATTLIST BaseIDL.Contained %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ConstantDef                            -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ConstantDef.constValue (XMI.any)>

<!ENTITY % BaseIDL.ConstantDefProperties '(%BaseIDL.ContainedProperties;
C-440 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   ,BaseIDL.ConstantDef.constValue  )' > 

<!ENTITY % BaseIDL.ConstantDefAssociations 
'(%BaseIDL.TypedAssociations;,%BaseIDL.ContainedAssociations;)' > 

<!ELEMENT BaseIDL.ConstantDef ( %BaseIDL.ConstantDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ConstantDefAssociations; ) )?>

<!ATTLIST BaseIDL.ConstantDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.IDLType                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.IDLType (EMPTY )>

<!ATTLIST BaseIDL.IDLType %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.Container                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % BaseIDL.ContainerProperties '(%BaseIDL.ContainedProperties;)' 
> 

<!ENTITY % BaseIDL.ContainerAssociations 
'(%BaseIDL.ContainedAssociations;)' > 

<!ENTITY % BaseIDL.ContainerCompositions '(BaseIDL.Container.contents*)' 
> 

<!ELEMENT BaseIDL.Container ( %BaseIDL.ContainerProperties;
       ,(XMI.extension* ,   %BaseIDL.ContainerAssociations; )
       ,  %BaseIDL.ContainerCompositions; )?>

<!ATTLIST BaseIDL.Container %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ModuleDef                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ModuleDef.prefix (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.ModuleDefProperties '(%BaseIDL.ContainerProperties;
   ,BaseIDL.ModuleDef.prefix  )' > 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-441



<!ENTITY % BaseIDL.ModuleDefAssociations 
'(%BaseIDL.ContainerAssociations;)' > 

<!ENTITY % BaseIDL.ModuleDefCompositions 
'(%BaseIDL.ContainerCompositions;)' > 

<!ELEMENT BaseIDL.ModuleDef ( %BaseIDL.ModuleDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ModuleDefAssociations; )
       ,  %BaseIDL.ModuleDefCompositions; )?>

<!ATTLIST BaseIDL.ModuleDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.TypedefDef                             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % BaseIDL.TypedefDefProperties '(%BaseIDL.ContainedProperties;)' 
> 

<!ENTITY % BaseIDL.TypedefDefAssociations 
'(%BaseIDL.ContainedAssociations;)' > 

<!ELEMENT BaseIDL.TypedefDef ( %BaseIDL.TypedefDefProperties;
       ,(XMI.extension* ,   %BaseIDL.TypedefDefAssociations; ) )?>

<!ATTLIST BaseIDL.TypedefDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.InterfaceDef                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.InterfaceDef.isAbstract EMPTY>
<!ATTLIST BaseIDL.InterfaceDef.isAbstract
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT BaseIDL.InterfaceDef.base (BaseIDL.InterfaceDef)*>

<!ENTITY % BaseIDL.InterfaceDefProperties '(%BaseIDL.ContainerProperties;
   ,BaseIDL.InterfaceDef.isAbstract  )' > 

<!ENTITY % BaseIDL.InterfaceDefAssociations 
'(%BaseIDL.ContainerAssociations;
   ,BaseIDL.InterfaceDef.base*)' > 

<!ENTITY % BaseIDL.InterfaceDefCompositions 
'(%BaseIDL.ContainerCompositions;)' > 

<!ELEMENT BaseIDL.InterfaceDef ( %BaseIDL.InterfaceDefProperties;
       ,(XMI.extension* ,   %BaseIDL.InterfaceDefAssociations; )
C-442 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



       ,  %BaseIDL.InterfaceDefCompositions; )?>

<!ATTLIST BaseIDL.InterfaceDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.Field                                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.Field.identifier (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.FieldProperties '(BaseIDL.Field.identifier  )' > 

<!ENTITY % BaseIDL.FieldAssociations '(%BaseIDL.TypedAssociations;)' > 

<!ELEMENT BaseIDL.Field ( %BaseIDL.FieldProperties;
       ,(XMI.extension* ,   %BaseIDL.FieldAssociations; ) )?>

<!ATTLIST BaseIDL.Field %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.StructDef                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.StructDef.members (BaseIDL.Field)>

<!ENTITY % BaseIDL.StructDefProperties '(%BaseIDL.TypedefDefProperties;
   ,BaseIDL.StructDef.members +)' > 

<!ENTITY % BaseIDL.StructDefAssociations 
'(%BaseIDL.TypedefDefAssociations;)' > 

<!ELEMENT BaseIDL.StructDef ( %BaseIDL.StructDefProperties;
       ,(XMI.extension* ,   %BaseIDL.StructDefAssociations; ) )?>

<!ATTLIST BaseIDL.StructDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.UnionDef                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.UnionDef.unionMembers (BaseIDL.UnionField)>

<!ELEMENT BaseIDL.UnionDef.discriminatorType (BaseIDL.IDLType
  |BaseIDL.TypedefDef
  |BaseIDL.InterfaceDef
  |BaseIDL.StructDef
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-443



  |BaseIDL.UnionDef
  |BaseIDL.EnumDef
  |BaseIDL.AliasDef
  |BaseIDL.StringDef
  |BaseIDL.WstringDef
  |BaseIDL.FixedDef
  |BaseIDL.SequenceDef
  |BaseIDL.ArrayDef
  |BaseIDL.PrimitiveDef
  |BaseIDL.ValueDef
  |BaseIDL.ValueBoxDef) >

<!ENTITY % BaseIDL.UnionDefProperties '(%BaseIDL.TypedefDefProperties;
   ,BaseIDL.UnionDef.unionMembers +)' > 

<!ENTITY % BaseIDL.UnionDefAssociations 
'(%BaseIDL.TypedefDefAssociations;
   ,BaseIDL.UnionDef.discriminatorType )' > 

<!ELEMENT BaseIDL.UnionDef ( %BaseIDL.UnionDefProperties;
       ,(XMI.extension* ,   %BaseIDL.UnionDefAssociations; ) )?>

<!ATTLIST BaseIDL.UnionDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.UnionField                             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.UnionField.identifier (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL.UnionField.label (XMI.any)>

<!ENTITY % BaseIDL.UnionFieldProperties '(BaseIDL.UnionField.identifier  
   ,BaseIDL.UnionField.label  )' > 

<!ENTITY % BaseIDL.UnionFieldAssociations '(%BaseIDL.TypedAssociations;)' 
> 

<!ELEMENT BaseIDL.UnionField ( %BaseIDL.UnionFieldProperties;
       ,(XMI.extension* ,   %BaseIDL.UnionFieldAssociations; ) )?>

<!ATTLIST BaseIDL.UnionField %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.EnumDef                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.EnumDef.members (#PCDATA|XMI.reference)*>
C-444 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ENTITY % BaseIDL.EnumDefProperties '(%BaseIDL.TypedefDefProperties;
   ,BaseIDL.EnumDef.members +)' > 

<!ENTITY % BaseIDL.EnumDefAssociations 
'(%BaseIDL.TypedefDefAssociations;)' > 

<!ELEMENT BaseIDL.EnumDef ( %BaseIDL.EnumDefProperties;
       ,(XMI.extension* ,   %BaseIDL.EnumDefAssociations; ) )?>

<!ATTLIST BaseIDL.EnumDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.AliasDef                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % BaseIDL.AliasDefProperties '(%BaseIDL.TypedefDefProperties;)' 
> 

<!ENTITY % BaseIDL.AliasDefAssociations 
'(%BaseIDL.TypedAssociations;,%BaseIDL.TypedefDefAssociations;)' > 

<!ELEMENT BaseIDL.AliasDef ( %BaseIDL.AliasDefProperties;
       ,(XMI.extension* ,   %BaseIDL.AliasDefAssociations; ) )?>

<!ATTLIST BaseIDL.AliasDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.StringDef                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.StringDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.StringDefProperties '(BaseIDL.StringDef.bound  )' > 

<!ELEMENT BaseIDL.StringDef ( %BaseIDL.StringDefProperties; )?>

<!ATTLIST BaseIDL.StringDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.WstringDef                             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.WstringDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.WstringDefProperties '(BaseIDL.WstringDef.bound  )' > 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-445



<!ELEMENT BaseIDL.WstringDef ( %BaseIDL.WstringDefProperties; )?>

<!ATTLIST BaseIDL.WstringDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.FixedDef                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.FixedDef.digits (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL.FixedDef.scale (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.FixedDefProperties '(BaseIDL.FixedDef.digits  
   ,BaseIDL.FixedDef.scale  )' > 

<!ELEMENT BaseIDL.FixedDef ( %BaseIDL.FixedDefProperties; )?>

<!ATTLIST BaseIDL.FixedDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.SequenceDef                            -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.SequenceDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.SequenceDefProperties '(BaseIDL.SequenceDef.bound  )' > 

<!ENTITY % BaseIDL.SequenceDefAssociations 
'(%BaseIDL.TypedAssociations;)' > 

<!ELEMENT BaseIDL.SequenceDef ( %BaseIDL.SequenceDefProperties;
       ,(XMI.extension* ,   %BaseIDL.SequenceDefAssociations; ) )?>

<!ATTLIST BaseIDL.SequenceDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ArrayDef                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ArrayDef.bound (#PCDATA|XMI.reference)*>

<!ENTITY % BaseIDL.ArrayDefProperties '(BaseIDL.ArrayDef.bound  )' > 

<!ENTITY % BaseIDL.ArrayDefAssociations '(%BaseIDL.TypedAssociations;)' > 

<!ELEMENT BaseIDL.ArrayDef ( %BaseIDL.ArrayDefProperties;
C-446 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



       ,(XMI.extension* ,   %BaseIDL.ArrayDefAssociations; ) )?>

<!ATTLIST BaseIDL.ArrayDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.PrimitiveDef                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.PrimitiveDef.kind EMPTY>
<!ATTLIST BaseIDL.PrimitiveDef.kind %BaseIDL.PrimitiveKind;>

<!ENTITY % BaseIDL.PrimitiveDefProperties '(BaseIDL.PrimitiveDef.kind  )' 
> 

<!ELEMENT BaseIDL.PrimitiveDef ( %BaseIDL.PrimitiveDefProperties; )?>

<!ATTLIST BaseIDL.PrimitiveDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ValueMemberDef                         -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ValueMemberDef.isPublicMember EMPTY>
<!ATTLIST BaseIDL.ValueMemberDef.isPublicMember
        XMI.value ( true | false ) #REQUIRED>

<!ENTITY % BaseIDL.ValueMemberDefProperties 
'(%BaseIDL.ContainedProperties;
   ,BaseIDL.ValueMemberDef.isPublicMember  )' > 

<!ENTITY % BaseIDL.ValueMemberDefAssociations 
'(%BaseIDL.TypedAssociations;,%BaseIDL.ContainedAssociations;)' > 

<!ELEMENT BaseIDL.ValueMemberDef ( %BaseIDL.ValueMemberDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ValueMemberDefAssociations; ) )?>

<!ATTLIST BaseIDL.ValueMemberDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ValueDef                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ValueDef.isAbstract EMPTY>
<!ATTLIST BaseIDL.ValueDef.isAbstract
        XMI.value ( true | false ) #REQUIRED>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-447



<!ELEMENT BaseIDL.ValueDef.isCustom EMPTY>
<!ATTLIST BaseIDL.ValueDef.isCustom
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT BaseIDL.ValueDef.isTruncatable EMPTY>
<!ATTLIST BaseIDL.ValueDef.isTruncatable
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT BaseIDL.ValueDef.interfaceDef (BaseIDL.InterfaceDef)?>

<!ELEMENT BaseIDL.ValueDef.base (BaseIDL.ValueDef)?>

<!ELEMENT BaseIDL.ValueDef.abstractBase (BaseIDL.ValueDef)*>

<!ENTITY % BaseIDL.ValueDefProperties '(%BaseIDL.ContainerProperties;
   ,BaseIDL.ValueDef.isAbstract  
   ,BaseIDL.ValueDef.isCustom  
   ,BaseIDL.ValueDef.isTruncatable  )' > 

<!ENTITY % BaseIDL.ValueDefAssociations '(%BaseIDL.ContainerAssociations;
   ,BaseIDL.ValueDef.interfaceDef?
   ,BaseIDL.ValueDef.base?
   ,BaseIDL.ValueDef.abstractBase*)' > 

<!ENTITY % BaseIDL.ValueDefCompositions 
'(%BaseIDL.ContainerCompositions;)' > 

<!ELEMENT BaseIDL.ValueDef ( %BaseIDL.ValueDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ValueDefAssociations; )
       ,  %BaseIDL.ValueDefCompositions; )?>

<!ATTLIST BaseIDL.ValueDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ValueBoxDef                            -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % BaseIDL.ValueBoxDefProperties 
'(%BaseIDL.TypedefDefProperties;)' > 

<!ENTITY % BaseIDL.ValueBoxDefAssociations 
'(%BaseIDL.TypedefDefAssociations;)' > 

<!ELEMENT BaseIDL.ValueBoxDef ( %BaseIDL.ValueBoxDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ValueBoxDefAssociations; ) )?>

<!ATTLIST BaseIDL.ValueBoxDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.OperationDef                           -->
C-448 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.OperationDef.isOneway EMPTY>
<!ATTLIST BaseIDL.OperationDef.isOneway
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT BaseIDL.OperationDef.parameters (BaseIDL.ParameterDef)>

<!ELEMENT BaseIDL.OperationDef.contexts (#PCDATA|XMI.reference)*>

<!ELEMENT BaseIDL.OperationDef.exceptionDef (BaseIDL.ExceptionDef)*>

<!ENTITY % BaseIDL.OperationDefProperties '(%BaseIDL.ContainedProperties;
   ,BaseIDL.OperationDef.isOneway  
   ,BaseIDL.OperationDef.parameters *
   ,BaseIDL.OperationDef.contexts *)' > 

<!ENTITY % BaseIDL.OperationDefAssociations 
'(%BaseIDL.TypedAssociations;,%BaseIDL.ContainedAssociations;
   ,BaseIDL.OperationDef.exceptionDef*)' > 

<!ELEMENT BaseIDL.OperationDef ( %BaseIDL.OperationDefProperties;
       ,(XMI.extension* ,   %BaseIDL.OperationDefAssociations; ) )?>

<!ATTLIST BaseIDL.OperationDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.ExceptionDef                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.ExceptionDef.members (BaseIDL.Field)>

<!ENTITY % BaseIDL.ExceptionDefProperties '(%BaseIDL.ContainedProperties;
   ,BaseIDL.ExceptionDef.members *)' > 

<!ENTITY % BaseIDL.ExceptionDefAssociations 
'(%BaseIDL.ContainedAssociations;)' > 

<!ELEMENT BaseIDL.ExceptionDef ( %BaseIDL.ExceptionDefProperties;
       ,(XMI.extension* ,   %BaseIDL.ExceptionDefAssociations; ) )?>

<!ATTLIST BaseIDL.ExceptionDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: BaseIDL.AttributeDef                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT BaseIDL.AttributeDef.isReadonly EMPTY>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-449



<!ATTLIST BaseIDL.AttributeDef.isReadonly
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT BaseIDL.AttributeDef.setException (BaseIDL.ExceptionDef)*>

<!ELEMENT BaseIDL.AttributeDef.getException (BaseIDL.ExceptionDef)*>

<!ENTITY % BaseIDL.AttributeDefProperties '(%BaseIDL.ContainedProperties;
   ,BaseIDL.AttributeDef.isReadonly  )' > 

<!ENTITY % BaseIDL.AttributeDefAssociations 
'(%BaseIDL.TypedAssociations;,%BaseIDL.ContainedAssociations;
   ,BaseIDL.AttributeDef.setException*
   ,BaseIDL.AttributeDef.getException*)' > 

<!ELEMENT BaseIDL.AttributeDef ( %BaseIDL.AttributeDefProperties;
       ,(XMI.extension* ,   %BaseIDL.AttributeDefAssociations; ) )?>

<!ATTLIST BaseIDL.AttributeDef %XMI.element.att; %XMI.link.att; >

<!ELEMENT BaseIDL ((BaseIDL.ParameterDef
  |BaseIDL.Typed
  |BaseIDL.ConstantDef
  |BaseIDL.Contained
  |BaseIDL.IDLType
  |BaseIDL.ModuleDef
  |BaseIDL.Container
  |BaseIDL.TypedefDef
  |BaseIDL.InterfaceDef
  |BaseIDL.Field
  |BaseIDL.StructDef
  |BaseIDL.UnionDef
  |BaseIDL.UnionField
  |BaseIDL.EnumDef
  |BaseIDL.AliasDef
  |BaseIDL.StringDef
  |BaseIDL.WstringDef
  |BaseIDL.FixedDef
  |BaseIDL.SequenceDef
  |BaseIDL.ArrayDef
  |BaseIDL.PrimitiveDef
  |BaseIDL.ValueMemberDef
  |BaseIDL.ValueDef
  |BaseIDL.ValueBoxDef
  |BaseIDL.OperationDef
  |BaseIDL.ExceptionDef
  |BaseIDL.AttributeDef)*)>
<!ATTLIST BaseIDL %XMI.element.att; %XMI.link.att;>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: ComponentIDL                         -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->
C-450 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.ComponentDef              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.ComponentDef.supports (BaseIDL.InterfaceDef
  |ComponentIDL.ComponentDef
  |ComponentIDL.HomeDef)?>

<!ENTITY % ComponentIDL.ComponentDefAssociations 
'(%BaseIDL.InterfaceDefAssociations;
   ,ComponentIDL.ComponentDef.supports?)' > 

<!ENTITY % ComponentIDL.ComponentDefCompositions 
'(%BaseIDL.InterfaceDefCompositions;)' > 

<!ELEMENT ComponentIDL.ComponentDef ((XMI.extension* ,   
%ComponentIDL.ComponentDefAssociations; )
       ,  %ComponentIDL.ComponentDefCompositions; )?>

<!ATTLIST ComponentIDL.ComponentDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.ProvidesDef               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.ProvidesDef.interface (BaseIDL.InterfaceDef
  |ComponentIDL.ComponentDef
  |ComponentIDL.HomeDef) >

<!ENTITY % ComponentIDL.ProvidesDefProperties 
'(%BaseIDL.ContainedProperties;)' > 

<!ENTITY % ComponentIDL.ProvidesDefAssociations 
'(%BaseIDL.ContainedAssociations;
   ,ComponentIDL.ProvidesDef.interface )' > 

<!ELEMENT ComponentIDL.ProvidesDef ( %ComponentIDL.ProvidesDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.ProvidesDefAssociations; ) )?>

<!ATTLIST ComponentIDL.ProvidesDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.HomeDef                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-451



<!ELEMENT ComponentIDL.HomeDef.manages (ComponentIDL.ComponentDef) >

<!ENTITY % ComponentIDL.HomeDefAssociations 
'(%BaseIDL.InterfaceDefAssociations;
   ,ComponentIDL.HomeDef.manages )' > 

<!ENTITY % ComponentIDL.HomeDefCompositions 
'(%BaseIDL.InterfaceDefCompositions;)' > 

<!ELEMENT ComponentIDL.HomeDef ((XMI.extension* ,   
%ComponentIDL.HomeDefAssociations; )
       ,  %ComponentIDL.HomeDefCompositions; )?>

<!ATTLIST ComponentIDL.HomeDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.FactoryDef                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % ComponentIDL.FactoryDefProperties 
'(%BaseIDL.OperationDefProperties;)' > 

<!ENTITY % ComponentIDL.FactoryDefAssociations 
'(%BaseIDL.OperationDefAssociations;)' > 

<!ELEMENT ComponentIDL.FactoryDef ( %ComponentIDL.FactoryDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.FactoryDefAssociations; ) )?>

<!ATTLIST ComponentIDL.FactoryDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.FinderDef                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % ComponentIDL.FinderDefProperties 
'(%BaseIDL.OperationDefProperties;)' > 

<!ENTITY % ComponentIDL.FinderDefAssociations 
'(%BaseIDL.OperationDefAssociations;)' > 

<!ELEMENT ComponentIDL.FinderDef ( %ComponentIDL.FinderDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.FinderDefAssociations; ) )?>

<!ATTLIST ComponentIDL.FinderDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.EmitsDef                  -->
C-452 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.EmitsDef.event (BaseIDL.ValueDef) >

<!ENTITY % ComponentIDL.EmitsDefProperties 
'(%BaseIDL.ContainedProperties;)' > 

<!ENTITY % ComponentIDL.EmitsDefAssociations 
'(%BaseIDL.ContainedAssociations;
   ,ComponentIDL.EmitsDef.event )' > 

<!ELEMENT ComponentIDL.EmitsDef ( %ComponentIDL.EmitsDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.EmitsDefAssociations; ) )?>

<!ATTLIST ComponentIDL.EmitsDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.ConsumesDef               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.ConsumesDef.event (BaseIDL.ValueDef) >

<!ENTITY % ComponentIDL.ConsumesDefProperties 
'(%BaseIDL.ContainedProperties;)' > 

<!ENTITY % ComponentIDL.ConsumesDefAssociations 
'(%BaseIDL.ContainedAssociations;
   ,ComponentIDL.ConsumesDef.event )' > 

<!ELEMENT ComponentIDL.ConsumesDef ( %ComponentIDL.ConsumesDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.ConsumesDefAssociations; ) )?>

<!ATTLIST ComponentIDL.ConsumesDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.PrimaryKeyDef             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.PrimaryKeyDef.type (BaseIDL.ValueDef) >

<!ENTITY % ComponentIDL.PrimaryKeyDefProperties 
'(%BaseIDL.ContainedProperties;)' > 

<!ENTITY % ComponentIDL.PrimaryKeyDefAssociations 
'(%BaseIDL.ContainedAssociations;
   ,ComponentIDL.PrimaryKeyDef.type )' > 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-453



<!ELEMENT ComponentIDL.PrimaryKeyDef ( 
%ComponentIDL.PrimaryKeyDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.PrimaryKeyDefAssociations; ) )?>

<!ATTLIST ComponentIDL.PrimaryKeyDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.UsesDef                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.UsesDef.multiple EMPTY>
<!ATTLIST ComponentIDL.UsesDef.multiple
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT ComponentIDL.UsesDef.interface (BaseIDL.InterfaceDef
  |ComponentIDL.ComponentDef
  |ComponentIDL.HomeDef) >

<!ENTITY % ComponentIDL.UsesDefProperties '(%BaseIDL.ContainedProperties;
   ,ComponentIDL.UsesDef.multiple  )' > 

<!ENTITY % ComponentIDL.UsesDefAssociations 
'(%BaseIDL.ContainedAssociations;
   ,ComponentIDL.UsesDef.interface )' > 

<!ELEMENT ComponentIDL.UsesDef ( %ComponentIDL.UsesDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.UsesDefAssociations; ) )?>

<!ATTLIST ComponentIDL.UsesDef %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: ComponentIDL.PublishesDef              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT ComponentIDL.PublishesDef.event (BaseIDL.ValueDef) >

<!ENTITY % ComponentIDL.PublishesDefProperties 
'(%BaseIDL.ContainedProperties;)' > 

<!ENTITY % ComponentIDL.PublishesDefAssociations 
'(%BaseIDL.ContainedAssociations;
   ,ComponentIDL.PublishesDef.event )' > 

<!ELEMENT ComponentIDL.PublishesDef ( 
%ComponentIDL.PublishesDefProperties;
       ,(XMI.extension* ,   %ComponentIDL.PublishesDefAssociations; ) )?>

<!ATTLIST ComponentIDL.PublishesDef %XMI.element.att; %XMI.link.att; >
C-454 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT ComponentIDL ((ComponentIDL.ComponentDef
  |ComponentIDL.ProvidesDef
  |ComponentIDL.HomeDef
  |ComponentIDL.FactoryDef
  |ComponentIDL.FinderDef
  |ComponentIDL.EmitsDef
  |ComponentIDL.ConsumesDef
  |ComponentIDL.PrimaryKeyDef
  |ComponentIDL.UsesDef
  |ComponentIDL.PublishesDef)*)>
<!ATTLIST ComponentIDL %XMI.element.att; %XMI.link.att;>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-455



C.1.2 IDL for the IR Metamodel

#include "Reflective.idl"

module BaseIDL
{
   interface ParameterDefClass;
   interface ParameterDef;
   typedef sequence<ParameterDef> ParameterDefUList;
   interface ConstantDefClass;
   interface ConstantDef;
   typedef sequence<ConstantDef> ConstantDefUList;
   interface TypedClass;
   interface Typed;
   typedef sequence<Typed> TypedSet;
   typedef sequence<Typed> TypedUList;
   interface ModuleDefClass;
   interface ModuleDef;
   typedef sequence<ModuleDef> ModuleDefUList;
   interface TypedefDefClass;
   interface TypedefDef;
   typedef sequence<TypedefDef> TypedefDefUList;
   interface InterfaceDefClass;
   interface InterfaceDef;
   typedef sequence<InterfaceDef> InterfaceDefSet;
   typedef sequence<InterfaceDef> InterfaceDefUList;
   interface FieldClass;
   interface Field;
   typedef sequence<Field> FieldUList;
   interface StructDefClass;
   interface StructDef;
   typedef sequence<StructDef> StructDefUList;
   interface UnionDefClass;
   interface UnionDef;
   typedef sequence<UnionDef> UnionDefSet;
   typedef sequence<UnionDef> UnionDefUList;
   interface EnumDefClass;
   interface EnumDef;
   typedef sequence<EnumDef> EnumDefUList;
   interface AliasDefClass;
   interface AliasDef;
   typedef sequence<AliasDef> AliasDefUList;
   interface IDLTypeClass;
   interface IDLType;
   typedef sequence<IDLType> IDLTypeUList;
   interface StringDefClass;
   interface StringDef;
   typedef sequence<StringDef> StringDefUList;
   interface WstringDefClass;
   interface WstringDef;
C-456 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   typedef sequence<WstringDef> WstringDefUList;
   interface FixedDefClass;
   interface FixedDef;
   typedef sequence<FixedDef> FixedDefUList;
   interface SequenceDefClass;
   interface SequenceDef;
   typedef sequence<SequenceDef> SequenceDefUList;
   interface ArrayDefClass;
   interface ArrayDef;
   typedef sequence<ArrayDef> ArrayDefUList;
   interface PrimitiveDefClass;
   interface PrimitiveDef;
   typedef sequence<PrimitiveDef> PrimitiveDefUList;
   interface UnionFieldClass;
   interface UnionField;
   typedef sequence<UnionField> UnionFieldUList;
   interface ContainerClass;
   interface Container;
   typedef sequence<Container> ContainerUList;
   interface ValueMemberDefClass;
   interface ValueMemberDef;
   typedef sequence<ValueMemberDef> ValueMemberDefUList;
   interface ValueDefClass;
   interface ValueDef;
   typedef sequence<ValueDef> ValueDefSet;
   typedef sequence<ValueDef> ValueDefUList;
   interface ValueBoxDefClass;
   interface ValueBoxDef;
   typedef sequence<ValueBoxDef> ValueBoxDefUList;
   interface OperationDefClass;
   interface OperationDef;
   typedef sequence<OperationDef> OperationDefSet;
   typedef sequence<OperationDef> OperationDefUList;
   interface ExceptionDefClass;
   interface ExceptionDef;
   typedef sequence<ExceptionDef> ExceptionDefSet;
   typedef sequence<ExceptionDef> ExceptionDefUList;
   interface ContainedClass;
   interface Contained;
   typedef sequence<Contained> ContainedSet;
   typedef sequence<Contained> ContainedUList;
   interface AttributeDefClass;
   interface AttributeDef;
   typedef sequence<AttributeDef> AttributeDefSet;
   typedef sequence<AttributeDef> AttributeDefUList;
   interface BaseIDLPackage;
   enum PrimitiveKind { PK_NULL, PK_VOID, PK_SHORT, PK_LONG, 
PK_USHORT, PK_ULONG,PK_FLOAT, PK_DOUBLE, PK_BOOLEAN, 
PK_CHAR, PK_OCTET,PK_ANY, PK_TYPECODE, PK_PRINCIPAL, 
PK_STRING, PK_OBJREF,PK_LONGLONG, PK_ULONGLONG, 
PK_LONGDOUBLE, PK_WCHAR, PK_WSTRING };
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-457



   enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
   enum DefinitionKind { DK_NONE, DK_ALL,DK_ATTRIBUTE, 
DK_CONSTANT, DK_EXCEPTION, DK_INTERFACE,DK_MODULE, 
DK_OPERATION, DK_TYPEDEF,DK_ALIAS, DK_STRUCT, DK_UNION, 
DK_ENUM,DK_PRIMITIVE, DK_STRING, DK_SEQUENCE, 
DK_ARRAY,DK_REPOSITORY,DK_WSTRING, DK_FIXED };
   typedef sequence<string> StringList;

   interface TypedClass : Reflective::RefObject
   {
      readonly attribute TypedUList all_of_kind_typed;
   };

   interface Typed : TypedClass
   {
      IDLType idl_type ()
         raises (Reflective::SemanticError);
      void set_idl_type (in IDLType new_value)
         raises (Reflective::SemanticError);
   }; // end of interface Typed

   interface ParameterDefClass : TypedClass
   {
      readonly attribute ParameterDefUList all_of_kind_parameter_def;
      readonly attribute ParameterDefUList all_of_type_parameter_def;
      ParameterDef create_parameter_def (
         in string identifier,
         in ParameterMode direction)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ParameterDef : ParameterDefClass, Typed
   {
      string identifier ()
         raises (Reflective::SemanticError);
      void set_identifier (in string new_value)
         raises (Reflective::SemanticError);
      ParameterMode direction ()
         raises (Reflective::SemanticError);
      void set_direction (in ParameterMode new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ParameterDef

   interface ContainedClass : Reflective::RefObject
   {
      readonly attribute ContainedUList all_of_kind_contained;
   };

   interface Contained : ContainedClass
C-458 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   {
      string identifier ()
         raises (Reflective::SemanticError);
      void set_identifier (in string new_value)
         raises (Reflective::SemanticError);
      string repository_id ()
         raises (Reflective::SemanticError);
      void set_repository_id (in string new_value)
         raises (Reflective::SemanticError);
      string version ()
         raises (Reflective::SemanticError);
      void set_version (in string new_value)
         raises (Reflective::SemanticError);
      string absolute_name ()
         raises (Reflective::SemanticError);
      Container defined_in ()
         raises (
            Reflective::NotSet,
            Reflective::SemanticError);
      void set_defined_in (in Container new_value)
         raises (Reflective::SemanticError);
      void unset_defined_in ()
         raises (Reflective::SemanticError);
   }; // end of interface Contained

   interface ConstantDefClass : TypedClass, ContainedClass
   {
      readonly attribute ConstantDefUList all_of_kind_constant_def;
      readonly attribute ConstantDefUList all_of_type_constant_def;
      ConstantDef create_constant_def (
         in string identifier,
         in string repository_id,
         in string version,
         in any const_value)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ConstantDef : ConstantDefClass, Typed, Contained
   {
      any const_value ()
         raises (Reflective::SemanticError);
      void set_const_value (in any new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ConstantDef

   interface ContainerClass : ContainedClass
   {
      readonly attribute ContainerUList all_of_kind_container;
   };
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-459



   interface Container : ContainerClass, Contained
   {
      ContainedSet lookup_name(
         inout boolean exclude_inherited,
         inout DefinitionKind limit_to_type,
         inout long levels_to_search,
         inout string search_name)
         raises (Reflective::SemanticError);
      Contained lookup(
         inout string search_name)
         raises (Reflective::SemanticError);
      ContainedSet get_filtered_contents(
         inout boolean include_inherited,
         inout DefinitionKind limit_to_type)
         raises (Reflective::SemanticError);
      ContainedSet contents ()
         raises (Reflective::SemanticError);
      void set_contents (in ContainedSet new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void unset_contents ()
         raises (Reflective::SemanticError);
      void add_contents (in Contained new_value)
         raises (Reflective::StructuralError);
      void modify_contents (
         in Contained old_value,
         in Contained new_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_contents (in Contained old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface Container

   interface ModuleDefClass : ContainerClass
   {
      readonly attribute ModuleDefUList all_of_kind_module_def;
      readonly attribute ModuleDefUList all_of_type_module_def;
      ModuleDef create_module_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string prefix)
         raises (
            Reflective::SemanticError,
C-460 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



            Reflective::ConstraintError);
   };

   interface ModuleDef : ModuleDefClass, Container
   {
      string prefix ()
         raises (Reflective::SemanticError);
      void set_prefix (in string new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ModuleDef

   interface IDLTypeClass : Reflective::RefObject
   {
      readonly attribute IDLTypeUList all_of_kind_idltype;
   };

   interface IDLType : IDLTypeClass
   {
      TypeCode type_code ()
         raises (Reflective::SemanticError);
      void set_type_code (in TypeCode new_value)
         raises (Reflective::SemanticError);
   }; // end of interface IDLType

   interface TypedefDefClass : IDLTypeClass, ContainedClass
   {
      readonly attribute TypedefDefUList all_of_kind_typedef_def;
   };

   interface TypedefDef : TypedefDefClass, IDLType, Contained
   {
   }; // end of interface TypedefDef

   interface InterfaceDefClass : IDLTypeClass, ContainerClass
   {
      readonly attribute InterfaceDefUList all_of_kind_interface_def;
      readonly attribute InterfaceDefUList all_of_type_interface_def;
      InterfaceDef create_interface_def (
         in string identifier,
         in string repository_id,
         in string version,
         in boolean is_abstract)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface InterfaceDef : InterfaceDefClass, IDLType, Container
   {
      boolean is_abstract ()
         raises (Reflective::SemanticError);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-461



      void set_is_abstract (in boolean new_value)
         raises (Reflective::SemanticError);
      InterfaceDefSet base ()
         raises (Reflective::SemanticError);
      void set_base (in InterfaceDefSet new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void unset_base ()
         raises (Reflective::SemanticError);
      void add_base (in InterfaceDef new_value)
         raises (Reflective::StructuralError);
      void modify_base (
         in InterfaceDef old_value,
         in InterfaceDef new_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_base (in InterfaceDef old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface InterfaceDef

   interface FieldClass : TypedClass
   {
      readonly attribute FieldUList all_of_kind_field;
      readonly attribute FieldUList all_of_type_field;
      Field create_field (
         in string identifier)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface Field : FieldClass, Typed
   {
      string identifier ()
         raises (Reflective::SemanticError);
      void set_identifier (in string new_value)
         raises (Reflective::SemanticError);
   }; // end of interface Field

   interface StructDefClass : TypedefDefClass
   {
      readonly attribute StructDefUList all_of_kind_struct_def;
      readonly attribute StructDefUList all_of_type_struct_def;
      StructDef create_struct_def (
         in string identifier,
C-462 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



         in string repository_id,
         in string version,
         in FieldUList members)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface StructDef : StructDefClass, TypedefDef
   {
      FieldUList members ()
         raises (Reflective::SemanticError);
      void set_members (in FieldUList new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void add_members (in Field new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void add_members_before (
         in Field new_value,
         in Field before_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void add_members_at (
         in Field new_value,
         in unsigned long position)
         raises (
            Reflective::StructuralError,
            Reflective::BadPosition,
            Reflective::SemanticError);
      void modify_members (
         in Field old_value,
         in Field new_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_members_at (
         in Field new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void remove_members (in Field old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-463



      void remove_members_at (in unsigned long position)
         raises (
            Reflective::StructuralError,
            Reflective::BadPosition,
            Reflective::SemanticError);
   }; // end of interface StructDef

   interface UnionDefClass : TypedefDefClass
   {
      readonly attribute UnionDefUList all_of_kind_union_def;
      readonly attribute UnionDefUList all_of_type_union_def;
      UnionDef create_union_def (
         in string identifier,
         in string repository_id,
         in string version,
         in UnionFieldUList union_members)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface UnionDef : UnionDefClass, TypedefDef
   {
      UnionFieldUList union_members ()
         raises (Reflective::SemanticError);
      void set_union_members (in UnionFieldUList new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void add_union_members (in UnionField new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void add_union_members_before (
         in UnionField new_value,
         in UnionField before_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void add_union_members_at (
         in UnionField new_value,
         in unsigned long position)
         raises (
            Reflective::StructuralError,
            Reflective::BadPosition,
            Reflective::SemanticError);
      void modify_union_members (
         in UnionField old_value,
         in UnionField new_value)
         raises (
C-464 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_union_members_at (
         in UnionField new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void remove_union_members (in UnionField old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_union_members_at (in unsigned long position)
         raises (
            Reflective::StructuralError,
            Reflective::BadPosition,
            Reflective::SemanticError);
      IDLType discriminator_type ()
         raises (Reflective::SemanticError);
      void set_discriminator_type (in IDLType new_value)
         raises (Reflective::SemanticError);
   }; // end of interface UnionDef

   interface EnumDefClass : TypedefDefClass
   {
      readonly attribute EnumDefUList all_of_kind_enum_def;
      readonly attribute EnumDefUList all_of_type_enum_def;
      EnumDef create_enum_def (
         in string identifier,
         in string repository_id,
         in string version,
         in StringList members)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface EnumDef : EnumDefClass, TypedefDef
   {
      StringList members ()
         raises (Reflective::SemanticError);
      void set_members (in StringList new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void add_members (in string new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void add_members_before (
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-465



         in string new_value,
         in string before_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void add_members_at (
         in string new_value,
         in unsigned long position)
         raises (
            Reflective::StructuralError,
            Reflective::BadPosition,
            Reflective::SemanticError);
      void modify_members (
         in string old_value,
         in string new_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_members_at (
         in string new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void remove_members (in string old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_members_at (in unsigned long position)
         raises (
            Reflective::StructuralError,
            Reflective::BadPosition,
            Reflective::SemanticError);
   }; // end of interface EnumDef

   interface AliasDefClass : TypedefDefClass, TypedClass
   {
      readonly attribute AliasDefUList all_of_kind_alias_def;
      readonly attribute AliasDefUList all_of_type_alias_def;
      AliasDef create_alias_def (
         in string identifier,
         in string repository_id,
         in string version)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface AliasDef : AliasDefClass, TypedefDef, Typed
C-466 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   {
   }; // end of interface AliasDef

   interface StringDefClass : IDLTypeClass
   {
      readonly attribute StringDefUList all_of_kind_string_def;
      readonly attribute StringDefUList all_of_type_string_def;
      StringDef create_string_def (
         in unsigned long bound)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface StringDef : StringDefClass, IDLType
   {
      unsigned long bound ()
         raises (Reflective::SemanticError);
      void set_bound (in unsigned long new_value)
         raises (Reflective::SemanticError);
   }; // end of interface StringDef

   interface WstringDefClass : IDLTypeClass
   {
      readonly attribute WstringDefUList all_of_kind_wstring_def;
      readonly attribute WstringDefUList all_of_type_wstring_def;
      WstringDef create_wstring_def (
         in unsigned long bound)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface WstringDef : WstringDefClass, IDLType
   {
      unsigned long bound ()
         raises (Reflective::SemanticError);
      void set_bound (in unsigned long new_value)
         raises (Reflective::SemanticError);
   }; // end of interface WstringDef

   interface FixedDefClass : IDLTypeClass
   {
      readonly attribute FixedDefUList all_of_kind_fixed_def;
      readonly attribute FixedDefUList all_of_type_fixed_def;
      FixedDef create_fixed_def (
         in unsigned short digits,
         in short scale)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-467



   };

   interface FixedDef : FixedDefClass, IDLType
   {
      unsigned short digits ()
         raises (Reflective::SemanticError);
      void set_digits (in unsigned short new_value)
         raises (Reflective::SemanticError);
      short scale ()
         raises (Reflective::SemanticError);
      void set_scale (in short new_value)
         raises (Reflective::SemanticError);
   }; // end of interface FixedDef

   interface SequenceDefClass : TypedClass, IDLTypeClass
   {
      readonly attribute SequenceDefUList all_of_kind_sequence_def;
      readonly attribute SequenceDefUList all_of_type_sequence_def;
      SequenceDef create_sequence_def (
         in unsigned long bound)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface SequenceDef : SequenceDefClass, Typed, IDLType
   {
      unsigned long bound ()
         raises (Reflective::SemanticError);
      void set_bound (in unsigned long new_value)
         raises (Reflective::SemanticError);
   }; // end of interface SequenceDef

   interface ArrayDefClass : TypedClass, IDLTypeClass
   {
      readonly attribute ArrayDefUList all_of_kind_array_def;
      readonly attribute ArrayDefUList all_of_type_array_def;
      ArrayDef create_array_def (
         in unsigned long bound)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ArrayDef : ArrayDefClass, Typed, IDLType
   {
      unsigned long bound ()
         raises (Reflective::SemanticError);
      void set_bound (in unsigned long new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ArrayDef
C-468 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   interface PrimitiveDefClass : IDLTypeClass
   {
      readonly attribute PrimitiveDefUList all_of_kind_primitive_def;
      readonly attribute PrimitiveDefUList all_of_type_primitive_def;
      PrimitiveDef create_primitive_def (
         in PrimitiveKind kind)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface PrimitiveDef : PrimitiveDefClass, IDLType
   {
      PrimitiveKind kind ()
         raises (Reflective::SemanticError);
      void set_kind (in PrimitiveKind new_value)
         raises (Reflective::SemanticError);
   }; // end of interface PrimitiveDef

   interface UnionFieldClass : TypedClass
   {
      readonly attribute UnionFieldUList all_of_kind_union_field;
      readonly attribute UnionFieldUList all_of_type_union_field;
      UnionField create_union_field (
         in string identifier,
         in any label)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface UnionField : UnionFieldClass, Typed
   {
      string identifier ()
         raises (Reflective::SemanticError);
      void set_identifier (in string new_value)
         raises (Reflective::SemanticError);
      any label ()
         raises (Reflective::SemanticError);
      void set_label (in any new_value)
         raises (Reflective::SemanticError);
   }; // end of interface UnionField

   interface ValueMemberDefClass : TypedClass, ContainedClass
   {
      readonly attribute ValueMemberDefUList all_of_kind_value_member_def;
      readonly attribute ValueMemberDefUList all_of_type_value_member_def;
      ValueMemberDef create_value_member_def (
         in string identifier,
         in string repository_id,
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-469



         in string version,
         in boolean is_public_member)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ValueMemberDef : ValueMemberDefClass, Typed, Contained
   {
      boolean is_public_member ()
         raises (Reflective::SemanticError);
      void set_is_public_member (in boolean new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ValueMemberDef

   interface ValueDefClass : ContainerClass, IDLTypeClass
   {
      readonly attribute ValueDefUList all_of_kind_value_def;
      readonly attribute ValueDefUList all_of_type_value_def;
      ValueDef create_value_def (
         in string identifier,
         in string repository_id,
         in string version,
         in boolean is_abstract,
         in boolean is_custom,
         in boolean is_truncatable)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ValueDef : ValueDefClass, Container, IDLType
   {
      boolean is_abstract ()
         raises (Reflective::SemanticError);
      void set_is_abstract (in boolean new_value)
         raises (Reflective::SemanticError);
      boolean is_custom ()
         raises (Reflective::SemanticError);
      void set_is_custom (in boolean new_value)
         raises (Reflective::SemanticError);
      boolean is_truncatable ()
         raises (Reflective::SemanticError);
      void set_is_truncatable (in boolean new_value)
         raises (Reflective::SemanticError);
      InterfaceDef interface_def ()
         raises (
            Reflective::NotSet,
            Reflective::SemanticError);
      void set_interface_def (in InterfaceDef new_value)
C-470 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



         raises (Reflective::SemanticError);
      void unset_interface_def ()
         raises (Reflective::SemanticError);
      ValueDef base ()
         raises (
            Reflective::NotSet,
            Reflective::SemanticError);
      void set_base (in ValueDef new_value)
         raises (Reflective::SemanticError);
      void unset_base ()
         raises (Reflective::SemanticError);
      ValueDefSet abstract_base ()
         raises (Reflective::SemanticError);
      void set_abstract_base (in ValueDefSet new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void unset_abstract_base ()
         raises (Reflective::SemanticError);
      void add_abstract_base (in ValueDef new_value)
         raises (Reflective::StructuralError);
      void modify_abstract_base (
         in ValueDef old_value,
         in ValueDef new_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_abstract_base (in ValueDef old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface ValueDef

   interface ValueBoxDefClass : TypedefDefClass
   {
      readonly attribute ValueBoxDefUList all_of_kind_value_box_def;
      readonly attribute ValueBoxDefUList all_of_type_value_box_def;
      ValueBoxDef create_value_box_def (
         in string identifier,
         in string repository_id,
         in string version)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ValueBoxDef : ValueBoxDefClass, TypedefDef
   {
   }; // end of interface ValueBoxDef
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-471



   interface OperationDefClass : TypedClass, ContainedClass
   {
      readonly attribute OperationDefUList all_of_kind_operation_def;
      readonly attribute OperationDefUList all_of_type_operation_def;
      OperationDef create_operation_def (
         in string identifier,
         in string repository_id,
         in string version,
         in boolean is_oneway,
         in ParameterDefUList parameters,
         in StringList contexts)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface OperationDef : OperationDefClass, Typed, Contained
   {
      boolean is_oneway ()
         raises (Reflective::SemanticError);
      void set_is_oneway (in boolean new_value)
         raises (Reflective::SemanticError);
      ParameterDefUList parameters ()
         raises (Reflective::SemanticError);
      void set_parameters (in ParameterDefUList new_value)
         raises (Reflective::SemanticError);
      void unset_parameters ()
         raises (Reflective::SemanticError);
      void add_parameters (in ParameterDef new_value)
         raises (Reflective::SemanticError);
      void add_parameters_before (
         in ParameterDef new_value,
         in ParameterDef before_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void add_parameters_at (
         in ParameterDef new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void modify_parameters (
         in ParameterDef old_value,
         in ParameterDef new_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_parameters_at (
         in ParameterDef new_value,
C-472 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void remove_parameters (in ParameterDef old_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_parameters_at (in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      StringList contexts ()
         raises (Reflective::SemanticError);
      void set_contexts (in StringList new_value)
         raises (Reflective::SemanticError);
      void unset_contexts ()
         raises (Reflective::SemanticError);
      void add_contexts (in string new_value)
         raises (Reflective::SemanticError);
      void add_contexts_before (
         in string new_value,
         in string before_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void add_contexts_at (
         in string new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void modify_contexts (
         in string old_value,
         in string new_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_contexts_at (
         in string new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void remove_contexts (in string old_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_contexts_at (in unsigned long position)
         raises (
            Reflective::BadPosition,
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-473



            Reflective::SemanticError);
      ExceptionDefSet exception_def ()
         raises (Reflective::SemanticError);
      void set_exception_def (in ExceptionDefSet new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void unset_exception_def ()
         raises (Reflective::SemanticError);
      void add_exception_def (in ExceptionDef new_value)
         raises (Reflective::StructuralError);
      void modify_exception_def (
         in ExceptionDef old_value,
         in ExceptionDef new_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_exception_def (in ExceptionDef old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface OperationDef

   interface ExceptionDefClass : ContainedClass
   {
      readonly attribute ExceptionDefUList all_of_kind_exception_def;
      readonly attribute ExceptionDefUList all_of_type_exception_def;
      ExceptionDef create_exception_def (
         in string identifier,
         in string repository_id,
         in string version,
         in FieldUList members)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ExceptionDef : ExceptionDefClass, Contained
   {
      TypeCode type_code ()
         raises (Reflective::SemanticError);
      FieldUList members ()
         raises (Reflective::SemanticError);
      void set_members (in FieldUList new_value)
         raises (Reflective::SemanticError);
      void unset_members ()
         raises (Reflective::SemanticError);
      void add_members (in Field new_value)
         raises (Reflective::SemanticError);
C-474 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



      void add_members_before (
         in Field new_value,
         in Field before_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void add_members_at (
         in Field new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void modify_members (
         in Field old_value,
         in Field new_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_members_at (
         in Field new_value,
         in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
      void remove_members (in Field old_value)
         raises (
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_members_at (in unsigned long position)
         raises (
            Reflective::BadPosition,
            Reflective::SemanticError);
   }; // end of interface ExceptionDef

   interface AttributeDefClass : TypedClass, ContainedClass
   {
      readonly attribute AttributeDefUList all_of_kind_attribute_def;
      readonly attribute AttributeDefUList all_of_type_attribute_def;
      AttributeDef create_attribute_def (
         in string identifier,
         in string repository_id,
         in string version,
         in boolean is_readonly)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface AttributeDef : AttributeDefClass, Typed, Contained
   {
      boolean is_readonly ()
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-475



         raises (Reflective::SemanticError);
      void set_is_readonly (in boolean new_value)
         raises (Reflective::SemanticError);
      ExceptionDefSet set_exception ()
         raises (Reflective::SemanticError);
      void set_set_exception (in ExceptionDefSet new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void unset_set_exception ()
         raises (Reflective::SemanticError);
      void add_set_exception (in ExceptionDef new_value)
         raises (Reflective::StructuralError);
      void modify_set_exception (
         in ExceptionDef old_value,
         in ExceptionDef new_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_set_exception (in ExceptionDef old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      ExceptionDefSet get_exception ()
         raises (Reflective::SemanticError);
      void set_get_exception (in ExceptionDefSet new_value)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void unset_get_exception ()
         raises (Reflective::SemanticError);
      void add_get_exception (in ExceptionDef new_value)
         raises (Reflective::StructuralError);
      void modify_get_exception (
         in ExceptionDef old_value,
         in ExceptionDef new_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove_get_exception (in ExceptionDef old_value)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface AttributeDef

   struct InterfaceDerivedFromLink
   {
C-476 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



      InterfaceDef base;
      InterfaceDef derived;
   };
   typedef sequence<InterfaceDerivedFromLink> 
InterfaceDerivedFromLinkSet;

   interface InterfaceDerivedFrom : Reflective::RefAssociation
   {
      InterfaceDerivedFromLinkSet all_interface_derived_from_links();
      boolean exists (
         in InterfaceDef base,
         in InterfaceDef derived);
      InterfaceDefSet with_base (
         in InterfaceDef base);
      InterfaceDefSet with_derived (
         in InterfaceDef derived);
      void add (
         in InterfaceDef base,
         in InterfaceDef derived)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_base (
         in InterfaceDef base,
         in InterfaceDef derived,
         in InterfaceDef new_base)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_derived (
         in InterfaceDef base,
         in InterfaceDef derived,
         in InterfaceDef new_derived)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in InterfaceDef base,
         in InterfaceDef derived)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface InterfaceDerivedFrom

   struct DiscriminatedByLink
   {
      IDLType discriminator_type;
      UnionDef union_def;
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-477



   };
   typedef sequence<DiscriminatedByLink> DiscriminatedByLinkSet;

   interface DiscriminatedBy : Reflective::RefAssociation
   {
      DiscriminatedByLinkSet all_discriminated_by_links();
      boolean exists (
         in IDLType discriminator_type,
         in UnionDef union_def);
      UnionDefSet with_discriminator_type (
         in IDLType discriminator_type);
      IDLType with_union_def (
         in UnionDef union_def);
      void add (
         in IDLType discriminator_type,
         in UnionDef union_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_discriminator_type (
         in IDLType discriminator_type,
         in UnionDef union_def,
         in IDLType new_discriminator_type)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_union_def (
         in IDLType discriminator_type,
         in UnionDef union_def,
         in UnionDef new_union_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in IDLType discriminator_type,
         in UnionDef union_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface DiscriminatedBy

   struct TypedByLink
   {
      IDLType idl_type;
      Typed typed;
   };
   typedef sequence<TypedByLink> TypedByLinkSet;
C-478 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   interface TypedBy : Reflective::RefAssociation
   {
      TypedByLinkSet all_typed_by_links();
      boolean exists (
         in IDLType idl_type,
         in Typed typed);
      TypedSet with_idl_type (
         in IDLType idl_type);
      IDLType with_typed (
         in Typed typed);
      void add (
         in IDLType idl_type,
         in Typed typed)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_idl_type (
         in IDLType idl_type,
         in Typed typed,
         in IDLType new_idl_type)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_typed (
         in IDLType idl_type,
         in Typed typed,
         in Typed new_typed)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in IDLType idl_type,
         in Typed typed)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface TypedBy

   struct SupportsLink
   {
      InterfaceDef interface_def;
      ValueDef value_def;
   };
   typedef sequence<SupportsLink> SupportsLinkSet;

   interface Supports : Reflective::RefAssociation
   {
      SupportsLinkSet all_supports_links();
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-479



      boolean exists (
         in InterfaceDef interface_def,
         in ValueDef value_def);
      ValueDefSet with_interface_def (
         in InterfaceDef interface_def);
      InterfaceDef with_value_def (
         in ValueDef value_def);
      void add (
         in InterfaceDef interface_def,
         in ValueDef value_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_interface_def (
         in InterfaceDef interface_def,
         in ValueDef value_def,
         in InterfaceDef new_interface_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_value_def (
         in InterfaceDef interface_def,
         in ValueDef value_def,
         in ValueDef new_value_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in InterfaceDef interface_def,
         in ValueDef value_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface Supports

   struct ValueDerivedFromLink
   {
      ValueDef base;
      ValueDef derived;
   };
   typedef sequence<ValueDerivedFromLink> ValueDerivedFromLinkSet;

   interface ValueDerivedFrom : Reflective::RefAssociation
   {
      ValueDerivedFromLinkSet all_value_derived_from_links();
      boolean exists (
         in ValueDef base,
         in ValueDef derived);
C-480 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



      ValueDefSet with_base (
         in ValueDef base);
      ValueDef with_derived (
         in ValueDef derived);
      void add (
         in ValueDef base,
         in ValueDef derived)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_base (
         in ValueDef base,
         in ValueDef derived,
         in ValueDef new_base)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_derived (
         in ValueDef base,
         in ValueDef derived,
         in ValueDef new_derived)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in ValueDef base,
         in ValueDef derived)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface ValueDerivedFrom

   struct AbstractDerivedFromLink
   {
      ValueDef abstract_derived;
      ValueDef abstract_base;
   };
   typedef sequence<AbstractDerivedFromLink> 
AbstractDerivedFromLinkSet;

   interface AbstractDerivedFrom : Reflective::RefAssociation
   {
      AbstractDerivedFromLinkSet all_abstract_derived_from_links();
      boolean exists (
         in ValueDef abstract_derived,
         in ValueDef abstract_base);
      ValueDefSet with_abstract_derived (
         in ValueDef abstract_derived);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-481



      ValueDefSet with_abstract_base (
         in ValueDef abstract_base);
      void add (
         in ValueDef abstract_derived,
         in ValueDef abstract_base)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_abstract_derived (
         in ValueDef abstract_derived,
         in ValueDef abstract_base,
         in ValueDef new_abstract_derived)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_abstract_base (
         in ValueDef abstract_derived,
         in ValueDef abstract_base,
         in ValueDef new_abstract_base)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in ValueDef abstract_derived,
         in ValueDef abstract_base)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface AbstractDerivedFrom

   struct SetRaisesLink
   {
      ExceptionDef set_exception;
      AttributeDef set_attribute;
   };
   typedef sequence<SetRaisesLink> SetRaisesLinkSet;

   interface SetRaises : Reflective::RefAssociation
   {
      SetRaisesLinkSet all_set_raises_links();
      boolean exists (
         in ExceptionDef set_exception,
         in AttributeDef set_attribute);
      AttributeDefSet with_set_exception (
         in ExceptionDef set_exception);
      ExceptionDefSet with_set_attribute (
         in AttributeDef set_attribute);
      void add (
C-482 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



         in ExceptionDef set_exception,
         in AttributeDef set_attribute)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_set_exception (
         in ExceptionDef set_exception,
         in AttributeDef set_attribute,
         in ExceptionDef new_set_exception)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_set_attribute (
         in ExceptionDef set_exception,
         in AttributeDef set_attribute,
         in AttributeDef new_set_attribute)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in ExceptionDef set_exception,
         in AttributeDef set_attribute)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface SetRaises

   struct CanRaiseLink
   {
      ExceptionDef exception_def;
      OperationDef operation_def;
   };
   typedef sequence<CanRaiseLink> CanRaiseLinkSet;

   interface CanRaise : Reflective::RefAssociation
   {
      CanRaiseLinkSet all_can_raise_links();
      boolean exists (
         in ExceptionDef exception_def,
         in OperationDef operation_def);
      OperationDefSet with_exception_def (
         in ExceptionDef exception_def);
      ExceptionDefSet with_operation_def (
         in OperationDef operation_def);
      void add (
         in ExceptionDef exception_def,
         in OperationDef operation_def)
         raises (
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-483



            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_exception_def (
         in ExceptionDef exception_def,
         in OperationDef operation_def,
         in ExceptionDef new_exception_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_operation_def (
         in ExceptionDef exception_def,
         in OperationDef operation_def,
         in OperationDef new_operation_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in ExceptionDef exception_def,
         in OperationDef operation_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface CanRaise

   struct GetRaisesLink
   {
      ExceptionDef get_exception;
      AttributeDef get_attribute;
   };
   typedef sequence<GetRaisesLink> GetRaisesLinkSet;

   interface GetRaises : Reflective::RefAssociation
   {
      GetRaisesLinkSet all_get_raises_links();
      boolean exists (
         in ExceptionDef get_exception,
         in AttributeDef get_attribute);
      AttributeDefSet with_get_exception (
         in ExceptionDef get_exception);
      ExceptionDefSet with_get_attribute (
         in AttributeDef get_attribute);
      void add (
         in ExceptionDef get_exception,
         in AttributeDef get_attribute)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_get_exception (
C-484 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



         in ExceptionDef get_exception,
         in AttributeDef get_attribute,
         in ExceptionDef new_get_exception)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_get_attribute (
         in ExceptionDef get_exception,
         in AttributeDef get_attribute,
         in AttributeDef new_get_attribute)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in ExceptionDef get_exception,
         in AttributeDef get_attribute)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface GetRaises

   struct ContainsLink
   {
      Container defined_in;
      Contained contents;
   };
   typedef sequence<ContainsLink> ContainsLinkSet;

   interface Contains : Reflective::RefAssociation
   {
      ContainsLinkSet all_contains_links();
      boolean exists (
         in Container defined_in,
         in Contained contents);
      ContainedSet with_defined_in (
         in Container defined_in);
      Container with_contents (
         in Contained contents);
      void add (
         in Container defined_in,
         in Contained contents)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_defined_in (
         in Container defined_in,
         in Contained contents,
         in Container new_defined_in)
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-485



         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_contents (
         in Container defined_in,
         in Contained contents,
         in Contained new_contents)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in Container defined_in,
         in Contained contents)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface Contains

   interface BaseIDLPackageFactory
   {
      BaseIDLPackage create_base_idl_package ()
         raises (Reflective::SemanticError);
   };

   interface BaseIDLPackage : Reflective::RefPackage
   {
      readonly attribute ParameterDefClass parameter_def_class_ref;
      readonly attribute ConstantDefClass constant_def_class_ref;
      readonly attribute TypedClass typed_class_ref;
      readonly attribute ModuleDefClass module_def_class_ref;
      readonly attribute TypedefDefClass typedef_def_class_ref;
      readonly attribute InterfaceDefClass interface_def_class_ref;
      readonly attribute FieldClass field_class_ref;
      readonly attribute StructDefClass struct_def_class_ref;
      readonly attribute UnionDefClass union_def_class_ref;
      readonly attribute EnumDefClass enum_def_class_ref;
      readonly attribute AliasDefClass alias_def_class_ref;
      readonly attribute IDLTypeClass idltype_class_ref;
      readonly attribute StringDefClass string_def_class_ref;
      readonly attribute WstringDefClass wstring_def_class_ref;
      readonly attribute FixedDefClass fixed_def_class_ref;
      readonly attribute SequenceDefClass sequence_def_class_ref;
      readonly attribute ArrayDefClass array_def_class_ref;
      readonly attribute PrimitiveDefClass primitive_def_class_ref;
      readonly attribute UnionFieldClass union_field_class_ref;
      readonly attribute ContainerClass container_class_ref;
      readonly attribute ValueMemberDefClass value_member_def_class_ref;
      readonly attribute ValueDefClass value_def_class_ref;
C-486 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



      readonly attribute ValueBoxDefClass value_box_def_class_ref;
      readonly attribute OperationDefClass operation_def_class_ref;
      readonly attribute ExceptionDefClass exception_def_class_ref;
      readonly attribute ContainedClass contained_class_ref;
      readonly attribute AttributeDefClass attribute_def_class_ref;
      readonly attribute InterfaceDerivedFrom interface_derived_from_ref;
      readonly attribute DiscriminatedBy discriminated_by_ref;
      readonly attribute TypedBy typed_by_ref;
      readonly attribute Supports supports_ref;
      readonly attribute ValueDerivedFrom value_derived_from_ref;
      readonly attribute AbstractDerivedFrom abstract_derived_from_ref;
      readonly attribute SetRaises set_raises_ref;
      readonly attribute CanRaise can_raise_ref;
      readonly attribute GetRaises get_raises_ref;
      readonly attribute Contains contains_ref;
   };
};

module ComponentIDL
{

   interface ComponentDefClass;
   interface ComponentDef;
   typedef sequence<ComponentDef> ComponentDefSet;
   typedef sequence<ComponentDef> ComponentDefUList;
   interface ProvidesDefClass;
   interface ProvidesDef;
   typedef sequence<ProvidesDef> ProvidesDefSet;
   typedef sequence<ProvidesDef> ProvidesDefUList;
   interface HomeDefClass;
   interface HomeDef;
   typedef sequence<HomeDef> HomeDefSet;
   typedef sequence<HomeDef> HomeDefUList;
   interface FactoryDefClass;
   interface FactoryDef;
   typedef sequence<FactoryDef> FactoryDefUList;
   interface FinderDefClass;
   interface FinderDef;
   typedef sequence<FinderDef> FinderDefUList;
   interface EmitsDefClass;
   interface EmitsDef;
   typedef sequence<EmitsDef> EmitsDefSet;
   typedef sequence<EmitsDef> EmitsDefUList;
   interface ConsumesDefClass;
   interface ConsumesDef;
   typedef sequence<ConsumesDef> ConsumesDefSet;
   typedef sequence<ConsumesDef> ConsumesDefUList;
   interface PrimaryKeyDefClass;
   interface PrimaryKeyDef;
   typedef sequence<PrimaryKeyDef> PrimaryKeyDefSet;
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-487



   typedef sequence<PrimaryKeyDef> PrimaryKeyDefUList;
   interface UsesDefClass;
   interface UsesDef;
   typedef sequence<UsesDef> UsesDefSet;
   typedef sequence<UsesDef> UsesDefUList;
   interface PublishesDefClass;
   interface PublishesDef;
   typedef sequence<PublishesDef> PublishesDefSet;
   typedef sequence<PublishesDef> PublishesDefUList;
   interface ComponentIDLPackage;

   interface ComponentDefClass : BaseIDL::InterfaceDefClass
   {
      readonly attribute ComponentDefUList all_of_kind_component_def;
      readonly attribute ComponentDefUList all_of_type_component_def;
      ComponentDef create_component_def ()
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ComponentDef : ComponentDefClass, BaseIDL::InterfaceDef
   {
      BaseIDL::InterfaceDef supports ()
         raises (
            Reflective::NotSet,
            Reflective::SemanticError);
      void set_supports (in BaseIDL::InterfaceDef new_value)
         raises (Reflective::SemanticError);
      void unset_supports ()
         raises (Reflective::SemanticError);
   }; // end of interface ComponentDef

   interface ProvidesDefClass : BaseIDL::ContainedClass
   {
      readonly attribute ProvidesDefUList all_of_kind_provides_def;
      readonly attribute ProvidesDefUList all_of_type_provides_def;
      ProvidesDef create_provides_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ProvidesDef : ProvidesDefClass, BaseIDL::Contained
   {
      BaseIDL::InterfaceDef uml_interface ()
         raises (Reflective::SemanticError);
C-488 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



      void set_uml_interface (in BaseIDL::InterfaceDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ProvidesDef

   interface HomeDefClass : BaseIDL::InterfaceDefClass
   {
      readonly attribute HomeDefUList all_of_kind_home_def;
      readonly attribute HomeDefUList all_of_type_home_def;
      HomeDef create_home_def ()
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface HomeDef : HomeDefClass, BaseIDL::InterfaceDef
   {
      ComponentDef manages ()
         raises (Reflective::SemanticError);
      void set_manages (in ComponentDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface HomeDef

   interface FactoryDefClass : BaseIDL::OperationDefClass
   {
      readonly attribute FactoryDefUList all_of_kind_factory_def;
      readonly attribute FactoryDefUList all_of_type_factory_def;
      FactoryDef create_factory_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface FactoryDef : FactoryDefClass, BaseIDL::OperationDef
   {
   }; // end of interface FactoryDef

   interface FinderDefClass : BaseIDL::OperationDefClass
   {
      readonly attribute FinderDefUList all_of_kind_finder_def;
      readonly attribute FinderDefUList all_of_type_finder_def;
      FinderDef create_finder_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-489



            Reflective::ConstraintError);
   };

   interface FinderDef : FinderDefClass, BaseIDL::OperationDef
   {
   }; // end of interface FinderDef

   interface EmitsDefClass : BaseIDL::ContainedClass
   {
      readonly attribute EmitsDefUList all_of_kind_emits_def;
      readonly attribute EmitsDefUList all_of_type_emits_def;
      EmitsDef create_emits_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface EmitsDef : EmitsDefClass, BaseIDL::Contained
   {
      BaseIDL::ValueDef event ()
         raises (Reflective::SemanticError);
      void set_event (in BaseIDL::ValueDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface EmitsDef

   interface ConsumesDefClass : BaseIDL::ContainedClass
   {
      readonly attribute ConsumesDefUList all_of_kind_consumes_def;
      readonly attribute ConsumesDefUList all_of_type_consumes_def;
      ConsumesDef create_consumes_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface ConsumesDef : ConsumesDefClass, BaseIDL::Contained
   {
      BaseIDL::ValueDef event ()
         raises (Reflective::SemanticError);
      void set_event (in BaseIDL::ValueDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface ConsumesDef
C-490 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   interface PrimaryKeyDefClass : BaseIDL::ContainedClass
   {
      readonly attribute PrimaryKeyDefUList all_of_kind_primary_key_def;
      readonly attribute PrimaryKeyDefUList all_of_type_primary_key_def;
      PrimaryKeyDef create_primary_key_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface PrimaryKeyDef : PrimaryKeyDefClass, BaseIDL::Contained
   {
      BaseIDL::ValueDef type ()
         raises (Reflective::SemanticError);
      void set_type (in BaseIDL::ValueDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface PrimaryKeyDef

   interface UsesDefClass : BaseIDL::ContainedClass
   {
      readonly attribute UsesDefUList all_of_kind_uses_def;
      readonly attribute UsesDefUList all_of_type_uses_def;
      UsesDef create_uses_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name,
         in boolean multiple)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface UsesDef : UsesDefClass, BaseIDL::Contained
   {
      boolean multiple ()
         raises (Reflective::SemanticError);
      void set_multiple (in boolean new_value)
         raises (Reflective::SemanticError);
      BaseIDL::InterfaceDef uml_interface ()
         raises (Reflective::SemanticError);
      void set_uml_interface (in BaseIDL::InterfaceDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface UsesDef

   interface PublishesDefClass : BaseIDL::ContainedClass
   {
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-491



      readonly attribute PublishesDefUList all_of_kind_publishes_def;
      readonly attribute PublishesDefUList all_of_type_publishes_def;
      PublishesDef create_publishes_def (
         in string identifier,
         in string repository_id,
         in string version,
         in string absolute_name)
         raises (
            Reflective::SemanticError,
            Reflective::ConstraintError);
   };

   interface PublishesDef : PublishesDefClass, BaseIDL::Contained
   {
      BaseIDL::ValueDef event ()
         raises (Reflective::SemanticError);
      void set_event (in BaseIDL::ValueDef new_value)
         raises (Reflective::SemanticError);
   }; // end of interface PublishesDef

   struct ProvidesInterfaceLink
   {
      BaseIDL::InterfaceDef uml_interface;
      ProvidesDef provides_def;
   };
   typedef sequence<ProvidesInterfaceLink> ProvidesInterfaceLinkSet;

   interface ProvidesInterface : Reflective::RefAssociation
   {
      ProvidesInterfaceLinkSet all_provides_interface_links();
      boolean exists (
         in BaseIDL::InterfaceDef uml_interface,
         in ProvidesDef provides_def);
      ProvidesDefSet with_uml_interface (
         in BaseIDL::InterfaceDef uml_interface);
      BaseIDL::InterfaceDef with_provides_def (
         in ProvidesDef provides_def);
      void add (
         in BaseIDL::InterfaceDef uml_interface,
         in ProvidesDef provides_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_uml_interface (
         in BaseIDL::InterfaceDef uml_interface,
         in ProvidesDef provides_def,
         in BaseIDL::InterfaceDef new_uml_interface)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
C-492 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



      void modify_provides_def (
         in BaseIDL::InterfaceDef uml_interface,
         in ProvidesDef provides_def,
         in ProvidesDef new_provides_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in BaseIDL::InterfaceDef uml_interface,
         in ProvidesDef provides_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface ProvidesInterface

   struct EmitsEventLink
   {
      BaseIDL::ValueDef event;
      EmitsDef emits_def;
   };
   typedef sequence<EmitsEventLink> EmitsEventLinkSet;

   interface EmitsEvent : Reflective::RefAssociation
   {
      EmitsEventLinkSet all_emits_event_links();
      boolean exists (
         in BaseIDL::ValueDef event,
         in EmitsDef emits_def);
      EmitsDefSet with_event (
         in BaseIDL::ValueDef event);
      BaseIDL::ValueDef with_emits_def (
         in EmitsDef emits_def);
      void add (
         in BaseIDL::ValueDef event,
         in EmitsDef emits_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_event (
         in BaseIDL::ValueDef event,
         in EmitsDef emits_def,
         in BaseIDL::ValueDef new_event)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_emits_def (
         in BaseIDL::ValueDef event,
         in EmitsDef emits_def,
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-493



         in EmitsDef new_emits_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in BaseIDL::ValueDef event,
         in EmitsDef emits_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface EmitsEvent

   struct ConsumesEventLink
   {
      BaseIDL::ValueDef event;
      ConsumesDef consumes_def;
   };
   typedef sequence<ConsumesEventLink> ConsumesEventLinkSet;

   interface ConsumesEvent : Reflective::RefAssociation
   {
      ConsumesEventLinkSet all_consumes_event_links();
      boolean exists (
         in BaseIDL::ValueDef event,
         in ConsumesDef consumes_def);
      ConsumesDefSet with_event (
         in BaseIDL::ValueDef event);
      BaseIDL::ValueDef with_consumes_def (
         in ConsumesDef consumes_def);
      void add (
         in BaseIDL::ValueDef event,
         in ConsumesDef consumes_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_event (
         in BaseIDL::ValueDef event,
         in ConsumesDef consumes_def,
         in BaseIDL::ValueDef new_event)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_consumes_def (
         in BaseIDL::ValueDef event,
         in ConsumesDef consumes_def,
         in ConsumesDef new_consumes_def)
         raises (
            Reflective::StructuralError,
C-494 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in BaseIDL::ValueDef event,
         in ConsumesDef consumes_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface ConsumesEvent

   struct UsesInterfaceLink
   {
      BaseIDL::InterfaceDef uml_interface;
      UsesDef uses_def;
   };
   typedef sequence<UsesInterfaceLink> UsesInterfaceLinkSet;

   interface UsesInterface : Reflective::RefAssociation
   {
      UsesInterfaceLinkSet all_uses_interface_links();
      boolean exists (
         in BaseIDL::InterfaceDef uml_interface,
         in UsesDef uses_def);
      UsesDefSet with_uml_interface (
         in BaseIDL::InterfaceDef uml_interface);
      BaseIDL::InterfaceDef with_uses_def (
         in UsesDef uses_def);
      void add (
         in BaseIDL::InterfaceDef uml_interface,
         in UsesDef uses_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_uml_interface (
         in BaseIDL::InterfaceDef uml_interface,
         in UsesDef uses_def,
         in BaseIDL::InterfaceDef new_uml_interface)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_uses_def (
         in BaseIDL::InterfaceDef uml_interface,
         in UsesDef uses_def,
         in UsesDef new_uses_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-495



         in BaseIDL::InterfaceDef uml_interface,
         in UsesDef uses_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface UsesInterface

   struct KeyTypeLink
   {
      BaseIDL::ValueDef type;
      PrimaryKeyDef key_def;
   };
   typedef sequence<KeyTypeLink> KeyTypeLinkSet;

   interface KeyType : Reflective::RefAssociation
   {
      KeyTypeLinkSet all_key_type_links();
      boolean exists (
         in BaseIDL::ValueDef type,
         in PrimaryKeyDef key_def);
      PrimaryKeyDefSet with_type (
         in BaseIDL::ValueDef type);
      BaseIDL::ValueDef with_key_def (
         in PrimaryKeyDef key_def);
      void add (
         in BaseIDL::ValueDef type,
         in PrimaryKeyDef key_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_type (
         in BaseIDL::ValueDef type,
         in PrimaryKeyDef key_def,
         in BaseIDL::ValueDef new_type)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_key_def (
         in BaseIDL::ValueDef type,
         in PrimaryKeyDef key_def,
         in PrimaryKeyDef new_key_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in BaseIDL::ValueDef type,
         in PrimaryKeyDef key_def)
         raises (
C-496 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface KeyType

   struct ComponentHomeLink
   {
      ComponentDef manages;
      HomeDef home;
   };
   typedef sequence<ComponentHomeLink> ComponentHomeLinkSet;

   interface ComponentHome : Reflective::RefAssociation
   {
      ComponentHomeLinkSet all_component_home_links();
      boolean exists (
         in ComponentDef manages,
         in HomeDef home);
      HomeDefSet with_manages (
         in ComponentDef manages);
      ComponentDef with_home (
         in HomeDef home);
      void add (
         in ComponentDef manages,
         in HomeDef home)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_manages (
         in ComponentDef manages,
         in HomeDef home,
         in ComponentDef new_manages)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_home (
         in ComponentDef manages,
         in HomeDef home,
         in HomeDef new_home)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in ComponentDef manages,
         in HomeDef home)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-497



   }; // end of interface ComponentHome

   struct ComponentSupportsLink
   {
      BaseIDL::InterfaceDef supports;
      ComponentDef components;
   };
   typedef sequence<ComponentSupportsLink> ComponentSupportsLinkSet;

   interface ComponentSupports : Reflective::RefAssociation
   {
      ComponentSupportsLinkSet all_component_supports_links();
      boolean exists (
         in BaseIDL::InterfaceDef supports,
         in ComponentDef components);
      ComponentDefSet with_supports (
         in BaseIDL::InterfaceDef supports);
      BaseIDL::InterfaceDef with_components (
         in ComponentDef components);
      void add (
         in BaseIDL::InterfaceDef supports,
         in ComponentDef components)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_supports (
         in BaseIDL::InterfaceDef supports,
         in ComponentDef components,
         in BaseIDL::InterfaceDef new_supports)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_components (
         in BaseIDL::InterfaceDef supports,
         in ComponentDef components,
         in ComponentDef new_components)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in BaseIDL::InterfaceDef supports,
         in ComponentDef components)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface ComponentSupports

   struct PublishesEventLink
C-498 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   {
      BaseIDL::ValueDef event;
      PublishesDef publishes_def;
   };
   typedef sequence<PublishesEventLink> PublishesEventLinkSet;

   interface PublishesEvent : Reflective::RefAssociation
   {
      PublishesEventLinkSet all_publishes_event_links();
      boolean exists (
         in BaseIDL::ValueDef event,
         in PublishesDef publishes_def);
      PublishesDefSet with_event (
         in BaseIDL::ValueDef event);
      BaseIDL::ValueDef with_publishes_def (
         in PublishesDef publishes_def);
      void add (
         in BaseIDL::ValueDef event,
         in PublishesDef publishes_def)
         raises (
            Reflective::StructuralError,
            Reflective::SemanticError);
      void modify_event (
         in BaseIDL::ValueDef event,
         in PublishesDef publishes_def,
         in BaseIDL::ValueDef new_event)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void modify_publishes_def (
         in BaseIDL::ValueDef event,
         in PublishesDef publishes_def,
         in PublishesDef new_publishes_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
      void remove (
         in BaseIDL::ValueDef event,
         in PublishesDef publishes_def)
         raises (
            Reflective::StructuralError,
            Reflective::NotFound,
            Reflective::SemanticError);
   }; // end of interface PublishesEvent

   interface ComponentIDLPackageFactory
   {
      ComponentIDLPackage create_component_idl_package ()
         raises (Reflective::SemanticError);
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-499



   };

   interface ComponentIDLPackage : Reflective::RefPackage
   {
      readonly attribute ComponentDefClass component_def_class_ref;
      readonly attribute ProvidesDefClass provides_def_class_ref;
      readonly attribute HomeDefClass home_def_class_ref;
      readonly attribute FactoryDefClass factory_def_class_ref;
      readonly attribute FinderDefClass finder_def_class_ref;
      readonly attribute EmitsDefClass emits_def_class_ref;
      readonly attribute ConsumesDefClass consumes_def_class_ref;
      readonly attribute PrimaryKeyDefClass primary_key_def_class_ref;
      readonly attribute UsesDefClass uses_def_class_ref;
      readonly attribute PublishesDefClass publishes_def_class_ref;
      readonly attribute ProvidesInterface provides_interface_ref;
      readonly attribute EmitsEvent emits_event_ref;
      readonly attribute ConsumesEvent consumes_event_ref;
      readonly attribute UsesInterface uses_interface_ref;
      readonly attribute KeyType key_type_ref;
      readonly attribute ComponentHome component_home_ref;
      readonly attribute ComponentSupports component_supports_ref;
      readonly attribute PublishesEvent publishes_event_ref;
   };
};
C-500 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



C.2 Packaging and Deployment Metamodel

C.2.1  XMI DTD

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI is the top-level XML element for XMI transfer text          -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI (XMI.header, XMI.content?, XMI.difference*,
               XMI.extensions*) >
<!ATTLIST XMI
            xmi.version CDATA #FIXED "1.0"
            timestamp CDATA #IMPLIED
            verified (true | false) #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.header contains documentation and identifies the model,     -->
<!-- metamodel, and metametamodel                                    -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,
                      XMI.metametamodel*) >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- documentation for transfer data                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |
                             XMI.longDescription | XMI.shortDescription |
                             XMI.exporter | XMI.exporterVersion |
                             XMI.notice)* >

<!ELEMENT XMI.owner ANY >

<!ELEMENT XMI.contact ANY >

<!ELEMENT XMI.longDescription ANY >

<!ELEMENT XMI.shortDescription ANY >

<!ELEMENT XMI.exporter ANY >

<!ELEMENT XMI.exporterVersion ANY >

<!ELEMENT XMI.exporterID ANY >

<!ELEMENT XMI.notice ANY >
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-501



<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.element.att defines the attributes that each XML element    -->
<!-- that corresponds to a metamodel class must have to conform to   -->
<!-- the XMI specification.                                          -->
<!-- _______________________________________________________________ -->

<!ENTITY % XMI.element.att
               'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid
                CDATA #IMPLIED ' >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.link.att defines the attributes that each XML element that  -->
<!-- corresponds to a metamodel class must have to enable it to      -->
<!-- function as a simple XLink as well as refer to model            -->
<!-- constructs within the same XMI file.                            -->
<!-- _______________________________________________________________ -->

<!ENTITY % XMI.link.att
               'xml:link CDATA #IMPLIED inline (true | false) #IMPLIED
                actuate (show | user) #IMPLIED href CDATA #IMPLIED role
                CDATA #IMPLIED title CDATA #IMPLIED show (embed | replace
                | new) #IMPLIED behavior CDATA #IMPLIED xmi.idref IDREF
                #IMPLIED xmi.uuidref CDATA #IMPLIED' >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.model identifies the model(s) being transferred             -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.model ANY >
<!ATTLIST XMI.model
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.metamodel identifies the metamodel(s) for the transferred   -->
<!-- data                                                            -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.metamodel ANY >
<!ATTLIST XMI.metamodel
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.metametamodel identifies the metametamodel(s) for the       -->
C-502 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- transferred data                                                -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.metametamodel ANY >
<!ATTLIST XMI.metametamodel
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.content is the actual data being transferred                -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.content ANY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.extensions contains data to transfer that does not conform  -->
<!-- to the metamodel(s) in the header                               -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.extensions ANY >
<!ATTLIST XMI.extensions
            xmi.extender CDATA #REQUIRED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- extension contains information related to a specific model      -->
<!-- construct that is not defined in the metamodel(s) in the header -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.extension ANY >
<!ATTLIST XMI.extension
            %XMI.element.att;
            %XMI.link.att;
            xmi.extender   CDATA #REQUIRED
            xmi.extenderID CDATA #REQUIRED
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.difference holds XML elements representing differences to a -->
<!-- base model                                                      -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |
                          XMI.replace)* >
<!ATTLIST XMI.difference
            %XMI.element.att;
            %XMI.link.att;
>

March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-503



<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.delete represents a deletion from a base model              -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.delete EMPTY >
<!ATTLIST XMI.delete
            %XMI.element.att;
            %XMI.link.att;
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.add represents an addition to a base model                  -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.add ANY >
<!ATTLIST XMI.add
            %XMI.element.att;
            %XMI.link.att;
            xmi.position CDATA "-1"
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.replace represents the replacement of a model construct     -->
<!-- with another model construct in a base model                    -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.replace ANY >
<!ATTLIST XMI.replace
            %XMI.element.att;
            %XMI.link.att;
            xmi.position CDATA "-1"
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.reference may be used to refer to data types not defined in -->
<!-- the metamodel                                                   -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.reference ANY >
<!ATTLIST XMI.reference
            %XMI.link.att;
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- This section contains the declaration of XML elements           -->
<!-- representing data types                                         -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.TypeDefinitions ANY >
C-504 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >
<!ATTLIST XMI.enum
            xmi.value CDATA #REQUIRED
>

<!ELEMENT XMI.any ANY >
<!ATTLIST XMI.any
            %XMI.link.att;
            xmi.type CDATA #IMPLIED
            xmi.name CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |
                             XMI.CorbaTcSequence | XMI.CorbaTcArray |
                             XMI.CorbaTcEnum | XMI.CorbaTcUnion |
                             XMI.CorbaTcExcept | XMI.CorbaTcString |
                             XMI.CorbaTcWstring | XMI.CorbaTcShort |
                             XMI.CorbaTcLong | XMI.CorbaTcUshort |
                             XMI.CorbaTcUlong | XMI.CorbaTcFloat |
                             XMI.CorbaTcDouble | XMI.CorbaTcBoolean |
                             XMI.CorbaTcChar | XMI.CorbaTcWchar |
                             XMI.CorbaTcOctet | XMI.CorbaTcAny |
                             XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |
                             XMI.CorbaTcNull | XMI.CorbaTcVoid |
                             XMI.CorbaTcLongLong |
                             XMI.CorbaTcLongDouble) >
<!ATTLIST XMI.CorbaTypeCode
            %XMI.element.att;
>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcAlias
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcStruct
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcField
            xmi.tcName CDATA #REQUIRED
>

March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-505



<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |
                               XMI.CorbaRecursiveType) >
<!ATTLIST XMI.CorbaTcSequence
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaRecursiveType EMPTY >
<!ATTLIST XMI.CorbaRecursiveType
            xmi.offset CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcArray
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcObjRef EMPTY >
<!ATTLIST XMI.CorbaTcObjRef
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >
<!ATTLIST XMI.CorbaTcEnum
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >
<!ATTLIST XMI.CorbaTcEnumLabel
            xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >
<!ATTLIST XMI.CorbaTcUnionMbr
            xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*) >
<!ATTLIST XMI.CorbaTcUnion
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcExcept
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcString EMPTY >
<!ATTLIST XMI.CorbaTcString
            xmi.tcLength CDATA #REQUIRED
>

C-506 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT XMI.CorbaTcWstring EMPTY >
<!ATTLIST XMI.CorbaTcWstring
            xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcFixed EMPTY >
<!ATTLIST XMI.CorbaTcFixed
            xmi.tcDigits CDATA #REQUIRED
            xmi.tcScale  CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >

<!ELEMENT XMI.CorbaTcWchar EMPTY >

<!ELEMENT XMI.CorbaTcOctet EMPTY >

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE:                                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Softpkg.ThreadSafetyKind
           ' XMI.value ( none|class|instance) #REQUIRED'>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-507



<!ENTITY % Softpkg.ActionKind
           ' XMI.value ( assert|install) #REQUIRED'>

<!ENTITY % Component.ComponentKind
           ' XMI.value ( service|session|process|entity|unclassified) 
#REQUIRED'>

<!ENTITY % Component.TransactionSupportKind
           ' XMI.value ( 
notSupported|required|supports|requiresNew|mandatory|never) #REQUIRED'>

<!ENTITY % Component.SecurityCredentialKind
           ' XMI.value ( client|system|specified) #REQUIRED'>

<!ENTITY % Component.ContainerThreadingKind
           ' XMI.value ( serialize|multithread) #REQUIRED'>

<!ENTITY % Component.EventPolicyKind
           ' XMI.value ( normal|default|transaction) #REQUIRED'>

<!ENTITY % Component.LifeTimeKind
           ' XMI.value ( process|method|transaction) #REQUIRED'>

<!ENTITY % Component.InterfacePortKind
           ' XMI.value ( provides|uses) #REQUIRED'>

<!ENTITY % Component.EventPortKind
           ' XMI.value ( emits|publishes|consumes) #REQUIRED'>

<!ENTITY % Component.PersistenceResponsibilityKind
           ' XMI.value ( container|component) #REQUIRED'>

<!ENTITY % Component.POAIdAssignmentPolicy
           ' XMI.value ( USER_ID|SYSTEM_ID) #REQUIRED'>

<!ENTITY % Component.POAIdUniquenessPolicy
           ' XMI.value ( UNIQUE_ID|MULTIPLE_ID) #REQUIRED'>

<!ENTITY % Component.POAImplicitActivationPolicy
           ' XMI.value ( IMPLICIT_ACTIVATION|NON_IMPLICIT_ACTIVATION) 
#REQUIRED'>

<!ENTITY % Component.POALifeSpanPolicy
           ' XMI.value ( TRANSIENT|PERSISTENT) #REQUIRED'>

<!ENTITY % Component.POARequestProcessingPolicy
           ' XMI.value ( 
USE_ACTIVE_OBJECT_MAP_ONLY|USE_DEFAULT_SERVANT|USE_SERVANT_MANAGER) 
#REQUIRED'>

<!ENTITY % Component.POAServantRetentionPolicy
           ' XMI.value ( RETAIN|NON_RETAIN) #REQUIRED'>

<!ENTITY % Component.POAThreadPolicy
           ' XMI.value ( ORB_CTRL_MODEL|SINGLE_THREAD_SAFE) #REQUIRED'>
C-508 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ENTITY % PropertySet.SimpleType
           ' XMI.value ( 
boolean|char|double|float|short|long|objectReference|octet|short|string|u
long|ushort) #REQUIRED'>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: PDGeneral                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!-- *****    PDGeneral.FileInArchive_Link   *******  -->

<!ELEMENT PDGeneral.FileInArchive.link ( PDGeneral.Link)? >

<!-- *****    PDGeneral.Struct_Simple   *******  -->

<!ELEMENT PDGeneral.Struct_Simple.struct (XMI.reference )  >

<!ELEMENT PDGeneral.Struct_Simple.simple (XMI.reference )* >

<!-- *****    PDGeneral.Struct_Sequence   *******  -->

<!ELEMENT PDGeneral.Struct_Sequence.struct (XMI.reference )  >

<!ELEMENT PDGeneral.Struct_Sequence.sequence (XMI.reference )* >

<!-- *****    PDGeneral.Struct_Struct   *******  -->

<!ELEMENT PDGeneral.Struct_Struct.containedIn (XMI.reference )  >

<!ELEMENT PDGeneral.Struct_Struct.struct (XMI.reference )* >

<!-- *****    PDGeneral.Sequence_Struct   *******  -->

<!ELEMENT PDGeneral.Sequence_Struct.sequence (XMI.reference )  >

<!ELEMENT PDGeneral.Sequence_Struct.struct (XMI.reference )* >

<!-- *****    PDGeneral.Sequence_Simple   *******  -->

<!ELEMENT PDGeneral.Sequence_Simple.sequence (XMI.reference )  >

<!ELEMENT PDGeneral.Sequence_Simple.simple (XMI.reference )* >

<!-- *****    PDGeneral.Seqence_Sequence   *******  -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-509



<!ELEMENT PDGeneral.Seqence_Sequence.containedIn (XMI.reference )  >

<!ELEMENT PDGeneral.Seqence_Sequence.simple (XMI.reference )* >

<!-- *****    PDGeneral.Properties_Sequence   *******  -->

<!ELEMENT PDGeneral.Properties_Sequence.properties (XMI.reference )  >

<!ELEMENT PDGeneral.Properties_Sequence.sequence (XMI.reference )* >

<!-- *****    PDGeneral.Properties_Struct   *******  -->

<!ELEMENT PDGeneral.Properties_Struct.properties (XMI.reference )  >

<!ELEMENT PDGeneral.Properties_Struct.struct (XMI.reference )* >

<!-- *****    PDGeneral.Properties_Simple   *******  -->

<!ELEMENT PDGeneral.Properties_Simple.properties (XMI.reference )  >

<!ELEMENT PDGeneral.Properties_Simple.simple (XMI.reference )* >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PDGeneral.CodeBase                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PDGeneral.CodeBase.filename (#PCDATA|XMI.reference)*>

<!ELEMENT PDGeneral.CodeBase.href (#PCDATA|XMI.reference)*>

<!ENTITY % PDGeneral.CodeBaseProperties '(PDGeneral.CodeBase.filename ?
   ,PDGeneral.CodeBase.href  )' > 

<!ELEMENT PDGeneral.CodeBase ( %PDGeneral.CodeBaseProperties; )?>

<!ATTLIST PDGeneral.CodeBase %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PDGeneral.Extension                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PDGeneral.Extension.class (#PCDATA|XMI.reference)*>

<!ELEMENT PDGeneral.Extension.origin (#PCDATA|XMI.reference)*>
C-510 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT PDGeneral.Extension.id (#PCDATA|XMI.reference)*>

<!ELEMENT PDGeneral.Extension.extra (#PCDATA|XMI.reference)*>

<!ELEMENT PDGeneral.Extension.htmlForm (#PCDATA|XMI.reference)*>

<!ENTITY % PDGeneral.ExtensionProperties '(PDGeneral.Extension.class  
   ,PDGeneral.Extension.origin  
   ,PDGeneral.Extension.id ?
   ,PDGeneral.Extension.extra ?
   ,PDGeneral.Extension.htmlForm ?)' > 

<!ELEMENT PDGeneral.Extension ( %PDGeneral.ExtensionProperties; )?>

<!ATTLIST PDGeneral.Extension %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PDGeneral.FileInArchive               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PDGeneral.FileInArchive.name (#PCDATA|XMI.reference)*>

<!ENTITY % PDGeneral.FileInArchiveProperties 
'(PDGeneral.FileInArchive.name  )' > 

<!ENTITY % PDGeneral.FileInArchiveCompositions 
'(PDGeneral.FileInArchive.link?)' > 

<!ELEMENT PDGeneral.FileInArchive ( %PDGeneral.FileInArchiveProperties;
       ,  %PDGeneral.FileInArchiveCompositions; )?>

<!ATTLIST PDGeneral.FileInArchive %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PDGeneral.Link                        -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PDGeneral.Link.href (#PCDATA|XMI.reference)*>

<!ENTITY % PDGeneral.LinkProperties '(PDGeneral.Link.href  )' > 

<!ELEMENT PDGeneral.Link ( %PDGeneral.LinkProperties; )?>

<!ATTLIST PDGeneral.Link %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PDGeneral.LocalFile                   -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-511



<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PDGeneral.LocalFile.name (#PCDATA|XMI.reference)*>

<!ENTITY % PDGeneral.LocalFileProperties '(PDGeneral.LocalFile.name  )' > 

<!ELEMENT PDGeneral.LocalFile ( %PDGeneral.LocalFileProperties; )?>

<!ATTLIST PDGeneral.LocalFile %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PDGeneral.Repository                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PDGeneral.Repository.type (#PCDATA|XMI.reference)*>

<!ELEMENT PDGeneral.Repository.href (#PCDATA|XMI.reference)*>

<!ELEMENT PDGeneral.Repository.objectReference (#PCDATA|XMI.reference)*>

<!ENTITY % PDGeneral.RepositoryProperties '(PDGeneral.Repository.type ?
   ,PDGeneral.Repository.href ?
   ,PDGeneral.Repository.objectReference ?)' > 

<!ELEMENT PDGeneral.Repository ( %PDGeneral.RepositoryProperties; )?>

<!ATTLIST PDGeneral.Repository %XMI.element.att; %XMI.link.att; >

<!ELEMENT PDGeneral ((PDGeneral.CodeBase
  |PDGeneral.Extension
  |PDGeneral.FileInArchive
  |PDGeneral.Link
  |PDGeneral.LocalFile
  |PDGeneral.Repository)*)>
<!ATTLIST PDGeneral %XMI.element.att; %XMI.link.att;>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: Softpkg                             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!-- *****    Softpkg.Softpkg_Implementation   *******  -->

<!ELEMENT Softpkg.Softpkg.implementation ( Softpkg.Implementation)* >

<!-- *****    Softpkg.Implementation_OS   *******  -->
C-512 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT Softpkg.Implementation.OS ( Softpkg.OS)  >

<!-- *****    Softpkg.Implementation_ProgrammingLanguage   *******  -->

<!ELEMENT Softpkg.Implementation.programmingLanguage ( 
Softpkg.ProgrammingLanguage)  >

<!-- *****    Softpkg.Softpkg_IDL   *******  -->

<!ELEMENT Softpkg.Softpkg.IDL ( Softpkg.IDL)* >

<!-- *****    Softpkg.Softpkg_PropertyFile   *******  -->

<!ELEMENT Softpkg.Softpkg.propertyFile ( Softpkg.PropertyFile)* >

<!-- *****    Softpkg.Softpkg_Dependency   *******  -->

<!ELEMENT Softpkg.Softpkg.dependency ( Softpkg.Dependency)* >

<!-- *****    Softpkg.Softpkg_Descriptor   *******  -->

<!ELEMENT Softpkg.Softpkg.descriptor ( Softpkg.Descriptor)* >

<!-- *****    Softpkg.Softpkg_Extension   *******  -->

<!ELEMENT Softpkg.Softpkg.extension ( PDGeneral.Extension)* >

<!-- *****    Softpkg.Softpkg_Author   *******  -->

<!ELEMENT Softpkg.Softpkg.author ( Softpkg.Author)* >

<!-- *****    Softpkg.IDL_Link   *******  -->

<!ELEMENT Softpkg.IDL.link ( PDGeneral.Link)? >

<!-- *****    Softpkg.IDL_FileInArchive   *******  -->

<!ELEMENT Softpkg.IDL.fileInArchive ( PDGeneral.FileInArchive)? >

<!-- *****    Softpkg.IDL_Repository   *******  -->

<!ELEMENT Softpkg.IDL.repository ( PDGeneral.Repository)? >
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-513



<!-- *****    Softpkg.PropertyFile_Link   *******  -->

<!ELEMENT Softpkg.PropertyFile.link ( PDGeneral.Link)? >

<!-- *****    Softpkg.PropertyFile_FileInArchive   *******  -->

<!ELEMENT Softpkg.PropertyFile.fileInArchive ( PDGeneral.FileInArchive)? 
>

<!-- *****    Softpkg.Descriptor_Link   *******  -->

<!ELEMENT Softpkg.Descriptor.link ( PDGeneral.Link)? >

<!-- *****    Softpkg.Descriptor_FileInArchive   *******  -->

<!ELEMENT Softpkg.Descriptor.fileInArchive ( PDGeneral.FileInArchive)? >

<!-- *****    Softpkg.Dependency_CodeBase   *******  -->

<!ELEMENT Softpkg.Dependency.codeBase ( PDGeneral.CodeBase)* >

<!-- *****    Softpkg.Dependency_FileInArchive   *******  -->

<!ELEMENT Softpkg.Dependency.fileInArchive ( PDGeneral.FileInArchive)* >

<!-- *****    Softpkg.Dependency_LocalFile   *******  -->

<!ELEMENT Softpkg.Dependency.localFile ( PDGeneral.LocalFile)* >

<!-- *****    Softpkg.Implementation_Code   *******  -->

<!ELEMENT Softpkg.Implementation.code ( Softpkg.Code)? >

<!-- *****    Softpkg.Code_CodeBase   *******  -->

<!ELEMENT Softpkg.Code.codeBase ( PDGeneral.CodeBase)? >

<!-- *****    Softpkg.Code_FileInArchive   *******  -->

<!ELEMENT Softpkg.Code.fileInArchive ( PDGeneral.FileInArchive)? >

<!-- *****    Softpkg.Code_Link   *******  -->

<!ELEMENT Softpkg.Code.link ( PDGeneral.Link)? >
C-514 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- *****    Softpkg.Code_EntryPoint   *******  -->

<!ELEMENT Softpkg.Code.entryPoint ( Softpkg.EntryPoint)? >

<!-- *****    Softpkg.Implementation_Compiler   *******  -->

<!ELEMENT Softpkg.Implementation.compiler ( Softpkg.Compiler)? >

<!-- *****    Softpkg.Implementation_Dependency   *******  -->

<!ELEMENT Softpkg.Implementation.dependency ( Softpkg.Dependency)* >

<!-- *****    Softpkg.Implementation_Extension   *******  -->

<!ELEMENT Softpkg.Implementation.extension ( PDGeneral.Extension)* >

<!-- *****    Softpkg.Implementation_Descriptor   *******  -->

<!ELEMENT Softpkg.Implementation.descriptor ( Softpkg.Descriptor)* >

<!-- *****    Softpkg.Implementation_PropertyFile   *******  -->

<!ELEMENT Softpkg.Implementation.propertyFile ( Softpkg.PropertyFile)* >

<!-- *****    Softpkg.Implementation_RunTime   *******  -->

<!ELEMENT Softpkg.Implementation.runTime ( Softpkg.RunTime)* >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Softpkg                       -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Softpkg.name (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Softpkg.version (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Softpkg.title (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Softpkg.pkgtype (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Softpkg.abstract (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Softpkg.licenseURL (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.SoftpkgProperties '(Softpkg.Softpkg.name  
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-515



   ,Softpkg.Softpkg.version ?
   ,Softpkg.Softpkg.title ?
   ,Softpkg.Softpkg.pkgtype ?
   ,Softpkg.Softpkg.abstract ?
   ,Softpkg.Softpkg.licenseURL ?)' > 

<!ENTITY % Softpkg.SoftpkgCompositions '(Softpkg.Softpkg.implementation*
   ,Softpkg.Softpkg.IDL*
   ,Softpkg.Softpkg.propertyFile*
   ,Softpkg.Softpkg.dependency*
   ,Softpkg.Softpkg.descriptor*
   ,Softpkg.Softpkg.extension*
   ,Softpkg.Softpkg.author*)' > 

<!ELEMENT Softpkg.Softpkg ( %Softpkg.SoftpkgProperties;
       ,  %Softpkg.SoftpkgCompositions; )?>

<!ATTLIST Softpkg.Softpkg %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Implementation                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Implementation.UUID (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Implementation.type (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Implementation.abstract (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Implementation.processor (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Implementation.threadSafety EMPTY>
<!ATTLIST Softpkg.Implementation.threadSafety %Softpkg.ThreadSafetyKind;>

<!ELEMENT Softpkg.Implementation.humanLanguage (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.ImplementationProperties '(Softpkg.Implementation.UUID  
   ,Softpkg.Implementation.type ?
   ,Softpkg.Implementation.abstract ?
   ,Softpkg.Implementation.processor *
   ,Softpkg.Implementation.threadSafety  
   ,Softpkg.Implementation.humanLanguage ?)' > 

<!ENTITY % Softpkg.ImplementationCompositions '(Softpkg.Implementation.OS 
   ,Softpkg.Implementation.programmingLanguage 
   ,Softpkg.Implementation.code?
   ,Softpkg.Implementation.compiler?
   ,Softpkg.Implementation.dependency*
   ,Softpkg.Implementation.extension*
   ,Softpkg.Implementation.descriptor*
   ,Softpkg.Implementation.propertyFile*
   ,Softpkg.Implementation.runTime*)' > 
C-516 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT Softpkg.Implementation ( %Softpkg.ImplementationProperties;
       ,  %Softpkg.ImplementationCompositions; )?>

<!ATTLIST Softpkg.Implementation %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.IDL                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.IDL.id (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.IDLProperties '(Softpkg.IDL.id  )' > 

<!ENTITY % Softpkg.IDLCompositions '(Softpkg.IDL.link?
   ,Softpkg.IDL.fileInArchive?
   ,Softpkg.IDL.repository?)' > 

<!ELEMENT Softpkg.IDL ( %Softpkg.IDLProperties;
       ,  %Softpkg.IDLCompositions; )?>

<!ATTLIST Softpkg.IDL %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.PropertyFile                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.PropertyFile.implementation (Softpkg.Implementation) >

<!ENTITY % Softpkg.PropertyFileAssociations 
'(Softpkg.PropertyFile.implementation?)' > 

<!ENTITY % Softpkg.PropertyFileCompositions '(Softpkg.PropertyFile.link?
   ,Softpkg.PropertyFile.fileInArchive?)' > 

<!ELEMENT Softpkg.PropertyFile ((XMI.extension* ,   
%Softpkg.PropertyFileAssociations; )
       ,  %Softpkg.PropertyFileCompositions; )?>

<!ATTLIST Softpkg.PropertyFile %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Dependency                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Dependency.name (#PCDATA|XMI.reference)*>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-517



<!ELEMENT Softpkg.Dependency.type (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Dependency.version (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Dependency.action EMPTY>
<!ATTLIST Softpkg.Dependency.action %Softpkg.ActionKind;>

<!ELEMENT Softpkg.Dependency.package (Softpkg.Softpkg)*>

<!ENTITY % Softpkg.DependencyProperties '(Softpkg.Dependency.name ?
   ,Softpkg.Dependency.type ?
   ,Softpkg.Dependency.version ?
   ,Softpkg.Dependency.action  )' > 

<!ENTITY % Softpkg.DependencyAssociations '(Softpkg.Dependency.package*)' 
> 

<!ENTITY % Softpkg.DependencyCompositions '(Softpkg.Dependency.codeBase*
   ,Softpkg.Dependency.fileInArchive*
   ,Softpkg.Dependency.localFile*)' > 

<!ELEMENT Softpkg.Dependency ( %Softpkg.DependencyProperties;
       ,(XMI.extension* ,   %Softpkg.DependencyAssociations; )
       ,  %Softpkg.DependencyCompositions; )?>

<!ATTLIST Softpkg.Dependency %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Descriptor                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Descriptor.type (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.DescriptorProperties '(Softpkg.Descriptor.type  )' > 

<!ENTITY % Softpkg.DescriptorCompositions '(Softpkg.Descriptor.link?
   ,Softpkg.Descriptor.fileInArchive?)' > 

<!ELEMENT Softpkg.Descriptor ( %Softpkg.DescriptorProperties;
       ,  %Softpkg.DescriptorCompositions; )?>

<!ATTLIST Softpkg.Descriptor %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Author                        -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Author.name (#PCDATA|XMI.reference)*>
C-518 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT Softpkg.Author.Company (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Author.WebPage (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.AuthorProperties '(Softpkg.Author.name ?
   ,Softpkg.Author.Company ?
   ,Softpkg.Author.WebPage ?)' > 

<!ELEMENT Softpkg.Author ( %Softpkg.AuthorProperties; )?>

<!ATTLIST Softpkg.Author %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.OS                            -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.OS.name (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.OS.version (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.OSProperties '(Softpkg.OS.name  
   ,Softpkg.OS.version ?)' > 

<!ELEMENT Softpkg.OS ( %Softpkg.OSProperties; )?>

<!ATTLIST Softpkg.OS %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.ProgrammingLanguage           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.ProgrammingLanguage.name (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.ProgrammingLanguage.version (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.ProgrammingLanguageProperties 
'(Softpkg.ProgrammingLanguage.name  
   ,Softpkg.ProgrammingLanguage.version ?)' > 

<!ELEMENT Softpkg.ProgrammingLanguage ( 
%Softpkg.ProgrammingLanguageProperties; )?>

<!ATTLIST Softpkg.ProgrammingLanguage %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Code                          -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-519



<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Code.type (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.CodeProperties '(Softpkg.Code.type ?)' > 

<!ENTITY % Softpkg.CodeCompositions '(Softpkg.Code.codeBase?
   ,Softpkg.Code.fileInArchive?
   ,Softpkg.Code.link?
   ,Softpkg.Code.entryPoint?)' > 

<!ELEMENT Softpkg.Code ( %Softpkg.CodeProperties;
       ,  %Softpkg.CodeCompositions; )?>

<!ATTLIST Softpkg.Code %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.Compiler                      -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.Compiler.name (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.Compiler.version (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.CompilerProperties '(Softpkg.Compiler.name  
   ,Softpkg.Compiler.version ?)' > 

<!ELEMENT Softpkg.Compiler ( %Softpkg.CompilerProperties; )?>

<!ATTLIST Softpkg.Compiler %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.RunTime                       -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.RunTime.name (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.RunTime.version (#PCDATA|XMI.reference)*>

<!ELEMENT Softpkg.RunTime.impelementation (Softpkg.Implementation) >

<!ENTITY % Softpkg.RunTimeProperties '(Softpkg.RunTime.name  
   ,Softpkg.RunTime.version  )' > 

<!ENTITY % Softpkg.RunTimeAssociations 
'(Softpkg.RunTime.impelementation?)' > 

<!ELEMENT Softpkg.RunTime ( %Softpkg.RunTimeProperties;
C-520 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



       ,(XMI.extension* ,   %Softpkg.RunTimeAssociations; ) )?>

<!ATTLIST Softpkg.RunTime %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Softpkg.EntryPoint                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Softpkg.EntryPoint.name (#PCDATA|XMI.reference)*>

<!ENTITY % Softpkg.EntryPointProperties '(Softpkg.EntryPoint.name  )' > 

<!ELEMENT Softpkg.EntryPoint ( %Softpkg.EntryPointProperties; )?>

<!ATTLIST Softpkg.EntryPoint %XMI.element.att; %XMI.link.att; >

<!ELEMENT Softpkg ((Softpkg.Softpkg
  |Softpkg.Implementation
  |Softpkg.IDL
  |Softpkg.PropertyFile
  |Softpkg.Dependency
  |Softpkg.Descriptor
  |Softpkg.Author
  |Softpkg.OS
  |Softpkg.ProgrammingLanguage
  |Softpkg.Code
  |Softpkg.Compiler
  |Softpkg.RunTime
  |Softpkg.EntryPoint)*)>
<!ATTLIST Softpkg %XMI.element.att; %XMI.link.att;>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: Component                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!-- *****    Component.Container_EventPolicy   *******  -->

<!ELEMENT Component.Component.eventPolicy ( Component.EventPolicy)? >

<!-- *****    Component.Container_Extension   *******  -->

<!ELEMENT Component.Component.extension ( PDGeneral.Extension)* >

<!-- *****    Component.Container_Servant   *******  -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-521



<!ELEMENT Component.Component.servant ( Component.Servant)? >

<!-- *****    Component.Container_SecuritySpecifier   *******  -->

<!ELEMENT Component.Component.securitySpecifier ( 
Component.SecuritySpecifier)? >

<!-- *****    Component.Component_ExtendedPOAPolicy   *******  -->

<!ELEMENT Component.Component.extPOAPolicy ( 
Component.ExtendedPOAPolicy)? >

<!-- *****    Component.Component_Interface   *******  -->

<!ELEMENT Component.Component.supports ( Component.Interface)* >

<!-- *****    Component.Component_Port   *******  -->

<!ELEMENT Component.Component.port ( Component.Port
  |Component.InterfacePort
  |Component.EventPort)+ >

<!-- *****    Component.EventPort_ValueType   *******  -->

<!ELEMENT Component.EventPort.valueType ( Component.ValueType)* >

<!-- *****    Component.InterfacePort_Interface   *******  -->

<!ELEMENT Component.InterfacePort.interface ( Component.Interface)* >

<!-- *****    Component.Component_Persistence   *******  -->

<!ELEMENT Component.Component.persistence ( Component.Persistence)? >

<!-- *****    Component.Component_POAPolicy   *******  -->

<!ELEMENT Component.Component.poaPolicy ( Component.POAPolicy)? >

<!-- *****    Component.Component_PersistentStoreInfo   *******  -->

<!ELEMENT Component.Component.persistentStoreInfo ( 
Component.PersistentStoreInfo)? >

<!-- *****    Component.Component_Repository   *******  -->
C-522 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT Component.Component.repository ( PDGeneral.Repository)? >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.Component                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.Component.name (#PCDATA|XMI.reference)*>

<!ELEMENT Component.Component.repositoryId (#PCDATA|XMI.reference)*>

<!ELEMENT Component.Component.corbaVersion (#PCDATA|XMI.reference)*>

<!ELEMENT Component.Component.componentKind EMPTY>
<!ATTLIST Component.Component.componentKind %Component.ComponentKind;>

<!ELEMENT Component.Component.transactionSupport EMPTY>
<!ATTLIST Component.Component.transactionSupport 
%Component.TransactionSupportKind;>

<!ELEMENT Component.Component.securityCredentialKind EMPTY>
<!ATTLIST Component.Component.securityCredentialKind 
%Component.SecurityCredentialKind;>

<!ELEMENT Component.Component.containerThreading EMPTY>
<!ATTLIST Component.Component.containerThreading 
%Component.ContainerThreadingKind;>

<!ELEMENT Component.Component.configurationComplete EMPTY>
<!ATTLIST Component.Component.configurationComplete
        XMI.value ( true | false ) #REQUIRED>

<!ELEMENT Component.Component.supportedInterfaceRepId 
(#PCDATA|XMI.reference)*>

<!ELEMENT Component.Component.base (Component.Component)?>

<!ENTITY % Component.ComponentProperties '(Component.Component.name  
   ,Component.Component.repositoryId  
   ,Component.Component.corbaVersion  
   ,Component.Component.componentKind  
   ,Component.Component.transactionSupport ?
   ,Component.Component.securityCredentialKind ?
   ,Component.Component.containerThreading  
   ,Component.Component.configurationComplete  
   ,Component.Component.supportedInterfaceRepId ?)' > 

<!ENTITY % Component.ComponentAssociations '(Component.Component.base?)' 
> 

<!ENTITY % Component.ComponentCompositions 
'(Component.Component.eventPolicy?
   ,Component.Component.extension*
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-523



   ,Component.Component.servant?
   ,Component.Component.securitySpecifier?
   ,Component.Component.extPOAPolicy?
   ,Component.Component.supports*
   ,Component.Component.port+
   ,Component.Component.persistence?
   ,Component.Component.poaPolicy?
   ,Component.Component.persistentStoreInfo?
   ,Component.Component.repository?)' > 

<!ELEMENT Component.Component ( %Component.ComponentProperties;
       ,(XMI.extension* ,   %Component.ComponentAssociations; )
       ,  %Component.ComponentCompositions; )?>

<!ATTLIST Component.Component %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.EventPolicy                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.EventPolicy.emit EMPTY>
<!ATTLIST Component.EventPolicy.emit %Component.EventPolicyKind;>

<!ELEMENT Component.EventPolicy.consume EMPTY>
<!ATTLIST Component.EventPolicy.consume %Component.EventPolicyKind;>

<!ENTITY % Component.EventPolicyProperties '(Component.EventPolicy.emit ?
   ,Component.EventPolicy.consume ?)' > 

<!ELEMENT Component.EventPolicy ( %Component.EventPolicyProperties; )?>

<!ATTLIST Component.EventPolicy %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.Servant                     -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.Servant.LifeTime EMPTY>
<!ATTLIST Component.Servant.LifeTime %Component.LifeTimeKind;>

<!ENTITY % Component.ServantProperties '(Component.Servant.LifeTime  )' > 

<!ELEMENT Component.Servant ( %Component.ServantProperties; )?>

<!ATTLIST Component.Servant %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
C-524 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- METAMODEL CLASS: Component.SecuritySpecifier           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.SecuritySpecifier.userId (#PCDATA|XMI.reference)*>

<!ENTITY % Component.SecuritySpecifierProperties 
'(Component.SecuritySpecifier.userId  )' > 

<!ELEMENT Component.SecuritySpecifier ( 
%Component.SecuritySpecifierProperties; )?>

<!ATTLIST Component.SecuritySpecifier %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.ExtendedPOAPolicy           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.ExtendedPOAPolicy.name (#PCDATA|XMI.reference)*>

<!ELEMENT Component.ExtendedPOAPolicy.value (#PCDATA|XMI.reference)*>

<!ENTITY % Component.ExtendedPOAPolicyProperties 
'(Component.ExtendedPOAPolicy.name  
   ,Component.ExtendedPOAPolicy.value  )' > 

<!ELEMENT Component.ExtendedPOAPolicy ( 
%Component.ExtendedPOAPolicyProperties; )?>

<!ATTLIST Component.ExtendedPOAPolicy %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.ObjectType                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.ObjectType.name (#PCDATA|XMI.reference)*>

<!ELEMENT Component.ObjectType.repositoryId (#PCDATA|XMI.reference)*>

<!ENTITY % Component.ObjectTypeProperties '(Component.ObjectType.name  
   ,Component.ObjectType.repositoryId  )' > 

<!ELEMENT Component.ObjectType ( %Component.ObjectTypeProperties; )?>

<!ATTLIST Component.ObjectType %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-525



<!-- METAMODEL CLASS: Component.Interface                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.Interface.base (Component.Interface)*>

<!ENTITY % Component.InterfaceProperties 
'(%Component.ObjectTypeProperties;)' > 

<!ENTITY % Component.InterfaceAssociations '(Component.Interface.base*)' 
> 

<!ELEMENT Component.Interface ( %Component.InterfaceProperties;
       ,(XMI.extension* ,   %Component.InterfaceAssociations; ) )?>

<!ATTLIST Component.Interface %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.Port                        -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.Port.name (#PCDATA|XMI.reference)*>

<!ENTITY % Component.PortProperties '(Component.Port.name  )' > 

<!ELEMENT Component.Port ( %Component.PortProperties; )?>

<!ATTLIST Component.Port %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.Persistence                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.Persistence.responsibility EMPTY>
<!ATTLIST Component.Persistence.responsibility 
%Component.PersistenceResponsibilityKind;>

<!ELEMENT Component.Persistence.usePSS EMPTY>
<!ATTLIST Component.Persistence.usePSS
        XMI.value ( true | false ) #REQUIRED>

<!ENTITY % Component.PersistenceProperties 
'(Component.Persistence.responsibility  
   ,Component.Persistence.usePSS  )' > 

<!ELEMENT Component.Persistence ( %Component.PersistenceProperties; )?>

<!ATTLIST Component.Persistence %XMI.element.att; %XMI.link.att; >
C-526 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.POAPolicy                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.POAPolicy.idAssignment EMPTY>
<!ATTLIST Component.POAPolicy.idAssignment 
%Component.POAIdAssignmentPolicy;>

<!ELEMENT Component.POAPolicy.idUniqueness EMPTY>
<!ATTLIST Component.POAPolicy.idUniqueness 
%Component.POAIdUniquenessPolicy;>

<!ELEMENT Component.POAPolicy.implicitActivation EMPTY>
<!ATTLIST Component.POAPolicy.implicitActivation 
%Component.POAImplicitActivationPolicy;>

<!ELEMENT Component.POAPolicy.lifeSpan EMPTY>
<!ATTLIST Component.POAPolicy.lifeSpan %Component.POALifeSpanPolicy;>

<!ELEMENT Component.POAPolicy.requestProcessing EMPTY>
<!ATTLIST Component.POAPolicy.requestProcessing 
%Component.POARequestProcessingPolicy;>

<!ELEMENT Component.POAPolicy.servantRetention EMPTY>
<!ATTLIST Component.POAPolicy.servantRetention 
%Component.POAServantRetentionPolicy;>

<!ELEMENT Component.POAPolicy.thread EMPTY>
<!ATTLIST Component.POAPolicy.thread %Component.POAThreadPolicy;>

<!ENTITY % Component.POAPolicyProperties 
'(Component.POAPolicy.idAssignment  
   ,Component.POAPolicy.idUniqueness  
   ,Component.POAPolicy.implicitActivation  
   ,Component.POAPolicy.lifeSpan  
   ,Component.POAPolicy.requestProcessing  
   ,Component.POAPolicy.servantRetention  
   ,Component.POAPolicy.thread  )' > 

<!ELEMENT Component.POAPolicy ( %Component.POAPolicyProperties; )?>

<!ATTLIST Component.POAPolicy %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.PersistentStoreInfo         -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.PersistentStoreInfo.implementation 
(#PCDATA|XMI.reference)*>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-527



<!ELEMENT Component.PersistentStoreInfo.dataStoreName 
(#PCDATA|XMI.reference)*>

<!ELEMENT Component.PersistentStoreInfo.dataStoreId 
(#PCDATA|XMI.reference)*>

<!ENTITY % Component.PersistentStoreInfoProperties 
'(Component.PersistentStoreInfo.implementation  
   ,Component.PersistentStoreInfo.dataStoreName  
   ,Component.PersistentStoreInfo.dataStoreId  )' > 

<!ELEMENT Component.PersistentStoreInfo ( 
%Component.PersistentStoreInfoProperties; )?>

<!ATTLIST Component.PersistentStoreInfo %XMI.element.att; %XMI.link.att; 
>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.InterfacePort               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.InterfacePort.kind EMPTY>
<!ATTLIST Component.InterfacePort.kind %Component.InterfacePortKind;>

<!ENTITY % Component.InterfacePortProperties '(%Component.PortProperties;
   ,Component.InterfacePort.kind  )' > 

<!ENTITY % Component.InterfacePortCompositions 
'(Component.InterfacePort.interface*)' > 

<!ELEMENT Component.InterfacePort ( %Component.InterfacePortProperties;
       ,  %Component.InterfacePortCompositions; )?>

<!ATTLIST Component.InterfacePort %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.EventPort                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Component.EventPort.kind EMPTY>
<!ATTLIST Component.EventPort.kind %Component.EventPortKind;>

<!ENTITY % Component.EventPortProperties '(%Component.PortProperties;
   ,Component.EventPort.kind  )' > 

<!ENTITY % Component.EventPortCompositions 
'(Component.EventPort.valueType*)' > 
C-528 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT Component.EventPort ( %Component.EventPortProperties;
       ,  %Component.EventPortCompositions; )?>

<!ATTLIST Component.EventPort %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Component.ValueType                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Component.ValueTypeProperties 
'(%Component.ObjectTypeProperties;)' > 

<!ELEMENT Component.ValueType ( %Component.ValueTypeProperties; )?>

<!ATTLIST Component.ValueType %XMI.element.att; %XMI.link.att; >

<!ELEMENT Component ((Component.Component
  |Component.EventPolicy
  |Component.Servant
  |Component.SecuritySpecifier
  |Component.ExtendedPOAPolicy
  |Component.Interface
  |Component.Port
  |Component.Persistence
  |Component.POAPolicy
  |Component.PersistentStoreInfo
  |Component.ObjectType
  |Component.InterfacePort
  |Component.EventPort
  |Component.ValueType)*)>
<!ATTLIST Component %XMI.element.att; %XMI.link.att;>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: Assembly                            -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!-- *****    Assembly.Assembly_Component   *******  -->

<!ELEMENT Assembly.Assembly.componentFile ( Assembly.ComponentFile)+ >

<!-- *****    Assembly.Assembly_Partitioning   *******  -->

<!ELEMENT Assembly.Assembly.partitioning ( Assembly.Partitioning)* >

<!-- *****    Assembly.Assembly_Connection   *******  -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-529



<!ELEMENT Assembly.Assembly.connections ( Assembly.Connections)* >

<!-- *****    Assembly.Assembly_Extension   *******  -->

<!ELEMENT Assembly.Assembly.extension ( PDGeneral.Extension)* >

<!-- *****    Assembly.ComponentFile_CodeBase   *******  -->

<!ELEMENT Assembly.ComponentFile.codeBase ( PDGeneral.CodeBase)? >

<!-- *****    Assembly.ComponentFile_Link   *******  -->

<!ELEMENT Assembly.ComponentFile.link ( PDGeneral.Link)? >

<!-- *****    Assembly.ComponentFile_FileInArchive   *******  -->

<!ELEMENT Assembly.ComponentFile.fileInArchive ( 
PDGeneral.FileInArchive)? >

<!-- *****    Assembly.Partitioning_ComponentPlacement   *******  -->

<!ELEMENT Assembly.Partitioning.componentPlacement ( 
Assembly.ComponentPlacement)* >

<!-- *****    Assembly.A_partitioning_collocation   *******  -->

<!ELEMENT Assembly.Partitioning.Collocation ( Assembly.Collocation
  |Assembly.ProcessCollocation
  |Assembly.HostCollocation)* >

<!-- *****    Assembly.Partitioning_ProcessCollocation   *******  -->

<!ELEMENT Assembly.Partitioning.process ( Assembly.ProcessCollocation)* >

<!-- *****    Assembly.Partitioning_Extension   *******  -->

<!ELEMENT Assembly.Partitioning.extension ( PDGeneral.Extension)* >

<!-- *****    Assembly.Collocation_ComponentPlacement   *******  -->

<!ELEMENT Assembly.Collocation.placement ( Assembly.ComponentPlacement)+ 
>

<!-- *****    Assembly.Collocation_Extension   *******  -->
C-530 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ELEMENT Assembly.Collocation.extension ( PDGeneral.Extension)* >

<!-- *****    Assembly.HostCollocation_ProcessCollocation   *******  -->

<!ELEMENT Assembly.HostCollocation.process ( 
Assembly.ProcessCollocation)+ >

<!-- *****    Assembly.Partitioning_HostCollocation   *******  -->

<!ELEMENT Assembly.Partitioning.host ( Assembly.HostCollocation)* >

<!-- *****    Assembly.PropertiesFile_CodeBase   *******  -->

<!ELEMENT Assembly.PropertiesFile.codeBase ( PDGeneral.CodeBase)? >

<!-- *****    Assembly.PropertiesFile_FileInArchive   *******  -->

<!ELEMENT Assembly.PropertiesFile.fileInArchive ( 
PDGeneral.FileInArchive)? >

<!-- *****    Assembly.ComponentPlacement_PropertiesFile   *******  -->

<!ELEMENT Assembly.ComponentPlacement.propertiesFile ( 
Assembly.PropertiesFile)? >

<!-- *****    Assembly.ComponentPlacement_Extension   *******  -->

<!ELEMENT Assembly.ComponentPlacement.extension ( PDGeneral.Extension)* >

<!-- *****    Assembly.ComponentPlacement_TraderProperties   *******  -->

<!ELEMENT Assembly.ComponentPlacement.traderProperties ( 
Assembly.TraderProperties)* >

<!-- *****    Assembly.Connections_Extension   *******  -->

<!ELEMENT Assembly.Connections.extension ( PDGeneral.Extension)* >

<!-- *****    Assembly.Connections_ConnectEvent   *******  -->

<!ELEMENT Assembly.Connections.connectEvent ( Assembly.ConnectEvent)* >

<!-- *****    Assembly.Connections_ConnectInterface   *******  -->
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-531



<!ELEMENT Assembly.Connections.connectInterface ( 
Assembly.ConnectInterface)* >

<!-- *****    Assembly.ConnectInterface_ProvidesInterface   *******  -->

<!ELEMENT Assembly.ConnectInterface.provides ( 
Assembly.ProvidesInterface)* >

<!-- *****    Assembly.ConnectInterface_UsesInterface   *******  -->

<!ELEMENT Assembly.ConnectInterface.uses ( Assembly.UsesInterface)* >

<!-- *****    Assembly.ConnectEvent_EmitsEvent   *******  -->

<!ELEMENT Assembly.ConnectEvent.emits ( Assembly.EmitsEvent)* >

<!-- *****    Assembly.ConnectEvent_ConsumesEvent   *******  -->

<!ELEMENT Assembly.ConnectEvent.consumes ( Assembly.ConsumesEvent)* >

<!-- *****    Assembly.ConnectEvent_PublishesEvent   *******  -->

<!ELEMENT Assembly.ConnectEvent.publishes ( Assembly.PublishesEvent)* >

<!-- *****    Assembly.ComponentFile_PropertiesFile   *******  -->

<!ELEMENT Assembly.ComponentFile.propertiesFile ( 
Assembly.PropertiesFile)? >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.Assembly                     -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.AssemblyCompositions 
'(Assembly.Assembly.componentFile+
   ,Assembly.Assembly.partitioning*
   ,Assembly.Assembly.connections*
   ,Assembly.Assembly.extension*)' > 

<!ELEMENT Assembly.Assembly (  %Assembly.AssemblyCompositions; )?>

<!ATTLIST Assembly.Assembly %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
C-532 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- METAMODEL CLASS: Assembly.ComponentFile                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.ComponentFile.id (#PCDATA|XMI.reference)*>

<!ENTITY % Assembly.ComponentFileProperties '(Assembly.ComponentFile.id  
)' > 

<!ENTITY % Assembly.ComponentFileCompositions 
'(Assembly.ComponentFile.codeBase?
   ,Assembly.ComponentFile.link?
   ,Assembly.ComponentFile.fileInArchive?
   ,Assembly.ComponentFile.propertiesFile?)' > 

<!ELEMENT Assembly.ComponentFile ( %Assembly.ComponentFileProperties;
       ,  %Assembly.ComponentFileCompositions; )?>

<!ATTLIST Assembly.ComponentFile %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.Partitioning                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.PartitioningCompositions 
'(Assembly.Partitioning.componentPlacement*
   ,Assembly.Partitioning.Collocation*
   ,Assembly.Partitioning.process*
   ,Assembly.Partitioning.extension*
   ,Assembly.Partitioning.host*)' > 

<!ELEMENT Assembly.Partitioning (  %Assembly.PartitioningCompositions; 
)?>

<!ATTLIST Assembly.Partitioning %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.Connections                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.ConnectionsCompositions 
'(Assembly.Connections.extension*
   ,Assembly.Connections.connectEvent*
   ,Assembly.Connections.connectInterface*)' > 

<!ELEMENT Assembly.Connections (  %Assembly.ConnectionsCompositions; )?>

<!ATTLIST Assembly.Connections %XMI.element.att; %XMI.link.att; >
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-533



<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.PropertiesFile               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.PropertiesFileCompositions 
'(Assembly.PropertiesFile.codeBase?
   ,Assembly.PropertiesFile.fileInArchive?)' > 

<!ELEMENT Assembly.PropertiesFile (  
%Assembly.PropertiesFileCompositions; )?>

<!ATTLIST Assembly.PropertiesFile %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ComponentPlacement           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.ComponentPlacement.id (#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.ComponentPlacement.usageName (#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.ComponentPlacement.objectReference 
(#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.ComponentPlacement.registerWithNaming 
(#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.ComponentPlacement.cardinality 
(#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.ComponentPlacement.componentFile 
(Assembly.ComponentFile)?>

<!ELEMENT Assembly.ComponentPlacement.implementation 
(Softpkg.Implementation)?>

<!ENTITY % Assembly.ComponentPlacementProperties 
'(Assembly.ComponentPlacement.id  
   ,Assembly.ComponentPlacement.usageName ?
   ,Assembly.ComponentPlacement.objectReference ?
   ,Assembly.ComponentPlacement.registerWithNaming *
   ,Assembly.ComponentPlacement.cardinality  )' > 

<!ENTITY % Assembly.ComponentPlacementAssociations 
'(Assembly.ComponentPlacement.componentFile?
   ,Assembly.ComponentPlacement.implementation?)' > 

<!ENTITY % Assembly.ComponentPlacementCompositions 
'(Assembly.ComponentPlacement.propertiesFile?
C-534 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



   ,Assembly.ComponentPlacement.extension*
   ,Assembly.ComponentPlacement.traderProperties*)' > 

<!ELEMENT Assembly.ComponentPlacement ( 
%Assembly.ComponentPlacementProperties;
       ,(XMI.extension* ,   %Assembly.ComponentPlacementAssociations; )
       ,  %Assembly.ComponentPlacementCompositions; )?>

<!ATTLIST Assembly.ComponentPlacement %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.Collocation                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.Collocation.id (#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.Collocation.usageName (#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.Collocation.implementationType 
(#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.Collocation.cardinality (#PCDATA|XMI.reference)*>

<!ENTITY % Assembly.CollocationProperties '(Assembly.Collocation.id  
   ,Assembly.Collocation.usageName  
   ,Assembly.Collocation.implementationType ?
   ,Assembly.Collocation.cardinality  )' > 

<!ENTITY % Assembly.CollocationCompositions 
'(Assembly.Collocation.placement+
   ,Assembly.Collocation.extension*)' > 

<!ELEMENT Assembly.Collocation ( %Assembly.CollocationProperties;
       ,  %Assembly.CollocationCompositions; )?>

<!ATTLIST Assembly.Collocation %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ProcessCollocation           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.ProcessCollocation.host (Assembly.HostCollocation) >

<!ENTITY % Assembly.ProcessCollocationProperties 
'(%Assembly.CollocationProperties;)' > 

<!ENTITY % Assembly.ProcessCollocationAssociations 
'(Assembly.ProcessCollocation.host?)' > 
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-535



<!ENTITY % Assembly.ProcessCollocationCompositions 
'(%Assembly.CollocationCompositions;)' > 

<!ELEMENT Assembly.ProcessCollocation ( 
%Assembly.ProcessCollocationProperties;
       ,(XMI.extension* ,   %Assembly.ProcessCollocationAssociations; )
       ,  %Assembly.ProcessCollocationCompositions; )?>

<!ATTLIST Assembly.ProcessCollocation %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.HostCollocation              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.HostCollocationProperties 
'(%Assembly.CollocationProperties;)' > 

<!ENTITY % Assembly.HostCollocationCompositions 
'(%Assembly.CollocationCompositions;
   ,Assembly.HostCollocation.process+)' > 

<!ELEMENT Assembly.HostCollocation ( %Assembly.HostCollocationProperties;
       ,  %Assembly.HostCollocationCompositions; )?>

<!ATTLIST Assembly.HostCollocation %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.Connect                      -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.Connect.id (#PCDATA|XMI.reference)*>

<!ENTITY % Assembly.ConnectProperties '(Assembly.Connect.id  )' > 

<!ELEMENT Assembly.Connect ( %Assembly.ConnectProperties; )?>

<!ATTLIST Assembly.Connect %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ConnectEvent                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.ConnectEventProperties 
'(%Assembly.ConnectProperties;)' > 
C-536 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ENTITY % Assembly.ConnectEventCompositions 
'(Assembly.ConnectEvent.emits*
   ,Assembly.ConnectEvent.consumes*
   ,Assembly.ConnectEvent.publishes*)' > 

<!ELEMENT Assembly.ConnectEvent ( %Assembly.ConnectEventProperties;
       ,  %Assembly.ConnectEventCompositions; )?>

<!ATTLIST Assembly.ConnectEvent %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ConnectInterface             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.ConnectInterfaceProperties 
'(%Assembly.ConnectProperties;)' > 

<!ENTITY % Assembly.ConnectInterfaceCompositions 
'(Assembly.ConnectInterface.provides*
   ,Assembly.ConnectInterface.uses*)' > 

<!ELEMENT Assembly.ConnectInterface ( 
%Assembly.ConnectInterfaceProperties;
       ,  %Assembly.ConnectInterfaceCompositions; )?>

<!ATTLIST Assembly.ConnectInterface %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.TraderProperties             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.TraderProperties.name (#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.TraderProperties.value (#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.TraderProperties.placement 
(Assembly.ComponentPlacement) >

<!ENTITY % Assembly.TraderPropertiesProperties 
'(Assembly.TraderProperties.name  
   ,Assembly.TraderProperties.value  )' > 

<!ENTITY % Assembly.TraderPropertiesAssociations 
'(Assembly.TraderProperties.placement?)' > 

<!ELEMENT Assembly.TraderProperties ( 
%Assembly.TraderPropertiesProperties;
       ,(XMI.extension* ,   %Assembly.TraderPropertiesAssociations; ) )?>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-537



<!ATTLIST Assembly.TraderProperties %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ComponentElementReference    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.ComponentElementReference.elementIdentifier 
(#PCDATA|XMI.reference)*>

<!ELEMENT Assembly.ComponentElementReference.component 
(Component.Component) >

<!ENTITY % Assembly.ComponentElementReferenceProperties 
'(Assembly.ComponentElementReference.elementIdentifier  )' > 

<!ENTITY % Assembly.ComponentElementReferenceAssociations 
'(Assembly.ComponentElementReference.component )' > 

<!ELEMENT Assembly.ComponentElementReference ( 
%Assembly.ComponentElementReferenceProperties;
       ,(XMI.extension* ,   
%Assembly.ComponentElementReferenceAssociations; ) )?>

<!ATTLIST Assembly.ComponentElementReference %XMI.element.att; 
%XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ProvidesInterface            -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.ProvidesInterfaceProperties 
'(%Assembly.ComponentElementReferenceProperties;)' > 

<!ENTITY % Assembly.ProvidesInterfaceAssociations 
'(%Assembly.ComponentElementReferenceAssociations;)' > 

<!ELEMENT Assembly.ProvidesInterface ( 
%Assembly.ProvidesInterfaceProperties;
       ,(XMI.extension* ,   %Assembly.ProvidesInterfaceAssociations; ) )?>

<!ATTLIST Assembly.ProvidesInterface %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.UsesInterface                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->
C-538 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!ENTITY % Assembly.UsesInterfaceProperties 
'(%Assembly.ComponentElementReferenceProperties;)' > 

<!ENTITY % Assembly.UsesInterfaceAssociations 
'(%Assembly.ComponentElementReferenceAssociations;)' > 

<!ELEMENT Assembly.UsesInterface ( %Assembly.UsesInterfaceProperties;
       ,(XMI.extension* ,   %Assembly.UsesInterfaceAssociations; ) )?>

<!ATTLIST Assembly.UsesInterface %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.EmitsEvent                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.EmitsEventProperties 
'(%Assembly.ComponentElementReferenceProperties;)' > 

<!ENTITY % Assembly.EmitsEventAssociations 
'(%Assembly.ComponentElementReferenceAssociations;)' > 

<!ELEMENT Assembly.EmitsEvent ( %Assembly.EmitsEventProperties;
       ,(XMI.extension* ,   %Assembly.EmitsEventAssociations; ) )?>

<!ATTLIST Assembly.EmitsEvent %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.ConsumesEvent                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Assembly.ConsumesEventProperties 
'(%Assembly.ComponentElementReferenceProperties;)' > 

<!ENTITY % Assembly.ConsumesEventAssociations 
'(%Assembly.ComponentElementReferenceAssociations;)' > 

<!ELEMENT Assembly.ConsumesEvent ( %Assembly.ConsumesEventProperties;
       ,(XMI.extension* ,   %Assembly.ConsumesEventAssociations; ) )?>

<!ATTLIST Assembly.ConsumesEvent %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.PublishesEvent               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.PublishesEvent.connect (Assembly.ConnectEvent) >
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-539



<!ENTITY % Assembly.PublishesEventAssociations 
'(Assembly.PublishesEvent.connect?)' > 

<!ELEMENT Assembly.PublishesEvent ((XMI.extension* ,   
%Assembly.PublishesEventAssociations; ) )?>

<!ATTLIST Assembly.PublishesEvent %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Assembly.Connection                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Assembly.Connection (EMPTY )>

<!ATTLIST Assembly.Connection %XMI.element.att; %XMI.link.att; >

<!ELEMENT Assembly ((Assembly.Assembly
  |Assembly.ComponentFile
  |Assembly.Partitioning
  |Assembly.Connections
  |Assembly.PropertiesFile
  |Assembly.ComponentPlacement
  |Assembly.Collocation
  |Assembly.ProcessCollocation
  |Assembly.HostCollocation
  |Assembly.ConnectEvent
  |Assembly.ConnectInterface
  |Assembly.TraderProperties
  |Assembly.Connect
  |Assembly.ProvidesInterface
  |Assembly.UsesInterface
  |Assembly.EmitsEvent
  |Assembly.ConsumesEvent
  |Assembly.PublishesEvent
  |Assembly.ComponentElementReference
  |Assembly.Connection)*)>
<!ATTLIST Assembly %XMI.element.att; %XMI.link.att;>

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: PropertySet                         -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PropertySet.Complex                   -->
<!--                                                                 -->
C-540 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



<!-- _______________________________________________________________ -->

<!ELEMENT PropertySet.Complex.name (#PCDATA|XMI.reference)*>

<!ELEMENT PropertySet.Complex.type (#PCDATA|XMI.reference)*>

<!ELEMENT PropertySet.Complex.description (#PCDATA|XMI.reference)*>

<!ENTITY % PropertySet.ComplexProperties '(PropertySet.Complex.name ?
   ,PropertySet.Complex.type  
   ,PropertySet.Complex.description  )' > 

<!ELEMENT PropertySet.Complex ( %PropertySet.ComplexProperties; )?>

<!ATTLIST PropertySet.Complex %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PropertySet.Struct                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % PropertySet.StructProperties 
'(%PropertySet.ComplexProperties;)' > 

<!ELEMENT PropertySet.Struct ( %PropertySet.StructProperties; )?>

<!ATTLIST PropertySet.Struct %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PropertySet.Simple                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PropertySet.Simple.type EMPTY>
<!ATTLIST PropertySet.Simple.type %PropertySet.SimpleType;>

<!ELEMENT PropertySet.Simple.defaultValue (#PCDATA|XMI.reference)*>

<!ELEMENT PropertySet.Simple.value (#PCDATA|XMI.reference)*>

<!ELEMENT PropertySet.Simple.description (#PCDATA|XMI.reference)*>

<!ELEMENT PropertySet.Simple.choice (#PCDATA|XMI.reference)*>

<!ENTITY % PropertySet.SimpleProperties '(PropertySet.Simple.type  
   ,PropertySet.Simple.defaultValue ?
   ,PropertySet.Simple.value  
   ,PropertySet.Simple.description ?
   ,PropertySet.Simple.choice *)' > 

<!ELEMENT PropertySet.Simple ( %PropertySet.SimpleProperties; )?>
March 2, 1999 6:03 pm CORBA Components - orbos/99-02-05 C-541



<!ATTLIST PropertySet.Simple %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PropertySet.Sequence                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % PropertySet.SequenceProperties 
'(%PropertySet.ComplexProperties;)' > 

<!ELEMENT PropertySet.Sequence ( %PropertySet.SequenceProperties; )?>

<!ATTLIST PropertySet.Sequence %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: PropertySet.Properties                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT PropertySet.Properties.description (#PCDATA|XMI.reference)*>

<!ENTITY % PropertySet.PropertiesProperties 
'(PropertySet.Properties.description ?)' > 

<!ELEMENT PropertySet.Properties ( %PropertySet.PropertiesProperties; )?>

<!ATTLIST PropertySet.Properties %XMI.element.att; %XMI.link.att; >

<!ELEMENT PropertySet ((PropertySet.Struct
  |PropertySet.Simple
  |PropertySet.Sequence
  |PropertySet.Properties
  |PropertySet.Complex)*)>
<!ATTLIST PropertySet %XMI.element.att; %XMI.link.att;>
C-542 CORBA Components - orbos/99-02-05 March 2, 1999 6:03 pm



Related Work D
This chapter explores languages and programming idioms which support the 
expression of multiple interfaces and interface dependencies.

D.1 Polymorphism

A popular idiom in object-oriented programming is for an object to depend on an 
interface or an abstract base class. At runtime the object may receive a reference to the 
interface, which is dynamically bound to its implementation. 

The programmer usually becomes aware of the dependency by examining method 
parameters or by reading comments or documentation. That is, there is no first class 
language constructs to highlight the interface dependencies.

D.2 Java Parameterized Type Proposals

Emerging proposals for parameterized types in Java have introduced interesting 
mechanisms for expressing type dependencies. Parameterized types express 
dependencies on one or more other types, to be determined when the template is 
instantiated.

D.2.1 Where Clauses

In the language Theta [Liskov 95] and in a recent proposal for parameterized types in 
Java [Myers 97], parameters to parameterized types are constrained by where clauses. 
Where clauses state explicitly which methods a parameter type must support in order 
to be used as a parameter to the parameterized type. This is a first class language 
construct for stating method dependencies. For example

For example, in proposed Java syntax:
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 D-543



interface Set [T]
     where T { boolean equals(T t); }
{ ... }

D.2.2  Constraining on Interface

Another proposal for parameterized types in Java [Agesen 97], allows type parameters 
to be constrained to support a particular interface. That is, only types which implement 
the given interface may be supplied as a type parameter to the parameterized type.

For example:

interface Equal<T> {
     boolean equal(T);
}

class Set<T implements Equal<T>> 
{ ... } 

This mechanism is analogous to this submission’s specification of the uses statement 
for specifying a required interface.

D.3 JavaBeans

JavaBeans sidesteps the lack of first class language constructs to describe an object’s 
interface dependencies. It uses a combination of naming conventions, introspection and 
external representation to describe certain types of interface dependencies. 

The JavaBeans specification provides a clever mechanism for a class to express its 
runtime interface dependencies via a set of naming conventions and programming 
idioms, which they call “design patterns”1. An introspector looks for these naming 
conventions to determine what events a Bean generates and what kind of listener 
interfaces may register with it. This information is stored in a BeanInfo object. A 
BeanInfo may also be written by hand, circumventing the introspection process (and 
allowing deviation from prescribed naming conventions).

JavaBeans typically communicate with registered interfaces using events. The event, 
which is usually a data object that communicates information about something that 
happened, is transferred to the listening object via a method call.

1. An unfortunate choice of terms as JavaBeans design patterns are quite different from the design patterns as known
to the design patterns community and expressed in the Design Patterns book [Gamma 95].
D-544 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



D.4 COM

In COM [Rogerson 97], the interfaces that a component provides are specified in the 
IDL specification of a component. A component is declared by a coclass declaration in 
an IDL file. A coclass declares the interfaces that it provides by listing each in the 
declaration. The interfaces that a component uses are specified as source interfaces. 
The source modifier indicates that the component is the source of calls to that 
interface. A component with source interfaces must also provide the 
IConnectionPointContainer interface. IConnectionPointContainer is used by 
clients to query an objects source interfaces and to register their client interfaces as 
sinks for the source interfaces.

coclass TangramModel
{
     [default] interface ITangramModel ;
     interface ITangramTransform ;
     interface IConnectionPointContainer ;

     // Outgoing source interface.
     [source] interface ITangramModelEvent ;
};

The COM source interface declaration is similar to the uses statement in this 
submission; non-source interfaces are similar to provides statements. While the 
coclass must declare a default interface, this submission allows the component to 
support operations of its own.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 D-545



D.5 Rapide

The provides and uses statements in this submission are similar to the Interface 
Connection Architecture implemented in Rapide [Rapide 97] and discussed in 
[Luckham 95]. The Rapide Interface Connection Architecture applies provides and 
requires statements to individual functions in a class declaration. Class instances are 
connected via a connect statement in which a requires method of one object is 
connected to a provided method of another object. 

For example:

class Parser is
provides:
     function Initialize();
     function FileName() return String;
requires
     function Semantize(Tree);
     function Generate(Tree);
specification ...
end Parser;

class Semanticizer is
provides:
     function Semantize(Tree);
     function Incremental_Semantize(Context : Tree; Addition : Tree);
requires:
     function FileName() return String;
specification ...
end Semanticizer;

P: Parser; S: Semanticizer;

Connect
     P.Semantize to S.Semantize;
     S.FileName to P.FileName;

This submission specifies a similar notion of explicit dependency specification. The 
difference being that we specify dependencies with respect to interfaces rather that 
individual methods.
D-546 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm



References E
[Agesen 97] Ole Agesen, Stephen N. Freund, John C. Mitchell, “Adding Type 
Parameterization to the Java Language”, Proceedings of the 1997 OOPSLA--
Conference on Object-Oriented Programming Systems, Languages and Applications.

[Englander 97] Robert Englander, Developing Java Beans, O’Reilly & Associates, 
Sebastopol, CA, 1997.

[Gamma 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design 
Patterns - Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, 
MA, 1995.

[Garg 98] Rohit Garg, Enterprise JavaBeans to CORBA Mapping 1.0, Sun 
Microsystems, http://java.sun.com/products/ejb/ejb-corba.10.pdf, 1998

[Hamilton 97] Graham Hamilton (Editor), JavaBeans Specification 1.01, Sun 
Microsystems, http://www.javasoft.com/beans/docs/beans.101.pdf, 1997.

[Liskov 95] Mark Kay, Robert Gruber, Barbara Liskov, “Subtypes vs. Where Clauses: 
Constraining Parametric Polymorphism”, Proceedings of the 1995 OOPSLA--
Conference on Object-Oriented Programming Systems, Languages and Applications.

[Luckham 95] David C. Luckham, James Vera, Sigurd Meldal, “Three Concepts of 
System Architecture”, Unpublished Manuscript, Stanford University CS Technical 
Report,  CSL-TR-95-674, July 19, 1995.

[Matena 98] Vlada Matena, Mark Hapner, Enterprise JavaBeans Specification 1.0, Sun 
Microsystems, http://java.sun.com/products/ejb/ejb.10.pdf, 1998

[Myers 97] Andrew C. Myers, Joseph A. Bank, Barbara Liskov, “Parameterized Types 
for Java”, Proceedings of the 1997 ACM Symposium on Principles of Programming 
Languages (POPL).

[Rapide 97] The Stanford Rapide Project, http://poset.stanford.edu/rapide/rapide-
pubs.html.
March 2, 1999 5:26 pm CORBA Components - orbos/99-02-05 E-547



[Rogerson 97] Dale Rogerson, Inside COM, Microsoft Press, Redmond WA, 1997.
E-548 CORBA Components - orbos/99-02-05 March 2, 1999 5:26 pm


	1 Introduction
	1.1 Overview
	1.2 Relationship to other CORBA Technology
	1.2.1 CORBA Core and Object Services
	1.2.2 Business Objects Interoperability Initiative
	1.2.3 UML and the Meta Object Facility

	1.3 Guide to the Submission
	1.4 Proof of Concept
	1.5 Conventions
	1.6 Submission Contact Points

	2 Mapping to RFP Requirements
	2.1 Mandatory Requirements
	2.1.1 Component Model Elements
	2.1.2 Requirements for Component Description Facility
	2.1.3 Requirements for Programming Model
	2.1.4 Requirements for Mapping to JavaBeans
	2.1.5 Security Requirements

	2.2 Optional Requirements

	3 Introduction to Components
	4 Extensions to CORBA Core
	4.1 Local interface types
	4.1.1 Java language mapping
	4.1.2 C++ language mapping
	4.1.2.1 Local Interface Base
	4.1.2.2 Local interface mapping

	4.1.3 resolve_local

	4.2 Import
	4.3 Repository identity declarations
	4.3.1 Repository identity declaration
	4.3.2 Repository identifier prefix declaration

	4.4 IDL Grammar modifications
	4.4.1 Keywords


	5 Component Model
	5.1 Change History
	5.2 Component Model
	5.2.1 Ports
	5.2.2 Components and facets
	5.2.3 Component identity
	5.2.4 Component homes

	5.3 Component Definition
	5.3.1 IDL Extensions for Components

	5.4 Component Declaration
	5.4.1 Syntax
	5.4.2 Equivalent IDL
	5.4.2.1 Simple declaration
	5.4.2.2 Supported interfaces
	5.4.2.3 Inheritance
	5.4.2.4 Inheritance and supported interfaces

	5.4.3 Component Body

	5.5 Facets and Navigation
	5.5.1 Syntax
	5.5.2 Equivalent IDL
	5.5.3 Semantics of facet references
	5.5.4 Navigation
	5.5.4.1 get_component()
	5.5.4.2 Component-specific provide operations
	5.5.4.3 Navigation interface on the component
	5.5.4.4 Navigation interface on facet interfaces

	5.5.5 Provided References and Component Identity
	5.5.6 Supported interfaces

	5.6 Receptacles
	5.6.1 Syntax
	5.6.2 Equivalent IDL
	5.6.3 Behavior
	5.6.3.1 Connect operations
	5.6.3.2 Disconnect operations
	5.6.3.3 get_connection and get_connections operations
	5.6.3.4 Cookie type

	5.6.4 Receptacles interface

	5.7 Events
	5.7.1 Event types
	5.7.2 Integrity of value types contained in anys
	5.7.3 EventConsumer interface
	5.7.4 Event service provided by container
	5.7.5 Event Sources—publishers and emitters
	5.7.6 Publisher
	5.7.6.1 Syntax
	5.7.6.2 Equivalent IDL
	5.7.6.3 Event publisher operations

	5.7.7 Emitters
	5.7.7.1 Syntax
	5.7.7.2 Equivalent IDL
	5.7.7.3 Event emitter operations

	5.7.8 Module scope of generated event consumer interfaces
	5.7.9 Event Sinks
	5.7.9.1 Syntax
	5.7.9.2 Equivalent IDL
	5.7.9.3 Event sink operations

	5.7.10 Events interface

	5.8 Homes
	5.8.1 Home header
	5.8.1.1 Syntax

	5.8.2 Equivalent interfaces
	5.8.2.1 Home definitions with no primary key
	5.8.2.2 Home definitions with primary keys

	5.8.3 Primary key declarations
	5.8.3.1 Primary key type constraints
	5.8.3.2 PrimaryKeyBase

	5.8.4 Explicit operations in home definitions
	5.8.4.1 Factory operations
	5.8.4.2 Finder operations
	5.8.4.3 Miscellaneous exports

	5.8.5 Home inheritance
	5.8.6 Semantics of home operations
	5.8.6.1 Orthodox operations
	5.8.6.2 Heterodox operations

	5.8.7 HomeBase interface
	5.8.8 KeylessHomeBase interface

	5.9 Home Finders
	5.10 Component Configuration
	5.10.1 Exclusive configuration and operational life cycle phases
	5.10.1.1 Enforcing exclusion of configuration and operation


	5.11 Configuration with attributes
	5.11.1 Attribute declaration syntax
	5.11.2 Language mapping responsibilities
	5.11.3 Behavior
	5.11.4 Attribute Configurators
	5.11.4.1 The Configurator interface
	5.11.4.2 The StandardConfigurator interface

	5.11.5 Factory-based configuration
	5.11.5.1 HomeConfiguration interface


	5.12 CORBAComponent Module
	5.13 Component Inheritance
	5.14 Component Descriptions in the Interface Repository

	6 Component Persistence
	6.1 Persistence and the Component Implementation Framework (CIF)
	6.1.1 CIDL, components, and persistence

	6.2 Component persistence
	6.2.1 Persistence concepts
	6.2.1.1 Storage type
	6.2.1.2 Storage object
	6.2.1.3 Incarnation
	6.2.1.4 Storage home
	6.2.1.5 Persistent store
	6.2.1.6 Persistent ID (or PID)
	6.2.1.7 Primary keys


	6.3 Component Implementation Definition Language (CIDL)
	6.3.1 Grammar description syntax
	6.3.2 Lexical conventions
	6.3.3 CIDL Grammar
	6.3.4 CIDL type identifiers

	6.4 CIDL Specification
	6.5 Import
	6.6 CIDL modules
	6.6.1 Syntax

	6.7 Storage types
	6.7.1 Storage Header
	6.7.1.1 Syntax
	6.7.1.2 Storage type inheritance
	6.7.1.3 Substitutability
	6.7.1.4 Narrowing

	6.7.2 Members of storage types
	6.7.3 Independent storage members
	6.7.3.1 Syntax
	6.7.3.2 Semantics

	6.7.4 Dependent storage members
	6.7.4.1 Syntax
	6.7.4.2 Semantics

	6.7.5 Storage sequence members
	6.7.6 Atomic members
	6.7.6.1 Syntax

	6.7.7 Storage object life cycle
	6.7.8 Persistent IDs
	6.7.9 Incarnations
	6.7.9.1 IncarnationBase type

	6.7.10 Persistence Semantics
	6.7.10.1 Creation
	6.7.10.2 Incarnation
	6.7.10.3 State access and modification
	6.7.10.4 Incarnation release
	6.7.10.5 Destruction
	6.7.10.6 Independent member semantics
	6.7.10.7 Dependent member semantics
	6.7.10.8 Atomic member semantics
	6.7.10.9 Valuetype atomic members


	6.8 Storage home
	6.8.1 Syntax
	6.8.2 Equivalent local interfaces
	6.8.2.1 Implicit operations and equivalent local interface structure
	6.8.2.2 Storage home definitions with no primary key
	6.8.2.3 Storage home definitions with primary keys

	6.8.3 Initial values of created storage objects
	6.8.4 Primary key type constraints
	6.8.5 Explicit operations in storage home definitions
	6.8.5.1 Factory operations
	6.8.5.2 Finder operations
	6.8.5.3 Local operations

	6.8.6 Storage home inheritance
	6.8.7 Implementation responsibility
	6.8.7.1 Orthodox operations
	6.8.7.2 Heterodox operations

	6.8.8 StorageHomeBase
	6.8.9 KeylessStorageHomeBase

	6.9 Persistent store
	6.9.1 Syntax
	6.9.2 Equivalent local interfaces
	6.9.3 Obtaining storage homes from a persistent store
	6.9.4 Local operations on persistent stores
	6.9.5 PersistentStoreBase interface
	6.9.6 GenericPersistentStore


	7 The Container Programming Model
	7.1 Change History
	7.2 Introduction
	7.2.1 External Types
	7.2.2 Container Type
	7.2.3 Container Implementation Type
	7.2.4 Component Categories

	7.3 The Server Programming Environment
	7.3.1 Component Containers
	7.3.2 Container Implementation Type
	7.3.2.1 Component References
	7.3.2.2 Servant to ObjectId Mapping
	7.3.2.3 Threading Considerations

	7.3.3 Component Factories
	7.3.4 Component Activation
	7.3.5 Servant Lifetime Management
	7.3.6 Transactions
	7.3.7 Security
	7.3.8 Events
	7.3.9 Persistence
	7.3.10 Application Operation Invocation
	7.3.11 Component Implementations
	7.3.12 Component Categories
	7.3.12.1 The Service Component
	7.3.12.2 The Session Component
	7.3.12.3 The Process Component
	7.3.12.4 The Entity Component


	7.4 Server Programming Interfaces
	7.4.1 Component Interfaces
	7.4.2 Interfaces Common to both Container Types
	7.4.2.1 The ComponentContext Interface
	7.4.2.2 The Home Interface
	7.4.2.3 The BaseOrigin Interface
	7.4.2.4 The Transaction Interface
	7.4.2.5 The HomeRegistration Interface
	7.4.2.6 The RemoteHomeRegistration Interface
	7.4.2.7 The Security Interface
	7.4.2.8 The Events Interface
	7.4.2.9 The EnterpriseComponent Interface

	7.4.3 Interfaces Supported by the Transient Container Type
	7.4.3.1 The TransientContext Interface
	7.4.3.2 The TransientOrigin Interface
	7.4.3.3 The ServiceComponent Interface
	7.4.3.4 The SessionComponent Interface
	7.4.3.5 The Synchronization Interface

	7.4.4 Interfaces Supported by the Persistent Container Type
	7.4.4.1 The PersistentContext Interface
	7.4.4.2 The ComponentId Interface
	7.4.4.3 The PersistentOrigin Interface
	7.4.4.4 The Storage Interface
	7.4.4.5 The PersistentComponent Interface


	7.5 The Client Programming Model
	7.5.1 Component-aware Clients
	7.5.1.1 Initial References
	7.5.1.2 Factory Design Pattern
	7.5.1.3 Finder Design Pattern
	7.5.1.4 Transactions
	7.5.1.5 Security
	7.5.1.6 Events

	7.5.2 Component-unaware Clients
	7.5.2.1 Initial References
	7.5.2.2 Factory Design Pattern
	7.5.2.3 Finder Design Pattern
	7.5.2.4 Transactions
	7.5.2.5 Security
	7.5.2.6 Events



	8 Container Architecture
	8.1 Change History
	8.2 Component Server
	8.2.1 POA Creation
	8.2.2 Binding the Container to CORBA services
	8.2.3 Container API Frameworks
	8.2.3.1 Creating Object References
	8.2.3.2 Factories and Finders
	8.2.3.3 Transactions
	8.2.3.4 Security
	8.2.3.5 Events
	8.2.3.6 Persistence
	8.2.3.7 Threading


	8.3 Containers Categories
	8.3.1 The Empty Container
	8.3.2 The Service Container
	8.3.2.1 Creating Object References
	8.3.2.2 Factories and Instances
	8.3.2.3 Invoking an Operation
	8.3.2.4 Servant Lifetime Management

	8.3.3 The Session Container
	8.3.3.1 Creating Object References
	8.3.3.2 Factories and Instances
	8.3.3.3 Invoking an Operation
	8.3.3.4 Servant Lifetime Management

	8.3.4 The Process Container
	8.3.4.1 Creating Object References
	8.3.4.2 Factories and Instances
	8.3.4.3 Invoking an Operation
	8.3.4.4 Servant Lifetime Management

	8.3.5 The Entity Container
	8.3.5.1 Creating Object References
	8.3.5.2 Factories and New Instances
	8.3.5.3 Invoking an Operation on a New Instance
	8.3.5.4 Finders and Existing Instances
	8.3.5.5 Invoking an Operation on an Existing Instance
	8.3.5.6 Servant Lifetime Management


	8.4 Persistence Integration
	8.4.1 Container Managed Persistence
	8.4.2 Component Managed Persistence
	8.4.3 Interactions between the Container and the Persistence Provider
	8.4.3.1 Connecting to the Persistence Mechanism
	8.4.3.2 Managing DB Connections
	8.4.3.3 Synchronization of Component State with Persistence State


	8.5 Event Management Integration
	8.5.1 Channel setup
	8.5.2 Transmitting an event
	8.5.3 Receiving an event

	8.6 Servant Locators for CORBA Components
	8.6.1 The TransientServantLocator
	8.6.2 The PersistentServantLocator


	9 Packaging and Deployment
	9.1 Change History
	9.2 Component Packaging
	9.3 Software Package Descriptor
	9.3.1 A softpkg Descriptor Example
	9.3.2 The Software Package Descriptor XML Elements
	9.3.2.1 The softpkg Root Element
	9.3.2.2 The author Element
	9.3.2.3 The code Element
	9.3.2.4 The codebase Element
	9.3.2.5 The company Element
	9.3.2.6 The compiler Element
	9.3.2.7 The dependency Element
	9.3.2.8 The description Element
	9.3.2.9 The descriptor Element
	9.3.2.10 The entrypoint Element
	9.3.2.11 The extension Element
	9.3.2.12 The fileinarchive Element
	9.3.2.13 The idl Element
	9.3.2.14 The implementation Element
	9.3.2.15 The license Element
	9.3.2.16 The link Element
	9.3.2.17 The localfile Element
	9.3.2.18 The name Element
	9.3.2.19 The naturallanguage Element
	9.3.2.20 The os Element
	9.3.2.21 The pkgtype Element
	9.3.2.22 The processor Element
	9.3.2.23 The programminglanguageElement
	9.3.2.24 The propertyfile Element
	9.3.2.25 The repository Element
	9.3.2.26 The runtime Element
	9.3.2.27 The softpkg Element
	9.3.2.28 The simple-link-attributes Entity
	9.3.2.29 The threadsafety Element
	9.3.2.30 The title Element
	9.3.2.31 The webpage Element


	9.4 CORBA Component Descriptor
	9.4.1 CORBA Component Descriptor Example
	9.4.2 The CORBA Component Descriptor XML Elements
	9.4.2.1 The corbacomponent Root Element
	9.4.2.2 The client Element
	9.4.2.3 The componentfeatures Element
	9.4.2.4 The componentkind Element
	9.4.2.5 The configurationcomplete Element
	9.4.2.6 The consumes Element
	9.4.2.7 The corbacomponent Element
	9.4.2.8 The corbaversion Element
	9.4.2.9 The emits Element
	9.4.2.10 The entity Element
	9.4.2.11 The eventpolicy Element
	9.4.2.12 The extendedpoapolicy Element
	9.4.2.13 The extension Element
	9.4.2.14 The inheritscomponent Element
	9.4.2.15 The inheritsinterface Element
	9.4.2.16 The ins Element
	9.4.2.17 The interface Element
	9.4.2.18 The objref Element
	9.4.2.19 The persistence Element
	9.4.2.20 The persistentstoreinfo Element
	9.4.2.21 The poapolicies Element
	9.4.2.22 The ports Element
	9.4.2.23 The process Element
	9.4.2.24 The provides Element
	9.4.2.25 The repository Element
	9.4.2.26 The repositoryid Element
	9.4.2.27 The security Element
	9.4.2.28 The securitycredentialkind Element
	9.4.2.29 The servant Element
	9.4.2.30 The service Element
	9.4.2.31 The session Element
	9.4.2.32 The specified Element
	9.4.2.33 The supportsinterface Element
	9.4.2.34 The system Element
	9.4.2.35 The threading Element
	9.4.2.36 The transaction Element
	9.4.2.37 The unclassified Element
	9.4.2.38 The uses Element


	9.5 Component Assembly Packaging
	9.6 Component Assembly File
	9.7 Component Assembly Descriptor
	9.7.1 Component Assembly Descriptor Example
	9.7.2 Component Assembly Descriptor XML Elements
	9.7.2.1 The componentassembly Root Element
	9.7.2.2 The codebase Element
	9.7.2.3 The componentfile Element
	9.7.2.4 The componentfileref Element
	9.7.2.5 The componentfiles Element
	9.7.2.6 The componentimplref Element
	9.7.2.7 The componentplacement Element
	9.7.2.8 The connectevent Element
	9.7.2.9 The connectinterface Element
	9.7.2.10 The connections Element
	9.7.2.11 The consumesidentifier Element
	9.7.2.12 The consumingcomponent Element
	9.7.2.13 The emitingcomponent Element
	9.7.2.14 The emitsidentifier Element
	9.7.2.15 The extension Element
	9.7.2.16 The fileinarchive Element
	9.7.2.17 The findby Element
	9.7.2.18 The hostcollocation Element
	9.7.2.19 The impltype Element
	9.7.2.20 The installprocess Element
	9.7.2.21 The link Element
	9.7.2.22 The namingservice Element
	9.7.2.23 The partitioning Element
	9.7.2.24 The processcollocation Element
	9.7.2.25 The propertiesfile Element
	9.7.2.26 The providesidentifier Element
	9.7.2.27 The providingcomponent Element
	9.7.2.28 The registerwithnaming Element
	9.7.2.29 The registerwithtrader Element
	9.7.2.30 The stringifiedobjectref Element
	9.7.2.31 Trader elements
	9.7.2.32 The usagename Element
	9.7.2.33 The usesidentifier Element
	9.7.2.34 The usingcomponent Element


	9.8 Property File Descriptor
	9.8.1 Property File Example
	9.8.2 Property File XML Elements
	9.8.2.1 The properties Root Element
	9.8.2.2 The choice Element
	9.8.2.3 The choices Element
	9.8.2.4 The defaultvalue Element
	9.8.2.5 The description Element
	9.8.2.6 The properties Element
	9.8.2.7 The simple Element
	9.8.2.8 The sequence Element
	9.8.2.9 The struct Element
	9.8.2.10 The value Element


	9.9 Component Deployment
	9.9.1 Participants in Deployment
	9.9.1.1 Deployment Class Diagram
	9.9.1.2 Deployment Scenario

	9.9.2 Installation Interface
	9.9.3 AssemblyFactory Interface
	9.9.4 Assembly Interface
	9.9.5 ServerActivator Interface
	9.9.6 ComponentServer Interface
	9.9.7 Container Interface
	9.9.8 Component Entry Points (Component Home Factories)


	10 Component Meta-Model
	10.1 Introduction
	10.2 Change History
	10.3 An Overview of the MOF
	10.3.1 The MOF Model
	10.3.2 The MOF-IDL Mapping

	10.4 An Overview of XMI
	10.5 A MOF-Based Interface Repository Metamodel
	10.5.1 BaseIDL Package
	10.5.1.1 A Structural Comparison of the BaseIDL Package with the Existing IR
	10.5.1.2 Typing
	10.5.1.3 Containment
	10.5.1.4 Containment Constraints
	10.5.1.5 Typedef and Type Derivations
	10.5.1.6 Exceptions
	10.5.1.7 Value Types
	10.5.1.8 Naming
	10.5.1.9 Operations

	10.5.2 ComponentIDL Package
	10.5.2.1 Overview
	10.5.2.2 Containers and Contained Elements
	10.5.2.3 ValueDef Constraints
	10.5.2.4 Miscellaneous Constraints


	10.6 Packaging and Deployment Metamodel
	10.6.1 The PDGeneral MOF Package
	10.6.2 The Softpkg MOF Package
	10.6.3 The Component MOF Package
	10.6.4 The Assembly MOF Package
	10.6.5 The PropertySet MOF Package


	11 Mapping to Enterprise Java Beans
	11.1 History of changes
	11.1.1 Since 99-02-01
	11.1.2 Since 98-12-02

	11.2 Enterprise Java Beans Compatibility Objectives and Requirements
	11.3 EJB Facades for EJBs
	11.4 CORBA Component facades for EJBs
	11.4.1 Java Language to IDL Mapping
	11.4.2 EJB to CORBA Component IDL mapping
	11.4.2.1 Operations on EJBObject
	11.4.2.2 Operations on EJBHome
	11.4.2.3 Operations on the Remote Interface
	11.4.2.4 Operations on the Home Interface
	11.4.2.5 Other mapping rules
	11.4.2.6 CORBA Component Facade Example

	11.4.3 EJB Facades for CORBA Components

	11.5 Enterprise Java Beans deployed to a CORBA Component Server
	11.5.1 EJB Hosting Strategies
	11.5.1.1 Direct Hosting
	11.5.1.2 EJB Adaptation

	11.5.2 EJBObject
	11.5.3 Transactional State Management
	11.5.4 Container Managed Persistence
	11.5.5 Bean Managed Persistence
	11.5.6 EJBHome
	11.5.6.1 Container Managed Persistent Entity Beans
	11.5.6.2 Bean Managed Persistent Entity Beans
	11.5.6.3 Other Bean Types

	11.5.7 Object References and Handles
	11.5.8 EJB Context Interfaces
	11.5.9 EJB Implementation Interfaces
	11.5.10 Environment Properties
	11.5.11 JNDI and CosNaming
	11.5.12 CORBA Component and EJB 1.0 Containment Contracts
	11.5.13 Deployment Processes and Artifacts


	12 C++ Language Mapping
	12.1 Introduction
	12.2 Mapping for incarnations
	12.2.1 Incarnation members
	12.2.1.1 Atomic members
	12.2.1.2 Independent storage members
	12.2.1.3 Storage sequence members
	12.2.1.4 Dependent members

	12.2.2 Constructors, Assignment Operators, and Destructors
	12.2.3 _downcast operation
	12.2.4 _type_id operation
	12.2.5 Example
	12.2.6 IncarnationBase
	12.2.7 IndependentBase and reference counting


	13 Java Language Mapping
	13.1 Introduction
	13.2 Mapping for incarnations
	13.3 Incarnation members
	13.3.1 Atomic members
	13.3.1.1 Primitive types
	13.3.1.2 Reference types

	13.3.2 Independent storage members
	13.3.3 Storage sequence members
	13.3.3.1 Sequence interface

	13.3.4 Dependent members
	13.3.5 IncarnationBase
	13.3.6 IndependentBase


	14 Changes to CORBA and Services
	14.1 Changes to the CORBA Core
	14.1.1 Changes to the ORB interface
	14.1.2 Changes to the Object interface
	14.1.3 Local interface types
	14.1.4 resolve_local
	14.1.5 Import
	14.1.6 Repository identity declarations
	14.1.7 Repository identifier prefix declaration
	14.1.8 IDL Grammar modifications
	14.1.9 Keywords
	14.1.10 Changes to the Attribute declaration syntax

	14.2 Changes to Object Services
	14.2.1 Life Cycle Service
	14.2.2 Transaction Service
	14.2.3 Security Service
	14.2.4 Name Service
	14.2.5 Notification Service


	15 Conformance Criteria
	15.1 Conformance Points
	15.2 A Note on Tools

	A  IDL Summary
	A.1 Module Architecture
	A.2 The Core Module
	A.3 The Components Module
	A.3.1 Interfaces Defined Within the Components Module
	A.3.2 Interfaces Defined Within the Persistence Module
	A.3.3 Interfaces Defined Within the Deployment Module
	A.3.4 Interfaces Defined Within the Server Module
	A.3.5 Interfaces Defined Within the Container Module


	B  XML DTDs
	B.1 softpkg.dtd
	B.2 corbacomponent.dtd
	B.3 properties.dtd
	B.4 componentassembly.dtd

	C  MOF DTDs and IDL
	C.1 IR Metamodel
	C.1.1 XMI DTD
	C.1.2 IDL for the IR Metamodel

	C.2 Packaging and Deployment Metamodel
	C.2.1 XMI DTD


	D  Related Work
	D.1 Polymorphism
	D.2 Java Parameterized Type Proposals
	D.2.1 Where Clauses
	D.2.2 Constraining on Interface

	D.3 JavaBeans
	D.4 COM
	D.5 Rapide

	E  References

