
Dynamic Management of Any Values 9
he

An any can be passed to a program that doesn’t have any static information for t
type of the any (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receiving the any
does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with anany
at runtime and extraction of the primitive constituents of the data value. This is
especially helpful for writing powerful generic servers (bridges, event channels
supporting filtering, etc.).

Similarly, this facility enables the construction of an any at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools, etc.).

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 9-2

“DynAny API” 9-4

“Usage in C++ language” 9-25
 CORBA V2.4 Draft 17 March 1999 9-1

9

9.1 Overview

Comment: Editorial instructions: The old DynAny interface published with CORBA 2.2 is
deprecated. All references to the old DynAny-related types and interfaces should
be removed from the core (Chapter 4) and be replaced with a comment stating
that the DynamicAny module takes their place. This affects the following types
and definitions in the CORBA module:

Comment: DynAny, DynStruct, DynSequence, DynArray, DynUnion, DynEnum, DynFixed,
DynValue, create_dyn_any, create_basic_dyn_any, create_dyn_struct,
create_dyn_sequence, create_dyn_array, create_dyn_union, create_dyn_enum,
create_dyn_fixed, InconsistentTypeCode, and the remark about the create_dyn_*
operations on page 4-7.

Comment: Add DynAnyFactory to the list of reserved ObjectIds on page 4-19.

Unless explicitly stated otherwise, all IDL presented in section 9.1 through section 9.3
is part of the DynamicAny module.

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. A DynAny object is associated with a data value which corresponds
to a copy of the value inserted into an any.

A DynAny object may be viewed as an ordered collection of component DynAnys.
For DynAnys representing a basic type, such as long, or a type without components,
such as an empty exception, the ordered collection of components is empty. Each
DynAny object maintains the notion of a current position into its collection of
component DynAnys. The current position is identified by an index value that runs
from 0 to n−1, where n is the number of components. The special index value −1
indicates a current position that points nowhere. For values that cannot have a current
position (such as an empty exception), the index value is fixed at −1. If a DynAny is
initialized with a value that has components, the index is initialized to 0. After creation
of an uninitialized DynAny (that is, a DynAny that has no value but a TypeCode
that permits components), the current position depends on the type of value
represented by the DynAny. (The current position is set to 0 or −1, depending on
whether the new DynAny gets default values for its components.)

The iteration operations rewind, seek, and next can be used to change the current
position and the current_component operation returns the component at the current
position. The component_count operation returns the number of components of a
DynAny. Collectively, these operations enable iteration over the components of a
DynAny, for example, to (recursively) examine its contents.
9-2 CORBA V2.4 Draft 17 March 1999

9

Comment: Replaced notion of a “buffer” with the concept of an ordered collection (Issue
1117). Added the notion of a -1 index to solve the problem of what to do with
values that do not have components (Issue 1670). Added description of
component_count (Issue 1670).

A constructed DynAny object is a DynAny object associated with a constructed type.
There is a different interface, inheriting from the DynAny interface, associated with
each kind of constructed type in IDL (fixed, enum, struct, sequence, union, array,
exception, and valuetype).

Comment: Added fixed, enum, exception, and valuetype to this list because they were
missing.

A constructed DynAny object exports operations that enable the creation of new
DynAny objects, each of them associated with a component of the constructed data
value.

As an example, a DynStruct is associated with a struct value. This means that the
DynStruct may be seen as owning an ordered collection of components, one for each
structure member. The DynStruct object exports operations that enable the creation of
new DynAny objects, each of them associated with a member of the struct.

Comment: Eliminated notion of “buffer” (Issue 1117).

If a DynAny object has been obtained from another (constructed) DynAny object,
such as a DynAny representing a structure member that was created from a
DynStruct, the member DynAny is logically contained in the DynStruct.

Comment: Eliminated notion of “buffer” (Issue 1117).

Destroying a top-level DynAny object (one that was not obtained as a component of
another DynAny) also destroys any component DynAny objects obtained from it.
Destroying a non-top level DynAny object does nothing. Invoking operations on a
destroyed top-level DynAny or any of its descendants raises OBJECT_NOT_EXIST.
Note that simply releasing all references to a DynAny object does not delete the
DynAny or components; each DynAny created with one of the create operations or
with the copy operation must be explicitly destroyed to avoid memory leaks.

Comment: Eliminated notion of “buffer” (Issue 1117). Specified behavior for destruction of
components (Issue 1644).

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, then he or she should first create
a DynAny for the component and, after that, make a copy of the created DynAny
object.
CORBA V2.4 Draft Overview 17 March 1999 9-3

9

The behavior of DynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of access. DynAny
objects are intended to be used for traversing values extracted from anys or
constructing values of anys at runtime. Their use for other purposes is not
recommended.

9.2 DynAny API

The DynAny API comprises the following IDL definitions, located in the
DynamicAny module:

// IDL
// File: DynamicAny.idl
#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_
#pragma prefix “omg.org”
#include <orb.idl>

module DynamicAny {

interface DynAny {

Comment: Deleted the Invalid exception here. It was used only by assign(), from_any(), and
to_any(). For these, it did not distinguish between type mismatch and not
initialized error conditions, effectively mangling both error conditions into a
single exception. For consistency with the resolution of Issue 654, assign(), and
from_any() now raise TypeMismatch and InvalidValue, and to_any() raises
InvalidValue.

exception InvalidValue {};
exception TypeMismatch {};

Comment: Deleted definition of OctetSeq here (Issue 1652). It was defined twice, once in the
CORBA scope and once in the CORBA::DynAny scope. Because DynAny itself
does not use OctetSeq, and because supporting type definitions for other DynAny
types, such as DynStruct, also appear in the CORBA scope, deleting the definition
here was the cleanest fix.

Comment: Deleted InvalidSeq exception because it was redundant. InvalidValue can be used
just as well because there were no operations that could raise both InvalidValue
and InvalidSeq.

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
9-4 CORBA V2.4 Draft 17 March 1999

9

any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);

void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);

void insert_char(in char value)
raises(TypeMismatch, InvalidValue);

void insert_short(in short value)
raises(TypeMismatch, InvalidValue);

void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);

void insert_long(in long value)
raises(TypeMismatch, InvalidValue);

void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);

void insert_float(in float value)
raises(TypeMismatch, InvalidValue);

void insert_double(in double value)
raises(TypeMismatch, InvalidValue);

void insert_string(in string value)
raises(TypeMismatch, InvalidValue);

void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);

void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);

void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);

void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);

void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);

void insert_any(in any value)
raises(TypeMismatch, InvalidValue);

void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);

void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()
raises(TypeMismatch, InvalidValue);

octet get_octet()
CORBA V2.4 Draft DynAny API 17 March 1999 9-5

9

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);
long get_long()

raises(TypeMismatch, InvalidValue);
unsigned long get_ulong()

raises(TypeMismatch, InvalidValue);
float get_float()

raises(TypeMismatch, InvalidValue);
double get_double()

raises(TypeMismatch, InvalidValue);
string get_string()

raises(TypeMismatch, InvalidValue);
Object get_reference()

raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()

raises(TypeMismatch, InvalidValue);
long long get_longlong()

raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()

raises(TypeMismatch, InvalidValue);
long double get_longdouble()

raises(TypeMismatch, InvalidValue);
wchar get_wchar()

raises(TypeMismatch, InvalidValue);
wstring get_wstring()

raises(TypeMismatch, InvalidValue);
any get_any()

raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()

raises(TypeMismatch, InvalidValue);
ValueBase get_val()

raises(TypeMismatch, InvalidValue);

Comment: Added the InvalidValue exception to all get operations (Issue 654). This exception
is raised if a get operation is invoked on a DynAny that has the correct type code
but a current position of −1.

boolean seek(in long index);
void rewind();
boolean next();
unsigned long component_count() raises(TypeMismatch);
DynAny current_component() raises(TypeMismatch);

};
9-6 CORBA V2.4 Draft 17 March 1999

9

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

};

Comment: Replaced octet sequence with string because there is no way to generically pass a
fixed type in IDL (Issue 1668, 1653). Changed return type of set_value to boolean
to permit detection of loss of precision.

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong() raises(InvalidValue);

};

Comment: Changed attributes to operations (Issue 1119, 1675).

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

Comment: Added TypeMismatch exceptions to deal with empty exceptions. (Issue 1679)
CORBA V2.4 Draft DynAny API 17 March 1999 9-7

9

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

};

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len) raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

Comment: Replaced attribute with operations (Issue 1119, 1675).

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

interface DynValue : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};
9-8 CORBA V2.4 Draft 17 March 1999

9

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
DynAny

create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

};

}; // module DynamicAny

#endif // _DYNAMIC_ANY_IDL_

Comment: Added DynValue interface here because it was missing.

9.2.1 Locality and usage constraints

DynAny and DynAnyFactory objects are intended to be local to the process in
which they are created and used. This means that references to DynAny and
DynAnyFactory objects cannot be exported to other processes, or externalized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception.

Since their interfaces are specified in IDL, DynAny objects export operations defined
in the standard CORBA::Object interface. However, any attempt to invoke operations
exported through the Object interface may raise the standard NO_IMPLEMENT
exception.

An attempt to use a DynAny object with the DII may raise the NO_IMPLEMENT
exception.

9.2.2 Creating a DynAny object

A DynAny object can be created as a result of:

• invoking an operation on an existing DynAny object

• invoking an operation on a DynFactory object.

A constructed DynAny object supports operations that enable the creation of new
DynAny objects encapsulating access to the value of some constituent. DynAny
objects also support the copy operation for creating new DynAny objects.

In addition, DynAny objects can be created by invoking operations on the
DynFactory object. A reference to the DynFactory object is obtained by calling
CORBA::ORB::resolve_initial_references("DynFactory").

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
CORBA V2.4 Draft DynAny API 17 March 1999 9-9

9

DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

};

The create_dyn_any operation creates a new DynAny object from an any value. A
copy of the TypeCode associated with the any value is assigned to the resulting
DynAny object. The value associated with the DynAny object is a copy of the value
in the original any. The create_dyn_any operation sets the current position of the
created DynAny to zero if the passed value has components; otherwise, the current
position is set to −1. The operation raises InconsistentTypeCode if value has a
TypeCode with a TCKind of tk_Principal, tk_native, or tk_abstract_interface.

Comment: Added InconsistentTypeCode to create_dyn_any to deal with initializers that do
not make sense for DynAny.

The create_dyn_any_from_type_code operation creates a DynAny from a
TypeCode. Depending on the TypeCode, the created object may be of type
DynAny, or one of its derived types, such as DynStruct. The returned reference can
be narrowed to the derived type.

In all cases, a DynAny constructed from a TypeCode has an initial default value. The
default values of basic types are:

• FALSE for Boolean

• zero for numeric types

• zero for types octet, char, and wchar

• the empty string for string and wstring

• nil for object references

• a type code with a TCKind value of tk_null for type codes

• for any values, an any containing a type code with a TCKind value of tk_null
type and no value

For complex types, creation of the corresponding DynAny assigns a default value as
follows:

• For DynSequence, the operation sets the current position to −1 and creates an
empty sequence.

• For DynEnum, the operation sets the current position to −1 and sets the value of
the enumerator to the first enumerator value indicated by the TypeCode.

• For DynFixed, operations set the current position to −1 and sets the value zero.

• For DynStruct, the operation sets the current position to −1 for empty exceptions
and to zero for all other TypeCodes. The members (if any) are (recursively)
initialized to their default values.

• For DynArray, the operation sets the current position to zero and (recursively)
initializes elements to their default value.
9-10 CORBA V2.4 Draft 17 March 1999

9

• For DynUnion, the operation sets the current position to zero. The discriminator
value is set to a value consistent with the first named member of the union. That
member is activated and (recursively) initialized to its default value.

• For DynValue, the members are initialized as for DynStruct.

Comment: Specified semantics of create operations with respect to current position and
initial values (Issue 1144, 1648, 1649).

Dynamic interpretation of an any usually involves creating a DynAny object using
DynAnyFactory::create_dyn_any as the first step. Depending on the type of the
any, the resulting DynAny object reference can be narrowed to a DynFixed,
DynStruct, DynSequence, DynArray, DynUnion, DynEnum, or DynValue
object reference.

Comment: Added DynFixed and DynValue to this list because they were missing.

Dynamic creation of an any involves creating a DynAny object using
DynAnyFactory::create_dyn_any_from_type_code, passing the TypeCode
associated with the value to be created. The returned reference is narrowed to one of
the complex types, such as DynStruct, if appropriate. Then, the value can be
initialized by means of invoking operations on the resulting object. Finally, the to_any
operation can be invoked to create an any value from the constructed DynAny.

9.2.3 The DynAny interface

The following operations can be applied to a DynAny object:

• Obtaining the TypeCode associated with the DynAny object

• Generating an any value from the DynAny object

• Comparing two DynAny objects for equality

• Destroying the DynAny object

• Creating a DynAny object as a copy of the DynAny object

• Inserting/getting a value of some basic type into/from the DynAny object

• Iterating through the components of a DynAny

• Initializing a DynAny object from another DynAny object

• Initializing a DynAny object from an any value
CORBA V2.4 Draft DynAny API 17 March 1999 9-11

9

9.2.3.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with a TypeCode value assigned to it. This TypeCode
value determines the type of the value handled through the DynAny object. The type
operation returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized at the time the
DynAny is created and cannot be changed during lifetime of the DynAny object.

9.2.3.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with a DynAny object with the
value associated with another DynAny object.

If the type of the passed DynAny is not equivalent to the type of target DynAny, the
operation raises TypeMismatch. The current position of the target DynAny is set to
zero for values that have components and to −1 for values that do not have
components.

Comment: Issue 654, 1144.

9.2.3.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);

The from_any operation initializes the value associated with a DynAny object with
the value contained in an any.

If the type of the passed Any is not equivalent to the type of target DynAny, the
operation raises TypeMismatch. If the passed Any does not contain a legal value
(such as a null string), the operation raises InvalidValue. The current position of the
target DynAny is set to zero for values that have components and to −1 for values that
do not have components.

Comment: Issue 654, 1144.

9.2.3.4 Generating an any value from a DynAny object

any to_any();

The to_any operation creates an any value from a DynAny object. A copy of the
TypeCode associated with the DynAny object is assigned to the resulting any. The
value associated with the DynAny object is copied into the any.
9-12 CORBA V2.4 Draft 17 March 1999

9

9.2.3.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation compares two DynAny values for equality and returns true of the
DynAnys are equal, false otherwise. Two DynAny values are equal if their
TypeCodes are equivalent and, recursively, all component DynAnys have equal
values. The current position of the two DynAnys being compared has no effect on the
result of equal.

Comment: Issue 1972.

9.2.3.6 Destroying a DynAny object

void destroy();

The destroy operation destroys a DynAny object. This operation frees any resources
used to represent the data value associated with a DynAny object. destroy must be
invoked on references obtained from one of the creation operations on the ORB
interface or on a reference returned by DynAny::copy to avoid resource leaks.
Invoking destroy on component DynAny objects (for example, on objects returned
by the current_component operation) does nothing.

Comment: Specified that destroy need be invoked only on top-level objects and is a no-op on
component DynAnys to deal with the problem of what should happen if I call
destroy on a DynAny in the middle of a containment hierarchy. (Issue 1644).

Destruction of a DynAny object implies destruction of all DynAny objects obtained
from it. That is, references to components of a destroyed DynAny become invalid;
invocations on such references raise OBJECT_NOT_EXIST.

Comment: Added clarification to make it clear that component references dangle once the
owning (parent) DynAny is destroyed.

Comment: Deleted one para that said something vague and non-normative about taking care
with the representation of values.

It is possible to manipulate a component of a DynAny beyond the life time of the
DynAny from which the component was obtained by making a copy of the component
with the copy operation before destroying the DynAny from which the component
was obtained.

Comment: Reworded this para to get rid of awkward wording.
CORBA V2.4 Draft DynAny API 17 March 1999 9-13

9

9.2.3.7 Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a new DynAny object whose value is a deep copy of the
DynAny on which it is invoked. The operation is polymorphic, that is, invoking it on
one of the types derived from DynAny, such as DynStruct, creates the derived type
but returns its reference as the DynAny base type.

Comment: Made it clear that copy is a polymorphic clone operation.

9.2.3.8 Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type values
into/from a DynAny object.

Both bounded and unbounded strings are inserted using insert_string and
insert_wstring. These operations raise the InvalidValue exception if the string
inserted is longer than the bound of a bounded string.

Comment: Issue 1639.

Calling an insert or get operation on a DynAny that has components but has a current
position of −1 raises InvalidValue.

Comment: Issue 1147.

Get operations raise TypeMismatch if the accessed component in the DynAny is of
a type that is not equivalent to the requested type. (Note that get_string and
get_wstring are used for both unbounded and bounded strings.)

Comment: Made it clear that bounded strings use insert_(w)string and get_(w)string. (Issue
1639)

A type is consistent for inserting or extracting a value if its TypeCode is equivalent to
the TypeCode contained in the DynAny or, if the DynAny has components, is
equivalent to the TypeCode of the DynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to deal with any
values that contain another any.

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle basic DynAny objects but are also helpful to
handle constructed DynAny objects. Inserting a basic data type value into a constructed
DynAny object implies initializing the current component of the constructed data value
associated with the DynAny object. For example, invoking insert_boolean on a
9-14 CORBA V2.4 Draft 17 March 1999

9

DynStruct implies inserting a boolean data value at the current position of the
associated struct data value. If dyn_construct points to a constructed DynAny
object, then:

result = dyn_construct->get_boolean();

has the same effect as:

DynamicAny::DynAny_var temp =
dyn_construct->current_component();

result = temp->get_boolean();

Calling an insert or get operation on a DynAny whose current component itself has
components raises TypeMismatch.

Comment: Deleted call to next() here because calling a get operation does not advance the
current position.

In addition, availability of these operations enable the traversal of anys associated
with sequences of basic data types without the need to generate a DynAny object for
each element in the sequence.

9.2.3.9 Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the values
pointed to by DynStruct, DynSequence, DynArray, DynUnion, DynAny, and
DynValue objects.

As mentioned previously, a DynAny object may be seen as an ordered collection of
components, together with a current position.

boolean seek(in long index);

The seek operation sets the current position to index. The current position is indexed
0 to n−1, that is, index zero corresponds to the first component. The operation returns
true if the resulting current position indicates a component of the DynAny and false if
index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current position to −1 to
indicate no component and returns false. Passing a non-negative index value for a
DynAny that does not have a component at the corresponding position sets the current
position to −1 and returns false.

Comment: Cleaned up semantics to fully define the behavior under various boundary
conditions. (Issue 1649).

void rewind();

The rewind operation is equivalent to calling seek(0);
CORBA V2.4 Draft DynAny API 17 March 1999 9-15

9

boolean next();

The next operation advances the current position to the next component. The
operation returns true while the resulting current position indicates a component, false
otherwise. A false return value leaves the current position at −1. Invoking next on a
DynAny without components leaves the current position at −1 and returns false.

Comment: Defined current position after next returns false. (Issue 1648).

unsigned long component_count() raises(TypeMismatch);

The component_count operation returns the number of components of a DynAny.
For a DynAny without components, it returns zero. The operation only counts the
components at the top level. For example, if component_count is invoked on a
DynStruct with a single member, the return value is 1, irrespective of the type of the
member.

For sequences, the operation returns the current number of elements. For structures,
exceptions, and valuetypes, the operation returns the number of members. For arrays,
the operation returns the number of elements. For unions, the operation returns 2 if the
discriminator indicates that a named member is active; otherwise, it returns 1. For
DynFixed and DynEnum, the operation returns zero.

Comment: Added component_count() because otherwise, there is no way to find out how
many components are in a DynAny, other than to iterate through to the end or
randomly calling seek() until I’ve found the place at which it switches from true to
false. (Issue 1670).

DynAny current_component() raises(TypeMismatch);

The current_component operation returns the DynAny for the component at the
current position. It does not advance the current position, so repeated calls to
current_component without an intervening call to rewind, next, or seek return the
same component.

The returned DynAny object reference can be used to get/set the value of the current
component. If the current component represents a complex type, the returned reference
can be narrowed based on the TypeCode to get the interface corresponding to the to
the complex type.

Calling current_component on a DynAny that cannot have components, such as a
DynEnum or an empty exception, raises TypeMismatch. Calling
current_component on a DynAny whose current position is −1 returns a nil
reference.

Comment: Deleted one para here that mentioned IDL identifiers “member_type” and
“component_type”, none of which exist in the IDL.
9-16 CORBA V2.4 Draft 17 March 1999

9

e
The iteration operations, together with current_component, can be used to
dynamically compose an any value. After creating a dynamic any, such as a
DynStruct, current_component and next can be used to initialize all the
components of the value. Once the dynamic value is completely initialized, to_any
creates the corresponding any value.

Comment: Tightened semantics to indicate what happens for values that don’t have
components (Issue 1144, 1648, 1649). Added TypeMismatch to solve the problem
of what to do if the operation is invoked on a DynAny without components. (Issue
1670). Specified nil return value if no component exists for the current position to
make iteration easier. Tightened up last para to use clearer language.

9.2.4 The DynFixed interface

DynFixed objects are associated with values of the IDL fixed type.

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)

raises (TypeMismatch, InvalidValue);
};

Because IDL does not have a generic type that can represent fixed types with arbitrary
number of digits and arbitrary scale, the operations use the IDL string type.

The get_value operation returns the value of a DynFixed.

The set_value operation sets the value of the DynFixed. The val string must contain
a fixed string constant in the same format as used for IDL fixed-point literals.
However, the trailing d or D is optional. If val contains a value whose scale exceeds
that of the DynFixed or is not initialized, the operation raises InvalidValue. The
return value is true if val can be represented as the DynFixed without loss of
precision. If val has more fractional digits than can be represented in the DynFixed,
fractional digits are truncated and the return value is false. If val does not contain a
valid fixed-point literal or contains extraneous characters other than leading or trailing
white space, the operation raises TypeMismatch.

Comment: Changed representation of fixed values from octet sequence to string. I cannot se
another way of dealing with IDL’s inability to represent different fixed-point types
generically. (The previous solution using the CDR encoding for fixed was
pragmatically useless to application programmers -- Issue 1653). Added
TypeMismatch and InvalidValue exceptions to deal with error conditions.
Changed return type of set_value to boolean to permit detection of loss of
precision (Issue 1668).

9.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.
CORBA V2.4 Draft DynAny API 17 March 1999 9-17

9

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value)

raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong()

raises(InvalidValue);
};

The get_as_string operation returns the value of the DynEnum as an IDL identifier.

The set_as_string operation sets the value of the DynEnum to the enumerated value
whose IDL identifier is passed in the value parameter. If value contains a string that
is not a valid IDL identifier for the corresponding enumerated type, the operation
raises InvalidValue.

The get_as_ulong operation returns the value of the DynEnum as the enumerated
value’s ordinal value. Enumerators have ordinal values 0 to n−1, as they appear from
left to right in the corresponding IDL definition.

The set_as_ulong operation sets the value of the DynEnum as the enumerated
value’s ordinal value. If value contains a value that is outside the range of ordinal
values for the corresponding enumerated type, the operation raises InvalidValue.

The current position of a DynEnum is always −1.

Comment: Changed attributes to operations because otherwise, there is no way to report
error conditions, such as “not initialized” and “impossible value” (1675).
Tightened semantics to specify the ordinal values of enumerators (Issue 1119).
Specified the current position (Issue 1144).

9.2.6 The DynStruct interface

DynStruct objects are associated with struct values and exception values.

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;
9-18 CORBA V2.4 Draft 17 March 1999

9

Comment: Added types for DynAny. (Issue 1679)

typedef sequence<NameValuePair> NameValuePairSeq;

interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the
current position. If the DynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation
raises InvalidValue.

This operation may return an empty string since the TypeCode of the value being
manipulated may not contain the names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current_member_kind returns the TCKind associated with the member at the
current position. If the DynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation
raises InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing the
name and the value of each member in the struct associated with a DynStruct object.
The sequence contains members in the same order as the declaration order of members
as indicated by the DynStruct’s TypeCode. The current position is not affected. The
member names in the returned sequence will be empty strings if the DynStruct’s
TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);
CORBA V2.4 Draft DynAny API 17 March 1999 9-19

9

he

.

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs. The operation sets the current
position to zero if the passed sequences has non-zero length; otherwise, if an empty
sequence is passed, the current position is set to −1.

Members must appear in the NameValuePairSeq in the order in which they appear in
the IDL specification of the struct. If one or more sequence elements have a type that
is not equivalent to the TypeCode of the corresponding member, the operation raises
TypeMismatch. If the passed sequence has a number of elements that disagrees with
the number of members as indicated by the DynStruct’s TypeCode, the operation
raises InvalidValue.

If member names are supplied in the passed sequence, they must either match t
corresponding member name in the DynStruct’s TypeCode or must be empty
strings, otherwise, the operation raises TypeMismatch. Members must be supplied in
the same order as indicated by the DynStruct’s TypeCode. (The operation makes no
attempt to assign member values based on member names.)

The get_members_as_dyn_any and set_members_as_dyn_any operations
have the same semantics as their Any counterparts, but accept and return values of
type DynAny instead of Any.

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct

Comment: Added exceptions to deal with situations where there cannot be a member or
where the current position does not indicate a member. (Issue 1679) Changed
member sequence from Any to DynAny (Issue 1671). Clarified semantics of
operations and added TypeMismatch exception to avoid mangling several error
conditions into a single exception.

9.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d)

raises(TypeMismatch);
void set_to_no_active_member()

raises(TypeMismatch);
boolean has_no_active_member()

raises(InvalidValue);
CORBA::TCKind discriminator_kind();
DynAny member()

raises(InvalidValue);
FieldName member_name()

raises(InvalidValue);
CORBA::TCKind member_kind()

raises(InvalidValue);
9-20 CORBA V2.4 Draft 17 March 1999

9

on
a
r and
is a

tor

er,

o

es
o and
};

The DynUnion interface allows for the insertion/extraction of an OMG IDL union
type into/from a DynUnion object.

A union can have only two valid current positions: zero, which denotes the
discriminator, and one, which denotes the active member. The component_count
value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()
raises(InvalidValue);

The get_discriminator operation returns the current discriminator value of the
DynUnion.

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of the DynUnion to the
specified value. If the TypeCode of the d parameter is not equivalent to the
TypeCode of the union’s discriminator, the operation raises TypeMismatch.

Setting the discriminator to a value that is consistent with the currently active uni
member does not affect the currently active member. Setting the discriminator to
value that is inconsistent with the currently active member deactivates the membe
activates the member that is consistent with the new discriminator value (if there
member for that value) by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discrimina
value indicates a non-existent union member (has_no_active_member returns true
in this case). Otherwise, if the discriminator value indicates a named union memb
the current position is set to 1 (has_no_active_member returns false and
component_count returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

The set_to_default_member operation sets the discriminator to a value that is
consistent with the value of the default case of a union; it sets the current position t
zero and causes component_count to return 2. Calling set_to_default_member
on a union that does not have an explicit default case raises TypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

The set_to_no_active_member operation sets the discriminator to a value that do
not correspond to any of the union’s case labels; it sets the current position to zer
causes component_count to return 1. Calling set_to_no_active_member on a
union that has an explicit default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.
CORBA V2.4 Draft DynAny API 17 March 1999 9-21

9

a

tly

tive
s

the
er,

boolean has_no_active_member();

The has_no_active_member operation returns true if the union has no active
member (that is, the union’s value consists solely of its discriminator because the
discriminator has a value that is not listed as an explicit case label). Calling this
operation on a union that has a default case returns false. Calling this operation on
union that uses the entire range of discriminator values for explicit case labels returns
false.

CORBA::TCKind discriminator_kind();

The discriminator_kind operation returns the TCKind value of the discriminator’s
TypeCode.

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the currently active
member’s TypeCode. Calling this operation on a union that does not have a curren
active member raises InvalidValue.

DynAny member()
raises(InvalidValue);

The member operation returns the currently active member. If the union has no ac
member, the operation raises InvalidValue. Note that the returned reference remain
valid only for as long as the currently active member does not change. Using the
returned reference beyond the life time of the currently active member raises
OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

The member_name operation returns the name of the currently active member. If
union’s TypeCode does not contain a member name for the currently active memb
the operation returns an empty string. Calling member_name on a union without an
active member raises InvalidValue.

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the TypeCode of the
currently active member. If the union has no active member, the operation raises
InvalidValue.

Comment: Mostly rewrote the DynUnion interface because there were too many problems
with it. Issues 747, 1120, 1157, 1158, 1159, 1675, 1974.
9-22 CORBA V2.4 Draft 17 March 1999

9

9.2.8 The DynSequence interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)

raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(TypeMismatch, InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a
sequence adds new elements at the tail without affecting the values of already existing
elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added
element if the previous current position was −1. Otherwise, if the previous current
position was not −1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises
InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting
the value of those elements that remain. The new current position after decreasing the
length of a sequence is determined as follows:

• If the length of the sequence is set to zero, the current position is set to −1.

• If the current position is −1 before decreasing the length, it remains at −1.

• If the current position indicates a valid element and that element is not removed
when the length is decreased, the current position remains unaffected.

• If the current position indicates a valid element and that element is removed, the
current position is set to −1.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.
CORBA V2.4 Draft DynAny API 17 March 1999 9-23

9

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the
DynSequence is set to the length of value. The current position is set to zero if
value has non-zero length and to −1 if value is a zero-length sequence.

If value contains one or more elements whose TypeCode is not equivalent to the
element TypeCode of the DynSequence, the operation raises TypeMismatch. If
the length of value exceeds the bound of a bounded sequence, the operation raises
InvalidValue.

Comment: Cleaned up semantics of length (Issue 660). Removed attribute and replaced with
operations to permit proper exception handling (Issue 1119).

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have
the same semantics, but accept and return values of type DynAny instead of Any.

9.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

DynAnySeq get_elements();

The get_elements operation returns the elements of the DynArray.

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

Comment: Added InvalidValue exception. It was missing here, even though it appeared in the
interface IDL above. Added TypeMismatch exception because otherwise, I have
no idea what is wrong (length of sequence or type of element).

The set_elements operation sets the DynArray to contain the passed elements. If the
sequence does not contain the same number of elements as the array dimension, the
operation raises InvalidValue. If one or more elements have a type that is inconsistent
with the DynArray’s TypeCode, the operation raises TypeMismatch.
9-24 CORBA V2.4 Draft 17 March 1999

9

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have
the same semantics as their Any counterparts, but accept and return values of type
DynAny instead of Any.

Note that the dimension of the array is contained in the TypeCode which is accessible
through the type attribute. It can also be obtained by calling the component_count
operation.

9.2.10 The DynValue interface

DynValue objects are associated with value types.

interface DynValue : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

Operations on the DynValue interface have semantics as for DynStruct.

Comment: Removed skipping of private members here because that doesn’t help to preserve
invariants at all. (There may be invariants that depend on both private and public
members.) Other solutions are possible, such as preventing construction of a
DynValue and access to its public members completely if there are private
members in the value.

9.3 Usage in C++ language

9.3.1 Dynamic creation of CORBA::Any values

9.3.1.1 Creating an any which contains a struct

Consider the following IDL definition:

// IDL
struct MyStruct {

long member1;
boolean member2;

};
CORBA V2.4 Draft Usage in C++ language 17 March 1999 9-25

9

The following example illustrates how a CORBA::Any value may be constructed on
the fly containing a value of type MyStruct:

// C++
CORBA::ORB_var orb = ...;
DynamicAny::DynAnyFactory_var dafact

= orb->resolve_initial_references("DynAnyFactory");
CORBA::StructMemberSeq mems(2);
CORBA::Any_var result;
CORBA::Long value1 = 99;
CORBA::Boolean value2 = 1;
mems.length(2);
mems[0].name = CORBA::string_dup("member1");
mems[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[1].name = CORBA::string_dup("member2");
mems[1].type

= CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc(
"IDL:MyStruct:1.0",
"MyStruct",
mems

);

// Construct the DynStruct object. Values for members are
// the value1 and value2 variables

DynamicAny::DynAny_ptr dyn_any
= dafact->create_dyn_any(new_tc);

DynamicAny::DynStruct_ptr dyn_struct
= DynamicAny::DynStruct::_narrow(dyn_any);

CORBA::release(dyn_any);
dyn_struct->insert_long(value1);

dyn_struct->next();
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy();
CORBA::release(dyn_struct);

9.3.2 Dynamic interpretation of CORBA::Any values

9.3.2.1 Filtering of events

Suppose there is a CORBA object which receives events and prints all those events
which correspond to a data structure containing a member called is_urgent whose
value is true.
9-26 CORBA V2.4 Draft 17 March 1999

9

The following fragment of code corresponds to a method which determines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

// C++
CORBA::Boolean Tester::eval_filter(

DynamicAny::DynAnyFactory_ptr dafact,
const CORBA::Any & event

)
{

CORBA::Boolean success = FALSE;

// First, convert the event to a DynAny.
// Then attempt to narrow it to a DynStruct.
// The _narrow only returns a reference
// if the event is a struct.
//
DynamicAny::DynAny_var dyn_var

= dafact->create_dyn_any(event);
DynamicAny::DynStruct_var dyn_struct

= DynamicAny::DynStruct::_narrow(dyn_any);

if (!CORBA::is_nil(dyn_struct)) {
CORBA::Boolean found = FALSE;
do {

CORBA::String_var member_name
= dyn_struct->current_member_name();

found = (strcmp(member_name, "is_urgent") == 0);
} while (!found && dyn_struct->next());

if (found) {
// We only create a DynAny object for the member
// we were looking for:

DynamicAny::DynAny_var dyn_member
= dyn_struct->current_component();

success = dyn_member->get_boolean();
}
dyn_struct->destroy();

}
return success;

}

CORBA V2.4 Draft Usage in C++ language 17 March 1999 9-27

9

9-28 CORBA V2.4 Draft 17 March 1999

	Dynamic Management of Any Values
	9.1 Overview
	9.2 DynAny API
	9.2.1 Locality and usage constraints
	9.2.2 Creating a DynAny object
	9.2.3 The DynAny interface
	9.2.4 The DynFixed interface
	9.2.5 The DynEnum interface
	9.2.6 The DynStruct interface
	9.2.7 The DynUnion interface
	9.2.8 The DynSequence interface
	9.2.9 The DynArray interface
	9.2.10 The DynValue interface

	9.3 Usage in C++ language
	9.3.1 Dynamic creation of CORBA::Any values
	9.3.2 Dynamic interpretation of CORBA::Any values

