
 orbos/99-04-04 -1

Portable Interceptors

IBM Corporation

OMG Document orbos/99-04-04

April 26, 1999

-2 orbos/99-04-04

Copyright 1999 International Business Machines Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver-
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having con-
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protect-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable for
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss of profits,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Object
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize devel-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indi-
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is sub-
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at
DFARS 252.227.7013 OMGÆ and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Portable Interceptors April 1999 -3

Contents

Submitting Companies 5
Submission Contact Points 5
Status of this document 5
Guide to this Submission 6
Proof of Concept 6
Changes or Extensions to Adopted OMG Specifications 6
Mandatory Requirements 7
Optional Items 8
Issues to be discussed 9
Introduction 10
Request Interceptors - System Service Interceptors 11

Overview 11
RequestHolder Interface 13

Interface Definition for RequestHolder_get 13
Interface Definition for RequestHolder_set 14
Interface Definition for RequestHolder 15
get_ServiceDataKey 15
set_ServiceData 15
get_ServiceData 15

The RequestInterceptor Interface 16
Registering Request Interceptors with the ORB 18

register_RequestInterceptor 18
unregister_RequestInterceptor 19

Client Side Request Interceptors 20
Interface Definition for clientNonMarshalledDataRI 20
Interface Definition for clientMarshalledDataRI 20
Interface Definition for clientExceptionRI 20
Client Side Interceptor Execution points 21
SystemException Client Side Processing 22
UserException Client Side Processing 22

Server Side Request Interceptors 23
Interface Definition for serverMarshalledDataRI 23
Interface Definition for serverNonMarshalledDataRI 23

-4 orbos/99-04-04

Interface Definition for serverExceptionRI 23
Server Side Interceptor Execution Points 24
System Exception Server Side Processing 25
UserException Server Side Processing 25

Request Interceptors - User Interceptors 26
Overview 26
UserRequestHolder Interface 27
Registering User Request Interceptors with the ORB 27
Client Side and Server Side User Request Interceptors 27

Interface Definition for clientSideRequestURI 27
Interface Definition for clientSideResponseURI 28
Interface Definition for serverSideRequestURI 28
Interface Definition for serverSideResponseURI 28

ORB Intercept Points for User Request Interceptors 29
Message Interceptors 30

Overview 30
The MessageHolder Interface 30

Interface Definition for MessageHolder 30
The MessageInterceptor Interface 31
Registering Message Interceptors with the ORB 32

register_MessageInterceptor 32
unregister_MessageInterceptor 32

Discussion of Flows Involving Request/Message Interceptors 33
Generic Flow Showing System Interceptor Processing 33
Security Service Use of Interceptors 35
Transactions Service Use of Interceptors 39

Appendix A - Design Considerations 44
Management of the Request Interceptor Lists by the ORB 44
The Number of System Level Request Interceptor Execution Points 44
The Processing Order for a Request Interceptor List 44

Proposed Compliance Points 46
Complete IDL Definitions 47

Portable Interceptors April 1999 1-5

1

1

Preface

1.1 Submitting Companies

The IBM Corporation is pleased to submit this specification in response to the CORBA
Portable Interceptor RFP, or Request for Proposal (OMG Document orbos/98-09-11).

1.2 Submission Contact Points
Russell Butek
11400 Burnet Rd.
Internal Zip 9640
Austin, Texas 78758
USA
phone: 1-512-823-8268
email: butek@us.ibm.com

Alex McLeod
11400 Burnet Rd.
Internal Zip 9640
Austin, Texas 78758
USA
phone: 1-512-838-8182
email: amcleod@us.ibm.com

1.3 Status of this document

This is the initial proposal, document orbos/99-04-04, prepared in response to Portable
Interceptors RFP, Request For Proposal, OMG document orbos/98-09-11.

1-6 orbos/99-04-04

1

1.4 Guide to this Submission

Chapter 1 provides contact information and a guide to this submission, statement of
proof of concept, resolution of RFP mandatory and optional requirements, changes or
extensions to adopted OMB specifications, and a discussion of “Issues to be
Discussed”.

Chapter 2 provides the proposed specification, an architectural model of interceptors in
the Object Request Broker, or ORB

Chapter 3 provides the proposed compliance points, and complete IDL definitions.

1.5 Proof of Concept

The IBM Corporation has used the model of System Request Interceptors defined in
Chapter 2 of this document in the implementation of both a C++ ORB and a Java ORB
used within IBM’s Component Broker product. Differences between this specification
and the two implementations are primarily confined to changes made to operation
names defined on the interceptors, and the technique defined for interceptor
registration.

1.6 Changes or Extensions to Adopted OMG Specifications

The changes required of the existing OMG Specifications involve enhancements to the
resolve_initial_references operation of the ORB interface.

Given an input string of “InterceptorRegistry”, resolve_initial_references will return an
InterceptorRegistry object. The InterceptorRegistry interface is a new interface which
provides the means by which RequestInterceptors can be registered with the ORB. See
Registering Request Interceptors with the ORB on page 18.

Portable Interceptors April 1999 1-7

1

1.7 Mandatory Requirements

1. A submission shall specify two kinds of interceptors: system and user

System and User Interceptors are discussed in this document.

• See Request Interceptors - System Service Interceptors on page 11

• See Request Interceptors - User Interceptors on page 26

This document also defines a MessageInterceptor, which is used by Security
Services

• See The MessageInterceptor Interface on page 31

2. A submission shall provide a complete architectural model of interceptors in ORB
and Object Adapter processing. This includes what flexibility an ORB has in
implementing interceptors, how the ORB will handle errors in interceptor
processing, and the legitimate actions of an interceptor (including what kind of
invocations an interceptor can perform). A submission shall describe under what
conditions and how the ORB deals with recursive calls, whether generated locally
or remotely. Allowable flexibility, error handling, and actions may be different for
different kinds of interceptors.

• The System level Interceptor implementation defined in this document can be
tailored to include a range of intercept points based on the interfaces that are sub-
classed. See Client Side Request Interceptors on page 20, Server Side Request
Interceptors on page 23, as well as The Number of System Level Request
Interceptor Execution Points on page 44.

• For discussion of how the ORB handles errors in interceptor processing, see
SystemException Client Side Processing on page 22, UserException Client Side
Processing on page 22, System Exception Server Side Processing on page 25, and
UserException Server Side Processing on page 25.

3. System interceptors for ORB Services shall include Request-Related and IOR-
management interceptors. For these system interceptors, a submission shall provide
interfaces so that an interceptor can set and query GIOP service contexts (for
request-related system interceptors) and IOR profile information (for IOR-
management system interceptors). The submission shall specify methods of limiting
the invocation of such interceptors of such operations to system interceptors.

• The mechanism through which the System Interceptor can query and set pertinent
attributes associated with the Request is discussed in the section titled the
RequestHolder Interface on page 13.

4. A submission shall specify a mechanism for user interceptors at request-level and at
additional points in ORB processing. The mechanism need not be the same as
system interceptors at the request level.

• User Interceptors are discussed in Request Interceptors - User Interceptors on
page 26

1-8 orbos/99-04-04

1

5. A submission shall provide for multiple interceptors (system and user) to be called
at each point they are applicable and shall specify how the multiple interceptors are
called (for example, each called serially by the ORB or daisy chained).

• See Overview of Request Interceptor Execution Points on page 17

• See Client Side Interceptor Execution points on page 21, and Server Side
Interceptor Execution Points on page 24.

6. A submissions system interceptor model shall be detailed enough that Security and
Transactions services could be reasonably implemented using it. An analysis of how
each of these services could use interceptors is required. The analysis will not be
normative for these services, but must be detailed enough to show the applicability
of the model. The analysis shall include a specification of what information a
Security or Transaction Service needs at various points and how the system
interceptor model provides that information.

• See Generic Flow Showing System Interceptor Processing on page 33

• Security Service Use of Interceptors on page 35

• Transactions Service Use of Interceptors on page 39

7. To meet the negotiation part of certain security mechanisms, a submission shall
specify that at least some system, request related interceptors must be capable of
holding a request in abeyance while it performs communication of its own, perhaps
at a lower protocol level. For example, a client-end, message level security
interceptor might do handshaking with a target issuing a request using the
negotiated security.

• The Request Interceptor architecture defined here does not make special
provisions for recursive calls. The Security and Transactions services
implementations built upon this architecture maintain state data within the
interceptor implementation to control this aspect. See Security Service Use of
Interceptors on page 35, and Transactions Service Use of Interceptors on page 39.

8. A submission shall specify administrative interfaces including, at a minimum,
registering and un-registering interceptors, both system and user.

• Registering Request Interceptors with the ORB on page 18

• Request Interceptors - User Interceptors on page 26

1.8 Optional Items

None.

Portable Interceptors April 1999 1-9

1

1.9 Issues to be discussed

1. Submissions shall discuss the security of the interceptor architecture, that is, who is
allowed to add system interceptors to the ORB and under what conditions. For
system interceptors, this might state that adding interceptors is controlled
administratively. For user level interceptors, the submission shall discuss what
considerations are needed to protect the ORB and the service contexts of a request.

• Adding System level interceptors is controlled administratively. This first draft
does not address any additional security aspects to control who can create and
register a System level interceptor. This will be discussed in a future draft of this
document.

• The User level Request Interceptors have the ability to query aspects of the
request, but not update the request. See Request Interceptors - User Interceptors
on page 26

2. By the time the first submissions are due, it is likely that the submissions for the
ORB related Firewall and Messaging RFPs will have reached final approval, as will
have several modifications to GIOP. These changes may add new CORBA Core and
GIOP capabilities not present when CORBA 2.2 Interceptors were first specified. If
so, submissions should take the new specifications into account. For example,

• The Messaging RFP introduces a new programming invocation model,
asynchronous invocation with the reply being a call-back invocation directed to
another process or machine. How does this affect the presumed symmetry of
interceptors in CORBA 2.2?

• The Firewall RFP and the Interop RTFs may allow redirection of a request to an
address different from that bound to originally. Does this make a difference?

This initial proposal does not address recent changes involving the Messaging and
Firewall RFPs mentioned above. These will be discussed in the revised proposal.

2-10 orbos/99-04-04

2

Portable Interceptors 2

2.1 Introduction

This document presents an architectural model of interceptors in the Object Request
Broker, or ORB.

Request Interceptors allow various services associated with request processing to
monitor the requests as they flow through the ORB, as well as exceptions when they
occur. A Message Interceptor is another specialized type of interceptor required by
Security Services.

This document will discuss architectural models for both Request Interceptors and
Message Interceptors.

Portable Interceptors April 1999 2-11

2

2.2 Request Interceptors - System Service Interceptors

2.2.1 Overview

System services associated with the processing of a request must be able to intercept a
request at various points as the request flows through the ORB. A request related
interceptor is implemented by a service provider and is invoked by the ORB during
ORB processing to provide that service.

Examples of the types of services which would implement Request Interceptors to
register for use in conjunction with the ORB, include the following:

• Security Services

• Transactions Services

• Reliability and Serviceability (RAS), Trace Facilities

• Session Services

• Code Set Management, etc.

Each system level Request Interceptor must be instantiated and registered with the
ORB. Enhancements to the resolve_initial_references operation of the CORBA::ORB
interface have been proposed to provide access to an instance of an InterceptorRegistry
object through which the system level Request Interceptor registration and subsequent
un-registration process is performed.

The ORB make calls out to the defined operations on the registered Request
Interceptors at various stages or monitoring points during the processing of a request
by the ORB. The monitoring points at which time the Request Interceptor operations
are invoked by the ORB are well defined.

The stages in the ORB request processing during which the Request Interceptors are
given control are based upon the state of the request data, namely either marshalled
data (wire format) or un-marshalled data (non-wire format):

• Client Side Request Interceptor processing

The client side Request Interceptors can get access to the request both before and
after the client side ORB marshals the request in preparation for sending the request
to the server.

The client side Request Interceptors can get access to the response to the request
both in its marshalled state upon arrival from the server and after it has been de-
marshalled by the client side ORB.

The client side Request Interceptors can also get access to the request/response in
the event either a CORBA::SystemException or CORBA::UserException has been
thrown.

2-12 orbos/99-04-04

2

• Server Side Request Interceptor processing

The server side Request Interceptors can get access to the request both in its
marshalled state upon arrival at the server, and after the request is de-marshalled by
the server side ORB to its un-marshalled state.

The server side Request Interceptors can get access to the response to the request
both before and after the server side ORB marshals the response in preparation for
sending it back to the client.

The server side Request Interceptors can also get access to the request/response in
the event either a CORBA::SystemException or CORBA::UserException has been
thrown.

Each system level Request Interceptor must be unregistered with the ORB prior to the
removal of the Request Interceptor instance.

Portable Interceptors April 1999 2-13

2

2.2.2 RequestHolder Interface

Each RequestInterceptor method that is called must have a means to query and/or
modify pertinent attributes associated with the request. The RequestHolder interface
provides the means by which request related information may be accessed or modified.
An instance of a RequestHolder object is passed as the input parameter to each System
RequestInterceptor method.

The RequestHolder is a locally constrained interface that is basically a wrapper for the
Request that provides query and update methods. Two interfaces named
RequestHolder_get and RequestHolder_set are defined to provide the “get/set”
operations on the RequestHolder. Following is the IDL for RequestHolder_get,
RequestHolder_set, and RequestHolder.

Interface Definition for RequestHolder_get

interface RequestHolder_get {
typedef sequence <octet> request_message;
typedef ReferenceData ObjectKey;

request_message get_requestMessage ();
string get_operation ();
Context get_context ();
NVList get_arguments ();
NamedValue get_result ();
ExceptionList get_exceptions ();
ContextList get_contextlist ();
boolean get_oneWay ();
unsigned long get_requestId ();
ObjectKey get_objectKey ();
Principal get_principal ();
IOP::IOR get_ior ();
IOP::ServiceContextList get_serviceContextList ();
Object get_proxy ();
Object get_target ();
boolean get_forceRetry ();

};

2-14 orbos/99-04-04

2

Interface Definition for RequestHolder_set

interface RequestHolder_set {
typedef sequence <octet> request_message;
typedef ReferenceData ObjectKey;

void set_requestId (in unsigned long rid);
void set_objectKey (in ObjectKey objkey);
void set_principal (in Principal p);
void set_ior (in IOP::IOR ior);
void set_serviceContextList

(in IOP::ServiceContextList scl);
void set_forceRetry

(in Boolean forceRetryValue fr);
};

The RequestHolder_get and RequestHolder_set operations defined above provide the
RequestHolder with the ability to get/set qualities normally associated with a Request

Portable Interceptors April 1999 2-15

2

The RequestHolder interface defines 3 operations in addition to those provided via
RequestHolder_get and RequestHolder_set that allow a System Service the ability to
set/get information unique to the Service (see the following IDL, and the description
that follows).

Interface Definition for RequestHolder

interface RequestHolder : RequestHolder_get, RequestHolder_set {
 unsigned long get_ServiceDataKey ();

 void set_ServiceData
 (in unsigned long service_data_key,
 in any service_data);
 any get_ServiceData
 (in unsigned long service_data_key);
};

get_ServiceDataKey

This operation returns to the System Service a “ServiceDataKey”, which can then be
used to “set” or associate the ServiceData with the RequestHolder.

Parameters

none

set_ServiceData

This operation sets or associates Service specific service data with the RequestHolder,
associating the data with a key previously obtained from get_ServiceDataKey.

Parameters

service_data_key This parameter is the service_data_key with which the service_data
will be associated once this operation is completed.

service_data This parameter is an Any data type which contains the Service
specific data.

get_ServiceData

This operation retrieves the Service specific service data from the RequestHolder using
the service_data_key as the search key. An Any data type is returned which contains
the service data.

Parameters

service_data_key This parameter is the service_data_key used to locate the service
data.

2-16 orbos/99-04-04

2

2.2.3 The RequestInterceptor Interface

The RequestInterceptor is the base interface from which the client Request Interceptor
and server Request Interceptor interfaces subclass. The RequestInterceptor is a locally
constrained interface, the interface definition for which follows:

interface RequestInterceptor {
 };

The concept of symmetry across client and server request interceptor methods is
defined with respect to which type of data the interceptor method is dealing with,
namely whether the data is in a marshalled (wire format) or non-marshalled state (non-
wire format).

There are six interfaces which subclass from the RequestInterceptor interface to
provide adequate granularity of RequestInterceptor functionality. Three of these
interfaces are described in the section titled Client Side Request Interceptors on page
20:

1. clientNonMarshalledDataRI interface

• client_nonmarshalled_request operation

• client_nonmarshalled_response operation

2. clientMarshalledDataRI interface

• client_marshalled_request operation

• client_marshalled_response operation

3. clientExceptionRI interface

• client_system_exception operation

• client_user_exception operation

while the remaining three are defined in the section titled Server Side Request
Interceptors on page 23:

4. serverMarshalledDataRI interface

• server_marshalled_request operation

• server_marshalled_responseoperation

5. serverNonMarshalledDataRI interface

• server_nonmarshalled_request operation

• server_nonmarshalled_response operation

6. serverExceptionRI interface

• server_system_exception operation

• server_user_exception operation

Portable Interceptors April 1999 2-17

2

Overview of Request Interceptor Execution Points

The following flow shows the order in which the various execution points of the
System RequestInterceptors (Sys RI) are given control by the ORB:

Client Side Server Side

(1) client_nonmarshalled_request (Sys RI)

 . . . request is marshalled . . .

(2) client_marshalled_request (Sys RI)

 . . . request is sent to server . . .

-->

(3) server_marshalled_request (Sys Int)

 . . . request is demarshalled . . .

(4) server_nonmarshalled_request (Sys Int)

 . . . request processing . . .

(5) server_nonmarshalled_response (Sys Int)

 . . . response is marshalled . . .

(6) server_marshalled_response (Sys Int)

(following are invoked when exception type occurs)

server_system_exception (Sys Int)

server_user_exception (Sys Int)

 . . . response is sent to client . . .

<--

7) client_marshalled_response (Sys RI)

 . . . response is demarshalled . . .

8) client_nonmarshalled_response (Sys RI)

(following are invoked when the exception type occurs)

client_system_exception (Sys RI)

client_user_exception (Sys RI)

2-18 orbos/99-04-04

2

2.2.4 Registering Request Interceptors with the ORB

A new interface has been introduced called “InterceptorRegistry” with which to
register Request Interceptors.

The resolve_initial_references operation of the ORB interface is enhanced to return an
instance of an InterceptorRegistry object (given “InterceptorRegistry” as the input
string). Once this InterceptorRegistry object is obtained, Request Interceptors can be
registered and un-registered with the ORB.

The IDL snapshot for InterceptorRegistry follows:

interface InterceptorRegistry {
void register_RequestInterceptor

(in RequestInterceptor requestInterceptor,
 in boolean makeMeFirst);

void unregister_RequestInterceptor
(in RequestInterceptor requestInterceptor);

};

register_RequestInterceptor

This operation registers the RequestInterceptor with the ORB. The target
RequestInterceptor will then have access to the ORB monitoring points based upon the
sub-classes of RequestInterceptor chosen in the implementation:

• clientNonMarshalledDataRI

• clientMarshalledDataRI

• clientExceptionRI

• serverNonMarshalledDataRI

• serverMarshalledDataRI

• serverExceptionRI

Parameters

requestInterceptor This parameter is the RequestInterceptor which is to be registered
with the ORB.

makeMeFirst This parameter is a Boolean that when set to 1 indicates the
requirement that this RequestInterceptor must be the first in the
ordered list of registered RequestInterceptors. Once a
RequestInterceptor has been successfully registered with this
parameter set to 1, any subsequent registration attempts requesting
this feature will generate a BAD_PARAM SystemException.
Registration attempts with this parameter set to 0 will place the
RequestInterceptor in the list in the order in which the registration
request is received.

Note – The makeMeFirst option above is a requirement imposed by Security Services.

Portable Interceptors April 1999 2-19

2

unregister_RequestInterceptor

This operation un-registers a RequestInterceptor with the ORB such that it no longer
has access to any ORB RequestInterceptor related execution points.

Parameters

requestInterceptor This parameter is the RequestInterceptor which is to be un-
registered with the ORB. A BAD_PARAM SysemException results
if the input RequestInterceptor is not in a registered state.

When the RequestInterceptor is registered with the ORB, the RequestInterceptor
instance is placed on one or more ordered lists within the ORB. The ORB will then
invoke the RequestInterceptor related methods at the appropriate times during the
request/reply processing. This is explained in more detail for the client and server sides
in Client Side Request Interceptors on page 20, and Server Side Request Interceptors
on page 23, respectively.

When the service no longer wishes to intercept ORB requests, it will call the
unregister_RequestInterceptor operation on the InterceptorRegistry instance

The ORB must maintain lists of the Request Interceptors that have been registered for
a particular execution point. The ORB implementation must assure that the registration
and un-registration of Request Interceptors does not affect the successful operation of
Request Interceptors that have already been registered with the ORB.

2-20 orbos/99-04-04

2

2.2.5 Client Side Request Interceptors

The concept of symmetry across client request interceptor methods is defined with
respect to which type of data the interceptor method is dealing with, namely whether
the data is in a marshalled (wire format) or non-marshalled state (non-wire format).

The clientNonMarhshalledDataRI interface is intended for request interceptor
implementations that are interested in processing the request in its non-marshalled
state. It provides the client side service access during both the request and response
level processing.

The clientMarhshalledDataRI interface is intended for request interceptor
implementations that are interested in processing the request in its marshalled state. It
provides the client side service access during both the request and response level
processing.

The clientExceptionRI interface is intended for request interceptor implementations
that are interested in attaining access to a request/reply in the event either a
SystemException or a UserException takes place.

Six operations are distributed across these three locally constrained interfaces, the
interface definitions for which follow:

Interface Definition for clientNonMarshalledDataRI

interface clientNonMarshalledDataRi : RequestInterceptor {
 void client_nonmarshalled_request (in RequestHolder rh);

void client_nonmarshalled_response (in RequestHolder rh);
};

Interface Definition for clientMarshalledDataRI

interface clientMarshalledDataRi : RequestInterceptor {
 void client_marshalled_request (in RequestHolder rh);

void client_marshalled_response (in RequestHolder rh);
};

Interface Definition for clientExceptionRI

interface clientExceptionRi : RequestInterceptor {
 void client_system_exception (in RequestHolder rh,

in ClientFlow cf);
void client_user_exception (in RequestHolder rh,

in ClientFlow cf);
};

Portable Interceptors April 1999 2-21

2

Client Side Interceptor Execution points

The implementor of a client side request interceptor can subclass from the appropriate
interfaces depending upon the desired execution points, and override the associated
operations. The request interceptor instance is then registered with the ORB (see
“Registering Request Interceptors with the ORB”). The ORB logically maintains three
ordered lists of client side RequestInterceptor instances, one list for each of the three
client RequestIntercepor interfaces. Only those interceptors which implement a
particular interception point will be called for that point.

The client side ordered list of RequestInterceptor instances is processed by the ORB in
the following manner:

• client side requests

During client requests, the ORB will invoke the corresponding methods on all
RequestInterceptor instances in the reverse of the registration list order, unless an
exception is thrown.

• client side responses

For client responses, the ORB will invoke the corresponding methods on all
registered RequestInterceptors in the order in which they appear in the registration
list, unless an exception is thrown.

• Exceptions

In the event a SystemException or UserException occurs, the list is also processed
in the registration list order.

The six client side RequestInterceptor operations are invoked by the ORB in the
following sequence of execution points:

1. client_nonmarshalled_request

Access is given to an Outgoing Request, before it has been marshalled.

2. client_marshalled_request

Access is given to an Outgoing Request, after it has been marshalled.

3. client_marshalled_response

Access is given to an Incoming Response, before it is de-marshalled.

4. client_nonmarshalled_response

Access is given to an Incoming Response, after it is de-marshalled.

5. client_system_exception

Access is given when a SystemException has been thrown

6. client_user_exception

 Access is given when a UserException has been thrown.

2-22 orbos/99-04-04

2

SystemException Client Side Processing

• If a SystemException occurs anywhere on the client during a request, or a
SystemException is returned from the server, the flow is interrupted and control is
immediately transferred to the list of RequestInterceptors that are registered for
client_system_exception processing.

• If the SystemException is thrown while processing a list of non-SystemException
RequestInterceptors, no other RequestInterceptors on that list are invoked and
control is immediately transferred to the client_system_exception list.

• The entire client_system_exception list is invoked when any SystemException
occurs

• No client_system_exception operation should itself throw a SystemException.

• The client_system_exception operations are given access to an additional
parameter, an instance of a ClientFlow interface. The ClientFlow object provides
information as to how far the processing of the request proceeded prior to the
SystemException being thrown. The interface definition for the locally
constrained ClientFlow interface is as follows:

Interface Definition for ClientFlow

interface ClientFlow {
enum client_completion_status {YES, NO, FAILED};

short client_non_marshalled_requestCalled ();
short client_marshalled_requestCalled ();
short client_marshalled_responseCalled ();
short client_non_marshalled_responseCalled ();

};

UserException Client Side Processing

• When a UserException is generated via the interface implementation at the server,
the UserException is passed back to the client and thrown at the client side. Prior
to the UserException being thrown, the client_user_exception operation is called
for each RequestInterceptor that is registered to handle Exceptions.

• No client_user_exception operation should itself throw a SystemException.

Portable Interceptors April 1999 2-23

2

2.2.6 Server Side Request Interceptors

The concept of symmetry across server request interceptor methods is defined with
respect to which type of data the interceptor method is dealing with, namely whether
the data is in a marshalled (wire format) or non-marshalled state (non-wire format).

The serverMarhshalledDataRI interface is intended for request interceptor
implementations that are interested in processing the request in its marshalled state. It
provides the server side service access during both the request and response level
processing.

The serverNonMarhshalledDataRI interface is intended for request interceptor
implementations that are interested in processing the request in its non-marshalled
state. It provides the server side service access during both the request and response
level processing.

The serverExceptionRI interface is intended for request interceptor implementations
that are interested in attaining access to a request/reply in the event either a
SystemException or a UserException takes place.

Six operations are distributed across these three locally constrained interfaces, the
interface definitions for which follow:

Interface Definition for serverMarshalledDataRI

interface serverMarshalledDataRi : RequestInterceptor {
void server_marshalled_request (in RequestHolder rh);
void server_marshalled_response (in RequestHolder rh);

};

Interface Definition for serverNonMarshalledDataRI

interface serverNonMarshalledDataRI : RequestInterceptor {
void server_nonmarshalled_request (in RequestHolder rh);
void server_nonmarshalled_response (in RequestHolder rh);
};

Interface Definition for serverExceptionRI

interface serverExceptionRi : RequestInterceptor {
void server_system_exception (in RequestHolder rh,

in ServerFlow sf);
void server_user_exception (in RequestHolder rh,

in ServerFlow sf);
};

2-24 orbos/99-04-04

2

Server Side Interceptor Execution Points

The implementor of a server side request interceptor can subclass from the appropriate
interfaces depending upon the desired execution points, and override the associated
operations. The request interceptor instance is then registered with the ORB (see
“Registering Request Interceptors with the ORB”). The ORB logically maintains three
ordered lists of server side RequestInterceptor instances, one list for each of the three
server RequestIntercepor interfaces. Only those interceptors which implement a
particular interception point will be called for that point.

The server side ordered list of RequestInterceptor instances is processed by the ORB in
the following manner:

• server side requests

When a request is received at the server, the ORB will invoke the corresponding
methods on all RequestInterceptor instances in the registration list order, unless an
exception is thrown.

• server side responses

For server responses back to the client, the ORB will invoke the corresponding
methods on all registered RequestInterceptors in the reverse order in which they
appear in the registration list, unless an exception is thrown.

• Exceptions

In the event a SystemException or UserException occurs, the list is also processed
in the reverse of the registration list order.

The six server side RequestInterceptor operations are invoked by the ORB in the
following sequence of execution points:

1. server_marshalled_request

Access is given to an Incoming Request, before it is de-marshalled.

2. server_nonmarshalled_request

Access is given to an Incoming Request, after it is de-marshalled.

3. server_nonmarshalled_response

Access is given to an Outgoing Response, before it is marshalled.

4. server_marshalled_response

Access is given to an Outgoing Response, after it has been marshalled.

5. server_system_exception

Access is given when a SystemException has been thrown.

6. server_user_exception

 Access is given when a UserException has been thrown

Portable Interceptors April 1999 2-25

2

System Exception Server Side Processing

• If a SystemException occurs anywhere on the server during a request, the flow is
interrupted and control is immediately transferred to the list of
RequestInterceptors that are registered for server_system_exception processing.

• If the SystemException is thrown while processing a list of non-SystemException
RequestInterceptors, no other RequestInterceptors on that list are invoked and
control is immediately transferred to the server_system_exception list.

• The entire server_system_exception list is invoked when any SystemException
occurs

• No server_system_exception operation should itself throw a SystemException.

• The server_system_exception operations are given access to an additional
parameter, an instance of a ServerFlow interface. The ServerFlow object
provides information as to how far the processing of the request proceeded prior
to the SystemException being thrown. The interface definition for the locally
constrained ServerFlow interface is as follows:

Interface Definition for ServerFlow

interface ServerFlow {
enum server_completion_status {YES, NO, FAILED};

short server_marshalled_requestCalled ();
short server_non_marshalled_requestCalled ();
short server_non_marshalled_responseCalled ();
short server_marshalled_responseCalled ();

};

UserException Server Side Processing

• When a UserException is generated via the interface implementation at the server,
the server_user_exception operation is called for each RequestInterceptor that is
registered to handle server side Exceptions. The UserException is then passed
back to the client in response to the request.

• No server_user_exception operation should itself throw a SystemException.

2-26 orbos/99-04-04

2

2.3 Request Interceptors - User Interceptors

2.3.1 Overview

The User Level Request Interceptor allows the client and server access to the request at
specific execution points in the request processing. The primary differences between
the User level Interceptor and the System Service Interceptor discussed previously
involve the execution points and the powers assigned at those execution points.

Once the User RequestInterceptor has been registered with the ORB, the User
RequestInterceptor will have the ability to access the request or response:

• before the first System RequestInterceptor has processed the request

• after the last System RequestInterceptor has processed the request

Through operations on the RequestHolder interface, the System RequestInterceptor has
the ability to both query and change qualities associated with the request. However, the
input to the User RequestInterceptor is a modified form of the RequestHolder interface
called the UserRequestHolder interface.

The UserRequestHolder interface allows the User RequestInterceptor access to all of
the “get” methods defined in the RequestHolder used by the System
RequestInterceptors, but non of the “set” methods. This allows the User
RequestInterceptor to evaluate and track the request, without permitting it to alter the
request/response directly.

Portable Interceptors April 1999 2-27

2

2.3.2 UserRequestHolder Interface

Each UserRequestInterceptor method that is called may require the means to query
pertinent attributes associated with the request. The UserRequestHolder interface
provides the means by which request related information may be accessed. An instance
of a UserRequestHolder object is passed as the input parameter to each
UserRequestInterceptor method.

The UserRequestHolder is a locally constrained interface that is basically a wrapper
for the Request that provides query methods. The following section provides the IDL
specification for the UserRequestHolder interface (see the Interface Definition for
RequestHolder_get on page 13).

interface UserRequestHolder:RequestHolder_get {
};

2.3.3 Registering User Request Interceptors with the ORB

The User Request Interceptor is registered with the ORB in the same fashion as a
System Request Interceptor. See the discussion in Registering Request Interceptors
with the ORB on page 18.

2.3.4 Client Side and Server Side User Request Interceptors

The clientSideRequestURI interface is intended for user request interceptor
implementations that are interested in processing before and after System Request
Interceptors have processed an outgoing request.

The clientSideResponseURI interface is intended for user request interceptor
implementations that are interested in processing before and after System Request
Interceptors have processed an incoming response.

The serverSideRequestURI interface is intended for user request interceptor
implementations that are interested in processing before and after System Request
Interceptors have processed an incoming request.

The serverSideResponseURI interface is intended for user request interceptor
implementations that are interested in processing before and after System Request
Interceptors have processed an outgoing response.

Following are the interface definitions for the User RequestInterceptors:

Interface Definition for clientSideRequestURI

interface clientSideRequestURI : RequestInterceptor {
void client_pre_request (in RequestHolder ri);
void client_post_request (in RequestHolder ri);

};

2-28 orbos/99-04-04

2

Interface Definition for clientSideResponseURI

interface clientSideResponseURI : RequestInterceptor {
void client_pre_response (in RequestHolder ri);
void client_post_response (in RequestHolder ri);

};

Interface Definition for serverSideRequestURI

interface serverSideRequestURI : RequestInterceptor {
void server_pre_request (in RequestHolder ri);
void server_post_request (in RequestHolder ri);

};

Interface Definition for serverSideResponseURI

interface serverSideResponseURI : RequestInterceptor {
void server_pre_response (in RequestHolder ri);
void server_post_response (in RequestHolder ri);

};

Portable Interceptors April 1999 2-29

2

2.3.5 ORB Intercept Points for User Request Interceptors

The following flow illustrates the User Request Interceptor (User RI) execution points
in relationship to those already define for System Request Interceptors.

Client Side Server Side

client_pre_request (User RI)

(1) client_nonmarshalled_request (Sys RI)

 . . . request is marshalled . . .

(2) client_marshalled_request (Sys RI)

client_post_request (User RI)

 . . . request is sent to server . . .

-->

server_pre_request (User RI)

(3) server_marshalled_request (Sys Int)

 . . . request is demarshalled . . .

(4) server_nonmarshalled_request (Sys Int)

server_post_request (User RI)

 . . . request processing . . .

server_pre_reply (User RI)

(5) server_nonmarshalled_response (Sys Int)

 . . . response is marshalled . . .

(6) server_marshalled_response (Sys Int)

server_post_reply (User RI)

server_system_exception (Sys Int)

server_user_exception (Sys Int)

 . . . response is sent to client . . .

<--

client_pre_reply (User RI)

7) client_marshalled_response (Sys RI)

 . . . response is demarshalled . . .

8) client_nonmarshalled_response (Sys RI)

client_post_reply (User RI)

client_system_exception (Sys RI)

client_user_exception (Sys RI)

2-30 orbos/99-04-04

2

2.4 Message Interceptors

2.4.1 Overview

Like Request Interceptors, Message Interceptors are called for each request that is
processed by the ORB. However, a Message Interceptor is distinctly different in
concept from a Request Interceptor, and the Message Interceptor operations are called
from different execution points during the ORB request processing. Only one Message
Interceptor can be registered with the ORB. The single Message Interceptor instance
monitors the marshalled IIOP request just before it is sent (after all RequestInterceptor
processing has completed). The Message Interceptor also monitors all incoming replies
as they are received, before any other processing takes place (including
RequestInterceptor intervention).

Currently, the only service which has an implementation of a Message Interceptor is
Security Services.

2.4.2 The MessageHolder Interface

Each MessageInterceptor method that is called must have a means to query pertinent
attributes associated with the request. The RequestHolder interface used by the
RequestInterceptor interface provides part of the input to MessageInterceptor
operations. MessageInterceptor operations also require an interface known as the
MessageHolder, which is a wrapper for a byte array. This interface provides the
Security MessageInterceptor operations the means to pass back to the caller a new byte
array.

Following is the IDL specification for the locally constrained MessageHolder
interface.

Interface Definition for MessageHolder

interface MessageHolder {
typedef sequence <octet> message_buf;
attribute message_buf message;

};

Portable Interceptors April 1999 2-31

2

2.4.3 The MessageInterceptor Interface

The MessageInterceptor is an interface that defines the Message Interceptor support,
and must be sub-classed by the implementor. The interface definition for the locally
constrained MessageInterceptor interface is as follows:

interface MessageInterceptor {
Void send_request_message

 (inout MessageHolder message,
in RequestHolder request);

Void receive_response_message
(inout MessageHolder message);

Void receive_request_message
(inout MessageHolder message);

Void send_response_message
(inout MessageHolder message,
in RequestHolder request);

};

These four methods provide the following functionality:

1. send_request_message

This operation intercepts IIOP requests as they are sent by the client. This allows
the Security Service MessageInterceptor at the client to encrypt the buffer prior to
sending it to the server.

2. receive_response_message

This operation intercepts IIOP responses as they arrive at the client. This allows the
Security Service MessageInterceptor at the client to decrypt the response buffer as it
is received from the server.

3. receive_request_message

This operation intercepts IIOP requests as they arrive at the server. This allows the
Security Service MessageInterceptor at the server to decrypt the request buffer as it
is received from the client

4. send_response_message

This operation intercepts IIOP responses as they leave the server. This allows the
Security Service MessageInterceptor at the server to encrypt the response buffer as
it is sent back to the client.

2-32 orbos/99-04-04

2

2.4.4 Registering Message Interceptors with the ORB

A new interface has been introduced called “InterceptorRegistry” with which to
register Message Interceptors (as well as Request Interceptors).

The resolve_initial_references operation of the ORB interface is enhanced to return an
instance of an InterceptorRegistry object (given “InterceptorRegistry” as the input
string). Once this InterceptorRegistry object is obtained, Message Interceptors can be
registered and un-registered with the ORB.

The IDL snapshot for the InterceptorRegistry interface follows:

interface InterceptorRegistry {
void register_MessageInterceptor

(in MessageInterceptor messageInterceptor);

void unregister_MessageInterceptor
(in MessageInterceptor messageInterceptor);

};

register_MessageInterceptor

Parameters

messageInterceptor This parameter is the MessageInterceptor instance which is to be
registered with the ORB. Only one MessageInterceptor instance is
allowed to register with the ORB. A BAD_PARAM
SystemException will be thrown for any MessageInterceptor
registration attempt subsequent to the initial successful registration.

unregister_MessageInterceptor

messageInterceptor This parameter is the MessageInterceptor instance which is to be
un-registered with the ORB. A BAD_PARAM SystemException
will be thrown if the input MessageInterceptor is not already
registered with the ORB.

Portable Interceptors April 1999 2-33

2

2.5 Discussion of Flows Involving Request/Message Interceptors

The design points of System and User RequestInterceptors and the Message Interceptor
have been discussed above. Following are two sections which will help illustrate how
these Interceptors are used in conjunction with the ORB.

2.5.1 Generic Flow Showing System Interceptor Processing

The following flow shows the order in which the various execution points of the
System RequestInterceptors (Sys RI) and Message Interceptors (Msg Int) are given
control by the ORB:

Client Side Server Side

(1) client_nonmarshalled_request (Sys RI)

 . . . request is marshalled . . .

(2) client_marshalled_request (Sys RI)

(3) send_request_message (Msg Int)

-->

4) receive_request_message (Msg Int)

(5) server_marshalled_request (Sys Int)

 . . . request is demarshalled . . .

(6) server_nonmarshalled_request (Sys Int)

 . . . request processing . . .

(7) server_nonmarshalled_response (Sys Int)

 . . . response is marshalled . . .

(8) server_marshalled_response (Sys Int)

server_system_exception (Sys Int)

server_user_exception (Sys Int)

(9) send_response_message (Msg Int)

<--

2-34 orbos/99-04-04

2

Client Side Server Side

10) receive_response_message (Msg Int)

11) client_marshalled_response (Sys RI)

 . . . response is demarshalled . . .

12) client_nonmarshalled_response (Sys RI)

client_system_exception (Sys RI)

client_user_exception (Sys RI)

Portable Interceptors April 1999 2-35

2

2.5.2 Security Service Use of Interceptors

A possible implementation of the Security Service can be mapped into the ORB’s
RequestInterceptor/MessageInterceptor design in the following manner:

1. Security Service RequestInterceptors

The Security Service implements both a Client Side System RequestInterceptor and
a Server Side RequestInterceptor.

2. Client Side RequestInterceptor Implementation

At the Client Side, the Security Service wishes to intercept the Request in its non-
marshalled state (before the request is marshalled into its wire format to be sent to
the server). When the response to the request is received from the server, Security
wishes to intercept the response after it has been de-marshalled (into its non-
marshalled state). The Client Side RequestInterceptor implementation therefore
inherits from the:

clientNonMarshalledDataRI

interface which provides the client_nonmarshalled_request and
client_nonmarshalled_response request interceptor operations.

3. Server Side Request Interceptor Implementation

At the Server Side, the Security Service wishes to intercept the request at one point,
upon receipt of the request from the client after it has been de-marshalled into its
non-wire, or non-marshalled format. The Server Side RequestInterceptor
implementation therefore inherits from the:

serverNonMarshalledDataRI

interface, such that a Security Service implementation of the
server_nonmarshalled_request operation can be created.

4. Registering the Security Service RequestInterceptors

Security Services registers both the client side RequestInterceptor and the server
side RequestInterceptor implementations via the register_RequestInterceptor
operation (see Registering Request Interceptors with the ORB on page 18).
Security Services utilizes the makeMeFirst boolean parameter to assure that each
interceptor is registered first in the respective RequestInterceptor lists, a
requirement of Security Services.

5. Implementation and Registration of the Security Service Message Interceptor

Security Services provides an implementation of a MessageInterceptor, which
handles the encryption/de-cryption of data between the client and server. The
MessageInterceptor implementation is registered with the ORB via the
register_MessageInterceptor operation (see Registering Message Interceptors with
the ORB on page 32).

2-36 orbos/99-04-04

2

The Security Service has now provided client and server side RequestInterceptor
implementations, as well as a MessageInterceptor implementation, and registered these
with the ORB. The following diagram illustrates the Security Service flow for the
round trip of the request/reply through the ORB (the bold entries in the flow are the
Interceptor execution points at which Security gets control, the others are not
implemented by Security Services):

Client Side Server Side

(1) client_nonmarshalled_request (Sys RI)

 . . . request is marshalled . . .

(2) client_marshalled_request (Sys RI)

(3) send_request_message (Msg Int)

--->

4) receive_request_message (Msg Int)

(5) server_marshalled_request (System RI)

 . . . request is demarshalled . . .

(6) server_nonmarshalled_request (Sys Int)

 . . . request processing . . .

(7) server_nonmarshalled_response (Sys RI)

 . . . response is marshalled

(8) server_marshalled_response (Sys RI)

server_system_exception (Sys RI)

server_user_exception (Sys RI)

(9) send_response_message (Msg Int)

<---

Portable Interceptors April 1999 2-37

2

Client Side Server Side

10) receive_response_message (Msg Int)

11) client_marshalled_response (Sys RI)

 . . . response is demarshalled . . .

12) client_nonmarshalled_response(Sys RI)

client_system_exception (Sys RI)

client_user_exception (Sys RI)

2-38 orbos/99-04-04

2

The following is a synopsis of the Security Service processing performed at the bold
execution points in the previous diagram:

• at the 1) client_nonmarshalled_request RequestInterceptor execution point:

The Security Service here uses the TaggedComponent to obtain the server’s secure
name. It in turn generates a _NON_EXISTENT method call to the target server.
Security Services maintains state information within its RequestInterceptor
implementation with which to handle the recursive call. Security Session ID
information is added to the ServiceContextList associated with the request.

• at the 3) send_request_message MessageInterceptor execution point:

The client side Security Service MessageInterceptor accesses information in the
ServiceContextList to determine encryption requirements, and the message is sent
to the server.

• at the 4) receive_request_message MessageInterceptor execution point

The server side Security Service MessageInterceptor accesses the
ServiceContextList to determine decryption requirements as the message is
received.

• at the 6) server_nonmarshalled_request RequestInterceptor execution point:

Security Service uses the ServiceContextList to obtain the SessionId sent by the
client. If the session id is in the table maintained by Security Service, the processing
is complete. If the session id is not, interaction is made with DCE to complete the
session information prior to inserting the new entry in the session table.

• at the 9) send_response_message MessageInterceptor execution point

The server side Security Service MessageInterceptor accesses the
ServiceContextList to determine encryption requirements as the response message
is sent back to the client.

• at the 10) receive_response_message MessageInterceptor execution point

The client side Security Service MessageInterceptor accesses the
ServiceContextList to determine decryption requirements as the response message
is received at the client.

• at the 12) client_nonmarshalled_response RequestInterceptor execution point

The TaggedComponents are accessed to determine the server’s secure name. The
ServiceContextList is accessed to obtain the completed security session id, such that
the client side session table entry can be created.

Portable Interceptors April 1999 2-39

2

2.5.3 Transactions Service Use of Interceptors

A possible implementation of the Transactions Service can be mapped into the ORB’s
RequestInterceptor/MessageInterceptor design in the following manner:

1. Transactions Service RequestInterceptors

The Transaction Service implements both a Client Side System RequestInterceptor
and a Server Side System RequestInterceptor.

2. Client Side RequestInterceptor Implementation

• At the Client Side, the Transactions Service wishes to intercept the Request in its
non-marshalled state (before the request is marshalled into its wire format to be
sent to the server).

• When the response to the request is received from the server, Transactions wishes
to intercept the response after it has been de-marshalled (into its non-marshalled
state).

• The Client Side RequestInterceptor implementation therefore inherits from the
clientNonMarshalledDataRI interface which provides the
client_nonmarshalled_request and client_nonmarshalled_response request
interceptor operations. The Transactions Services client side RequestInterceptor
also inherits from the clientExceptionRI interface which provides the
client_system_exception request interceptor operation.

3. Server Side Request Interceptor Implementation

• Upon receipt of the request from the client before it is de-marshalled from its
wire, or marshalled format, Transactions Services intercepts the request. The
Server Side RequestInterceptor implementation therefore inherits from the
serverMarshalledDataRI interface, such that a Transactions implementation of
the server_marshalled_request operation can be created.

• The request is also intercepted by Transactions Services prior to marshalling the
response to send back to the client. The Server Side RequestInterceptor
implementation therefor inherits from the serverNonMarshalledDataRI
interface, such that a Transactions Service implementation of the
server_nonmarshalled_response operation can be created.

• The Server Side Transactions Service RequestInterceptor also inherits from the
serverExceptionRI interface, which provides the server_system_exception
operation.

4. Registering the Security Service RequestInterceptors

Transactions Services registers both the client side RequestInterceptor and the
server side RequestInterceptor implementations via the register_RequestInterceptor
operation.

2-40 orbos/99-04-04

2

The Transactions Service has now provided client and server side RequestInterceptor
implementations. The following diagram illustrates the Transactions Services flow for
the round trip of the request/reply through the ORB (the bold entries in the flow are the
Interceptor execution points at which Transactions Services gets control, the others are
not implemented by Transactions Services):

Client Side Server Side

(1) client_nonmarshalled_request (Sys RI)

 . . . request is marshalled . . .

(2) client_marshalled_request (Sys RI)

(3) send_request_message (Msg Int)

--->

4) receive_request_message (Msg Int)

(5) server_marshalled_request (System RI)

 . . . request is demarshalled . . .

(6) server_nonmarshalled_request (Sys Int)

 . . . request processing . . .

(7) server_nonmarshalled_response (Sys RI)

 . . . response is marshalled . . .

(8) server_marshalled_response (Sys RI)

server_system_exception (Sys RI)

server_user_exception (Sys RI)

(9) send_response_message (Msg Int)

<---

Portable Interceptors April 1999 2-41

2

Client Side Server Side

10) receive_response_message (Msg Int)

11) client_marshalled_response (Sys RI)

 . . . response is demarshalled . . .

12) client_nonmarshalled_response(Sys RI)

client_system_exception

client_user_exception

2-42 orbos/99-04-04

2

The following is a synopsis of the Transaction Services processing performed at the
bold execution points in the previous diagram:

• at the 1) client_nonmarshalled_request RequestInterceptor execution point:

This is called in a client process prior to marshalling an outbound request. The job
the Transactions Service has to do here is to determine whether or not there is a
transaction associated with the current thread and, if so, build a transaction service
context to represent it and add it to the ServiceContextList associated with the
request.

As a performance optimization, Transactions Services may flow a transaction
service context for a ‘deferred’ transaction, the desire being to avoid creating a
transaction on a server different from that on which the business object is deployed.
Part of the processing that occurs here involves determining, in the case where the
local transaction is ‘deferred’, whether the remote system’s Transaction Service
supports the ‘deferred transaction’ semantic. This is done by examining the
TaggedComponents. If the ‘deferred transaction’ semantic is not supported, the
interceptor creates (i.e. un-defers) the transaction at that point., builds the service
context for that transaction and adds it to the ServiceContextList of the request in
the normal way.

In order to support its ‘deferred transaction’ behavior, the Transaction Service client
interceptors have to recognize whether or not they are nested. The client interceptor
must not flow a transaction service context on a request that is nested (either as a
result of a nested request being generated during processing of the
client_nonmarshalled_request or resultant client_nonmarshalled_response). The
Transactions Service request interceptor therefore maintains its own nesting count.

• at the 5) server_marshalled_request RequestInterceptor execution point:

This is called in server processes on all inbound requests prior to de-marshalling the
request. The job the Transactions Service has to do is to examine the
ServiceContextList associated with the request to determine whether a transaction
service context is included. It first checks to see whether the target object is
transactional by invoking the ‘_is_a’ method on the target object to determine if it
implements the CosTransactions::TransactionObject interface, thus introducing a
nested call in the interceptor. If the target object is transactional, the interceptor
looks to see whether a transactions service context is included in the
ServiceContextList. If a transactions service context is not found, the interceptor
has no more work. When the interceptor determines that there is a transactions
service context, it imports the transaction represented by the service context and
associates the transaction with the current thread.

• at the 7) server_nonmarshalled_response RequestInterceptor execution point

This is called in server processes on all outbound responses prior to marshalling.
The job the transaction service has to do here is to determine whether or not there is
a transaction associated with the current thread and, if so, build a transaction service
context to represent it and add it to the ServiceContextList associated with the
response. Having sent the response, the transaction associated with the current
thread is suspended.

Portable Interceptors April 1999 2-43

2

• at the 12) client_nonmarshalled_response RequestInterceptor execution point

This is called in a client process after de-marshalling an inbound response. The job
the transaction service has to do here is to examine the ServiceContextList
associated with the inbound response to determine whether a transaction service
context is included. If there is a transactions context, then the interceptor builds a
CosTransactions::PropagationContext from the service context and checks that this
represents the same transaction that was on the thread prior to sending the request.
In the case where an outbound service context represented a ‘deferred transaction’,
the inbound response context replaces the ‘deferred transaction’ context. As part of
the processing of the transaction service context, a number of remote _is_a methods
may be called to validate the contents of the inbound context.

• at the client_system_exception RequestInterceptor execution point

This is called in a client process when any CORBA::SystemException is received
by the client. The Transactions Service interceptor determines whether it has
already been driven for this response and if not calls
client_nonmarshalled_response. Transactions services must ensure that
client_nonmarshalled_response is driven once and once only (per
client_nonmarshalled_request) in order to keep the nesting count accurate that is
maintained by the interceptor.

• at the server_system_exception RequestInterceptor execution point

This is called in the server process when any CORBA::SystemException is to be
thrown back to the caller. The Transactions Service interceptor checks to see
whether a transaction service context is already included in the response’s
ServiceContextList, and if not calls server_nonmarshalled_response.

2-44 orbos/99-04-04

2

A

A.1 Appendix A - Design Considerations

A.1.1 Management of the Request Interceptor Lists by the ORB

The ORB must maintain lists of the Request Interceptors that have been registered for
a particular execution point. The ORB implementation must assure that the registration
and un-registration of Request Interceptors does not affect the successful operation of
Request Interceptors that have already been registered with the ORB.

A.1.2 The Number of System Level Request Interceptor Execution Points

There are six operations defined for each of the client and server side
RequestInterceptors. For each of the client and server:

1. Two operations involve processing of the request and response while in its non-
marshalled state.

2. Two operations involve processing of the request and response while in its
marshalled state.

3. Two operations involve processing of the request and response when a
SystemException or UserException occur.

It is very possible that the number of monitoring points could be reduced. Any of the
Request related information available in 1) above is also available in 2) above.
Regardless of the decision on this matter, the architecture provided in this document
eliminates any performance penalty if more execution points are architected than
needed. This is due to the fact that only those RequestInterceptors which have a real
implementation for a given execution point are registered to get control at that point.

A.1.3 The Processing Order for a Request Interceptor List

The System Level RequestInterceptor architecture developed in this document has
provisions for a given RequestInterceptor registration to demand that the ORB make it
the first in the processing list across the various execution points for which it is
registered. This consideration was made to accommodate current requirements
imposed by Security Services.

While the “make Security first” capability is sufficient at this time, there may be a
need in the future to provide more capability to control the order at registration time of
RequestInterceptor processing. A RequestInterceptor may find the need to be before or

Portable Interceptors April 1999 2-45

2

after another RequestInterceptor in the list. To achieve this, it is likely that
RequestInterceptor Ids would need to be assigned for each of the services such that
other RequestInterceptors could be referenced during the registration process.

3-46 orbos/99-04-04

3

3

3.1 Proposed Compliance Points

Two compliance points are suggested:

• The System Interceptor architecture in conjunction with the Message Interceptor
architecture defined in chapter 2.

• The User Interceptor architecture defined in chapter 2.

Portable Interceptors April 1999 3-47

3

3.2 Complete IDL Definitions

//----------------------------
// RequestHolder_get interface
//----------------------------
interface RequestHolder_get {
 typedef sequence <octet> request_message;
 typedef ReferenceData ObjectKey;

 request_message get_requestMessage ();
 string get_operation ();
 _Context get_context ();
 NVList get_arguments ();
 NamedValue get_result ();
 ExceptionList get_exceptions ();
 ContextList get_contextlist ();
 boolean get_oneWay ();
 unsigned long get_requestId ();
 ObjectKey get_objectKey ();
 Principal get_principal ();
 IOP::IOR get_ior ();
 IOP::ServiceContextList get_serviceContextList ();
 Object get_proxy ();
 Object get_target ();
 boolean get_forceRetry ();
};

//----------------------------
// RequestHolder_set interface
//----------------------------
interface RequestHolder_set {
 typedef sequence <octet> request_message;
 typedef ReferenceData ObjectKey;

 void set_requestId (in unsigned long ri);
 void set_objectKey (in ObjectKey objkey);
 void set_principal (in Principal p);
 void set_ior (in IOP::IOR ior);
 void set_serviceContextList
 (in IOP::ServiceContextList scl);
 void set_forceRetry
 (in boolean forceRetryValue);
};

//------------------------
// RequestHolder interface
//------------------------
interface RequestHolder : RequestHolder_get, RequestHolder_set {

3-48 orbos/99-04-04

3

 unsigned long get_ServiceDataKey ();
 void set_ServiceData
 (in unsigned long service_data_key,
 in any service_data);
 any get_ServiceData
 (in unsigned long service_data_key);
};

//----------------------------
// UserRequestHolder interface
//----------------------------
interface UserRequestHolder : RequestHolder_get {

};

//-----------------------------
// RequestInterceptor interface
//-----------------------------
interface RequestInterceptor {

};

//------------------------------------
// clientNonMarshalledDataRI interface
//------------------------------------
interface clientNonMarshalledDataRi : RequestInterceptor {
 void client_nonmarshalled_request (in RequestHolder rh);

 void client_nonmarshalled_response (in RequestHolder rh);
};

//---------------------------------
// clientMarshalledDataRI interface
//---------------------------------
interface clientMarshalledDataRi : RequestInterceptor {
 void client_marshalled_request (in RequestHolder rh);

 void client_marshalled_response (in RequestHolder rh);
};

//---------------------
// ClientFlow interface
//---------------------
interface ClientFlow {
 enum client_completion_status {YES, NO, FAILED};
 short client_non_marshalled_requestCalled ();

Portable Interceptors April 1999 3-49

3

 short client_marshalled_requestCalled ();
 short client_marshalled_responseCalled ();
 short client_non_marshalled_responseCalled ();
};

//----------------------------
// clientExceptionRI interface
//----------------------------
interface clientExceptionRi : RequestInterceptor {
 void client_system_exception (in RequestHolder rh , in ClientFlow cf);
 void client_user_exception (in RequestHolder rh , in ClientFlow cf);
};

//---------------------------------
// serverMarshalledDataRI interface
//---------------------------------
interface serverMarshalledDataRi : RequestInterceptor {
 void server_marshalled_request (in RequestHolder rh);
 void server_marshalled_response (in RequestHolder rh);
};

//------------------------------------
// serverNonMarshalledDataRI interface
//------------------------------------
interface serverNonMarshalledDataRI : RequestInterceptor {
 void server_nonmarshalled_request (in RequestHolder rh);
 void server_nonmarshalled_response (in RequestHolder rh);
};

//---------------------
// ServerFlow interface
//---------------------
interface ServerFlow {
 enum server_completion_status {YES, NO, FAILED};
 short server_marshalled_requestCalled ();
 short server_non_marshalled_requestCalled ();
 short server_non_marshalled_responseCalled ();
 short server_marshalled_responseCalled ();
};

//----------------------------
// serverExceptionRI interface
//----------------------------
interface serverExceptionRi : RequestInterceptor {
 void server_system_exception (in RequestHolder rh , in ServerFlow sf);
 void server_user_exception (in RequestHolder rh , in ServerFlow sf);

3-50 orbos/99-04-04

3

};

//interface UserRequestHolder:RequestHolder_get {
//};

//-------------------------------
// clientSideRequestURI interface
//-------------------------------
interface clientSideRequestURI : RequestInterceptor {
 void client_pre_request (in RequestHolder rh);
 void client_post_request (in RequestHolder rh);
};

//--------------------------------
// clientSideResponseURI interface
//--------------------------------
interface clientSideResponseURI : RequestInterceptor {
 void client_pre_response (in RequestHolder rh);
 void client_post_response (in RequestHolder rh);
};

//-------------------------------
// serverSideRequestURI interface
//-------------------------------
interface serverSideRequestURI : RequestInterceptor {
 void server_pre_request (in RequestHolder rh);
 void server_post_request (in RequestHolder rh);
};

//--------------------------------
// serverSideResponseURI interface
//--------------------------------
interface serverSideResponseURI : RequestInterceptor {
 void server_pre_response (in RequestHolder rh);
 void server_post_response (in RequestHolder rh);
};

//------------------------
// MessageHolder interface
//------------------------
interface MessageHolder {
 typedef sequence <octet> message_buf;
 attribute message_buf message;
};

Portable Interceptors April 1999 3-51

3

//-----------------------------
// MessageInterceptor interface
//-----------------------------
interface MessageInterceptor {
 void send_request_message (inout MessageHolder message,
 in RequestHolder request);
 void receive_response_message (inout MessageHolder message);
 void receive_request_message (inout MessageHolder message);
 void send_response_message (inout MessageHolder message,
 in RequestHolder request);
};

//------------------------------
// InterceptorRegistry interface
//------------------------------
interface InterceptorRegistry {
 void register_RequestInterceptor
 (in RequestInterceptor requestInterceptor,
 in boolean makeMeFirst);

 void unregister_RequestInterceptor
 (in RequestInterceptor requestInterceptor);

 void register_MessageInterceptor
 (in MessageInterceptor messageInterceptor);

 void unregister_MessageInterceptor
 (in MessageInterceptor messageInterceptor);
};

