
Portable Interceptors
Joint Initial Submission
Inprise Corporation

BEA Systems, Inc.

With support and collaboration from:

Highlander Communications, L.C.

OMG TC Document orbos/99-04-05
Persistence State Service 1



ing, 
 
tion 

 
MG 

t to 
ter 
Copyright 1999 by Inprise Corporation
Copyright 1999 by BEA Systems, Inc.

The companies listed above hereby grant a royalty-free license to the Object Management 
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, 
so long as the OMG reproduces the copyright notices and the below paragraphs on all distributed 
copies.
The material in this document is submitted to the OMG for evaluation. Submission of this 
document does not represent a commitment to implement any portion of this specification in the 
products of the submitters. 
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE 
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND 
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 
The companies listed above shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance or use of this material. 
The information contained in this document is subject to change without notice. 
This document contains information which is protected by copyright. All Rights Reserved. 
Except as otherwise provided herein, no part of this work may be reproduced or used in any 
form or by any means—graphic, electronic, or mechanical, including photocopying, record
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other informa
contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited
number of copies of this document (up to fifty copies) for their internal use as part of the O
evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subjec
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Compu
Software Clause at DFARS 252.227.7013. 

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.
2 orbos/99-04-05



Table of Contents
1  Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1  Cosubmitting Companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2  Status of this document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3  Guide to the Submission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4  Missing Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5  Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6  Submission Contact Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2  Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3  Response to RFP Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2  Mandatory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3  Optional Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4  Issues to be discussed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4  Overall Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5  Portable Interceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2  Interoperability APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1  IOR manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2  Service Context manipulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.3  Entity Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
26  Apr 1999                                  orbos/99-04-05:   Portable Interceptors -3



5.2.4  GIOP specific APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.5  Protocol Specific APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3  Interceptor Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1  ORB InterceptorManagerControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4  Request Interceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1  ClientRequestInterceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2  ServerRequestInterceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5  Message Interceptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6  ORB Interceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6.1  BindInterceptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.7  POA Interceptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.7.1  IOR templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.7.2  POALifeCycleInterceptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7.3  POA InterceptorManagerControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7.4  ServerRequestInterceptors and the POA . . . . . . . . . . . . . . . . . . . . . . 26

5.8  Consolidated IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6  Conformance Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2  Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7  Changes to CORBA 2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1  Changes to CORBA 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
-4                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



Preface 1
1.1 Cosubmitting Companies

The following companies are pleased to jointly submit this specification in response to 
the OMG Portable Interceptors RFP (Document orbos/98-09-11):

• Inprise Corporation

• BEA Systems

Supporting companies are:

• Highlander Communications, L.C.

1.2 Status of this document

This document is an initial submission produced for the May, 1999 OMG Technical 
Committee meeting in Tokyo.

1.3 Guide to the Submission

Chapter 1 provides contact information and a guide to this submission.

Chapter 2 is the proof of concept statement.

Chapter 3 explains how this submission satisfies the requirements of the RFP.

Chapter 4 provides some of the rationale for this submission.

Chapter 5 describes the model and semantics of portable interceptors as specified in 
this submission.

Chapter 6 specifies the conformance requirements.

Chapter 7 specifies changes to CORBA 2.3.
26  Apr 1999                                  orbos/99-04-05:   Portable Interceptors 1-5



1

1.4 Missing Items

There are no missing items.

1.5 Conventions

IDL appears using this font.

Concrete programming language (Java, C++, etc.) code appears 
using this font.

Please note that any change bars have no semantic meaning. They are present for the 
convenience of readers and submitters (and the editor who wants to be able to tell what 
changed between various drafts). In this document, they are purely leftovers from the 
internal editing process and do not indicate changes from previously published 
versions.

1.6 Submission Contact Points
Jeff Mischkinsky
Inprise Corporation
951 Mariner’s Island Blvd.
San Mateo, CA 94404
USA
phone: +1 650 358 3049
email: jeffm@inprise.com

Dan Frantz
BEA Systems, Inc.
436 Amherst Street
Nashua, NH 03063
USA
phone: +1 603 579 2519
email: dan.frantz@beasys.com

Jon Curry
Highlander Communications, L.C.
206 East Pine Street
Lakeland, FL 33801
USA
phone: +1 941 686 7767
email: jon@highlander.com
1-6                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



Proof of Concept 2
This submission is based on the design and implementation work for the next release 
of VisiBroker.
23  Apr 1999                                  orbos/99-04-05:   Portable Interceptors 2-7



2

2-8                                  orbos/99-04-05:   Portable Interceptors                                  23  Apr 1999



Response to RFP Requirements 3
tions. 
 not 

ffers 

I-
quest 

ns 
The following lists the requirements from the Portable Interceptors RFP (orbos/98-09-
11) and describes how this submission addresses them.

3.1 Scope

Proposals responding to this RFP shall provide a portable definition of interceptors, 
so that system services and users may “plug into” ORB processing at particular 
points. 

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

The system interceptors must be capable of being used with Security and Transac
System interceptors are for the benefit of the ORB and service providers and are
visible to user programmers.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

CORBA 2.2 specifies two types of request-related interceptors: request- level, using 
structured requests, as in DII/DSI operations, and message- level, dealing with bu
of information, eventually resulting in transport processing. For this RFP, the 
submission’s request-level interceptors may continue the CORBA 2.2 usage of DI
related and DSI-related structures or may use other means to provide access to re
information.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

It is desirable that any solution for system interceptors for Security and Transactio
be general enough that it might be usable for other ORB services. 

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.
26  Apr 1999                                  orbos/99-04-05:   Portable Interceptors 3-9



3

Solutions shall also provide user level interceptors. No specific type of user interceptor 
is required. It is up to submitters to suggest the points at which hooking into the ORB 
might be useful. One example that has been suggested is pre- and post-method 
invocation.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

3.2 Mandatory Requirements

A submission shall specify two kinds of interceptors: system and user.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

A submission shall provide a complete architectural model of interceptors in ORB and 
Object Adapter processing. This includes what flexibility an ORB has in implementing 
interceptors, how the ORB will handle errors in interceptor processing, and the 
legitimate actions of an interceptor (including what kind of invocations an interceptor 
can perform). A submission shall describe under what conditions and how the ORB 
deals with recursive calls, whether generated locally or remotely. Allowable flexibility, 
error handling, and actions may be different for different kinds of interceptors.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

System interceptors for ORB Services shall include Request-Related and IOR-
management interceptors. For these system interceptors, a submission shall provide 
interfaces so that an interceptor can set and query GIOP service contexts (for request-
related system interceptors) and IOR profile information (for IOR-management system 
interceptors). The submission shall specify methods of limiting the invocation of such 
operations to system interceptors.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

A submission shall specify a mechanism for user interceptors at request-level and at 
additional points in ORB processing. The mechanism need not be the same as system 
interceptors at the request-level.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

A submission shall provide for multiple interceptors (system and user) to be called at 
each point they are applicable and shall specify how the multiple interceptors are 
called (for example, each called serially by the ORB or daisy-chained).

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.
3-10                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



3

nd 
ow 
ll not 
bility 
rity 
odel 

ecify 
g a 
er 
t do 

 is 
stem 
. 

ORB-
e 
IOP 
A submission’s system interceptor model shall be detailed enough that Security a
Transactions services could be reasonably implemented using it. An analysis of h
each of these services could use system interceptors is required. The analysis wi
be normative for those services, but must be detailed enough to show the applica
of the model. The analysis shall include a specification of what information a Secu
or Transaction Service needs at various points and how the system interceptor m
provides that information.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

To meet the negotiation part of certain security mechanisms, a submission shall sp
that at least some system, request-related interceptors must be capable of holdin
request in abeyance while it performs communication of its own, perhaps at a low
protocol level. For example, a client-end, message-level, security interceptor migh
handshaking with a target before issuing a request using the negotiated security.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

A submission shall specify administrative interfaces including, at a minimum, 
registering and unregistering interceptors, both system and user.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

3.3 Optional Requirements

There were no optional requirements identified in the RFP.

3.4 Issues to be discussed

Submissions shall discuss the security of the interceptor architecture, that is, who
allowed to add system interceptors to the ORB and under what conditions. For sy
interceptors, this might state that adding interceptors is controlled administratively
For user level interceptors, the submission shall discuss what considerations are 
needed to protect the ORB and the service contexts of a request.

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

By the time the first submissions are due, it is likely that the submissions for the 
related Firewall and Messaging RFPs will have reached final approval, as will hav
several modifications to GIOP. These changes may add new CORBA Core and G
capabilities not present when CORBA 2.2 Interceptors were first specified. If so, 
submissions should take the new specifications into account. For example, 

• The Messaging RFP introduces a new programming invocation model, 
asynchronous invocation with the reply being a call-back invocation directed to 
another process or machine. How does this affect the presumed symmetry of 
interceptors in CORBA 2.2?
26  Apr 1999 orbos/99-04-05:   Portable Interceptors 3-11



3

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.

• The Firewall RFP and the Interop RTFs may allow redirection of a request to an 
address different from that bound to originally. Does this make a difference?

A detailed explanation of how the requirement is met will be provided in a future 
revised submission.
3-12                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



Overall Design Rationale 4
This chapter discusses some of the rationale behind the choices that were made for this 
mapping.

This information will be provided in a future revised submission.
26  Apr 1999                                  orbos/99-04-05:   Portable Interceptors 4-13



4

4-14                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



Portable Interceptors 5
5.1 Introduction

The Portable Interceptor module defines a set of API hooks known as interceptors 
which provide a way for plugging in additional ORB behavior such as support for 
transactions and security.

This specification outlines a generic framework which may be augmented in the future 
to add new interceptor types as required. The specification defines several forms of 
interceptors including:

• Request Interceptors - These are system level interceptors which can be used to 
manipulate service contexts and examine other request level data before it is 
transmitted.

• Message Interceptors - These are system level interceptors which can be used to 
modify messages as they are sent and received by the ORB.

• ORB Interceptors - These are system level interceptors which can be used to 
intercept certain ORB operations and cause other interceptors to be installed.

• POA Interceptors - These are system level interceptors which can be used to 
intercept certain POA operations and cause other interceptors to be installed.

• User Interceptors - This submission does not include a specification for user level 
interceptors, but will include one in a revised submission. User level interceptors 
are similar to request level interceptors but are not able to manipulate service 
contexts or other protocol related constructs.

In addition to defining the interceptors it is also necessary to introduce a set of user 
APIs to manipulate the data structures which define ORB interoperability. Since these 
APIs are used by the interceptor APIs, they are introduced first.

Interceptors are installed and managed by a set of interfaces which is also described in 
this document.
26  Apr 1999           orbos/99-04-05:   Portable Interceptors 5-15



5

5.2 Interoperability APIs

The core data structures as defined in the CORBA IOP module define the standard set 
of data structures which define interoperability between ORBs. This interoperability 
requirement was to support communication between ORBs, and not communication 
between an ORB and an ORB interceptor programmer. Hence a new set of APIs is 
defined to provide simpler interaction between the ORB and interceptor programmer. 
An additional set of interfaces and valuetypes in the IOP module comprises the core 
set of APIs and is defined as follows:

module IOP {

typedef unsigned long ProfileId;

struct TaggedProfile {
ProfileId tag;
sequence<octet>profile_data;

};

abstract valuetype ProfileValue {
readonly attribute ProfileId tag;
TaggedProfile toTaggedProfile();

};

valuetype UnknownProfile : ProfileValue {
CORBA::OctetSequence getProfileData();

};

interface ProfileValueFactory {
ProfileValue create(in TaggedProfile profile);

};

struct IOR {
string type_id;
sequence<TaggedProfile>profiles;

};

valuetype IORValue {
public string type_id;
public sequence<ProfileValue> profiles;
IOR toIOR();

};

typedef unsigned longComponentId;

struct TaggedComponent {
ComponentIdtag;
sequence<octet>component_data;

};
5-16              orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



5

abstract valuetype ComponentValue {
readonly attribute ComponentId tag;
TaggedComponent toTaggedComponent();

};

valuetype UnknownComponent : ComponentValue {
CORBA::OctetSequence getComponentData();

};

interface ComponentValueFactory {
ComponentValue create(in TaggedComponent component);

};

typedef unsigned longServiceID;

struct ServiceContext {
ServiceID context_id;
CORBA::OctetSequencecontext_data;

};

abstract valuetype ServiceValue {
readonly attribute ServiceID context_id;
ServiceContext toServiceContext();

};

typedef sequence<ServiceValue> ServiceValueList;

valuetype UnknownService {
CORBA::OctetSequence getContextData();

};

interface ServiceValueFactory {
ServiceValue create(in ServiceContext ctx);

};

typedef sequence<ServiceContext> ServiceContextList;

interface EntityRegistry {
void registerProfileFactory(in ProfileId tag,

 in ProfileValueFactory factory);
void registerComponentFactory(in ComponentId tag,

 in ComponentValueFactory factory);
void registerServiceFactory(in ServiceID tag,

 in ServiceValueFactory factory);

ProfileValueFactory getProfileValueFactory(in ProfileId tag);
ComponentValueFactory getComponentFactory(

in ComponentId tag);
ServiceValueFactory getServiceFactory(in ServiceID tag);

};
26  Apr 1999            orbos/99-04-05:   Portable Interceptors 5-17



5

vice 

 

l 
};

5.2.1 IOR manipulation

IORs are manipulated using the IORValue, ProfileValue, and ComponentValue 
valuetypes. These valuetypes simply provide an abstraction of the existing data 
structures defined in IDL, and provide methods to map from the abstraction to the on-
the-wire format.

IORValues are created automatically by the ORB before being passed to interceptor 
calls. Typically the ORB will create an IORvalue immediately after receiving the IOR 
on the wire. For an IORValue to be constructed it will need to construct the 
appropriate ProfileValue components, which in turn may need to construct 
ComponentValues. To support the creation of ProfileValues and 
ComponentValues, a factory must be installed for each profile or component tag 
supported. The factory may be directly implemented by the ORB or the end-user, but 
must be installed in the EntityRegistry.

5.2.2 Service Context manipulation

Service contexts are manipulated using the ServiceValue valuetype. Just as with IOR 
manipulation, factories must be created and installed so that the ORB can create 
Service valuetypes from their marshalled state.

5.2.3 Entity Registry

The entity registry is responsible for registering and returning ProfileValueFactorys, 
ComponentValueFactorys, and ServiceValueFactorys. A maximum of one 
factory may be installed for each “tag” associated with a profile, component, or ser
context. The entity registry may be obtained by invoking 
ORB.resolve_initial_references() with the string “IOPEntityRegistry” as an 
argument. If an attempt is made to retrieve a factory for an unknown tag, the 
EntityRegistry will always return a factory capable of creating 
UnkownProfileValues, UnknownComponentValues, or 
UnknownServiceValues.

5.2.4 GIOP specific APIs

The APIs defined above are truly generic in that they only encompass those data
structures defined in the CORBA IOP module. Additional APIs are required for 
specialization within the GIOP set of on-the-wire protocols. In particular all GIOP 
protocols must support the notion of an opaque object key and the GIOP protoco
version to be used for client-server communication must be specified in the IOR. 
These concepts are capture in the GIOP::ProfileBodyValue and GIOP::ObjectKey 
valuetypes which are defined in IDL below.
5-18              orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



5

The ProfileBodyValue extends the ProfileValue and adds to GIOP version and object 
key to the information model required for all GIOP based protocols. The ObjectKey 
class provides an opaque view of the ObjectKey. In addition, subclasses of the 
ObjectKey valuetype may be provided by a particular ORB vendor if desired.

module GIOP {
struct Version {

octet major;
octet minor;

};

abstract valuetype ObjectKey {
CORBA::OctetSequence toOctetSequence();

};

valuetype ProfileBodyValue : IOP::ProfileValue {
public GIOP::Version version;
public ObjectKey object_key;

};

};

5.2.5 Protocol Specific APIs

Each specific protocol (i.e., IIOP) will typically be described by a specified 
ProfileBody format. In order to manipulate the protocol specific portions of the 
ProfileBody a subtype of IOP::ProfileValue must be specified for each a defined 
ProfileBody format. The revised version of this submission will include such 
definitions for all protocols defined in the CORBA specification, including IIOP.

5.3 Interceptor Management

Interceptors are installed by invoking an operation on an InterceptorManager. An 
InterceptorManager is defined for each type of Interceptor. An instance of an 
InterceptorManager may be obtained by invoking an operation on an 
InterceptorManagerControl interface. The IDL is defined as follows.

module PortableInterceptor {

interface InterceptorManager {
};

interface InterceptorManagerControl {
InterceptorManager get_manager(in string name);

};
};
26  Apr 1999            orbos/99-04-05:   Portable Interceptors 5-19



5

.

Both the InterceptorManager and InterceptorManagerControl interface and any 
subtypes are locality-constrained objects and exhibit the same behavior as all other 
locality constrained objects defined in the CORBA specification.

The InterceptorManager interface provides no operations and is typically subtyped as 
needed for each class of interceptor defined in the system. An IntercpetorManager 
manages a set of interceptors which are typically installed in a chain. 

The InterceptorManagerControl interface is used to obtain an instance of a particular 
InterceptorManager. The instance to be returned is specified by the name parameter 
and is specific to a particular instance of an InterceptorManagerControl object. For 
example, both the ORB and the POA provide InterceptorManagerControl objects to 
add interceptors to either the ORB or the POA. Though the set of available 
InterceptorManagers and their names vary depending on the 
InterceptorManagerControl.

5.3.1 ORB InterceptorManagerControl

One instance of the InterceptorManagerControl is the ORB InterceptorManagerControl 
which is available by invoking 
ORB::resolve_initial_references(“InterceptorManagerControl”) . The ORB 
interceptor manager control is used to install many of the global ORB interceptors.

5.4 Request Interceptors

Request interceptors are provided to allow a service provider to specify a “hook” 
which the ORB will invoke during its processing of a request to provide a service

module PortableInterceptor {

native Cookie;

interface ClientRequestInterceptor {
void preinvoke(in Object target,

in CORBA::Identifier operation,
inout IOP::ServiceValueList service_contexts,
out Cookie the_cookie);

void postinvoke(in Object target,
in IOP::ServiceValueList service_contexts,
in CORBA::Environment env,
in Cookie the_cookie);

void exception_occurred(in Object target,
in CORBA::Environment env,
in Cookie the_cookie);

}

5-20              orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



5

n on 

s the 
interface ClientRequestInterceptorManager : InterceptorManager {
void add(in ClientRequestInterceptor interceptor);

};

interface ServerRequestInterceptor {
void preinvoke(in Object target,

in CORBA::Identifier operation,
in IOP::ServiceValueList service_contexts,
out Cookie the_cookie);

void postinvoke(in Object target,
inout IOP::ServiceValueList service_contexts,
in CORBA::Environment env,
in Cookie the_cookie);

void exception_occurred(in Object target,
in CORBA::Environment env,
in Cookie the_cookie);

};

interface ServerRequestInterceptorManager : InterceptorManager {
void add(in ServerRequestInterceptor interceptor);

};

};

There are two interfaces which define two different types of request interceptors: the 
ClientRequestInterceptor and the ServerRequestInterceptor. Both interfaces contain 
nearly equivalent operations, but differ in the way they handle ServiceValue 
manipulation. Both interceptor types are managed by their corresponding 
InterceptorManager. Each request interceptor manager contains a single add operation 
which can be used to add a new instance of an interceptor to the chain of already 
installed interceptors.

5.4.1 ClientRequestInterceptor

The ClientRequestInterceptor contains two methods which are invoked during normal 
processing of requests and an additional operation for reporting exceptions which 
occurred during the processing of other interceptors. All operation invocations called 
at the “intercept points” are called by the same thread which invoked the operatio
the target object.

The preinvoke method is called before the client request is marshalled and specifie
target object of the operation, the operation name, and a ServiceValueList. The 
interceptor may add new ServiceValues to the ServiceValueList which will then be 
propagated to the client as part of the request.
26  Apr 1999            orbos/99-04-05:   Portable Interceptors 5-21



5

The postinvoke method is called after the reply has been received from the target 
object. The service_contexts parameter specifies any service contexts that were 
received in a reply. The env parameter will contain any system exception which was 
received in the reply or a system exception if receipt of the reply failed due to some 
reason such as communication failure.

The exception_occurred() method is invoked if an interceptor in the chain throws 
an exception. This allows other interceptors in the chain to be notified of the 
exceptional condition, and perhaps take some action such as rolling back a transaction.

5.4.2 ServerRequestInterceptor

The ServerRequestInterceptors are symmetric to the ClientRequestInterceptors 
except that service contexts may only be manipulated in postinvoke instead of 
preinvoke.

The same thread is used to invoke preinvoke, the servant, and the postinvoke methods.

5.5 Message Interceptors

Message Interceptors allow for the manipulation of ORB messages before they are sent 
and after they are received. The message interceptors are described briefly below and a 
future revised submission will contain more complete information.

module PortableInterceptor {

interface MessageInterceptor {
void set_next(in MessageInterceptor interceptor); 

void write_message(in boolean isFirst, in boolean isLast,
                       in CORBA::OctetSequence data, in long offset,
                       in long length); 

void read_message(in boolean isFirst, in boolean isLast,
                      in CORBA::OctetSequence data, in long offset,
                      in long length);

void flush();
void close();

};
};

MessageInterceptors may be used on either the client or server to modify messages 
before they are sent over the wire. MessageInterceptors are conceptually organized as 
a protocol with the ORB writing to the first message interceptor, and the second 
message interceptor writing to the third, etc. The last message interceptor in the stack 
is typically a transport layer such as TCP. MessageInterceptors are installed on a per-
connection basis and must be installed independently for each connection an ORB 
makes to a server or for each connection received by a server.
5-22              orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



5

ect 
s been 
it is 
The set_next() operation informs the MessageInterceptor which instance of a 
MessageInterceptor is next. This operation will be the first operation invoked by the 
ORB before any other operation is invoked.

The read_message() and write_message() operations are called when a message is 
to be read or written. Because ORBs may use different buffering schemes, multiple 
calls to read_message() and write_message() may be required to read/write a 
complete message. The boolean flags isFirst and isLast are used to indicate whether 
or not the particular buffer being passes is the first or last buffer for a particular 
message. If the message may be contained in a single buffer then both flags will be 
true.

The flush() operation is used to force a message interceptor to write any data it may 
be holding temporarily. The MessageInterceptor shall flush data by invoking 
write_message() with the remainder of the data on the next MessageInterceptor.

The close operation is used to indicate the ORB is closing the connection, and the 
MessageInterceptor shall take any action as required.

5.6 ORB Interceptors

ORB interceptors will be described in more detail in a revised version of this 
submission. For the purposes of this submission, only BindInterceptors are 
discussed. The following ORB interceptors are expected to be added:

• Interceptor to allow for additional policies to be created when the 
ORB::create_policy method is invoked. For example, can be used to add policies 
specific to security or transactions.

• Interceptor to allow for additional objects to be returned from 
ORB::resolve_initial_references and ORB::list_initial_services. This can be 
used for example to add transaction and security Current interfaces to an ORB.

5.6.1 BindInterceptor

A BindInterceptor is called after a “binding” has been established between an obj
reference and a remote server. This typically means a connection to the server ha
opened but no requests have been issued. For the purpose of this specification, 
only required that the ORB has selected a single profile from an IOR for 
communication with the server. The following IDL described the BindInterceptor 
APIs.

module PortableInterceptor {

interface BindInterceptor {
void bind(in Object target, in IOP::IORValue ior,

in long profileIndex,
in InterceptorManagerControl interceptorControl);

};
26  Apr 1999            orbos/99-04-05:   Portable Interceptors 5-23



5

 on 
eter 

 is 
eter 

ch is 
rs 
interface BindInterceptorManager : InterceptorManager {
void add(in BindInterceptor interceptor);

};

};

POALifeCycleInterceptors are installed via the POALifeCycleInterceptorManager 
interface. An instance of a POALifeCycleManager is available by invoking 
get_manager(“Bind”)  on the ORB InterceptorManagerControl instance 
(Section 5.3.1, “ORB InterceptorManagerControl,” on page 5-20).

The bind() method is invoked every time the ORB is trying to invoke an operation
an object which has never previously been invoked by the ORB. The target param
indicates the target of the request, the ior parameter indicates the IORValue 
corresponding to the target, and the profileIndex indicates which profile in the IOR
being used for communication with the target object. The interceptorControl param
is an instance of a Bind InterceptorManagerControl, and is described below.

5.6.1.1 Bind InterceptorManagerControl

Each client object reference has a per-object Bind InterceptorManagerControl whi
used to install per-object interceptors.Currently, the following per-object Intercepto
are available.

• ClientRequestInterceptor - manager is available by invoking 
get_manager(“ClientRequest”) on the Bind InterceptorManagerControl.

5.7 POA Interceptors

The following hooks are provided:

• IOR templates. A per-POA IOR template.

• POA lifecycle hooks. Called during POA creation and destruction

• Additional POA hooks will be provided in a revised submission.

All POA interceptors are defined in the already existing PortableServer module.

5.7.1 IOR templates

Each POA instance shall maintain an IOR template, which is an IORValue which 
contains information common to all objects managed by that POA (typically 
everything except the repository_id and ObjectID of the object). This template is 
passed to certain POA interceptors which may modify or augment the template as 
necessary to implement a particular service. This will typically mean adding additional 
components to existing profiles in the IOR template to support transactions or security.
5-24              orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



5

h a 
 the 
from 

the 

hod 
ible 

d if 
ill 

jects 
tors 

g 

e 

 

5.7.2 POALifeCycleInterceptor

The POALifeCycleInterceptor is a POA interceptor which is invoked every time a 
POA is created or destroyed. The IDL for POALifeCycleInterceptor is defined as 
follows:

module PortableServer {

interface POALifeCycleInterceptor {
void create(in PortableServer::POA poa,

inout IOP::IORValue iorTemplate,
in InterceptorManagerControl poaAdmin);

void destroy(in PortableServer::POA poa);
};

interface POALifeCycleInterceptorManager : InterceptorManager {
void add(in POALifeCycleInterceptor interceptor);

};

};

POALifeCycleInterceptors are installed via the POALifeCycleInterceptorManager 
interface. An instance of a POALifeCycleManager is available by invoking 
get_manager(“POALifeCycle”)  on the ORB InterceptorManagerControl instance 
(Section 5.3.1, “ORB InterceptorManagerControl,” on page 5-20).

The create method is invoked when a new POA is created either explicitly throug
call to create_POA or via an AdapterActivator. In the case of an AdapterActivator,
interceptor is called only after the unknown_adapter method returns successfully 
the AdapterActivator.

The create method is passed a reference to the recently created POA, a copy of 
POA’s IOR template, and a reference to the POA’s InterceptorManagerControl 
(Section 5.7.3, “POA InterceptorManagerControl,” on page 5-26). If the create met
throws a system exception, the exception will be propagated to the caller respons
for attempting to create the POA. No further interceptors in the chain will be calle
any previous interceptors throws an exception. The POA will be destroyed and w
appear to the user as if it hadn’t been created.

The destroy operation is called when a POA has been destroyed and all of its ob
have been etherealized. It is guaranteed that destroy will be called on all intercep
before create will be called again for a POA with the same name.

If the destroy operation throws a system exception it is ignored, and the remainin
interceptors will continue to be called.

POALifeCycleInterceptors are installed globally in the InterceptorManager. Multipl
POALifeCycleInterceptors may be installed and they will be called in the order in 
which they were installed. The order is very critical since it will affect the order in
which per-POA interceptors are installed.
26  Apr 1999            orbos/99-04-05:   Portable Interceptors 5-25



5

st be 

en 

been 
5.7.3 POA InterceptorManagerControl

Each POA has a per-POA InterceptorManagerControl which is made available to the 
user during the POALifeCycleInterceptor::create call. The POA 
InterceptorManagerControl can be used to get access to all per-POA 
InterceptorManagers for the purpose of installing per-POA Interceptors. Currently, the 
following per-POA Interceptors are available.

• ServerRequestInterceptor - manager is available by invoking 
get_manager(“ServerRequest”) on the POA InterceptorManagerControl.

5.7.4 ServerRequestInterceptors and the POA

When ServerRequest interceptors are installed on a POA, the intercept points mu
more completely specified relative to other POA “interceptors” such as 
ServantManagers.

The ServerRequestInterceptor::preinvoke method is invoked before POA 
ServantLocators are invoked, but after any Servant or AdapterActivators have be
invoked. 

The ServerRequestInterceptor::postinvoke method is called after the servant has 
invoked and any ServantLocator has been invoked.

5.8 Consolidated IDL

The consolidated IDL will be listed here in a future revision.
5-26              orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



Conformance Issues 6
6.1 Introduction

This chapter specifies the compliance points for this specification

6.2 Compliance

This submission proposes extensions to the CORBA core. As such all the specified 
functionality is required by compliant implementations of the CORBA core.
26  Apr 1999                                  orbos/99-04-05:   Portable Interceptors 6-27



6

6-28                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999



Changes to CORBA 2.3 7
This submission proposes the following changes to CORBA 2.3 in order to support 
portable interceptors:.

7.1 Changes to CORBA 2.3

A complete listing of changes will be provided in a revised submission.
26  Apr 1999                                  orbos/99-04-05:   Portable Interceptors 7-29



7

7-30                                  orbos/99-04-05:   Portable Interceptors                                  26  Apr 1999


	Preface
	1.1 Cosubmitting Companies
	1.2 Status of this document
	1.3 Guide to the Submission
	1.4 Missing Items
	1.5 Conventions
	1.6 Submission Contact Points

	Proof of Concept
	Response to RFP Requirements
	3.1 Scope
	3.2 Mandatory Requirements
	3.3 Optional Requirements
	3.4 Issues to be discussed

	Overall Design Rationale
	Portable Interceptors
	5.1 Introduction
	5.2 Interoperability APIs
	5.2.1 IOR manipulation
	5.2.2 Service Context manipulation
	5.2.3 Entity Registry
	5.2.4 GIOP specific APIs
	5.2.5 Protocol Specific APIs

	5.3 Interceptor Management
	5.3.1 ORB InterceptorManagerControl

	5.4 Request Interceptors
	5.4.1 ClientRequestInterceptor
	5.4.2 ServerRequestInterceptor

	5.5 Message Interceptors
	5.6 ORB Interceptors
	5.6.1 BindInterceptor
	5.6.1.1 Bind InterceptorManagerControl


	5.7 POA Interceptors
	5.7.1 IOR templates
	5.7.2 POALifeCycleInterceptor
	5.7.3 POA InterceptorManagerControl
	5.7.4 ServerRequestInterceptors and the POA

	5.8 Consolidated IDL

	Conformance Issues
	6.1 Introduction
	6.2 Compliance

	Changes to CORBA 2.3
	7.1 Changes to CORBA 2.3


