
panies
and

 in a

roup,
ng
opies.

ocu-
 prod-

nse-
e

form
ing,

own-
 on

num-
valu-

t to
r
rks of
Portable Interceptors
Eternal Systems, Inc.

Expersoft Corporation

Sun Microsystems, Inc.

April 26, 1999

Version 1.0 - Initial RFP Submission

OMG Document Number orbos/99-04-07

Copyright 1999 by Eternal Systems, Inc.

Copyright 1999 by Expersoft Corporation

Copyright 1999 by Sun Microsystems, Inc.

The submitting companies listed above have all contributed to this submission. These com
recognize that this draft joint submission is the joint intellectual property of all the submitters,
may be used by any of them in the future, regardless of whether they ultimately participate
final joint submission.

The companies listed above hereby grant a royalty-free license to the Object Management G
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so lo
as the OMG reproduces the copyright notices and the below paragraphs on all distributed c

The material in this document is submitted to the OMG for evaluation. Submission of this d
ment does not represent a commitment to implement any portion of this specification in the
ucts of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCU-
RATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The
companies listed above shall not be liable for errors contained herein or for incidental or co
quential damages in connection with the furnishing, performance or use of this material. Th
information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
or by any means (graphic, electronic, or mechanical, including photocopying, recording, tap
or information storage and retrieval systems) without the permission of one of the copyright
ers. All copies of this document must include the copyright and other information contained
this page.

The copyright owners grant member companies of the OMG permission to make a limited
ber of copies of this document (up to fifty copies) for their internal use as part of the OMG e
ation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subjec
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Compute
Software Clause at DFARS 252.227.7013. CORBA and Object Request Broker are tradema
Object Management Group. OMG is a trademark of Object Management Group.

Contacts
Louise Moser
Eternal Systems, Inc.
P.O. Box 13963
Santa Barbara, CA 93107
USA
phone +1 805 893 4897
fax +1 805 893 3262
E-mail: moser@ece.ucsb.edu

Shahzad Aslam-Mir
Expersoft Corporation
5825 Oberlin Drive
San Diego. CA 92121
USA
phone +1 619 824 4128
fax +1 619 824 4110
E-mail: sam@expersoft.com

Harold Carr
Sun Microsystems
901 San Antonio Road
MS CUP02-201
Palo Alto, CA 94303-4900
USA
phone +1 408 517 6783
fax +1 408 863 3195
E-mail: harold.carr@sun.com

Last Modified : 1999 Apr 26 (Mon) 11:24:28 by Harold Carr.

Contents
• Introduction

• Typical Interceptor Usage

• All objects locality constrained

• Interception Points

• Interceptor Base Class

• Invocation

• Client Side

• Server Side

• Invocation Cookies

• System Exception Interception Point

• IOR Creation, marshaling and unmarshaling.

• Connection management

 this

tercep-
in

ints
• Thread management

• ORB Lifecycle

• Registering and chaining interceptors

• Converting between marshal streams and requests

• Abstract representations

• IOR Representation

• Service Context Representation

• Transport Representations

• Interceptor Execution

• Concurrency and Interceptors

• General open issues and notes.

• Examples.

<!----><!----><!---->

Introduction
Eternal Systems, Expersoft Corporation and Sun Microsystems, are pleased to provide
first submission in response to the OMG "Portable Interceptors" RFP, orbos/98-09-11.

This proposal focuses on identifyinginterception points, what information is given to each
point, what effects each points may cause, and possible uses for each point.

A major goal of this proposal is to be independent of encoding and transport.

This proposal changes the focus from "request" and "message" level interceptors to "in
tion points." It enables Request objects to be constructed, but does not construct them
advance, since, in many cases, they are not necessary.

This proposal does not address "system" versus "user" level interceptors.

<!----><!---->

Typical Interceptor Usage
Interceptors provides hooks to programmers to execute their piece of code at certain po
during ORB operation. Typical uses include:

• Transaction service integration

• Security

• Message compression and encryption

• Fault tolerance

• Tracing, profiling, debugging, logging

<!----><!---->

s
con-
erface

as an

inter-

.

tion,

client
a cli-

tercep-
t and

inde-
All Objects Locality Constrained
All types specified in this proposal are locality constrained. We do not specify how this i
accomplished at this time. We anticipate either having the final specification say "locality
strained" (as does the POA), or perhaps use value types, or use some sort of "local" int
(as in orbos/99-03-06).

<!----><!----><!---->

Interception Points
We will refer to the ORB execution place at which a programmer interpose custom code
"interception point."

An interceptor is an object that has several methods which are called at these different
ception points by the ORB.

For a given class of interceptor, the application can create 0 or more interceptor objects

<!----><!---->

Interceptor Base Class
There is a base interceptor class from which all interceptors derive:

module PortableInterceptors_1_0 {
 interface Interceptor {

 String getInterceptorName();
 int getInterceptorType();

 };
};

This class is generalized by various interceptor classes: client invocation, server invoca
IOR creation, etc.

<!----><!---->

Invocation Interception Points
This section shows interception points on the path of an invocation request sent from a
to a server and, in the case of a synchronous invocation, a reply returned from a server to
ent.

Each invocation interception point is given an:

• invocation cookie

which allows state to be passed between all client-side interceptors or all server-side in
tors in the context of a specific invocation. These cookies do not pass between the clien
server side.

(The points are actually passed a "cookie jar" containing cookies. This enables multiple,
pendent developers to install interceptors without interfering with each others cookies.)

All invocation interceptors derive from:

module PortableInterceptors_1_0 {
 interface InvocationInterceptor : Interceptor {

 ...
 };
};

<!---->

Client Side Invocation Interception Points

module PortableInterceptors_1_0 {
interface ClientInvocationInterceptor : InvocationInterceptor {

void send_request_begin
(

inout InvocationInterceptorCookieJar cookies
);

AIOR send_request_ior
(

in Object obj
inout InvocationInterceptorCookieJar cookies

);
void send_request_before_marhsal

(
in unsigned long request_id,
in boolean response_expected,
inout ServiceContextList service_contexts,
inout sequence <octet> object_key,
inout string operation,
inout InvocationInterceptorCookieJar cookies

);
MarshalOutputStream send_request_after_marshal

(
in MarshalOutputStream output_stream
inout InvocationInterceptorCookieJar cookies

);
MarshalOutputStream send_request_transform

(
in MarshalOutputStream output_stream
inout InvocationInterceptorCookieJar cookies

);
void send_request_end

(
inout InvocationInterceptorCookieJar cookies

);
void receive_reply_begin

(
inout InvocationInterceptorCookieJar cookies

);
MarshalInputStream receive_reply_transform

(
in ServiceContextList service_contexts,
in unsigned long request_id,
in ReplyStatusType reply_status,
in MarshalInputStream input_stream
inout InvocationInterceptorCookieJar cookies

);
MarshalInputStream receive_reply_before_unmarshal

(
in MarshalInputStream input_stream
inout InvocationInterceptorCookieJar cookies

);
void receive_reply_after_unmarshal

(
inout InvocationInterceptorCookieJar cookies

);
void receive_reply_end

fore

ent
(
inout InvocationInterceptorCookieJar cookies

);
};

interface ClientLocateRequestInterceptor : InvocationInterceptor {
void send_locate_request
 (

...
inout InvocationInterceptorCookieJar cookies

);
void receive_locate_reply_object_here
 (

...
inout InvocationInterceptorCookieJar cookies

);
void receive_locate_reply_object_forward
 (

...
inout InvocationInterceptorCookieJar cookies

);
void receive_locate_reply_unknown_object
 (

...
inout InvocationInterceptorCookieJar cookies

);
};

interface ClientConnectionInterceptor : InvocationInterceptor {
Connection send_request_get_connection

(
...
inout InvocationInterceptorCookieJar cookies

);
};

};

ClientInvocationInterceptor Methods

send_request_begin

• Point

• When an invocation is made on a object reference this point is called be
the ORB doesany processing whatsoever.

• Beforesend_request_ior .

• Context

• Within the context of the client invoking thread

• Functionality

• Create and install a cookie for this invocation.

• Exceptions

• If this method throws an exception then that exception is given to the cli
code as the result of the invocation.

• Further, any otherClientInvocationInterceptor s chained after this one
do not get invoked (i.e., any further client sidesend_request_* and
receive_reply_* points).

• Uses

• Set a timer.

• Issues

send_request_ior

ion

 for

et

 to

 an
• Point

• After send_request_begin

• Before the IIOP request header marshaled.

• Before arguments are marshaled into request stream.

• Beforesend_request_before_marshal .

• Context

• Within the context of the client invoking thread

• Functionality

• The interceptor is given the the object reference upon which this invocat
is being made.

• It may convert the reference to anIOR Representation (AIOR).

• It may read/write the converted representation.

• If it returns NULL then the given object reference is used as the target
the request (modulo othersend_request_ior interceptors).

• If it returns an AIOR then the contents of that AIOR is used as the targ
for the request (modulo othersend_request_ior interceptors).

• This is called onevery invocation, giving the opportunity to redirect every
request.

• Exceptions

• Seesend_request_begin

• Uses

• Load balancing

• Issues

• Connection closing/opening on redirect of existing connections.

• In the case of a client invokes with ref1 but receives ref2 from a
LOCATE_FORWARD then which ref will appear in subsequent calls of
this point on the initial ref? Most ORBs do not pass the forwarded refs
the client. Instead, the LOCATE_FORWARD causes the client ORB to
reconnect to the new ref (transparently to the client).

• Notes

• This is given an object reference rather than an AIOR to avoid creating
AIOR unnecessarily.

send_request_before_marshal

• Point

• After send_request_ior .

• After the ORB has created ORB-specific service contexts.

• Before the IIOP request header marshaled.

• Before arguments are marshaled into request stream.

• Context

• Within the context of the client invoking thread

• Functionality

• Read the request id.

RB
ly

but

tor
• Read one way status.

• Read/write the service context list.

• Read/write the object key.

• Read/write the operation name.

• Exceptions

• Seesend_request_begin

• Uses

• Change/compress the object key.

• Operation name-grained client-side ACL.

• Insert transaction service context.

• Insert code set service context.

• Insert Java code base service context.

• Insert security info in service context.

• Insert realtime info in service context.

• Monitoring the application, for debugging or performance reasons

• Issues

• If service contexts added but ORB receives LocateForward then the O
must add those service contexts to forward IOR (or use the LocateRep
interception point).

• Notes

• If the operation name is modified then the modified name is marshaled
the original operation's arguments are still marshaled.

send_request_after_marshal

• Point

• After send_request_before_marshal

• Request header has been marshaled.

• All arguments have been marshaled.

• Beforesend_request_transform

• Context

• Within the context of the client invoking thread

• Functionality

• Read/modify the marshaled data output stream.

• Using thestreamto request, converter, the point may read/write the
Request object then convert that object back to a stream.

• If it returns NULL then the given stream is passed to the next transform
interceptor point or used for the invocation.

• Otherwise the returned stream is passed to the next transform intercep
point or used for the invocation.

• Exceptions

• Seesend_request_begin

• Uses

r-
am.

n
n

tor

s to
er-

ey
 that

ck.
• "Request" level interceptor viastream to request converters.

• Add "out-of-band" data to end of marshaled data.

• Issues

• It would be possible to have a "post request header, pre arguments ma
shaled" point to allow data to be inserted before the marshal output stre

• Notes

• Only the output stream is given. Any additional unmarshaled informatio
(e.g., ServiceContextList) from earlier interceptors can be passed, whe
needed, in a cookie.

send_request_transform

• Point

• After send_request_after_marshal

• Context

• Within the context of the client invoking thread

• Functionality

• Read/write the marshal data output stream

• If it returns NULL then the given stream is passed to the next transform
interceptor point or used for the invocation.

• Otherwise the returned stream is passed to the next transform intercep
point or used for the invocation.

• Exceptions

• Seesend_request_begin

• Uses

• Transform (e.g., encryption or compression) the entire message.

• Issues

• Notes

• This point is similar to but separate fromsend_request_after_marshal ,
which is used tomodify the contents of the marshal stream.

send_request_transform is to be used totransform the entire stream
without changing its contents.

• This point is an "ease-of-use protocol" API to enable independent team
use interceptors for stream modification and transformation without int
fering with each other.

• Transform interceptors are applied only to the marshal data stream. Th
are not applied to the message header because it contains information
is required by the ORB for dispatching the message to the appropriate
object representation and POA, etc.

send_request_end

• Point

• The final point before the request is actually sent.

• The ORB does nothing after this point except send the request and blo

• Context

• Within the context of the client invoking thread

ny

er
ly
• Functionality

• Any necessary info passed in cookie.

• Exceptions

• Seesend_request_begin

• Uses

• Set timers to cancel requests if reply does not arrive in a certain time.

• Stop a timer set insend_request_begin to measure client-side processing
time of outgoing request.

• Issues

receive_reply_begin

• Point

• When client ORB receives a Reply message.

• The first invocation point after a reply is received before the ORB does a
processing.

• Before anything is unmarshaled.

• Beforereceive_reply_transform .

• Context

• Within the context of the client invoking thread

• Functionality

• Necessary data in a cookie.

• Exceptions

• Seesend_request_begin

• Uses

• Set timers.

• Using time stamps in cookie, if the response took too long, a programm
could raise an exception to be given to client code (avoiding further rep
processing).

• Issues

receive_reply_transform

• Point

• After receive_reply_begin

• After Reply header unmarshaled.

• Before unmarshaling of reply input stream.

• Beforereceive_reply_before_unmarshal

• Context

• Within the context of the client invoking thread

• Functionality

• Read service context, request id, reply status.

• Read/write marshal data input stream (using converters).

• If it returns NULL the given input stream is used.

• If it returns a stream then that stream is used instead.

)

• Exceptions

• Seesend_request_begin

• Uses

• Issues

• Notes

• If further points need any of the input arguments (other than the stream
they should be passed in a cookie.

receive_reply_before_unmarshal

• Point

• After receive_reply_transform

• Before arguments unmarshaled.

• Beforereceive_reply_after_unmarshal

• Context

• Within the context of the client invoking thread

• Functionality

• Read/write marshaled data input stream.

• Exceptions

• Seesend_request_begin

• Uses

• Remove out-of-band data.

• Issues

receive_reply_after_unmarshal

• Point

• After receive_reply_before_unmarshal

• After reply arguments have been unmarshaled.

• Beforereceive_reply_end

• Context

• Within the context of the client invoking thread

• Functionality

• Exceptions

• Seesend_request_begin

• Uses

• Returning additional or more specific exceptions for a reply

• Issues

receive_reply_end

• Point

• After receive_reply_after_unmarshal

• After this point the ORB doesnothing except invoke the servant.

• Context

• Within the context of the client invoking thread

, may

gets

ient
l

• Functionality

• Exceptions

• Seesend_request_begin

• Uses

• Measure client-side processing time of incoming reply.

• Issues

ClientLocateRequestInterceptor Methods

The following interception points, modeled on the GIOP LocateRequest message cycle
not be invoked, depending on the protocol in effect.

send_locate_request

• Point

• Client ORB sends a LocateRequest IIOP message.

• Context

• Functionality

• Exceptions

• Uses

• Issues

receive_locate_reply_object_here

• Point

• Context

• Functionality

• Exceptions

• Uses

• Issues

receive_locate_reply_object_forward

• Point

• When client ORB receives a LocateReply message with a new forward
IOR.

• Context

• Functionality

• Read/write the forwarded IOR.

• Exceptions

• Uses

• If a interceptor adds service context info to a request, but that request
an OBJECT_FORWARD LocateReply message, then the redirected
request will needs its service context list updated accordingly.

• Issues

• Notes

• This is the important part of the LocateRequest cycle to catch on the cl
side so it can update Service Context information added to the origina
request.

es-

e an
receive_locate_reply_unknown_object

• Point

• When the client ORB receives a LocateReply UNKNOWN_OBJECT m
sage.

• Context

• Functionality

• Exceptions

• Uses

• Issues

ClientConnectionInterceptor Methods

send_request_get_connection

• Point

• A connection needs to be obtained for the invocation.

• Called onevery invocation.

• Context

• Within the context of the client invoking thread

• Functionality

• Given information necessary to make connection.

• Should return NULL (meaning ORB does it default action) or aConnec-
tion to be used on this invocation.

• Exceptions

• Uses

• Alternate mechanism for obtaining a connection (e.g., from a cache, us
object locate facility, etc.).

• Issues

• Need to define where this point occurs in relation to other client side
points.

<!---->

Server Side Invocation Interception Points

module PortableInterceptors_1_0 {
interface ServerInvocationInterceptor : InvocationInterceptor {

void receive_request_begin
(

...
in Connection connection,
inout InvocationInterceptorCookieJar cookies

)
MarshalInputStream receive_request_transform

(
in unsigned long request_id,
in boolean response_expected,
inout ServiceContextList service_contexts,
inout sequence <octet> object_key,
inout string operation,
in MarshalInputStream input_stream,
inout InvocationInterceptorCookieJar cookies

);

MarshalInputStream receive_request_before_unmarshal
(

in MarshalInputStream input_stream
inout InvocationInterceptorCookieJar cookies

);
void receive_request_after_unmarshal

(
inout InvocationInterceptorCookieJar cookies

);
void receive_request_end

(
inout InvocationInterceptorCookieJar cookies

);
void send_reply_begin

(
inout InvocationInterceptorCookieJar cookies

);
void send_reply_before_marshal

(
inout ServiceContextList service_contexts,
in ReplyStatusType reply_status,
inout InvocationInterceptorCookieJar cookies

);
MarshalOutputStream send_reply_after_marshal

(
in MarshalOutputStream output_stream
inout InvocationInterceptorCookieJar cookies

);
MarshalOutputStream send_reply_transform

(
in MarshalOutputStream output_stream
inout InvocationInterceptorCookieJar cookies

);
void send_reply_end

(
inout InvocationInterceptorCookieJar cookies

);
};

interface ServerLocateRequestInterceptor : InvocationInterceptor {
... receive_locate_request
 (

...
inout InvocationInterceptorCookieJar cookies

);
... send_locate_reply_object_here
 (

...
inout InvocationInterceptorCookieJar cookies

);
... send_locate_reply_object_forward
 (

...
inout InvocationInterceptorCookieJar cookies

);
... send_locate_reply_unknown_object
 (

...
inout InvocationInterceptorCookieJar cookies

);
};

interface ServerConnectionInterceptor : InvocationInterceptor {
void connection_accepted
 (

...
inout InvocationInterceptorCookieJar cookies

);
void connection_limit
 (

...

 be

the
a-
inout InvocationInterceptorCookieJar cookies
);

};
};

ServerInvocationInterceptor Methods

Issue: the thread context in which the server invocation points execute should probably
unspecified.

receive_request_begin

• Point

• This first point immediately after ORB receives a request.

• Beforereceive_request_transform

• Context

• Functionality

• Given the connection on which the request arrived.

• Exceptions

• If this method throws an exception then that exception is passed back to
client side where the client code will receive it as the result of the invoc
tion.

• Further, any otherServerInvocationInterceptor s chained after this one
do not get invoked (i.e., any further server sidereceive_request_* and
send_reply_* points).

• Uses

• Set timers.

• Issues

receive_request_transform

• Point

• After receive_request_begin

• After request header unmarshaled.

• Beforereceive_request_before_unmarshal

• Context

• Functionality

• Read the request id.

• Read one way status.

• Read/write service contexts.

• Read/write object key.

• Read the marshaled data input stream.

• If it return NULL then the given stream is passed on to unmarshaling.

• Other the returned stream is used.

• Exceptions

• Seereceive_request_begin

• Uses

• Decompression.

-

• Decryption.

• Issues

receive_request_before_unmarshal

• Point

• After receive_request_tranform

• Before arguments unmarshaled.

• Beforereceive_request_after_unmarshal

• Context

• Functionality

• Read/write marshaled data input stream

• Return NULL means use given.

• Otherwise use returned stream.

• Exceptions

• Seereceive_request_begin

• Uses

• Retrieve/remove out of band data

• Transform toRequest via stream to request mechanism (and back) to get
"request level" interceptor.

• Operation name-grained server-side ACL.

• Issues

receive_request_after_unmarshal

• Point

• After receive_request_before_unmarshal

• After arguments unmarshaled

• Before dispatching to servant (POA provides flexibility for finding a ser
vant).

• Beforereceive_request_end

• Context

• Functionality

• Exceptions

• Seereceive_request_begin

• Uses

• Issues

receive_request_end

• Point

• After receive_request_after_unmarshal

• The ORB doesnothing after this point except invoke the servant.

• Context

• Functionality

• Exceptions

de.
• Seereceive_request_begin

• Uses

• Measure server-side processing time of incoming request.

• Issues

send_reply_begin

• Point

• After servant execution complete

• This point is called before the ORB does anything else after servant co

• Beforesend_reply_before_marshal

• Context

• Functionality

• Exceptions

• Seereceive_request_begin

• Uses

• Set timer.

• Issues

send_reply_before_marshal

• Point

• After send_reply_begin

• After ORB-specific service contexts created.

• Before Reply header marshaled.

• Before return value/exception marshaled

• Beforesend_reply_after_marshal

• Context

• Functionality

• Read/write service contexts

• Exceptions

• Seereceive_request_begin

• Uses

• Put information on unknown exceptions in service context.

• Issues

• Notes

• Servant result may be response or exception

send_reply_after_marshal

• Point

• After send_reply_before_marshal

• After Reply header marshaled.

• After return value/exception marshaled

• Beforesend_reply_transform

• Context

ly
• Functionality

• Read/write marshaled data output stream.

• If NULL returned use given stream.

• Otherwise use returned stream.

• Exceptions

• Seereceive_request_begin

• Uses

• Add out-of-band data to marshal stream.

• Issues

send_reply_transform

• Point

• After send_reply_after_marshal

• Beforesend_reply_end

• Context

• Functionality

• Read/write marshaled data output stream.

• Exceptions

• Seereceive_request_begin

• Uses

• Compression

• Encryption

• Issues

send_reply_end

• Point

• After send_reply_transform

• The ORB doesnothing after this point except send the reply

• Context

• Functionality

• Exceptions

• Seereceive_request_begin

• Uses

• Measure server-side processing time of outgoing responses.

• Issues

ServerLocateRequestInterceptor Methods

receive_locate_request

• Point

• Server ORB receives a LocateRequest IIOP message.

• Context

• Functionality

• May return IOR which results in ORB issuing OBJECT_FORWARD rep

ct

s

status with that IOR.

• Exceptions

• Uses

• Useful for apps that perform naming service type operations.

• Issues

send_locate_reply_object_here

• Point

• When a LocateRequest results in ORB determining that the target obje
resides in this server.

• Executed just prior to ORB issuing OBJECT_HERE reply.

• Context

• Functionality

• Exceptions

• Uses

• Issues

send_locate_reply_object_forward

• Point

• When a LocateRequest results in ORB replying with a new IOR.

• Called whenever the ORB or any interceptor (even itself) has caused a
locate request to be forwarded to a new IOR.

• Context

• Functionality

• Given the forwarded IOR.

• Exceptions

• Uses

• Issues

send_locate_reply_unknown_object

• Point

• When a LocateRequest results in ORB determining that target object i
either invalid or does not exist in this server.

• Called just before ORB issues UNKNOWN_OBJECT.

• Context

• Functionality

• Exceptions

• Uses

• Issues

ServerConnectionInterceptor Methods

connection_accepted

• Point

• Server ORB has accepted a new connection.

es

c

 to
may

cook-
• Context

• Functionality

• Exceptions

• Uses

To refuse a client connection

• Change size of TCP/IP buffers

• Gather list of open socket file descriptors

• Issues

connection_limit

• Point

• When connection limit reached, or client exists or dies, or connection tim
out.

• Context

• Functionality

• Exceptions

• Uses

• Issues

<!---->

Invocation Cookies
The notion of interceptor cookie is useful for an interceptor to maintain state on a specifi
request. It is defined only for invocation interception points.

An invocation interception point can create an interceptor cookie object which is specific
the invocation. If created on the client side, any subsequent client side interception point
access/modify/replace the cookie passed to it. Similarly for the server side. Interceptor
ies do not pass between the client and server sides.

To define an interceptor cookie, the application must define a class that derives from:

module PortableInterceptors_1_0 {

exception DuplicateName {};

exception NameNotFound {};

interface InvocationInterceptorCookie {

attribute string name;

void add_self_to_jar(inout InvocationInterceptorCookieJar jar)
 raises (DuplicateName);

void system_exception_raised_before_sending
(

in SystemException exception,
inout InvocationInterceptorCookieJar cookies

);
void system_exception_raised_after_receiving

(
in SystemException exception,
inout InvocationInterceptorCookieJar cookies

);
};

l

ie jar

iption

nd-

nt

he

 the
interface InvocationInterceptorCookieJar {
void remove_cookie(in string name)
 raises (NameNotFound);

};
};

A cookie be created and added to a cookie jar at any invocation interception point. Initia
points are given NULL cookie jars.

It is the programmer's responsibility to delete/destroy cookies. The ORB deletes the cook
(not its contents) after the last point.

System Exception Interception Point

Cookies are also the system exception interception point as detailed below in the descr
of cookie methods.

InvocationInterceptorCookie Methods

add_self_to_jar

• Functionality

• New cookies add themselves to a jar via this method.

• If given a NULL jar it creates a new empty jar.

• Exceptions

• If the jar already contains a cookie of the same name an exception is
thrown.

• Uses

• Issues

system_exception_raised_before_sending

• Point

• Client: If a system exception occurs on the client side before actually se
ing the request.

• Server: If a system exception occurs on the server side after the serva
code completes, before the reply is actually sent.

• Context

• Client: Within the context of the client invoking thread

• Server: ?

• Functionality

• Given the exception.

• If it returns NULL then the given exception is "returned" as the result of t
request.

• If it raises an exception then that exception becomes the "result".

• Exceptions

• There may be more than one cookie per request.

• They are all called.

• If one of them throws an exception then that exception will be given to
"next" cookie.

• Uses

e

e

 the
• This is a "system exception" point.

• To change the exception.

• To clean up cookie state.

• Issues

• Programmer must have control of order of cookie similar to the control
they have of interceptors themselves.

• Notes

• This "point" has per-request granularity (which may be different from th
granularity of other interceptors).

system_exception_raised_after_receiving

• Point

• Client: If a system exception occurs on the client side after receiving th
request, before returning to client code.

• Server: If a system exception occurs on the server side after receiving
request, before executing servant code.

• Context

• Client: Within the context of the client invoking thread

• Server: ??

• Functionality

• Exceptions

• Uses

• Issues

<!----><!---->

IOR Creation, marshaling and unmarshaling

module PortableInterceptors_1_0 {
 interface IORInterceptor : Interceptor {

 AIOR create_ior
 (

...
in Object obj

);
 AIOR marshal_ior
 (

...
in Object obj,
inout InvocationInterceptorCookieJar cookies

);
 AIOR unmarshal_ior
 (

...
in Object obj,
inout InvocationInterceptorCookieJar cookies

);
};

IORInterceptor Methods

create_ior

of

fer-

ma-

n an

,

na-
mul-

,

nd

es-
ary.

of

fer-
• Point

• After the ORB creates an object reference.

• Context

• Functionality

• Convert the IOR to an AIOR.

• Read/write all parts of AIOR.

• If NULL is returned then the given object reference is used for the result
IOR creation.

• Otherwise the returned AIOR is converted by the ORB into an object re
ence and used for the result of IOR creation.

• Exceptions

• Uses

• Monitor the generation of IORs.

• When additional information must be associated with a newly created
object reference. (e.g., implementing security requires associating infor
tion about security policies with the object reference).

• Monitoring object references as they are generated and as they move
around the system may be useful for security.

• May be used to include a security context as a tagged component withi
object reference.

• Replace an IOR of an object with an IOR of an entirely different object
like ORB daemons.

• Augment the object reference with additional profiles that provide alter
tive Internet addresses for the object (e.g., if the object is reachable by
tiple different TCP/IP paths).

• Some systems may require published/exported object references that
"escape" from the system to be the references to a firewall or gateway
rather than the real object.

• Issues

• The IOR passed to the interceptor must be independent of encoding a
transport. To accomplish this we propose an abstractIOR representation.

• In cases where the IOR is propagated through a GIOP LocateReply m
sage, for instance, additional GIOP-specific information may be necess

marshal_ior

• Point

• Before marshaling an object reference.

• Context

• Functionality

• Convert the IOR to an AIOR.

• Read/write all parts of AIOR.

• If NULL is returned then the given object reference is used for the result
IOR creation.

• Otherwise the returned AIOR is converted by the ORB into an object re
ence and used for the result of IOR creation.

vice

of

fer-

n

• Exceptions

• Uses

• Firewall support

• GIOP message compression schemes (e.g. put a dictionary in the ser
context).

• Issues

unmarshal_ior

• Point

• After unmarshaling an object reference.

• Before passing the resulting object reference to its "client."

• Context

• Functionality

• Convert the IOR to an AIOR.

• Read/write all parts of AIOR.

• If NULL is returned then the given object reference is used for the result
IOR creation.

• Otherwise the returned AIOR is converted by the ORB into an object re
ence and used for the result of IOR creation.

• Exceptions

• Uses

• Useful for IOR decompression.

• Needed for symmetry with marshaling.

• Issues

• Is this point executed when an ORB sends a LocateReply containing a
IOR?

<!----><!---->

Connection Management
Limited connection management is provided by:

ClientConnectionInterceptor

ServerConnectionInterceptor

A more extensive model is most likely necessary.

<!----><!---->

Thread Management
...

<!----><!---->

om-

tion

r
 invo-

er is

lities
ORB Lifecycle
...

orb_startup

• Point

• Context

• Functionality

• Exceptions

• Uses

• Issues

• ...

orb_shutdown

• Point

• Context

• Functionality

• Exceptions

• Uses

• Issues

...

<!----><!----><!---->

Registering and chaining interceptors
Interceptors may be dynamically (un)registered at any time. The programmer is given c
plete control over order of invocation for interceptors of the same type.

<!----><!---->

(Un)registering Interceptors
A programmer registers interceptors on both the client and the server side. (Un)registra
methods are provided on an object obtained fromORB.list_initial_services("Inter-
ceptorRegistry")

Interceptors can be (un)registered at any time. There is no protection against intercepto
(un)registration while an invocation is in progress. The programmer must ensure that no
cation is in progress.

It is possible to (un)register interceptors concurrently by several threads. The programm
responsible for synchronization issues.

At this time we do not have a recommendation on the granularity of interceptors. Possibi
are:

object
tor
nce.

point
here-

ne
nter-

ames
o a cli-
twice

 new

then
ers.

e con-
hen
ent.

ercep-
 mar-

we do

Java
• per-process

• per-connection

• per-POA

• per-object

Regardless, once a granularity has been decided, (un)registration will be provided by an
obtained vialist_initial_services . It may be necessary to define and register "intercep
factories," to create interceptors when certain events occur, such as connection accepta

<!----><!---->

Chaining Interceptors
When several interceptors are created, the interceptor methods at a specific interception
(i.e., same method name of the same kind of interceptor object) are called sequentially. T
fore, it is necessary to specify the order in which they will be invoked.

The programmer has control over the order of interceptor application when more than o
interceptor of a given type is registered with the ORB. This is done via lists of registered i
ceptor objects.

The programmer gives each interceptor object a name (string). The scope of interceptor n
is limited to each type interceptor. This enables a programmer to give the same name t
ent interceptor, a server interceptor, etc. An exception is raised if the same name is used
in the same type.

Interceptors names are used to find or unregister registered interceptors and to register
interceptors before or after existing interceptors by name.

Further, a programmer can obtain the list of registered interceptors of a given type and
iterate down this list, unregistering, or adding new interceptors before or after list memb

The list order of each type is the invocation order. Therefore programmers have complet
trol over order. It is the programmer's responsibility to deal with synchronization issues w
(un)registering interceptors or traversing an interception list in a multithreaded environm

<!----><!---->

Client and Server Agreement on Interceptors
Many uses of interceptors require that the client and server roles agree on matching int
tors. For example, if a client interceptor adds out-of-band data before the arguments are
shaled, then a server interceptor must be prepared to remove the data.

This proposal does not specify how client and servers agree on interceptors. However,
provide the following discussion.

There are 3 cases:

• Client-only interceptor.

• Server-only interceptor.

• Client/Server interceptor.

The Client/Server case must consider:

• Interceptor implementations must have globally unique ids (solutions such as used in
and in IDL type ids).

uired

se.

r)

ing
a-

ed in
t have

iate the
• Some mechanism is necessary for finding (and perhaps downloading) the locally req
code (opens up security issues).

• The client and server roles must agree on the interceptors to be used:

• Client tells the server.

• An example here is a client determining what type of authentication to u

• Server tells client.

• Client and Server negotiate.

• Must handle dynamic interceptor (un)registration.

• Would need to have finer-grained (un)registration for shared (i.e., client/serve
interceptors and non-shared (e.g., client-side only) interceptors.

<!----><!----><!---->

Converting between marshal streams and
requests
CORBA 2.2 defines request interceptors which represent requests asCORBA::Request
objects. However:

• DII is too heavyweight

• Not possible in streams-based stubs and skeletons

Forcing the use of DII is not a good idea since some uses of interceptors call for modify
service context information while others call for simple "piggybacking" additional inform
tion on the request.

Rather than invent yet anotherRequest type we specify an API for taking either a marshal
input or output stream and converting it to aRequest or taking aRequest and converting it to
a marshal input or output stream.

This way, those applications which need access to those parts of the request represent
Request can use the conversion routines while those that do not need this access do no
to pay the overhead of creating request-like objects.

...

Issues:

CORBA::Request versusCORBA::ServerRequest .

• Should frequently access Request slots be pass as arguments to interceptors to obv
need to create Request objects to obtain this information?

• If information is duplicated should duplicate locations be kept in sync? By who?

<!----><!----><!---->

Abstract Representations
<!----><!----><!---->

 as

e.

n encod-
fic

tra
ces-
roto-

ides

is: ...
IOR Representation
Manipulating the profile information in the IOR is essential for many ORB services such
security. However,

• The IDL for an IOR is too low level

• Non-GIOP encodings should be able to use interceptors

The original intent for IORs is to be an abstract information model for an object referenc

We propose an interface to the contents of an object reference that does not assume a
ing. This "abstract" IOR (AIOR) type allows modification, insertion and retrieval of speci
parts of an IOR.

...

Service Contexts
GIOP provides a mechanism known as the Service Context that is used to associate ex
information with an invocation. As in the IOR case, a more abstract representation is ne
sary to allow programmer's to easily access service contexts and to enable non-GIOP p
cols.

...

<!----><!---->

Transport
MarshalOutputStream ...

MarshalInputStream ...

Connection ...

<!--><!----><!---->

Interceptor Execution
Although previous sections specify order of interception point execution, this section prov
a focused detailed graphic representation of execution order.

The order of activation of all interception points on a successful synchronous invocation

One way: ...

LocateRequest: ...

Exception situations: ...

... etc.,

<!----><!---->

by

rver

ion

-
the

g-
mbled

tween

 add

 a

pt to

 pat-
n

Concurrency and Interceptors
On multi-threaded platforms, interceptor implementations must be ready to be invoked
several threads at the same time.

...

<!----><!----><!---->

General Open Issues and Notes
• Do we want to provide interception points for all GIOP messages on both client and se

sides?

Uses:

• If users want to encrypt their communication, they probably want this encrypt
for every message, not just for requests and replies.

• It is necessary to support GIOP_Fragment, given that messages may be com
pressed or encrypted, with the compression or encryption algorithm applied to
whole message, rather than to individual fragments. In this case, all of the fra
ments that constitute a message must necessarily be intercepted and reasse
in order for the message to make sense.

• Specify collocated request semantics (i.e., invocations and responses that occur be
collocated objects, that do not necessarily go out over the network through IIOP).

• Interceptor issues with replaceability

• How do we avoid continuously extending the number of interceptor points or can we
an extension framework?

• How does this relate to other OMG specifications?

• security

• transactions

• messaging

• has stream request custom marshaling or particular types

• firewall

• bi-directional GIOP

• How can we utilize Java unique strengths (downloadable code) while still supporting
language independent standard?

• Perhaps this is just done using value types.

• Is the academic work in open implementations (PARC) or MOPs. useful here?

• This proposal views interceptors as a pipes and filters design pattern. It does not attem
support:

• Pipe redirection

• It seems interceptors are best served by a two-way pipes/filters design
tern. Redirecting a two-way pipe requires knowledge of expected retur

te

ed

l

ugh

 the

nce
ew
ly.

y a

on to
use-

rity
lves be

ptor
essen-
per-

rcep-
t the
ct key

r ORB
con-
the
se

ter-
re a

een-
results.

Questions such as:

• Can after-marshal/before-unmarshal interceptors be used to rou
messages without ever reaching the ORB?

• Can they act in a forwarding or echoing role with regard to receiv
messages?

are asked with respect to interceptors. At this time we think the genera
answer to both is no as explained next.

When making a request, the invocation thread in the ORB passes thro
various layers, finally transmitting the data output stream then blocking
waiting for the reply. When the reply comes it packages the data input
stream into some ORB specific data structure and passes that back up
thread as the reply.

To redirect the pipe (e.g., plug in a new protocol) the invocation seque
would need to define these outgoing and incoming structures so the n
direction (e.g., alternate protocol) could package the reply appropriate

It seems redirection (e.g., pluggable protocols) would best be served b
separate RFP.

Replaying has the same considerations.

• Restarts (e.g., Returning magic values or exceptions which cause the invocati
start again, while perhaps simultaneously continuing the current invocation -
ful for "repeaters"). The COOL ORB had limited support for restarts.

• Is it possible to have an interceptor that generates additional messages, as the secu
interceptors do for their authentication handshakes ? Could these messages themse
intercepted by other interceptors, such as a logging or a traffic analysis interceptor.

• Can interceptors be coupled, ie, can an inbound interceptor and an outbound interce
"co-operate" to achieve a certain effect? Or are inbound and outbound interceptors
tially decoupled? An example of where this would be useful is a security interceptor
forming an authentication handshake.

• Can a message-level interceptor be coupled with an IOR interceptor? If the IOR inte
tor had replaced the object key earlier, but "remembered" the original object key tha
object issued, then, the message-level interceptor needs to replace the replaced obje
with the original object key.

• Will this support heartbeat messages exchanged between a client ORB and a serve
(without the client's or the server's knowledge)? This can be used to ascertain if the
nection is "alive". May be necessary for those applications that are dissatisfied with
variability of the TCP timeout when waiting for a server to complete a request, or tho
that want to make the TCP timeout context-dependent.

• Are "per-thread" interceptors useful?

• Are various threading models compatible with the interceptor model (e.g., can the in
ceptor model deal with the thread-per-request concurrency model, for instance, whe
thread should only be able to access the interceptor related to its request alone).

• It may be problematic to allowServerConnectionInterceptor methods to be invocable
by multiple threads at the same time since a connection may be waiting to time out. R
trant code may be necessary.

<!----><!----><!---->

the far
e
that it

addi-

gging
e store

ng -- a
com-
r must
edos

ses,

es-
Examples
...

<!----><!---->

Transactions
...

<!----><!---->

Security
<!---->

Authentication
Additional outbound messages might be generated by a security interceptor to authenticate
end of a connection. At the far end, the security interceptor would be invoked to examine th
incoming authentication message. The interceptor would suppress the incoming message so
would not reach the application object. Instead, the security interceptor might generate an
tional outgoing message as a security handshake response.

<!---->

Access Control
...

<!----><!---->

Logging
Log events at interception points.

The store-and-forward mechanism of the Messaging Service could be implemented by a lo
mechanism that can record messages into the store (log), and that can replay them out of th
(log).

The Object Transaction Service currently uses, but does not describe, mechanisms for loggi
serious drawback for commercial systems that may want to use OTS, in contrast to typical
mercial transaction services. Without a log of invocations and responses, a recovering serve
depend on the clients to reinvoke their transactions. With a log, the server can initiate the r
itself.

The forthcoming fault tolerance service for CORBA will need to log invocations and respon
and to replay such invocations and responses out of the log during recovery.

The most tricky part of the logging interceptor is the replaying, rather than the logging, of m

eplay-
ht, and
play

ener-
up-

itional
object.
sages. The existing DII provides heavyweight mechanisms that could be exploited for the r
ing of messages as requests and replies. However, precisely because the DII is heavyweig
also because logging needs to occur much lower in the ORB, acceptance of the DII as a re
mechanism will not be popular.

When replaying an invocation or response from the log. The recovering object might itself g
ate invocations of other objects. Those invocations would be matched against the log and s
pressed. The appropriate response, extracted from the log, would be generated as an add
inbound message, along with additional inbound messages representing invocations of this

<!----><!----><!----><!---->

	Portable Interceptors
	Contacts
	Contents
	Introduction
	Typical Interceptor Usage
	All Objects Locality Constrained

	Interception Points
	Interceptor Base Class
	Invocation Interception Points
	Client Side Invocation Interception Points
	ClientInvocationInterceptor Methods
	ClientLocateRequestInterceptor Methods
	ClientConnectionInterceptor Methods

	Server Side Invocation Interception Points
	ServerInvocationInterceptor Methods
	ServerLocateRequestInterceptor Methods
	ServerConnectionInterceptor Methods

	Invocation Cookies
	System Exception Interception Point
	InvocationInterceptorCookie Methods

	IOR Creation, marshaling and unmarshaling
	IORInterceptor Methods

	Connection Management
	Thread Management
	ORB Lifecycle

	Registering and chaining interceptors
	(Un)registering Interceptors
	Chaining Interceptors
	Client and Server Agreement on Interceptors

	Converting between marshal streams and requests
	Abstract Representations
	IOR Representation
	Service Contexts
	Transport

	Interceptor Execution
	Concurrency and Interceptors

	General Open Issues and Notes
	Examples
	Transactions
	Security
	Authentication
	Access Control

	Logging

