
Application
Integration

Management Guide
Strategies and Technologies
Published May 1999, United Kingdom

No Fee to IT and Business Management

Butler Group Management Guides

Management Guides provide an in-depth analysis of the business issues and technologies
relevant to a particular topic. Butler Group Analysts write a comprehensive overview of
the topic being addressed and prominent suppliers are invited to submit their own editorial,
including diagrams.

Each supplier has provided its own text for inclusion in this guide, for which Butler Group
holds no responsibility for its technical accuracy. For further details, contact Butler Group
on +44 (0)1482 586149.

Previous Management Guide titles include:

• Component-Based Development

• Electronic Commerce

• Java Technologies in the Enterprise

• Business Intelligence

• Enterprise Support Management

• Data Webs

• Business on the Web

• A Business Model for Client/Server

• The Business Case for Data Warehousing

• Application Technologies for the Adaptive Enterprise

• Intranet Technologies

• Workflow

• Managing Client/Server Development

• Executive Information Systems

All previously published Management Guides have a dedicated page on Butler Group’s
Web Site under ‘Publications’ at:

www.butlergroup.com

ISSN 1356-9384

Researched by:
Lawrence Wilkes

Contents

Butler Group 5
Introduction 7
The Challenge of Application Integration 8
What is Application Integration? 15
Application Integration Architectures 20
Layered Application Architecture 26
Integrationware 28
The Integrationware Market 30
Market Directions – The Future For Application Integration 35

Butler Group CBDi Forum
Butler Group’s Forum for

Component-Based Development and Integration

The Component-Based Development and Integration (CBDi) Forum has established
a world-leading position in the area of advanced application delivery. This has been achieved
with a small, expert analytical team working with CBDi Forum members
worldwide, who contribute their experiences in using advanced application delivery practices.

The CBDi Forum organises regular meetings in Europe and the USA, and provides
a continuous information service on advanced application architectures and practices,
including: Application Integration; component-based applications; component modelling and
development; assembly and workflow; and componentware.

The CBDi Forum focuses on management level information. Members are, typically, middle
to senior IT managers responsible for application and/or infrastructure strategy. Members have
compared the CBDi Forum to an independent user group.

Butler Group provides unique information dissemination and analytical services through the
CBDi Forum on the application market, the products and services. In addition to conventional
industry analysis with input from vendors and customers, the CBDi Forum provides access to
real-world experience that other industry analysts cannot. With its tight focus on component-
based applications and Application Integration, the CBDi Forum is ideally placed to advise IT
management on critical application strategies.

Analytical Services:

The monthly INTERACT Journal synthesises the results of CBDi Forum meetings and
member feedback as patterns, together with market and product analysis. Proceedings,
analysis and presentations are also available from CBDi Forum meetings, with permanent
access via the Internet to all CBDi Forum materials in electronic form.

Forum Events:

Forum meetings are attended by members and non members providing the opportunity
to create a dialog and network with managers implementing advanced application
architectures. Leading vendors also exhibit at the meetings and provide the opportunity to
keep up to date.

www.butlerforums.com/cbdindex.htm

For more information contact Phil Storrow
CBDi Forum Business Development Manager:

Tel: +44 (0)1244 570955
E-mail: phil.storrow@butlergroup.co.uk

Butler Group

Application Integration

 Butler Direct Limited, May 1999 Page 7

Introduction
This Management Guide focuses on Application Integration, which Butler Group
defines as the requirement to integrate into new business processes the functional
behaviour, or business rules of disparate systems, or components of them, as well as,
but not just, the data that underlies them.

Some developers are puzzled by this sudden focus on Application Integration.
They argue that they have not delivered many new ‘green field’ applications for many
years and that integration with existing sources of information has been a common
feature for some time.

There is no denying this. Like many things, Application Integration is part of the
natural evolution of application delivery that includes improved software
componentisation and the increasing acquisition of packaged software. However, the
focus in the past has been more on integration of in-house developed applications and
components, which is easier when all of their source code is available and controlled
within the project or same Information System (IS) department, and can be changed to
enable integration. Integration was then just seen as part of the application
development process.

Now, Butler Group observes that Application Integration is effectively becoming a
discipline in its own right, due to the following trends:

• Greater need for real-time integrity and process integration, not just data exchange
and replication.

• New integrated business processes are not only crossing organisational boundaries
within a company, but flow between many companies too.

• Constant introduction of new business processes, requiring re-integration of the
same core business logic into new applications

• The increasing need to integrate new application workflows with externally
developed black-box software, of which implementations are hidden from the
developer that can only use their existing interfaces.

• The need to integrate one package with another, where both are black-boxes and
the only development task is integration.

• It has become more complex technically. There are more technologies involved,
and these are increasingly more complex to use.

• Reduced business change cycle times. Developers cannot respond quickly enough
to integration needs by developing all the integration software in-house.

• The productisation of integrationware. The timely arrival of off-the-shelf solutions
to common integration scenarios, and the possibility to automate integration tasks.

Thriving on Chaos!
Looking at today’s business and technology scenarios, one cannot help being
reminded of the following quotes from Tom Peter’s book, ‘Thriving on Chaos,
Handbook for a Management Revolution’ [Thriving on Chaos, Handbook for a
Management Revolution by Tom Peters, Macmillian London Limited 1987] written
back in 1987 which, 12 years later, is clearly ringing true:

Application Integration
is part of the natural
evolution of
application delivery
that includes improved
software
componentisation and
the increasing
acquisition of
packaged software.

Application Integration

Page 8  Butler Direct Limited, May 1999

“Nothing is predictable”

“We don’t know who our competitors will be, or where they will come
from”

“We don’t know whether merging or de-merging makes more sense, and
we have no idea who will be partners with whom tomorrow or next
week, let alone next month”

“No firm can take anything for granted … . this is the average scenario
for banking, healthcare, public utility, soup maker and computer maker”

Though terms like ‘E-Business’, ‘Disintermediation’ or ‘Supply Chain Optimisation’
might be the fashionable buzzwords today, it really is responding to chaos that Butler
Group sees as a key driver for Application Integration. With no time to build new
applications from scratch, and no one package providing an ideal or complete match
to requirements, then the only timely response seems to be to integrate whatever
organisations already have, or can quickly acquire or build.

Yet, organisations need to be cautious in how they respond to this situation.
Unplanned, ad hoc integration will only add to the chaos. Tight integration between
today’s physical implementations of the monolithic sales order processing system and
the monolithic logistics system, might solve an immediate business need, but could
create a much larger monolith in the form of a sales order and logistics processing
system, that is now even more inflexible to change.

Butler Group believes that Application Integration is a permanent state that requires
architectural foundations, which enable continuous, efficient and rapid reaction to
seemingly random events. The purpose of this Management Guide is to provide a
short, but comprehensive introduction to this critical subject, and to provide
frameworks for managers to communicate the critical issues that must be addressed to
establish a reactive environment.

The Challenge of Application Integration
Though the need for data consolidation and synchronisation has been apparent for
some time, and fuelled the growth in technologies like Data Warehousing, the need to
just replicate or query and analyse data is giving way to a requirement for real-time
availability and, more importantly, integrity of data. For example, stock levels
available to e-commerce sales systems need to be precise at the moment a customer
decides to place an order, and competitive advantage will go to those organisations
who can process that order instantaneously, rather than wait for overnight replication
of data. Supply Chain Optimisation and Call Centres are two examples of business
activities that need to bring together and process information in real-time to be most
effective.

What Butler Group observes as the current drivers for integration are illustrated in
Table 1, which, though the priority will vary by industry, Butler Group expect most
readers will recognise. Of course, there is no reason why many of these business
drivers could be equally supported by the delivery of wholly new systems. However,
the importance of time-to-market and resultant competitive advantage, as well as
competitive response, means that organisations do not have the luxury of being able to
simply replace systems to meet these new requirements. Even if they could, the trend
of mergers and acquisitions shows no sign of abating, forcing the continual need to
bring different organisations information systems together. In addition, the
outsourcing of parts of the business process to specialist organisations continues, but
now, because of the real-time information needs, it requires the information systems of
the service provider to be tightly integrated as well.

Organisations need to
be cautious in how
they respond to this
situation. Unplanned,
ad hoc integration will
only add to the chaos.

Application Integration

 Butler Direct Limited, May 1999 Page 9

For some of these business drivers, integration is, in fact, a key part of the solution.
By their very nature, virtual organisations and supply chains require that each
participant integrates their information services with the others, as they all become
part of an extended network. The term ‘disintermediation’ is used to describe the
removal of middlemen from the supply chain, often claimed as a key benefit of
e-commerce. In reality it is more a process of re-intermediation, as one set of
middlemen are swapped for another, for example, removing retail stores as a sales
outlet only to have to put a home delivery service in place to get goods to the
customers. Butler Group believes that the need to constantly re-evaluate the
effectiveness of the supply chain will bring a constant need for re-integration of
applications.

As such, the requirement to integrate applications and processes, as well as data, has
become the new high-priority for many organisations. Unfortunately, few, if any, of
the parts of the jigsaw will have been designed or built with future integration
requirements in mind. Only recently, have some package vendors begun to deliver
interfaces to their applications to facilitate integration, or operating system and
middleware solutions become more interoperable. Even so, they often still require the
adoption of an architecture, (with them, of course, at the centre) which is incompatible
with the architecture of other major parts that an organisation needs to integrate.

It is the lack of common business and technical architectures that makes integration
complex. It is not just the differences in data formats or interfaces, but the lack of
common definition of the business concepts that underlies the different sources to be
integrated. Mapping a 6-digit ASCII number to a 10-digit EBCDIC field is perhaps
straightforward. However, mapping, for example, customer data that contains the
concept of multiple locations in one source, into another that does not, is clearly more
complex, and having to update sales order data simultaneously into several sources
that have incompatible semantic definitions of what exactly a sales order is, steadily
becomes a nightmare. Yet, this is not an untypical situation.

IS departments, therefore, struggle to bring incompatible resources in the form of
packages, platforms, and legacy systems together. This is compounded by the shortage
of appropriate skills, not only for the existing applications, but also for the new Web
and distributed computing technologies that new applications must be delivered in. It
also has to balance the immediate time-to-market needs of the business with a long-
term solution that avoids this scenario being repeated over and over again.

Unfortunately, few, if
any, of the parts of the
jigsaw will have been
designed or built with
future integration
requirements in mind.

Business Drivers Technology and IS Challenges
Supply Chain Optimisation.

E-Commerce and Web Storefronts.
Customer Relationship Management.

Call Centres and Customer Care.

Mass Customisation.
One-to-One Marketing.

Business Process Improvement and
reduced business change cycle-time.

Acquisitions and Mergers.

Real-time access to information and
integrity of data.

Disintermediation and
re-intermediation.

The Virtual Organisation and outsourcing
of services.

Customer and Employee Self-Service.

Need to balance tactical and long-term
solutions.

Skills and resources shortages.

Incompatible business semantics.

Complex Technology with heterogeneous
platforms, -tier distributed computing
and the Web.

n

Lack of interfaces.

Lack of single standards for technology or
business semantics.

Need to include new function. Areas of
competitive advantage not available in
packages yet.

Need to integrate legacy. Too costly to
replace and no time to rebuild.

Packages are not a complete solution and
inflexible to change.

Table 1. Business, Technology and IS Challenges

Application Integration

Page 10  Butler Direct Limited, May 1999

Application and Integration Evolution

Butler Group believes that many of the requirements for integration can be summed
up in Figure 1. In the Stovepipe and Tunnel era’s, whilst integration within
applications might have been tight, integration between applications was much looser
and, consequently, the real-time integrity of data was often weak. In the new
millennium, applications will become much more like amorphous blobs that are much
more difficult to manage, as many of their parts might be beyond your control and in
the hands of your suppliers, partners and customers, so integration through interfaces
is the only way to bring an application together. Yet, at the same time, the demand for
real-time integrity is stronger. It is these factors that are focusing the attention on
integration.

Enabling New Business Processes
A common view of the integration requirements for new business processes is shown
in Figure 2. There is a requirement for both new front-end process that face the
customer, and for back-end processes that integrate partners and suppliers, either of
which can flow across (intra) or between (inter) organisations.

Common Integration Challenges
This scenario, in Figure 2, highlights some of the following common challenges in
Application Integration.

Stovepipes
1980s and earlier

Tunnels
1980s-90s

Blobs
New Millennium

Third-Party
Service
Providers

Extranet
Internet

C
ustom

ers

Application Evolution

Integration Evolution

l Organisation Focus

l Paper Passing

l Mainframe Centric

l File Transfers

l Monolithic

l Re-Keying

l Internal Use

l Low Integrity

l Business Process Focus

l EDI

l Client/Server

l Messaging

l Monolithic

l Data Warehousing

l Loosely Coupled

l Integration 'On The Glass'

l Virtual Organisations

l Process Integration

l Distributed

l Real-Time

l Componentised

l Tightly Coupled

l E-Commerce Direct to
 Customers

l High-Integrity

l Internet

Figure 1. Application and Integration Evolution

Application Integration

 Butler Direct Limited, May 1999 Page 11

Consolidation of Multiple Sources
Organisations frequently have multiple systems implementing a similar business
concept. For example, few organisations have a single system or shared component in
which customer information is held. A frequent integration task is to consolidate these
sources into a single view. Whilst it might seem sensible to replace them with a single
shared component, the effort to do so can be considerable, especially in the case of
legacy or packaged software. Even if it were accomplished, the merger and acquisition
trend would probably see yet more sources of the same information arriving shortly
after! As a result, enabling the integration of multiple sources can be more attractive
than trying to replace them with a single source.

Assembly from Disparate Sources
Organisations rarely have a single approach to implementing systems. Sources to be
integrated are usually developed and executed in different technologies, with some
having been built in-house, whilst others acquired. Developers, that are implementing
new applications, face a bewildering array of programming languages, interfaces,
protocols, and technologies that must be integrated. Butler Group can categorise these
sources as:

• Common Business Infrastructure or Back-Office Packages – Acquired
packages that automate the common business infrastructure, for example,
Enterprise Resource Planning (ERP), Human Resources and Financial Accounting
systems that are core to most organisations. (For example, SAP R/3, Baan, JD
Edwards, and Oracle Financials, etc.)

• Front-Office Packages – Acquired packages that are used to implement front-end
business processes, for example, Customer Relationship Management (CRM),
sales order processing, and sales force automation, increasingly with an
e-commerce requirement (for example, Siebel, Vantive, and Clarify).

• Legacy Applications – The portfolio of existing applications built in-house.

• New Build – New applications or components built in-house.

• Third-Party Services – Information sources or processes that are held and/or
performed by third-parties, for example, credit authorisation. Increasingly, this will
also include straightforward core business processes, such as a third-party ERP or
sales order process, that form part of your virtual enterprise supply chain.

Real-Time Integration
As stated, Butler Group sees increasing requirement to deliver Real-Time Integration
(RTI). Moving data between applications using file transfers or replication is
inappropriate to ensuring that data is accurate in real-time across all systems, which
businesses will require.

Developers, that are
implementing new
applications, face a
bewildering array of
programming
languages, interfaces,
protocols, and
technologies that must
be integrated.

Figure 2. Enabling New Business Process

External Services
(Third-Parties Systems)

Packaged
Application

E-Business

Supply Chain Management

Re-Intermediation

Inter - Intra
Company

Disintermediation

Customer Relationship Management

E-Commerce

New
Build

Legacy
Applications

Application Integration

Page 12  Butler Direct Limited, May 1999

Constant Re-Integration
Integration is seldom a one-time effort. Unfortunately, many organisations treat it as
such. Applications to support new business processes typically require the same core
set of systems to be accessed and integrated. For example, a new branch-office
system, a mobile sales automation, an e-commerce store front, and a telesales
operation will all require access to the same customer, logistics and finance
information. Yet frequently, the integration effort that serves the first of these new
business processes is often not reusable by the subsequent, for example, embedding
integration rules into a client layer that is inapplicable to other workflows.

Legacy Icebergs
Often, only part of the functionality of an existing system needs to be included in a
new application. Unfortunately, the dependencies this has with other parts of the
existing system and other systems means it is not easy to extract and reuse, and must,
therefore, be left in situ. This is the iceberg scenario, where the area of interest
appears small and might be easy to replace with a new component that is more
straightforward to integrate but, in fact, cannot be replaced without rebuilding all
those dependencies.

Fixed and Rigid Structures
Applications requiring integration usually have fixed structures for their interfaces,
messages or databases. This rigid structure has to be known to the application that
wants to integrate with them, and any changes to the structure requires change to the
application that are integrated with them.

Integration is a Multi-Step Process
New integration requirements are rarely as simple as a wire between applications ‘A’
and ‘B’ that enables one to send data to the other. RTI requirements of new business
processes give rise to complex, multi-step negotiations between multiple applications
before a process can complete and ensure that all the data is correct. Integration and
the new business process appear entwined, and some vendors sell integrationware
specific to this point. However, organisations need to be cautious that they are not
bound together so tightly that the process, the sources being integrated, or the
integration technologies, cannot change independently, giving rise to an even bigger
monolith.

Integration is Application Development
Despite claims by some vendors that Application Integration can be achieved in some
automated declarative way, simply plugging-in off-the-shelf connections between
off-the-shelf applications, Butler Group observes that significant amounts of manual
effort is still required in many cases. Whilst some of the drudgery of transformation
might be automated, and there are clearly some common packages to package
connections repeated across many organisations and, hence, worthy of productising,
there will be high-instances of integrating legacy applications, and expressing complex
rules that require what is essentially application development. Application Integration
is not an alternative to application development but, as we have expressed, is
significant enough to become a specialised discipline of it, in the same way we have
database administrators, SAP specialists, or corporate architects, etc.

Lack of Common Architectures and Standards
The root cause of the problems that arise in Application Integration is the lack of
common architectures. Whilst it is usual to apply a single architecture and set of
standards to an application, it is less common to find different applications conforming
to the same set, even within the same company.

Integration is seldom a
one-time effort.
Unfortunately, many
organisations treat it
as such.

Application Integration

 Butler Direct Limited, May 1999 Page 13

This, in part, just reflects the natural evolution of architectures, standards, and
technologies and that no one is likely to go back and reapply them to applications
already delivered. Also, each acquired application has a different set and is even less
likely to be compatible with in-house applications. The consequence is that, in most
situations, it is not that there are no architectures or standards, rather that there are
multiple occurrences of them.

It is important to recognise that architectures and standards apply at many levels, as
illustrated in Figure 3. It is unfortunate that perceptions of integration often seem to
revolve just around the technology layer. In reality, aligning business architectures and
their implementation in applications is much more complex, and is where most of the
effort in Application Integration will be spent. Insisting all applications have
Microsoft COM interfaces or use IBM’s MQSeries might remove the technology
barriers to Application Integration, but as a simple example, do nothing on their own
to reconcile the fact that one application considers location information as an attribute
of customer, whereas another maintains it as a separate entity. Application Integration
requires communication at all of these levels.

Integration Complexity
Attention to each of the architectural layers, combined with the focus on real-time
integration, reveals Application Integration to be more complex than first thought, and
a reason why organisations need to concentrate on it, in its own right, more so than
they did in the past. The following shortlist highlights some of the considerations that
must be made in integration tasks, which are also discussed in the next section:

• What are the differences in interfaces, protocols?

• Are there differences in the platform technologies used?

• How are messages and data formatted? Are the data structures similar?

• What event triggers the action, when and how is it invoked?

• How are messages delivered? What guarantees of delivery are required?

• Is real-time transaction integrity required? Is two-phase commit needed?

• Is object behaviour required? Do all the sources need to be wrapped as objects?

• Is it to be Web-enabled?

• Are there business rules governing the integration? Is the integration a multi-step
process?

• Are the business concepts the same?

It is unfortunate that
perceptions of
integration often seem
to revolve just around
the technology layer.

Business Architecture

Application Architecture

Technology Architecture

Figure 3. Architecture Layers

Common understanding of the business
 Business Objects
 Business Services
 Business Processes

Agreement on application design
 Workflows
 Interfaces
 Data structures

Common technology infrastructure
 Transaction management
 Messaging
 Naming, location, etc.
 Object model
 ORB

Application Integration

Page 14  Butler Direct Limited, May 1999

Integrationware – Converging Market
As a consequence of all the above, vendors have been quick to identify an opportunity
to introduce a new category of software that Butler Group label ‘integrationware’.
Some promise to simplify the Application Integration process to the extent that it is
almost automatic, or require as little development effort to implement as the off-the-
shelf application packages that they can integrate. The following list highlights the
diversity of products that vendors are attaching the ‘integration’ label to:

• Enterprise Application Integration (EAI).

• Application Servers.

• Development Tools.

• Wrapping Tools.

• Workflow.

• Middleware and Messaging Products.

• Packaged Applications.

• Database Gateways.

With so many vendors offering integrationware, there is a bewildering choice.
Some are appropriate for tactical point-to-point solutions, whilst at the other end of
the spectrum, others may provide a long-term architecture for continual integration
needs. Some are general purpose, whilst others are specific to a particular integration
scenario. This is examined in more detail in the ‘integrationware Market’ section of
this document.

What’s the Problem with Application Integration?
Whilst Application Integration may solve the immediate requirement, Butler Group is
concerned that simply layering more spaghetti on the spaghetti will render subsequent
integration tasks (which will occur) more complex, and make the legacy problem even
more acute. Areas for concern with Application Integration include the following:

• Integration might solve immediate problem, but what about the next generation of
requirements?

• Additional layers of integrationware might impair performance, particularly where
interpretation has to be done in real-time.

• You need to balance tactical versus strategic approaches.

• There is a confusion of styles, tools, approaches, and technologies for Application
Integration. It is not always obvious which one is right, and clearly there is no ‘one
size fits all’.

• It should be recognised that it can be more complex to develop and implement the
integration than the parts it connects.

• Testing applications and locating the source of faults in the system will be more
complex.

It’s an Issue That Won’t Go Away
Even so, Butler Group does not see Application Integration as a short-term trend.
Whilst it might seem to be the most expedient way to meet an immediate business
need, Butler Group does not see it as some disposable activity that is left behind once
some new applications with a better business fit are delivered to support the original
need.

Whilst Application
Integration may solve
the immediate
requirement, Butler
Group are concerned
that simply layering
more spaghetti on the
spaghetti will render
subsequent
integration tasks
(which will occur)
more complex.

Application Integration

 Butler Direct Limited, May 1999 Page 15

Firstly, history teaches us that these applications frequently do not get delivered, and
the legacy systems need to be maintained (in this new scenario re-integrated time and
again) far beyond their original life expectancy. However, more importantly, Butler
Group believes that, even if new applications were delivered, within a short space of
time their business fit would no longer be perfect, requiring yet another cycle of
integration to support new requirements, and so the cycle continues.

Butler Group does not believe this should be seen as a problem, rather that through
better componentisation of applications, and improved integration layers, it is actually
desirable to be able to constantly re-assemble applications in response to changing
needs. Butler Group expects larger enterprises will establish architectures and
infrastructures that make rapid integration business as usual.

Increasing The Scope of Application Integration
Given this, Butler Group believes that it is important for organisations to take a
broader view of Application Integration than their immediate needs might dictate, by
considering some of the following:

• Do not just have an internal focus, and consider how integration with external
systems might be rapidly achieved if required.

• How easily could a business process be re-integrated if an outsourced service
provider replaced one of the internal information sources tomorrow? Would it
need re-integration at all?

• Are there standards that could be applied at each of the architecture layers
providing compatibility with others in your industry to facilitate integration, for
example, in virtual supply chains?

• Could a new business process or workflow be added that reused existing
components and systems integrated into an existing application without having to
redevelop all the integration software?

• Is provision being made to enable more sources of the same type of information to
be easily integrated as a result of mergers and acquisitions?

• Are sources of information that need to be integrated being encapsulated behind
interfaces so that their physical implementation can change without requiring
re-integration?

What is Application Integration?
Butler Group defines Application Integration as the requirement to integrate into new
business processes the functional behaviour or business rules of disparate systems or
components of them as well as, but not just, the data that underlies them. Application
Integration involves:

• The transportation and transformation of information between one or more
applications.

• The timing and sequencing rules that govern when the transportation and
transformation takes place.

• The integrity constraints that determine the success or failure of the integration.

Even with this definition, it is clear that Application Integration can be viewed as a
broad topic. Users have diverse integration needs that are illustrated in Figure 4. All of
these scenarios exist in most organisations. The data integration and synchronisation
scenarios are well established in most organisations, but are typically post processes,
attempting to ensure the integrity of data after an event has happened, as in common
overnight replications of data from one system to another.

Application Integration

Page 16  Butler Direct Limited, May 1999

However, as illustrated earlier in Figure 1, integration requirements are evolving and
Butler Group now sees a greater requirement now for those on the left of Figure 4.
A key difference is that the functional behaviour of the systems is required to be
integrated, not just the data. In addition, new business processes demand that this must
take place in real-time. A further difference is that the integration is two-way, with
information being created and updated on both sides of the integration, not just read.

Integration Mechanisms
To support these scenarios, a variety of mechanisms are available to enable integration
(as illustrated in Figure 5) which Butler Group can separate into the following three
categories:

Call Interface
Applications provide a callable interface, usually referred to as an Application
Programmable Interface (API). This does not have to make use of object technologies,
such as COM and CORBA, though increasingly they will be, as they provide wider
levels of interoperability than more proprietary interface standards. Examples include:

• Object interfaces such as COM, CORBA, or JavaBeans.

• Transaction processing interfaces such as IBM Customer Information Control
System (CICS), or BEA Tuxedo.

• Packaged application interfaces such as SAPs BAPI (Business API), which,
themselves, can made available in object interfaces such as COM.

Figure 4. Integration Scenarios

Process Integration

Information Consolidation

Data Integration

Data Synchronisation

l Real-Time Integrity

E.g. Assorted Systems Where Customer Information is Kept

E.g. "Which Customers
Who Buy X Also Buy Y?"

E.g. Get Customer Details
E.g. Update Customer

l Single View of Data

l Analysis of Data

l Replication

l Workflow l Data Warehousing

l Consistency of Data

l Transactions l Data Mining

l Messaging

l Messaging

Figure 5. Integration Mechanisms

Call B

1. Call new components via
API's that encapsulate data.

2. Call wrapped legacy via
API's.

3. Send and receive messages
to other systems.

4. Read and write data that
is also shared with other
applications

Put Q Get Q
Get Q Put Q

App A

App A

App A

New Systems Will Have
to do Them All

Replication

Extract Load

SQL, ODBC

App B

App B

App B

Function

Messaging

Data
Transfer

CallsProcess

File

Data Data

Application Integration

 Butler Direct Limited, May 1999 Page 17

Advantages

• Need to ensure the real-time integrity
of transactions and data.

• Encapsulating the implementation
behind a common interface.

• Need to invoke business logic, not
just retrieve data.

• Building new components.

• Providing wrappers around existing
systems, which can often be achieved
without changing the source of the
system.

Disadvantages

• Might be complex to program, and
new technologies require the use of
object approaches.

• There are many different
technologies, though reducing this
factor is one of the major attractions
of integrationware.

• Synchronous behaviour requires the
applications and the connection
between them to be up and running.

Messaging
Applications are integrated by send and receive messages, usually via some queuing
mechanism. Examples are:

• Message queuing products, such as IBM MQSeries or Microsoft MSMQ, or
message queuing interfaces to subsystems, such as IBM CICS transient data
queues.

• Application package messaging, such as SAP’s Application Linking and
Embedding (ALE).

• Mail systems and groupware products, such as Microsoft Exchange or Lotus
Notes.

Advantages

• Enables asynchronous, loose coupling
of distributed applications.

• Implementing integration between
organisations, where availability of
applications cannot be guaranteed.

• Can be used for a ‘Publish and
Subscribe’ approach, where the
sending application requires no
knowledge of what applications
subscribe to its messages.

Disadvantages

• Requires applications to use the
messaging interface, and know
when/how to read and write the
queues which, therefore, requires the
code of legacy applications to be
changed.

• Can require extra effort to add
synchronous, real-time behaviour on
top of messaging systems.

Data Access/File Transfer
Applications are integrated by direct access to their databases, or via file transfers.
Examples include:

• File Transfers and batch loads.

• Direct read and write databases using database calls and database gateways, such
as ODBC or Information Builders EDA/SQL.

• Replication provided by database management systems.

Application Integration

Page 18  Butler Direct Limited, May 1999

Advantages

• Useful when there are large volumes
of data to move.

• Supports off-line analysis and
reporting on large volumes of data.

• Can be straightforward and easy to
implement.

• Does not require the existing
application being integrated to be
changed.

Disadvantages

• Low integrity, as replicated data is
out-of-date.

• Low integrity, if business rules and
validation of existing application are
bypassed.

• Does not encapsulate physical
implementation, and new applications
are affected by change to the ones
integrated.

• Does not integrate business rules of
the existing application.

• Data may require interpretation to be
turned into information.

Whilst these are three distinct mechanisms, typical integration projects to support new
business processes will frequently use a mixture of them all (as also illustrated in
Figure 5) as this is governed by:

• The availability and suitability of the interfaces offered by the existing applications
being integrated.

• Each integration connection in the new business system might require a different
behaviour, for example, some synchronous, others asynchronous.

Conversion and Transformation
One of the key challenges of Application Integration is provide connections between
incompatible instances of the above mechanisms. Additionally, there is often a need to
mix these mechanisms, particularly in the case of integrating black-box packages and
components or legacy systems, where neither end of the connection can be readily
changed to suit the other. Typical conversion tasks occur due to incompatible:

• Interface Technologies – For example, conversion of IBM CICS to Microsoft
COM, or COM to CORBA bridges.

• Transport Technologies – Incompatible messaging products and network
protocols.

• Data Types and Structures – Conversion of data-types is a common activity.
More complex is the formatting and restructuring of incompatible data structures
in interfaces or databases.

• Integration Mechanisms – For example, application ‘A’ might output messages
to a queue, but application ‘B’ is only accessible via an API.

Integration is a Business Process
As mentioned in the new business scenarios, Application Integration is rarely a single
step. For example, fully integrating a new e-commerce sales system may require
access to customer, product, logistics and finance systems, all in real-time.

The workflow of a new business process provides the context for integration.
Each stage of the process might, itself, involve several steps of integration crossing
disparate sources of information in order to complete, as illustrated in Figure 6.

Application Integration

 Butler Direct Limited, May 1999 Page 19

As such, integration is not just a simple transfer of data, but also contains rules that
govern the sequencing and ensure the integrity of the transaction. Each step may have
to complete before the next can commence. However, it is not obvious where these
rules should be coded. Are they part of the new application, part of the existing
applications, or should they be in a separate integration layer?

Avoiding the Perpetuation of Legacy Systems

The danger in delivering new systems that access existing ones, is that organisations
are perpetually building legacy systems. Conventionally, they might access each of the
parts of the legacy system directly, as illustrated in Figure 7. The problems with this
are obvious and are further complicated when the integration code, such as protocol
conversion and message formatting, etc., is embedded within the new application:

• Changes to, or replacement of, the legacy systems have a direct impact on the new
application, causing double maintenance effort.

• Technical skills and domain knowledge relevant to the legacy systems are required
to build the new system.

• No value is added to the legacy systems. Anyone wanting to build another new
application has to repeat the integration exercise.

Integration is not just
a simple transfer of
data, but also contains
rules that govern the
sequencing and
ensure the integrity of
the transaction.

The danger in
delivering new
systems that access
existing ones, is that
organisations are
perpetually building
legacy systems.

Newly Built
Functionality

Acquired
Packages

External
Third-Party
Systems

Legacy
Systems

Business Process Workflow Provides Context for Integration

6

7 9

8
5 4

2 3

1

Figure 6. Integration is a Process

Figure 7. The Perpetuation of Legacy Systems

Read

New Application to Support New Business Process Existing Systems

Send

Write
Write

Call

Call

Read

Send

Write
Call
Write

Read
Send

Application Integration

Page 20  Butler Direct Limited, May 1999

A more structured approach is illustrated in Figure 8. Whether the applications need to
be integrated at the function, message, or data level is dependent on their current
physical implementation. Wrapping can be used to turn all of these sources into
components that offer a service through a common interface mechanism. Therefore,
everything is logically integrated at the service level.

The benefits of this approach include:

• The new application is isolated, to a large extent, from changes to the legacy
systems.

• The current physical implementation of the service is transparent to the consuming
application.

• The skills to assemble the new application only have to be focused on the
technology of the new application, not on the diversity of the legacy systems.

• The existing systems are now viewed as components and can, therefore, be
assembled into a number of different applications without additional effort in terms
of wrapping.

Adopting a more component approach like this avoids the new system effectively
becoming part of existing monolithic applications.

Application Integration Architectures
It is our experience that integration can be perceived as being simpler than it really is.
This is because many of the complexities of integration are not fully envisaged at the
outset of a project. As suggested, Application Integration can be complex, with a
danger that the resultant new applications consist of so much interwoven spaghetti
code that they become very difficult to change in future. Butler Group believes that it
is, therefore, important to take a more architected approach to Application Integration.

This section considers architectures that are appropriate to integration.

Butler Group’s Integration Domains Model
Using layers is a common way of dealing with complexity and separating concerns
into their proper domains. Our first model, illustrated in Figure 9, shows that
integration needs to be considered at four key layers, and requires alignment, or some
transformation mechanism, at each of the bottom three of this stack.

Figure 8. Component Approach to Legacy Integration

Set Read

Send

Write

Write

Send

Send

Read

Write

Call

Write

Call

Read

Call

Set

Set
Set

Set

Set

Set

Set

Set
Set
Set

Set
Set

New Application to Support New Business Process Existing Systems

Application Integration

 Butler Direct Limited, May 1999 Page 21

• Business Process – Integration requires an understanding of the sequence of
events that triggers integration between components and applications, and the role
each plays in the overall business process.

• Business Objects – Alignment of, or transformation between, the business objects
contained in the components and applications. For example, exactly what is a
customer, or a product, or an order?

• Business Interfaces – Alignment of, or transformation between, the interfaces and
exchanges of information between the components and applications.

• Interface Technology – Alignment of, or transformation between, the
technologies used to implement the business interfaces and achieve the integration.

Butler Group’s Integration Implementation Layers
Our second layered model of Application Integration (shown in Figure 10) is
concerned with the detail of implementing a particular integration. This will help
developers to fully assess the requirements for any particular integration project, by
providing a check-list of functions that need to be considered in typical integration
projects.

Figure 9. Butler Group Integration Domain Model

Transformation

Application A

Business Process

Business Objects

Business Interfaces

Interface Technology

Application B

Transformation

Figure 10. Butler Group Integration Implementation Layers

Transport
Application A

Events

Workflow

Message Queuing

Events

Logging

Business Multiplexing
to Applications
C, D, E, etc.

Subscribe Publish

Rules

Application B

Transaction

Transformation

Timing

Process

Application Integration

Page 22  Butler Direct Limited, May 1999

Transportation
The ‘Transport’ layer deals with the physical delivery of information, or connections
between the sources to be integrated and the quality of delivery service:

• Network Connectivity – How and where is the connection established? How are
differences in network protocols addressed?

• Message Handling and Queuing – Is the information message-based, and does it
require the services of message queuing products? Is guaranteed delivery required?

• Security and Encryption – How are the different security requirements of each
application or information source handled? Is a single log-on required? Should the
messages be encrypted? Where does it take place?

• Restart and Recovery – What happens in the event of failure?

• Routing – Where does the message go? Are there rules governing the routing?

Transaction
The ‘Transaction’ layer deals with the integrity and management of transactions that
involve integration between applications. To ensure the real-time integrity of
information, integration will also have to deal with the notion of distributed transactions
and how, for example, two-phase commit, back-out and recovery approaches are
handled. There are also issues of fault tolerance, for example, does information source
‘A’ stop recording new data if it cannot be sent to information source ‘B’ when the
network is unavailable, or should off-line message queuing be used?

• Transaction Management – How are distributed transactions managed? How is
transaction integrity ensured? How is state managed?

• Fault Tolerance – What mechanism is used to handle breaks in connectivity?
How are faults traced?

• Logging and Monitoring – Are information exchanges to be logged? Is analysis
of how integration is being executed required in terms of frequency and
performance, etc.?

Transformation
The ‘Transformation’ layer deals with the conversion of information between the
applications being integrated. Although conversion of the data types and technical
interfaces might be straightforward, handling differences in business objects and
business interfaces between two applications is much more complex, and may even
require information in further applications to be referenced in order to correctly
format a message. Validation of the data might also take place in the transformation
layer. Often, systems may store information in the form of coded values (for example,
‘Customer Type’ is stored as a single digit) requiring look-up tables to enable
transformation:

• Data and Protocol Conversion – How are data types converted and protocol
differences handled?

• Semantic Conversion – How are differences in business objects handled?

• Message Formatting – How is formatting and sequencing of data in the message
handled? How are missing fields supplied?

• Interface Conversion – How are differences in business and technical interfaces
resolved?

• Data Validation – What capabilities are there to validate data? Is just type
checking or content validation required? Where does validation take place? Before
the message is sent, during transformation, or on receipt?

• Coding and Decoding Data – How is data that is held in a coded form
transformed?

The ‘Transport’ layer
deals with the physical
delivery of information.

The ‘Transaction’ layer
deals with the integrity
and management of
transactions that
involve integration
between applications.

The ‘Transformation’
layer deals with the
conversion of
information between
the applications being
integrated.

Application Integration

 Butler Direct Limited, May 1999 Page 23

Timing
The ‘Time’ layer deals with when information should be exchanged between
applications. Events in one application typically trigger the need to send or request
information from another. However, this could take place synchronously, perhaps
requiring two-phase commit, or asynchronously via message queues. Events may have
to be handled immediately for real-time action or queued for overnight replication.
integrationware may monitor events in applications, or in the information that
exchanges them, and fire off other dependent actions. There are various models of
how the interaction between the applications should take place, for example:

• Request and Reply – ‘A’ requests information from ‘B’ and waits for reply.

• Conversational (or Synchronous) – Information is passed between two sources
in a series of related exchanges. A reply must be received before processing
continues.

• Publish and Subscribe – An information source publishes events that other
anonymous information sources can subscribe to.

• Asynchronous – A reply to a message is not required before processing continues.

The time layer, therefore, provides services for:

• Scheduling – When should an information exchange take place?

• Events – What events should be monitored and which applications need to be
informed?

• Interaction Model – Are synchronous and asynchronous activities supported? Are
publish and subscribe techniques required?

Process
The ‘Process’ layer deals with the business rules that determine integration.
More complex integration occurs when multiple applications need to be integrated, or
when there are multiple steps in the integration process. Clearly, some integrationware
architectures, such as ‘Hub and Spoke’, are better suited to these requirements than
others.

Rules will also determine the integration. Rules will be applied in all the layers, for
example, how data is transformed, or which application messages are sent to.
However, there may be more complex business rules that need the content of
information to be checked. For example, the type of customer may determine which
customer information sources need to be updated.

Therefore, for more complex integration tasks, services are needed in the Process
layer that address:

• Multiplexing – Are one-to-many and many-to-many interactions required? How
are they managed?

• Business Rules – Can business rules that determine integration be expressed, and
how? Where are they coded?

• Workflow – Is there a complete business process that must be executed to effect
the integration? Is the integration a business process in its own right? Does the
integration require multiple steps, with different sources integrated, to complete?

Some of these issues can be delegated to the operating infrastructure. Transport and
transaction functions are commonly performed by the network, On-Line Transaction
Processing (OLTP), Object Request Broker (ORB), or message queuing products that
should be established in most organisations.

The ‘Time’ layer deals
with when information
should be exchanged
between applications.

The ‘Process’ layer
deals with the
business rules that
determine integration.

Application Integration

Page 24  Butler Direct Limited, May 1999

However, there will still be the requirement to integrate incompatible instances of
these, so are an important part of the integration landscape. As such, it is common to
see these services included within integrationware products, although frequently, this
may reflect a ‘bundling’ of infrastructure services but this, at least, should ensure
compatibility and that the total solution is in place.

Connection Architectures
In any organisation, there are likely to be a large number of connections to be made
between different applications needing to be integrated. Common business
infrastructure applications will often be integrated into many new applications.
Implementing this in an uncontrolled, ad hoc manner will lead to a complex Web of
connections that is difficult to unravel when change next occurs. Common connection
architectures are:

• Point-to-Point – Applications are simply connected directly to one another.
The routing, etc. is fixed between the two applications.

• Hub and Spoke – Applications are connected to a hub. The hub contains the rules
for connecting applications together and marshalling messages between them.

• Publish and Subscribe – Applications that make information available, have no
idea what other components use this information. Suitable for broadcasting
information where no coupling, or even a response, is anticipated. A variation of
this is a ‘Bus’ architecture, where messages are put on a logical bus and are not
required to pass through a central hub.

Reducing the number of connections will clearly reduce the complexity. The ‘Hub and
Spoke’ approach to reducing the number of connections between points is well
understood, and popularised by the airlines. The Hub and Spoke approach is clearly
an elegant architecture that both manages complexity, and makes future requirements
easier to satisfy. As each new application is introduced to the hub, all others can make
connections with it straight away. Integration between applications, that are already
connected to the hub, can be quickly defined in the hub.

However, organisations need to balance the needs of integration when selecting a
connection architecture. Whilst ‘Hub and Spoke’ might be the most flexible, it can
introduce unnecessary performance overheads, as each message is interrogated and
4GL rules interpreted only to send it to the same place the previous 10 million were
also sent that day. ‘Publish and Subscribe’ provides another form of flexibility, in that
it requires no integration effort on the part of the subscribing application, but it might
not handle the complexity of rules or a diversity of different technologies.

Implementing this in
an uncontrolled, ad
hoc manner will lead
to a complex Web of
connections that is
difficult to unravel.

Organisations need to
balance the needs of
integration when
selecting a connection
architecture.

Performance

Engine and
Adaptor

Point-to-Point

Publish and
Subscribe

Hub and
Spoke

Flexibility

Complexity

Diversity

Figure 11. Balancing the Needs of Connection Architectures

Application Integration

 Butler Direct Limited, May 1999 Page 25

Given the diversity of requirements and applications, there is no connection
architecture, and most organisations will require a mixture. As illustrated in Figure 11,
the appropriate connection architecture will be determined by a number of factors,
including:

• Performance – Is a high-performance link required?

• Diversity – How many different types of information sources need to be
integrated?

• Flexibility – Will integration sources and rules need to be changed frequently?

• Complexity – Is the integration simple or complex?

Engines and Adaptors
A further architectural refinement is to separate out the basic engine of integration,
from the specifics of the particular applications in each instance of integration.
This approach of engine and adaptor is common of integrationware, enabling them to
integrate multiple alternate message formats, protocols, interface technologies or
packaged applications with a single product.

Adaptors are commonly available for popular packaged applications, databases,
platform technologies, such as ORB or OLTP, message queuing and popular message
formats. An increasing number of products are also providing a Software
Development Kit (SDK) to enable adaptors to be built in-house for legacy
applications, or by smaller Independent Software Vendors (ISV) for less common
packages. Hub and Spoke integrationware typically involves an engine and adaptor
approach.

Engine and adaptors help isolate against change, as only a new adaptor is required
when a component in the integration is swapped for another (as illustrated in Figure
12). On the downside, they can introduce a performance overhead, though Butler
Group expects more products to also support a compiled approach to minimise this (at
the expense of more dynamic flexibility).

Engine and adaptors
help isolate against
change, as only a new
adaptor is required
when a component in
the integration is
swapped for another.

Application Integration

Page 26  Butler Direct Limited, May 1999

Layered Application Architecture

Integration Standards
Clearly, many of the challenges of integration, particularly the needs for
transformation, are reduced when applications share compatible business and
technical architecture. In the long term, efforts to establish common architectures on
an industry basis promise to greatly reduce the integration challenge by providing
industry standard business and technical architectures. However, it is clear, at least
with our current horizon, that this will not solve the problem entirely. Firstly, there are
likely to be multiple competing standards within the same industry, so unless the entire
industry truly accepts a standard, issues of dealing with trading partners, or mergers
and acquisitions will work against any enforcement of a standard within a single
organisation. Secondly, the huge installed base of legacy applications and packages
will not conform to such standards, and would require significant effort to upgrade or
replace them.

If organisations cannot standardise the architectures for the implementation of the
applications, one compensation might be to establish standards for how they should be
integrated. Butler Group observes a surge of interest in standards that enable
integration. Virtual supply chains and e-business are also driving integration
standards, in recognition that, by their very nature, they cross many organisations, and
cannot dictate the implementation of applications or components that provide the
services required by the business process. The following initiatives, though not always
setting true de jure standards, recognise that agreement is required, at least on how
data is exchanged or what role each application should play in a wider business
process, and are particularly relevant to enabling integration at a level above the pure
technology layer.

However, each of these standards, typically, only addresses part of our integration
layers, and sometimes overlap. So, for example, whilst eXtensible Markup Language
(XML) might solve many of the transformation issues, it does not address the other
integration layers. Additionally, they still require the existing base of applications be
upgraded, in order to make connections to them using these approaches. Also, despite
recognition of the need to implement new solutions for e-business, the ubiquity of the
Internet and its reach into every level of organisation, there is considerable investment
by larger organisations in existing standards such as Electronic Data Interchange
(EDI).

Despite concerns about the contradiction of multiple standards, Butler Group believes
compliance with these standards will be useful, even where there is no obvious
requirement to interface to external organisations today. Remember the quotes from
Tom Peters, just because a service is provided in-house today, does not mean it will be
tomorrow. Additionally, you will be increasingly likely to find packaged applications
and components, plus ready built integrationware adaptors, that already comply with
these standards and enable conversion of your applications to them.

The following represents some of the standards and initiatives for integration that
should be considered by organisations:

• OAGIS – The Open Applications Group was formed some years ago by several
major package vendors who recognised the need to provide interoperability
between their packages, and has seen a doubling of its membership last year,
reflecting the increasing attention on integration. Its Open Applications Group
Integration Specification (OAGIS) provides standard message formats in the form
of Business Object Documents (BOD) that reflect common business exchanges.

In the long term,
efforts to establish
common architectures
on an industry basis
promise to greatly
reduce the integration
challenge by providing
industry standard
business and
technical
architectures.

Application Integration

 Butler Direct Limited, May 1999 Page 27

• IMWA – The International MiddleWare Association (formerly MOMA), which is
working to enable interoperability between messaging products.

• XML – eXtensible Markup Language. XML removes the need for data
transformation. XML, in particular, shows every indication of universal adoption.
Several of these integration initiatives include XML, for example OAG,
Microsoft’s BizTalk, and RossettaNet, who are attempting to set establishing
business semantics and process standards on top of XML technology.

• UCC – The Uniform Code Council has been long established in defining product
codes and barcode standards to enable electronic communications through the
supply chain. It is now also focused on defining the relative business processes.

• EDI EDIFACT, X12 – Electronic Data Interchange. EDI is one of the most
mature and established integration standards, with EDIFACT and X12 widely
adopted for exchange of data between organisations. EDI defines several hundred
standard maps of data that reflect common business exchanges.

• Industry Standards – Several vertical industries have established their own
standards for data exchange. For example, HL7 in Healthcare, S.W.I.F.T. for
financial transactions, or RossettaNet for IT.

• RossettaNet – RossettaNet is a good example of the sort of initiative that is likely
to start in many industries to solve e-business integration problems. RossattaNet is
focused on the IT product supply chain, and was recently established by a who’s
who of IT companies, together with end-user organisations, in their supply chain
(such as Fed-Ex and UPS) to define business processes, business objects and
interfaces to enable e-business integration.

• Microsoft BizTalk – Microsoft recently announced BizTalk, an e-commerce
framework based on XML, and vertical industry standards to enable organisations
to integrate applications and conduct business over the Internet with their trading
partners and customers. It defines business schemas for corporate purchasing,
product catalogues, offers, promotional campaigns and other business processes.

At a technical level, Butler Group expects a wider adoption of interface mechanisms
provided by technologies such as COM, CORBA, and Enterprise JavaBeans, plus
rapid adoption of XML, to simplify integration, though there is likely to be equal
adoption of them all. As they can deal with multiple programming languages, plus
provide wrappers on to legacy applications and packages, they can at least reduce the
number of variations that developers face when faced with integrating applications
with diverse and proprietary interfaces. The broad adoption of Internet technologies is
also likely to simplify integration at the technical level.

Figure 13. The Anatomy of Integrationware

Process Control/WorkflowIf A Then

If Map A Then

If Map A Then

Rules

Mapping Tools
Library of Common Maps

and Transformations

Application
A

Application
B

If Map A Then

Transport
Engine

Transformation
Engine

Event Handler
Event

Publisher

Interface/Map
Repository

Application Integration

Page 28  Butler Direct Limited, May 1999

Integrationware

Anatomy of Integrationware
The functionality of integrationware is illustrated in Figure 13. However, not all
products will have all this capability and it is more common that a selection of
integrationware tools are needed. integrationware consists of the following main
elements:

• Transport Engine – The mechanism required to transport messages from one
application to another. This may not be required in call mechanisms as the
connection is established by the network, but is common in messaging
connections. It is frequently provided by the operating infrastructure, but is
frequently considered part of Application Integration as this is its common, but
important function. Could be provided simply by the network, or by message
queuing products, message brokers or object request brokers, or combination of
them.

• Transformation Engine – A key role of integrationware is the transformation of
information between applications. Modern transformation engines consist
themselves of several elements.

Mapping Tools – The means to express, often visually, the mapping of data
between one format and another.

Repository – A library where maps and interfaces are stored, enabling reuse.

Library of Common Maps and Interfaces – The interfaces to common
packages or technologies, together with maps of frequent integration between
them, are often supplied with integrationware.

Engine – Performs the actual transformation, taking the maps as input. It
might do this dynamically, or via some mechanism to compile the maps,
improving performance.

• Event Handling – As well as ‘Publish and Subscribe’ mechanisms,
integrationware products might also offer the ability to monitor events and trigger
integration flows in response. Events might be time-based, the arrival of a
message, or a change to a data record (perhaps using triggers). Sometimes referred
to as watchers, or listeners, these can be useful to enable integration from self-
contained monolithic applications that were not originally designed to notify the
outside world of their activities. An additional complexity is when multiple events
must be monitored.

• Process Manager – A mechanism to define the sequencing of tasks, or workflow
of the integration, often using a visual modelling approach. In recognition that
integration is often a multi-step process, some integrationware also include
ready-built business processes, often delivered in a workflow environment. These
include pre-defined plug points, into which existing applications and packages are
connected at appropriate points in the process. This is sometimes referred to as
‘Processware’.

• Rules – One of the complexities of integrationware is that each of the above
elements can be rule driven. Content-based rules can define the routing of
messages in the transport engine, or the transformation of data. The event handling
is likely to contain rules, and the business process most certainly will.
Development and maintenance problems will arise when these rules are dispersed
across several integrationware products and coded in different languages.

Application Integration

 Butler Direct Limited, May 1999 Page 29

As discussed earlier, Application Integration products are frequently delivered as a
core engine, and a set of pre-built adaptors that contain common transformations and
connections. Also, the development environment is often separated from the run-time
integration engine. However, an increasing need to implement and change integration
in a real-time basis, means that this is not necessarily always desirable. Rather, a
combination is required with, perhaps, some compiled adaptors built off-line to
maximise performance, whilst others being interpreted at run-time.

When to Use Integrationware
The degree of complexity involved in Application Integration will vary enormously.
Butler Group characterises four levels of integration complexity:

• Plug-and-Play – Integration between applications that share common business
objects, business interfaces and technology.

• Well-Defined – Integration between applications with well-defined, though
incompatible objects and interfaces, for example, Package-to-Package.

• Undefined – Integration of in-house legacy, and new in-house build with each
other or with a packaged application.

• Complex – Multiplexed integration of multiple sources with complex rule-driven
integration.

At the plug-and-play level, the role of
integrationware is diminished. When
applications to be integrated share a
common set of business objects,
interfaces and technologies, then
there will be no requirement to use
integrationware products for
transformation, although a transport
engine may still be required, for
example, for message queuing,
though this might be provided as part
of the operating infrastructure.
Application Integration is still required in the form of assembling application
components into a new business process, and integrationware in the form of business
processware will still be useful.

integrationware is most applicable, and more likely available, for combinations of the
disparate applications that have well defined, but incompatible business objects and
interfaces, and are also the most commonly implemented across organisations.
The behaviour of packaged applications is clearly the same across organisations
providing a ready well-defined market. integrationware can enable Application
Integration at almost plug-and-play levels, when connecting application packages by
automating the connections and transformations.

However, in a large number of situations, there will be no well-defined behaviour or
interfaces available, at least at one end of the connection. A significant cost of
package implementation is often legacy integration. The best that integrationware
vendors can do, is to provide a SDK to build adaptors for your legacy applications.
Even though integrationware is offered for common platform technologies that
address the plumbing, or wiring level of integration (for example, adaptors to integrate
CICS, CORBA or COM), differences in business semantics between the package and
legacy will remain.

Figure 14. When to Use Integrationware

Standard
Well-Aligned

Interfaces

Business Concepts

Non-Standard

Application
Development

Tools

Unaligned

Integrationware

Increasing C
om

plexity

Plug-
and-Play

Application Integration

Page 30  Butler Direct Limited, May 1999

When integration requirements are not readily satisfied by off-the-shelf
integrationware, and the integration rules are complex, the task is effectively
application development. Even so, some of the more sophisticated integrationware
products are able to support this, although Butler Group suspects that they may,
themselves, have been called ‘Application Development’ tools had not ‘Application
Integration’ become a more fashionable term.

Why Use Integrationware?
Butler Group observes the following key reasons to implement integrationware:

• Providing flexibility and Adaptability to Future Requirements – Use of
integrationware and appropriate architectures can prepare applications for
unforeseen integration needs, and enable them to be re-integrated with a minimum
of effort.

• Reduction of Development and Maintenance Effort – Using commercial
integrationware, rather than in-house development, can significantly reduce
developer effort and avoid constant “re-invention of the wheel” in each integration
project.

• Resolution of Skills Issues – The diversity of applications, both technically and
from a business semantics view, means there is bound to be a shortage of
developer skills who can deal with all of the differences. integrationware can
reduce the number of alternatives that need to be dealt with by hiding the
applications implementation behind standard interfaces.

The Integrationware Market
As with every craze, a huge number of software vendors are suddenly climbing aboard
the Application Integration bandwagon, relabelling their products and claiming to be a
leader. As a consequence, there appears to be a bewildering diversity of products
offered as the solution to integration challenges.

In reality, each of them has a role to play in Application Integration. Some of them
are, in effect, part of the operational infrastructure and technology necessary to both
implement and integrate applications such as middleware and messaging products.
Many of them are dependent upon each other to enable integration and, as such, are
frequently being bundled together by the vendors to provide an integration solution.
As a result of this organisations need to be cautious about vendors claims of product
‘X’ being better than product ‘Y’, when, in fact, both are revealed to contain the same
third-party elements. Nevertheless, knowing that the vendor is likely to have ensured
that the parts of the bundle work together, is much easier than trying to integrate the
integrationware yourself.

Butler Group observes that there will be a rapid consolidation of integrationware from
the following directions:

Enterprise Application Integration (EAI)
The first wave of integrationware vendors took a more ‘solution-oriented’ approach.
So called EAI vendors guessed that organisations who have bought packages, would
probably also be disposed towards implementing Application Integration off-the-shelf
too. Their engines are typically rule-based, enabling complex decisions to drive the
integration and transformation, not just simple ‘A’ to ‘B’ connections. Some recognise
that integration takes place within the context of a business process, and include
ready-modelled solutions to drive integration.

Enterprise Application
Integration (EAI)
vendors guessed that
organisations who
have bought
packages, would
probably also be
disposed towards
implementing
Application Integration
off-the-shelf too.

As with every craze, a
huge number of
software vendors are
suddenly climbing
aboard the Application
Integration
bandwagon.

Application Integration

 Butler Direct Limited, May 1999 Page 31

The issue is one of coverage. Most EAI vendors provide adaptors for leading ERP
packages, including SAP, Oracle and PeopleSoft, and customer interaction packages,
including Clarify, Vantive and Siebel. Significant players, such as JD Edwards and
Baan, are clearly next on many vendors lists. Platform integration is, most commonly,
supporting MQSeries, CICS, CORBA, COM and the leading databases. Beyond these
mass market requirements you have limited choice or are on your own, though nearly
all EAI vendors supply adaptor ‘development kits’, which is still potentially preferable
to building your own point-to-point solution, especially if you are going to be using a
particular integrationware environment for some fully supported environments.

EAI approaches can be considered when:

• The prime need is for application package integration, especially Package-to-
Package.

• It, perhaps, requires minimal support of central IS staff.

• Information sources are already well structured and have clear interfaces.

• The development of new functionality is already well supported by other tools.

Application Servers
The last year has seen an explosion in the announcements of application servers.
These primarily provide the infrastructure support for executing distributed
applications together with technology integration capabilities. On their own, they
provide little in the way of adaptors beyond the ability to achieve integration at the
technology layer by including access to common technologies, such as COM,
CORBA, JavaBeans, C++, databases, ActiveX components and some legacy
environments. Although third-parties are, or will undoubtedly be, supplying additional
adaptors for the most popular servers. Butler Group also expects considerable
partnering and bundling of integrationware with application servers. An application
server can be considered when:

• The prime need is to deliver Web-based business processes, with reasonable
development of new functionality.

• The focus is technology integration and legacy systems.

• Sources of integration are already well structured and have clear interfaces.

• When developing new components that run on the Web server.

• Providing a Hub and Spoke mechanism.

• Providing run-time management of applications.

Application Development Tools
Many developers will ignore commercial integrationware, and simply write code.
‘Class’ libraries and SDKs that enable technology and application package integration
to be available as add-ons for many of the Object-Oriented (OO) 3GL programming
tools. Several development tools, notably those with a 4GL background, also include
ORB technology that can provide interfaces to many alternative interface
technologies, and provide wrapping to transform them. Most of the 4GL/Code
generator development tools are now providing wrappers so that their users can
unlock the services within their otherwise proprietary applications, and make them
more easily accessed via component technologies, such as COM. This can take the
form of a client/server application, where the client has no User Interface (UI) but
exposes component interfaces to enable integration.

Many developers will
ignore commercial
integrationware, and
simply write code.

Application Integration

Page 32  Butler Direct Limited, May 1999

Although they are not usually promoted as integrationware by the vendors, the multi-
platform capabilities of 4GL/Code generators, combined with these, component
wrappers can provide a useful mechanism for building wrappers, particularly when
those wrappers need to include functions beyond protocol conversion and message
formatting, for example, merging and replication, or extension and exclusion
functions. Most of them have the ability to call external sub-routines that may allow
non-invasive wrapping. ‘Application Development’ tools can be considered when:

• The prime focus is on building the new applications that require integration of
existing applications.

• There is requirement for integration of different technologies.

• There is complex rule-based integration.

• The Applications to be integrated were developed in same tool.

• The existing applications must be re-coded to enable integration.

• Developing new components for a subsequent integration.

Screen Wrapping tools
Screen wrapping (or scraping) tools have evolved from simply enabling a Graphical
User Interface (GUI) veneer for client/server applications, to now also providing
component/object interfaces to encapsulate host/terminal applications, and enable
their integration into new application workflows. Wrapping can be considered for:

• Host/terminal applications that have no other interfaces beyond screens.

• Existing applications that cannot be, or it is undesirable to, re-engineer to enable
better integration.

• Providing object interfaces, for example, COM, CORBA and JavaBeans, onto
existing host applications.

Workflow
We expect Application Integration to increase attention on workflow. Workflow
engines are particularly adept at defining more dynamic processes that require change
in real time, perhaps by users themselves. Workflow can be considered:

• When developing new business processes.

• When developing dynamic, rule-based integration.

Middleware
Application Integration has always been a strong theme for middleware vendors,
though, in the past, the focus was perhaps more upon integration within an application,
rather than between them, with some form of middleware layer always used when
building distributed applications, and assembling a collection of objects or
components into an application. Messaging and object request brokers are equally
applicable to Application Integration, as they provide complimentary functions and
both play a strong role in the technology layer of integration.

Messaging Middleware
Messaging can be considered when:

• Implementing loosely coupled applications.

• There is the need to integrate applications between organisations where the
availability of applications cannot be fully guaranteed.

• You require guaranteed delivery of messages between applications.

Application Integration

 Butler Direct Limited, May 1999 Page 33

Object Request Brokers
ORB products can be considered when:

• You need tightly coupled applications.

• The sources of integration are already well structured and have clear interfaces.

• Implementing architectural standards.

• Developing new components for subsequent integration.

• Wrapping existing application interfaces into a single technology.

• Integrating in-house applications.

Database Gateways
Though we have stressed the increasing importance of encapsulation of applications
being integrated, there are occasions when direct access to the databases is the only
option. They are, of course, useful to build the wrappers to encapsulate existing data
sources, making them easier to integrate. There are multitudes of database gateway
products that can simplify access to diverse data sources. Database gateways can be
considered when:

• The interface offered by a database management system is the only practical option.

• Building wrappers around existing data sources, to enable integration via
encapsulated interfaces.

• Integration is not real-time (for example, replication and batch loads).

Package Vendors
Package Vendors are not normally vendors of integrationware per se, though they may
often bundle it with their applications as a means to simplify integration. Package
Vendors are the sources of business objects and business interfaces that require
integration. The pressure is now on Package Vendors to provide the published, stable
interface mechanisms to better enable integration in the first place. However, the need
for organisations to upgrade to the latest versions of packages that support these
interfaces will slow the uptake, as the business case to upgrade, just because of the
interfaces compared to the significant effort to do so is not clear, even though the
desire for integration is, itself, the justification.

Selecting Integrationware
Selecting integrationware is the usual following combination of features and vendor
viability. Organisations should balance immediate requirements with long-term
integration needs, and look at what additional packages and technologies are
supported by particular integrationware products beyond their current requirements.
Vendors with a broad support are now likely to continue that trend.

• Fit for Purpose – What Application Packages, interfaces and message formats,
and technologies are supported? Which integration layers are supported?
[See Table 2 Typical integrationware Functions for an indication of the typical
functionality coverage of different integrationware products.]

• Adaptability – How easy is it to adapt integration to changes in business or
technology? Are you trying to put a long-term architecture in place, or just trying
to solve a point-to-point problem?

• Ease of Use – What developer skills and resources are required? How do the tools
function? Is visualisation and diagramming used, or is it purely text/code driven?

• Vendor Profile – What is the financial viability of the vendor? What partnering
and distribution channels are in place, and what support and services are offered?

Organisations should
balance immediate
requirements with
long-term integration
needs.

Application Integration

Page 34  Butler Direct Limited, May 1999

Integrationware B
usiness

P
rocess

B
usiness

O
bjects

B
usiness

Interfaces

Technical
Interfaces

Transport

Transaction

Transform
ation

Tim
ing

Integration R
ules

EAI Y T T N N N Y Y Y

Application Servers N N T Y Y Y N Y D

Messaging N N T Y Y Y 3rd L D

ORB N N N Y Y Y N Y D

Workflow D N N Y Y N N Y D

Screen Wrapping N N T Y N N Y Y D

Database Gateways N N N Y Y N N N D

Development Tools D D T Y Y Y D Y D

Packages Y Y Y N N Y Y Y Y

Key: Y-Usually provided, N-Not usually supported, D-Enables development of,
T-Transformation of, 3rd-Include third-party.

Table 2. Typical Integrationware Functions

Market Assessment
Given the size of the problem, and the inevitable demand for rapid response to
application backlogs post Year 2000 (Y2K), there is clearly a huge interest in this
area. Butler Group expects to see a dramatic increase in integrationware during the
period 1999 to 2002, as a practical and timely answer to business problems which will
not wait for industry standard interfaces to simplify the problem. However, whilst
package vendors may have an imperative to provide more standard interfaces to
encourage adoption of their products, integrating in-house legacy systems will remain
a major challenge for IS organisations. Additionally, there will continue to be multiple
‘standards’ in each area and requirements to bridge them.

The relevance of each of the different types of integrationware is illustrated in Figure
15. integrationware at the bottom of the stack is effectively operation infrastructure,
whilst those in the middle are relevant to the development to applications through
Integration, There will be increasing commoditisation towards the bottom of the stack,
as their integration functions become undifferentiated, although their broad
applicability will provide a viable market for many vendors. However, those at the top
are of higher value to the business, and will continue to be differentiated as new
business processes are identified and implemented in integrationware.

Given the size of the
problem, and the
inevitable demand for
rapid response to
application backlogs
post Year 2000 (Y2K),
there is clearly a huge
interest in this area.

Figure 15. Butler Group’s Integrationware Stack

Increasing Relevance to
Business

Increasingly
Commoditised

Integration
Context

Integration
Operational
Structure

Integration
Development
Infrastructure

Processware

Business Interface Transformation

Development Tools

Technical Interface Transformation

Application Servers

Middleware

EAI

Data Transformation
Screen Wrapping

Database Gateways

Messaging
ORB

Application Integration

 Butler Direct Limited, May 1999 Page 35

Market Directions – The Future For Application Integration
Market Consolidation
Many integrationware companies are small, and the investment that is required of
them to support the diversity of requirements is significant. Butler Group would,
therefore, expect relatively rapid consolidation to occur, particularly as some of the
bigger software companies decide to muscle in on this lucrative area. Some of the
smaller integrationware vendors will be acquired by the package and infrastructure
vendors, others by the large software conglomerates, whilst many of the remainder
will merge to provide a broader integration capability. This is also giving rise
currently to a considerable number of partnering and reselling initiatives between the
vendors, as they each try to increase the coverage of their offerings. Larger vendors, in
particular, will move to make sure they have the whole of our integrationware stack
covered and, hence, offer a one-stop shop for their customers.

Also, as part of the natural evolution, we would expect to see some sector
specialisation, with integrationware vendors gaining prominence in particular areas by
addressing specific needs. There is clear opportunity for specialisation in vertical
industries, for example, finance, telecoms, insurance and retail, etc., by supporting
business processes, standards and packaged applications that are industry specific.
The opportunity for specialisation decreases for packaged applications, and even less
for technologies, as most vendors will be expected to support a wide variety.

Butler Group also expects leading development tools to include more Application
Integration capability, particularly to address common package integration
requirements, business and technical interface transformations, and dynamic
workflow/process capabilities.

There is also an opportunity for modelling tool vendors to more explicitly support
Application Integration. Most modelling tools are currently biased too much towards
green field new build. Application Integration can benefit greatly from visualisation,
and integrationware tools often feature visual transformation mapping and workflow
diagrams. Modelling tools that can reverse-engineer the interfaces, data structures and
business objects of existing applications, plus model new workflows and components,
and document the integration requirements, connection architectures, and perhaps
generate the transformation required to bring them all together, would be a useful
addition.

Increasing Integration Market
Butler Group believes the market for integrationware is set to significantly increase.
Given there are, for example, several thousand SAP implementation projects alone
underway at the moment, and the EAI vendors measure their customer-base in the
hundreds, it is not hard to see the opportunity for growth. In addition, as many of the
legacy systems will prove too difficult a problem for integrationware products to
integrate through automation alone, there is also a significant opportunity for services.
This last point is not lost on the Systems Integrators, who are building integration
support as quickly as they did ERP practices. Given it is widely accepted that
integration costs significantly more than the package, choosing Systems Integrators on
their ability to provide integration services is clearly just as important as their domain
knowledge in the package being implemented.

Whilst, overall, the demand for integration will rise in response to the need for rapid
delivery of new applications, wider adoption of standards will ultimately reduce the
need for transformation integrationware. Commoditisation is also likely to occur in the
transformation and technology layers as differentiation, or the requirement erodes.

Butler Group would,
therefore, expect
relatively rapid
consolidation to
occur, particularly as
some of the bigger
software companies
decide to muscle in on
this lucrative area.

Given there are, for
example, several
thousand SAP
implementation
projects alone
underway at the
moment, and the EAI
vendors measure their
customer-base in the
hundreds, it is not
hard to see the
opportunity for
growth.

Application Integration

Page 36  Butler Direct Limited, May 1999

However, the constant introduction of new business initiatives will see a steady
growth in integrationware that provides ready-built business processes. Also, a
backlash against large monolithic packages that prove inflexible to the next round of
changes post Y2K, will see greater acquisition of more fine-grained components and
frameworks, which are becoming available at the same time. There will also be a
separation of the acquisition of the business process, which defines the application,
from the business objects or components that provide the services required by the
application, again increasing the need for integration.

The Impact of Standards
The need for integrationware vendors to supply a wide variety of adaptors, is a
reflection on the proprietary access mechanisms of the packages and legacy
applications they must integrate.

Whilst Butler Group expects the wide adoption of standards by application package
vendors, to enable interoperability at the technology level, more challenging for small-
to-medium package vendors will be the issue of standards for business objects and
interfaces. These are more likely to be set in de facto fashion for each vertical industry
by the relative dominant package vendors, such as SAP, or Microsoft’s vertical
business initiatives. Adoption of standards at all levels by the package vendors will be
less rapid than hoped, due to the significant effort needed to re-engineer applications
to support them, and the probable requirement for many package vendors to support
several competing alternatives.

The apparent contradiction of many standards will still be less of an issue for end-user
organisations than the profusion of proprietary interfaces are today, and integration
between applications that support common standards will be largely transparent thanks
to integrationware.

Ultimately, due to the adoption of standards, the current lack of available adaptors
from a particular vendor will not be such a constraint in the long-term as it might
appear. Even so, whilst some of the transport and transformation issues might
disappear, the automation of the other aspects of integration and the provision of
business processes that these products supply, will still be welcome. And, of course,
the enormous requirement to integrate legacy applications will not be addressed by
these standards, as long as their proprietary interfaces remain.

Figure 16. Growth of Integrationware

Process
Integrationware

Transformation
Integrationware

Time

D
em

and

Butler Group, Europa House, 184 Ferensway, Hull, HU1 3UT, United Kingdom
Tel: +44 (0)1482 586149 Fax: +44 (0)1482 323577

WWW.BUTLERGROUP.COM

