
Welcome to the first issue of The MQ Insider - a quarterly technical
newsletter from BMC Software that is committed to bringing you cur-
rent and in-depth technical information regarding MQSeries. Whether
you are interested in better administration of your MQ networks or
looking to improve your MQSeries programming, our newsletter will
provide a little inside help.

Written by industry experts, The MQ Insider will examine a whole
range of MQSeries-related topics, and will not be restricted to the per-
formance and high availability issues for which BMC Software is re-
nowned. For this first issue we are focusing on MQSeries Clustering,
one of the key capabilities of Version 5.1, and Programming MQSeries
with ActiveX.

BMC Software is producing this newsletter for several reasons.

§ We believe that MQSeries is an important technology for our cus-
tomers and BMC is committed to supporting it.

§ Enterprise Application Integration (EAI) is a key industry trend
and many customers are using the MQSeries family to achieve this
goal. BMC Software offers Application Service Assurance (ASA)
for integrated infrastructures, improving the availability, perfor-
mance and recoverability of business critical applications.

§ We hope that by providing this newsletter customers will learn
more about BMC’s expertise in MQSeries.

The online version will be available to all subscribers as a PDF
download from MessageQ.Com. Printed copies of the newslet-
ter are also available. To subscribe to The MQ Insider please use
the enclosed faxback form or register online at MessageQ.Com
(www.messageq.com/mqinsider).

I hope you enjoy the first issue.

Phil Griston
European Solutions Manager, BMC Software

To subscribe to The MQ Insider visit:

In focus this issue:

MQSeries Cluster and Dynamic
Workload Balancing

MQSeries Version 5.1, announced in
January, contained important new features.
One of the most significant was the ability
to cluster queue managers to achieve Dy-
namic Workload Balancing.

Programming MQSeries with ActiveX

IBM has also introduced a set of ActiveX
automation classes for MQSeries. Pro-
grams written for COM have full access to
MQ Series API.

Queued-Up

Our regular look at some of the available
MQSeries resources and forthcoming
events, including conferences and semi-
nars. After the recent MQSeries Technical
Conference held in Dallas, mark your cal-
endars for the next T&M Congress in Oc-
tober.

BMC News Headline

BMC Acquires New Dimension Software.

The acquisition complements BMC
Software’s pending merger with Boole &
Babbage. As a result of these strategic
acquisitions, BMC aims to accelerate the
delivery of solutions that significantly re-
duce the complexity of managing large en-
terprises.

Please send your comments and questions to mqinsider@bmc.com

VOLUME 1 ISSUE 1 – SPRING 1999

Page 2

The MQ Insider - Spring 1999

Much has been written about MQSeries, its
capabilities and its shortfalls. With the
recent announcement of MQSeries Version 5.1,

IBM has answered the critics and done it in a big way.
Probably the two most significant changes made to
MQSeries in this release are the addition of the MQSeries
Explorer (Windows NT Only) and MQSeries Clusters
with Dynamic Workload Balancing on version 5 plat-
forms1 and on OS/390 with MQSeries Version 2.1.

MQSeries Explorer uses the Microsoft Management Con-
sole, MMC, to allow administrators and programmers
the ability to configure, monitor and view their MQSeries
environments with a tool much like Windows Explorer.
In the past, users had to rely on the “runmqsc” utility,
self written shell/command scripts or third party tools in
order to work with their queue managers and the objects
they control. The monitoring and management of
MQSeries networks will be covered in depth in a future
issue, the remainder of this article will deal primarily
with the second significant change made for V5.1,
MQSeries Clusters.

Clusters are not a new concept to IT. We have had High
Availability Cluster Multi-Processing (HACMP) clus-
ters for some time now, and most IT shops try to design
most, if not all, of their systems/applications to provide
“High Availability” to their users so that no server or
service is unavailable at any given time. The Distributed
Computing Environment (DCE) accomplishes this same
availability using the notion of “Cells” and a naming
service. A DCE service can be located on multiple host
systems within a DCE cell. Client applications can ac-
cess or bind to these services in one of three ways: auto-
matic, implicit or explicit. Automatic allows the Remote
Procedure Call (RPC) library to find the host and service
to handle your request. Implicit will allow the client ap-
plication some control over where the service is selected.
Explicit allows the client application full control over
the host and service for each RPC call made.

1 Version 5 platforms include, AIX, HP-UX, OS/2, Sun
Solaris and Windows NT.

You’re probably wondering what this has to do with
MQSeries clusters. In MQSeries, a cluster is a set of
MQSeries queue managers associated in a way that al-
lows them to share resources and also be aware of each
other’s existence. They could represent a geographical
region, different branches or departments of a company
or simply a logical grouping of services. Clusters, like
queue managers, should have unique names within an
enterprise. This will allow for a queue manager to be-
long to more than one cluster. Within each cluster you
will have a repository queue manager. This queue man-
ager will hold a full set of information pertaining to ev-
ery other queue manager in the cluster. This information
contains the queue managers, the cluster queues that they
host and the channels used to pass data to and from these
queue managers and repositories. This information is
stored in the SYSTEM.CLUSTER.REPOSITORY. QUEUE.

Before you begin creating your clusters, it is a good idea
to layout your server/queue manager topology and where
you want your services/applications to reside. When lay-
ing out your architecture, if 100% availability is a neces-
sity, try to design your services/applications so that they
reside on different servers. These servers should also re-
side on different network segments that use different net-
work routers. This will help eliminate outages that could
be caused by network failures, and allow you to maxi-
mize the benefits of your MQSeries clusters.

If you already have your queue managers defined and
your topology in place, you can create a cluster using
MQSeries Explorer and the Cluster Wizard. The wizard
will take you through several screens that will ask you
questions about the cluster you are creating and the queue
managers to be included. You will be prompted for chan-
nel names needed to connect this queue manager to the
cluster.

Now that we have created a cluster, we can begin to cre-
ate queues to be used by the cluster queue managers. It
is important to remember that cluster queues are only
beneficial to applications sending data “to” these queues.
The applications that will be retrieving the messages from
these queues will still need to connect to the queue man-
ager that actually hosts the queue in order to remove
messages from the queue.

Exploring MQSeries Clusters and Dynamic
Workload Balancing

Page 3

The MQ Insider - Spring 1999

Since we now have repositories that hold information
about queues and queue managers that belong to a clus-
ter, remote queues and channel definitions, other than the
CLUSSDR and CLUSRCVR channels, are no longer
needed. However, remote queue usage is still needed to
access other MQSeries platforms that do not support clus-
ters. Now when you create a queue and indicate its par-
ticipation in a cluster, the local queue manager will send
data to a repository queue manager so this queue is ad-
vertised throughout the cluster. Any application connected
to any queue manager belonging to the cluster can send
(issue MQPUT’s or MQPUT1’s) to that queue without
any further intervention from the MQSeries administra-
tor.

What we have just created is a cluster and a queue that is
shared within that cluster. See Figure 1.

DCP_CLUST1

MQPUT

Let’s look at some of the new commands that adminis-
trators can use to view information pertaining to their
MQSeries clusters. Although we have the new features
provided by MQSeries Explorer, you still have the op-
tion to issue commands directly to the queue manager
using the runmqsc interface.

DIS CLUSQMGR – This command, when issued from
a repository queue manager, shows information pertain-
ing to every queue manager belonging to that cluster.
When issued from a queue manager not having a full
repository, the output will only show the queue manag-
ers that have full repositories and every queue manager
you have sent messages. When issuing this command, a
specific queue manager can be requested, or an asterisk
* can be used which will list all queue managers that are
known to this platform and the cluster. Like all other

MQSeries commands issued with the ALL suffix, this
will show all attributes of all objects of that type.

DIS CLUSQMGR(*) ALL

SUSPEND QMGR – This will temporarily suspend the
queue manager’s participation in the cluster. A suspen-
sion notification is sent to all other queue managers in
the cluster and, in this way, the workload balancing func-
tion will not attempt to send a message to the suspended
queue manager. This feature is useful for applying main-
tenance to your servers or for installing new releases of
application or system software.

 SUSPEND QMGR CLUSTER(clustername)

RESUME QMGR – This will notify the cluster reposi-
tories that the queue manager is now available for work.
The repository queue managers will, in turn, notify all of
the queue managers that have shown an interest in this
queue manager or one of its resources.

 RESUME QMGR CLUSTER(clustername)

REFRESH CLUSTER – Not needed during normal run-
ning, this instructs the queue manager to drop all known
information it has about the specified cluster and to re-
advertise its presence and resources to the cluster. The
queue manager will also request updates about resources
within the cluster in which it has interests.

 REFRESH CLUSTER(clustername)

RESET CLUSTER – This will forcibly remove a queue
manager from a cluster, and is the only way to remove
auto-defined cluster sender channels. It must be issued
on a repository queue manager.

RESET CLUSTER(clustername)
QMNAME(qmgrname)
ACTION(FORCEREMOVE)

We now know that we can share queues between queue
managers in a cluster. Let’s talk about the same queue
existing on multiple queue managers within a cluster.

Say you have a queue manager that has a local queue
called SALES_ORDERS, and it is responsible for re-
ceiving sales orders from your customer interface appli-
cations, processing the orders and then forwarding them
onto a data server for storage. This is a classic three-tier
architecture. This queue and service have been process-
ing and posting your sales orders for a few months now,
but recently your business has increased and you now
have more orders coming in every day. You find yourself
in need of additional resources to help keep up with the

QM1

Application

The application can issue
MQOPEN and MQPUT calls to
this queue as if it were a local
queue on QM1.

QM2

Q

Sales_Orders

Figure 1. Sharing a queue within a cluster.

Page 4

The MQ Insider - Spring 1999

traffic. You have other servers in your enterprise that
are not as heavily used as the one hosting the
SALES_ORDERS queue, so you decide to define an-
other queue called SALES_ORDERS on another queue
manager in your cluster. Applications now have a choice,
unknown to them, as to which server can process their
sales orders.

When applications open a queue that exists on more than
one queue manager within a cluster, they are directed to
a queue by a dynamic workload algorithm automatically
invoked by the queue manager. This algorithm provides
for smart workload distribution. This means that if, for
some reason, one of the possible target queue managers
hosting the queue is unavailable, the message will not be
sent to that destination. This algorithm uses a round robin
approach to sending messages to their target destinations.
Be aware that some applications in your enterprise might
send messages that need to be correlated in some fash-
ion. These messages are said to have affinities to one
another. In these circumstances, application program-
mers can specify that they would like to “bind” to one
instance of the queue during the course of their MQPUT
processing. This binding request is accomplished at the
time the queue is opened using a new open option called
MQOO_BIND_ON_OPEN. Figure 2 is an example of
setting the option for the MQOPEN call.

MQLONG Options;

Options = MQOO_OUTPUT +
MQOO_FAIL_IF_QUIESCING +
MQOO_BIND_ON_OPEN;

MQOPEN (Hconn,
 &ObjDesc,
 Options,
 &Hobj,
 &CompCode,
 &Reason);

Figure 2. Setting the option for MQOPEN.

If it is determined that the target queue is local to the
queue manager, and if it is PUT(ENABLED) and has
the ability to accept the message, this queue will always
be selected.

Cluster queue managers are constantly keeping each other
informed about changes in their environments. Say for
instance that the same queue exists on two servers within

a cluster. If an administrator sets the queue to
PUT(DISABLED), this information is propagated to the
repository queue managers and then to all other queue
managers that have shown an interest in this queue. In
this way, the workload balancing mechanism will always
have up-to-date information about the environment in
which it is distributing messages.

The dynamic workload algorithm will more than likely
satisfy the majority of scenarios for most users. How-
ever, in not wanting to constrain users with very specific
routing needs, or users requiring more control over the
distribution of messages within their enterprises,
MQSeries V5.1 provides for a work load exit. The exit
is associated with a queue manager and can be designed
to further enhance your messaging environment.

Workload exits are written much in the same way as chan-
nel exits are written today. These exits need to have a
standard entry point, and will return the destination cho-
sen based on the needs of your applications or the out-
come of your routing rules or message interrogation.

As you can see from the snippet of code in figure 3, the
MQWXP structure is made available for the exit code to
use. Within this structure are pointers to several other
structures as well as a pointer to the message descriptor
(MQMD) of the message being routed. Below is a list of
the structure names and a brief description of the infor-
mation they contain.

§ MQWXP – Exit parameter structure. This is the main
structure passed to the exit. It contains specific in-
formation about the exit, why it was invoked, and
pointers to all other data and structures sent to the
exit.

§ MQWDR – Destination records. A pointer to an
array of these structures is sent. There will be an
entry for every possible destination of this message.
This structure contains information about the desti-
nation queue manager: the type of queue manager,
its availability to receive messages, the state of the
channel connecting it to the local queue manager and
information about the cluster itself.

§ MQWQR – Queue record structure. This contains
information about the individual queues to which the
message could be sent, such as queue type, the de-
fault binding attribute, the persistence indicator, de-
fault message priority, and whether or not put opera-
tions are allowed.

Page 5

The MQ Insider - Spring 1999

when making the destination choice. In order to keep
this information dynamic, it would be a good idea to pe-
riodically re-cache this information throughout the day
in order to pick up any new information. The exit is also
aware when an MQOPEN call is made, as well as the
MQPUT and MQPUT1 calls.

The goal of the exit is to populate the DestinationChosen
field of the MQWXP exit parameter structure, based on
message characteristics, data content, message size or
the current state of the target environments. The actual
reasoning behind your decision will be based on the needs
of your business requirements. Once your destination
choice has been determined, whether based on routing
rules specific to the message or simply the availability of
the target queue, the exit will populate the
DestinationChosen field of the MQWXP structure with
the destination number.

As you can see, MQSeries clusters and the dynamic
workload features which are now possible will give ar-
chitects the opportunity to design their systems for 100%
availability, and still allow them to easily accommodate
system maintenance and unplanned outages. Version 5.1
of MQSeries truly provides the ability for fault tolerant,
asynchronous messaging systems and their components.
END

DID YOU KNOW?

BMC Software is the 7th largest software-only vendor
in the world.

#include <stdio.h>
#include <stdlib.h>
#include <cmqc.h>
#include <cmqxc.h>
#include <cmqcfc.h>

void MQENTRY MQdwle(MQWXP
 *WLEparms)
{
your code
…
return;
}

Figure 3. Making the MQWXP structure available
for the exit code.

§ MQWCR – Cluster record structure. This contains
information about the cluster that hosts the destina-
tion queue. In the event that this queue belongs to
more than one cluster, there will be one of these
records for each cluster. Also included in this struc-
ture is information about the type of queue manager
that hosts this instance of the queue and how the clus-
ter channels are defined, manually or automatically.

§ MQCD – Channel definition structure. This con-
tains very specific information about the channel this
message will use to reach its destination. Channel
name, transport type, retry counts and intervals, batch
size and connection name are just a few of data fields
made available to the workload exit.

Along with these structures, a pointer to the complete
message descriptor is made available for the exit, along
with some or all of the actual message data. The amount
of message data sent to the exit is determined by the queue
manager attribute ClusterWorkloadLength. The length
of message data passed to the exit as well as the actual
full length of the message itself can also be used in deter-
mining its destination.

The exit can be invoked for several reasons. These rea-
sons are passed to the exit so the appropriate activity can
take place at the appropriate time. For instance, at queue
manager startup when the exit is loaded, the reason
MQXR_INIT (initialize) is sent. In this way, if any out-
side routing information or rules are stored in files or
databases, it can be accessed and cached for later use

Page 6

The MQ Insider - Spring 1999

This article assumes a basic understanding of MQSeries
programming, ActiveX, Visual Basic and JavaScript.

Recently, IBM introduced a set of ActiveX Au
tomation Classes (MQAX) for MQSeries.
The classes give programs that are written for

the Component Object Model (COM), Microsoft’s ob-
ject-based programming model, full access to the fea-
tures and functionality of the MQSeries API as well as
interconnectivity to other platforms and environments.
COM allows MQSeries services to be accessed from:

§ Internet Explorer

§ Active Server Pages (ASP) executing within
Internet Information Server (IIS)

§ Components executing under the control of
Microsoft Transaction Server (MTS)

§ Applications written in Visual Basic, Visual C++
or J++.

COM exists on Unix and MVS, but the ActiveX Auto-
mation Classes are only available for Windows NT, 95
and 98.

Properties, methods, events, and exceptions define
ActiveX class behaviors. Properties enable read or write
access to underlying data members. Methods perform syn-
chronous actions that return results. Events are asynchro-
nous actions, such as a mouse click, that an object can
respond to. Exceptions are unexpected events that dis-
rupt normal processing.

As ActiveX objects go out of scope, they are automati-
cally destroyed and held resources are recovered, e.g. the
connection to a queue manager, handles to queues and
allocated memory. This simplifies the development of
MQSeries applications.

The MQAX architecture will not surprise knowledge-
able MQSeries users. The following list briefly describes
all MQAX classes:

MQQueueManager – configures, creates and manages
a connection to a queue manager.

MQQueue – manages access to a queue.

MQMessage – configures a message descriptor
(MQMD) for sending or receiving a message and pro-
vides a buffer for application data.

MQPutMessageOptions – controls the options for send-
ing messages.

MQGetMessageOptions – controls the options for re-
ceiving messages.

MQDistributionListItem – manipulates elements of an
Object record (MQOR), Put Message record (MQPMR)
and Response record (MQRR). These structures are used
in distribution lists.

MQDistributionList – a collection of local, remote or
alias queues, which are represented as
MQDistributionListItem instances.

MQSession – a root class that contains error status.

Through MQSession class properties, users can derive
CompletionCode, ReasonCode and ReasonName values.
Another property tells MQAX classes when to throw ex-
ceptions – for CompletionCode values of
MQCC_WARNING or MQCC_FAILED.

MQSession methods clear CompletionCode, ReasonCode
and ReasonName values and return references to other
MQAX classes.

The Visual Basic example in Figure 1 creates an
MQSession object, sets the exception level to
MQCC_FAILED and then connects to the default queue
manager. A reference to a MQQueueManager object is
returned and results are checked.

 ‘ “New” creates an object instance
 Dim ssn As New MQSession
 ‘ Object reference created w/o New
 Dim qm As MQQueueManager

 ssn.ExceptionThreshold = MQCC_FAILED

 Set qm = ssn.AccessQueueManager(“”)

 MsgBox Str$(ssn.CompletionCode) & “ “ & ssn.ReasonName

Figure 1. Using MQSession to check error status .

An MQSession object provides a simple way to check
error conditions, but only one instance is created per pro-

Programming with MQSeries in ActiveX

Page 7

The MQ Insider - Spring 1999

cess. However, MQAX classes support a free threading
model and will be loaded into a multi-threaded apart-
ment1. MQSession objects return accurate results in
single-threaded GUI applications, e.g. ones written in
Visual Basic, but are dangerous to use in multi-threaded
applications, including server applications hosted by
Microsoft Internet Information Server or Transaction
Server.

Other MQAX classes also include CompletionCode,
ReasonCode or ReasonName properties. After a method
call on an MQAX object, e.g. MQQueue, programmers
should check the error properties associated with that
object. Below, for example, we connect to a queue man-
ager and then check error status using the
MQQueueManager object:

qm.Connect()

MsgBox Str$(qm.CompletionCode) _

 & “ “ & qm.ReasonName

In Figure 2, we send a message from an Active Server
Page written in JavaScript. An MQQueueManager ob-
ject is created to connect to queue pp.LQ1 associated
with queue manager ppDEFQM. The queue is opened
using a value of MQOO_OUTPUT. Then we create an
MQMessage object, assign some message data, send the
message and send a result string back to the client browser.

<%@ Language=”javascript” %>
<HTML><HEAD><BODY>
<%
qMgr = Server.CreateObject(“MQAX200.MQQueueManager”);

putQ = qMgr.AccessQueue(“pp.LQ1”, MQOO_OUTPUT,

 “ppDEFQM”);

pMsg = Server.CreateObject(“MQAX200.MQMessage”);

pMsg.MessageData = “MQAX/JavaScript/ASP Message”;

putQ.Put(pMsg); %>
</BODY></HTML>

Figure 2. Sending a message from ASP .

Figure 2 uses the MessageData property to set a charac-
ter string into the message. The MQMessage class also
provides numerous methods for setting different types of
data into and reading data out of a message buffer. Some
methods also maintain a cursor into the message buffer
making it fairly easy to write or read incremental amounts
of data.

Figure 2 did not use put message options, but it could
have done. For example, we can tell MQSeries to fail if
the queue manager is quiescing. To do this, create an
MQPutMessageOptions object, set its Options property
to MQPMO_FAIL_IF_ QUIESCING and include the
MQPutMessage Options object as part of the Put opera-
tion. This is demonstrated in Figure 3.

<HTML><HEAD><BODY>
<%
// all code prior to putQ.Put(pMsg)
// in the previous example

mPMO = Server.CreateObject

 (“MQAX200.MQPutMessageOptions”);

mPMO = MQPMO_FAIL_IF_QUIESCING;

putQ.Put (pMsg, mPMO);

%>
</BODY></HTML>

Figure 3. Using put message options to send a
message.

In Figures 2 and 3, objects are created and destroyed
after IIS finishes processing an Active Server Page. For
high performance Web applications, programmers should
consider storing references to MQAX instances in the
Contents collection of a Session or Application object.
Figure 4 demonstrates in VBScript how to store an
MQQueueManager object reference, and reuse it later to
examine the ReasonName property.

Figure 5 gives an example appropriate for back-end ap-
plications that need to receive a request message and pro-
cess it. Using Visual Basic, we create queue manager,
message and get message option objects. A connection to
queue pp.LQ1 is established and a reference to a queue is
returned. We choose to wait 3 seconds for a message to
arrive. When the Get operation returns, the program ei-
ther receives a message or MQSeries returns errors
through CompletionCode, ReasonCode or ReasonName
properties.

Set Session(“QM”) = Server.CreateObject _

 (“MQAX200.MQQueueManager”)

‘ Do some work and then check the ReasonName property

MsgBox Session(“QM”).ReasonName

Figure 4. Using put message options to send a
message.

Page 8

The MQ Insider - Spring 1999

Queued-Up
In each issue we feature useful MQSeries resources.
Future issues will review hot sites with MQSeries
content and the MQSeries shows and conferences
you need to attend.

For your diary:

Transaction and Messaging Congress
October 11-15, 1999 - Prague, Czech Republic.
One of the major IBM shows that complements the
CICS and MQSeries technical conference recently
held in Dallas. Watch this space.

Some useful online resources:

MQSeries Home Page
The latest news and information about MQSeries,
including partner support and downloads, case stud-
ies, education and events.

www.ibm.com/software/mqseries

MessageQ.Com
The independent site for Application Integration, pro-
viding daily news, features and in-depth interviews
on all aspects of Enterprise Application Integration,
including MQ topics.

www.messageq.com

BMC Software
Find out more about BMC’s Application Service As-
surance solution for MQSeries.

www.bmc.com

Dim qMgr As New MQQueueManager

Dim gMsg As New MQMessage

Dim gmo As New MQGetMessageOptions

Dim getQ As MQQueue

Set getQ = qMgr.AccessQueue(“pp.LQ1”, _

 MQOO_INPUT_AS_Q_DEF, “ppDEFQM”)

gmo.Options = MQGMO_WAIT

gmo.WaitInterval = THREE_SECONDS

getQ.Get gMsg, gmo

‘ Check for errors
’ Process the request

Figure 5. Getting a message using get message
options.

Once a message has been received, we can examine ele-
ments of the MQMD structure through the many proper-
ties of the MQMessage object. For example, we might
check the message ID, correlation ID or group ID.

Suppose we had wanted to receive the message within a
unit of work. This would allow the program to coordi-
nate the message receive operation with work performed
in response to the request. If the work succeeds, it is com-
mitted and the message is removed from the queue. If an
error occurs, the work is rolled-back and the message
remains on the queue.

qMgr.Begin

getQ.Get gMsg, gmo

‘ Other work controlled by

‘ the unit of work (transaction)

qMgr.Commit

Figure 6. Getting a message within a unit of work.

To send or receive messages within a unit of work, the
programmer brackets related operations between Begin
and Commit calls to the queue manager. Figure 6 shows
how this is done. END

1COM follows an apartment threading model. In any process,
one multi-threaded apartment (MTA) and any number of
single-threaded apartments (STA) is allowed. At any instant
in time, more than one thread can execute in an MTA, but
only one thread can execute in an STA. Classes are marked
in the Registry as supporting one type of threading model,
i.e., can execute using free-threading or single-threading. COM
handles thread, apartment, and objects creation; marshals
interface calls across apartment boundaries; and serealizes
calls from an MTA into an STA.

© BMC Software 1999.
The following trademarks are registered trademarks of IBM Corporation in the
United States and/or other countries: IBM, MQSeries, OS/2, AIX, CICS.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft
in the United States and/or other countries. UNIX is a registered trademark in
the United States an other countries licensed exclusively through X/Open Com-
pany Limited. All other products are trademarks or registered trademarks of
their respective owners.

