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Abstract
We present new metaheuristics for solving real crew scheduling problems in a public
transportation bus company. Since the crews of these companies are drivers, we will designate
the problem by the bus-driver scheduling problem. Crew scheduling problems are well known
and several mathematical programming based techniques have been proposed to solve them, in
particular using the set-covering formulation.  However, in practice, there exists the need for
improvement in terms of computational efficiency and capacity of solving large-scale
instances. Moreover, the real bus-driver scheduling problems that we consider can present
variant aspects of the set covering, as for example a different objective function, implying that
alternative solution methods have to be developed. We propose metaheuristics based on the
following approaches: GRASP (greedy randomized adaptive search procedure), tabu search
and genetic algorithms. These metaheuristics also present some innovation features based on
the structure of the crew scheduling problem, that guide the search efficiently and able them to
find good solutions. Some of these new features can also be applied in the development of
heuristics to other combinatorial optimization problems. A summary of computational results
with real-data problems is presented.
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1. Introduction
 
Public transportation companies are faced with important challenges in the area of

transportation planning due mainly to population growth, environmental policies, requirements

for a service with quality, and the pressure from governments to a better use of their

resources. Therefore, transportation planning systems in public transport have been gaining

importance since a large amount of money can be saved if the available resources are

employed efficiently, or wasted if not. The same challenges are faced by the private

transportation companies. As a consequence, there is an increasing need for computerized

tools to aid planners in public and private companies.

 

Several projects have been developed, or are under developing, to design a Transportation

Planning System, as for example HASTUS, Rousseau et al.[1985], IMPACTS, Smith & Wren

[1988], HOT, Daduna & Mojsilovic [1988] and TRACS II, Kwan, Kwan, Parker and Wren

[1997]. All these systems are used by transportation companies in several countries. This work

is also a part of a large project in transportation planning, designated by GIST, developed in

INEGI and ICAT, in coordination with five bus transportation companies: CARRIS, STCP,

Horarios do Funchal, VIMECA, Barraqueiro and Rodoviaria. GIST is a Decision Support

System to assist the planning department of public and private transportation companies or

transit authorities in the operations management. The system includes the production of

timetables, the scheduling of vehicles, the generation of daily duties for drivers, and the

construction of rosters of individual drivers for a certain period.
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The transportation planning is decompose in several subproblems due to its complexity:

timetabling, vehicle scheduling, crew scheduling and roster scheduling, with relations between

them as it can be seen in Figure 1, Freling [1997].

 
 

 Timetabling
                                            trips

 Vehicle Scheduling
 

             tasks
 Crew Scheduling

 
                      crew duties

                                    Crew Rostering                  Crew Rosters
 

 Figure 1. The transportation planning
 

 
The bus network structure includes all the information on the company operational network,

this information is well known and does not change for large periods of time. The transport

service is composed by a set of lines, usually identified by a number, that correspond to a bus

traveling between two points in town or between two towns. For each line the respective

frequency is determined based on demand. Afterwards, a timetable is constructed, resulting in

trips that correspond to a start and to an end point, and a start and end time. The vehicles

scheduling assigns vehicles to trips. The crew scheduling problem generates daily duties for

drivers. And, the roster scheduling constructs monthly rosters comprising the daily duties of

individual drivers together with their days off and holidays. For a survey in transportation

planning see Wren and Rousseau [1995], Wren [1996], Odoni et al.[1994], Daduna et

al.[1995], and for a recent survey in vehicle and crew scheduling see Freling [1997].

 

Several Linear Programming methods have been proposed to solve the crew scheduling

problem or special formulations of it. These methods have been widely applied by the previous

mentioned systems. Actually, the DSS GIST uses an algorithm based on Linear Programming,



4

Beasley [1987], Portugal [1998], and the Vasko and Wolf [1988] and Beasley [1987]

heuristics to obtain lower and upper bounds for the bus-driver scheduling problem.

On everyday planning, companies need fast methods to obtain several good scenarios in real

time that can help the decision maker. Therefore, the objective of the paper is to develop

methods to solve real crew scheduling problems that can be used in a transportation planning

system, in a user-friendly environment. These methods must be flexible in presence of variant

aspects of the problem, as for example different objective functions. The methodology

followed to develop such a solution approach was the metaheuristics, since they can obtain

good solutions in a short time and allow any type of objective function. Therefore, we put

emphasis in solving these problems in a reasonable time, and we will take into account the

environment of the user when developing the solution methods.

Our main applications are for bus transportation companies, where all our data came from and,

since the crew of the buses are drivers, we will designate the problem as the Bus-Driver

Scheduling Problem (BDSP). However, the metaheuristics presented here can also be applied

to other crew-scheduling problems in different sectors, as for example, train and airlines

companies.

 

In the next chapter, we present more details of the bus-driver scheduling problem, and we

formulate it as a set covering problem. In chapters 3, 4 and 5 we propose a GRASP, Tabu

Search and Genetic Algorithm heuristic, respectively, to solve the BDSP. In chapter 6, a

summary of the computational experiment is presented followed by the conclusions and

description of future work.
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2. The bus-driver scheduling problem

The bus-driver scheduling problem can be stated as finding the minimum cost set of feasible

daily duties that cover all trips or vehicle blocks. A vehicle block is the itinerary of a vehicle

between its departure from the garage and its returns to the garage. Any vehicle block can be

split into pieces of work, such that a split occurs only at a relief point, i.e. a time and a place at

which change of drivers is possible. A driver’s duty is a set of pieces of work that can be

assigned to a driver.

 

Several formulations have been proposed for the crew-scheduling problem. We will consider

an approach based on the set covering formulation of the problem. One of the advantages of

this formulation is that it is independent of labor contract and specific company rules.

Therefore the generation of all feasible driver duty modules is separated from the selection of

the minimal cost or best quality driver duties. In this case, the set of all feasible driver duties is

generated by complete enumeration, Agra [1993], i.e. all combinations of pieces of work that

complies with labor contracts and company rules are defined previously to the solving of the

BDSP. This approach allows adjusting only the first module for each transportation company.

 

For each duty, a cost is associated which represents real cost, as extra hours, night hours and

meal costs, and artificial costs, as for example vehicle change, type of service, number of hours

over the average. Other components of the cost can be considered if they are requested by the

transportation company.
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Let { }N n= 1 2, , ,� and { }M m= 1 2, , ,� be the index sets for the feasible duties and pieces of

work respectively. Let cj  be the cost associated with duty j , and define the matrix A as

follows:

 a
j i

ij =




1

0

  if the duty index  includes the - th piece

  otherwise.

Consider the following variables:

 x
j

j =




1

0

  if - th duty is in the solution;

  otherwise.

The bus-driver scheduling can be formulated as a set-covering problem (SCP):
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Constraint (2) means that all piece of work has to be covered by a duty, and can be covered

more than once. Columns correspond to duties and the lines correspond to the pieces of work.

We say that a line i is covered if exist a column j in the solution such that aij=1. This means

that exists a driver’s duty j in the solution that contains the piece of work i.

 

The SCP is NP-hard, Karp [1972], Garey and Johnson [1979]. Several approaches have been

proposed to solve the SCP, based on heuristics, column generation, lagrangian and linear

programming relaxations and state space relaxation. Recent surveys can be found in Odoni et

al.[1994], Freling [1997] and Daduna et al.[1995]. Several greedy heuristics, based on

different priority or greedy functions, are presented in Vasko & Wolf [1988]. Beasley and Chu
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[1996] and Al-Sultan et al.[1996] have proposed some approaches based on genetic

algorithms (GA). Recently, several authors are also presenting GA for the BDSP. Among

these are Clement and Wren [1993]. Wren and Wren [1995], Kwan and Wren [1997], Kwan,

Kwan and Wren [1997] and Galvão, Sousa and Cunha [1998].

In the previous formulation, the objective is to minimize the total cost of the driver’s duties.

But, the transportation companies may have different objectives when planning for example

the service quality which can be measured in different ways in each company and, therefore,

we are looking for a robust and flexible method that can be applied to any objective function.

Some examples of measures of the quality of the service are:

• The number of pieces of work not covered. Some companies allow pieces of work or trips

to be uncovered, and their main objective is to minimize the number of the uncovered

pieces.

• The unfitness value, which measures the amount of infeasibility with respect to the set

partition formulation, Chu and Beasley [1995]. We define the unfitness by

u wp ii

m
= −

=∑ 1
1

, where wi is the number of columns in the current solution x that cover

line i. In practice, this value is quite important for the users, since some degree of

overcovered is desired, however if a solution has some pieces of work with too many

drivers assigned, the planner will have to adjust manually this solution until have one with

smaller unfitness value.

• The total number of duties. Some companies claim that a small number of duties

respecting the labor and company constraints allow a better planning and easier

implementation.
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• The total number of duties with only one piece of work (single piece-of-work duty). If we

allow duties with only one piece of work, these duties will be very expensive in terms of

labor cost. Therefore some companies use them only in special cases and want to minimize

the use of this type of duties.

• The number of vehicle changes. The change of a vehicle driver can disrupt the operational

functioning of the company, and cause complains from the drivers. Therefore, some

companies are mostly worried about minimizing the number of changes.

• Combination of any of the above.

In general we will talk about evaluation functions for the solutions that can be the cost

function, or any of the above functions. However, all users in the different companies want to

be able to analyze several solutions in real time and change them, if they find the need to do it.

This last point is very important for the companies to accept the transportation planning

system. For all these reasons, some of the classical methods are not adequate. The recent

advances and success in metaheuristics applied to other problems advocates to the use of these

techniques as a good way to proceed.

3. GRASP for the BDSP
 
The Greedy Randomized Adaptive Search Procedure, GRASP, was proposed by Feo &

Resende [1989], and since then it has been applied to several Combinatorial Optimization

problems with success.

 

The basic idea of GRASP is to combine constructive methods with local search. In the first

phase, the construction phase, a feasible solution is build in a greedy fashion, introducing an
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element at each time considering some random choices. At each step of the greedy heuristic, a

restricted list of the best elements to be included in the solution is created, then one of these

elements is randomly selected and inserted into the solution. The process is repeated until a

feasible solution is found. In the second and last phase, a local search method is applied to try

to improve the solution found in the first phase. Both phases are repeated until a certain

stopping-criteria is verified.

GRASP can be seen has a multi-start sampling algorithm, but instead of starting from purely

random solutions, it constructs the initial solution using a greedy adaptive probabilistic

heuristic.

The main steps of the GRASP are:

1 While a certain stop-criteria is not verified

1.1 Get a greedy randomized initial solution x

1.2 Apply local search starting with solution x.

2 Return the best solution found.

The first phase of GRASP corresponds to a greedy adaptive randomized heuristic where at

each iteration a column is added to the solution; we keep adding columns until all lines have

been covered, and it can be described as follows:

1 While there is an uncovered line, repeat

1.1 Use a greedy function to evaluate the benefit of including each column.

1.2 Select the three best columns (restricted candidate list).

1.3 At random, select one column from the candidate list.

1.4 Include this column in the solution and update the greedy function.
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The greedy function used is the following one: c kj j
 where  c j

 is the cost of column j and

k j
 is the number of uncovered lines that column j covers if added to the solution. The greedy

heuristic is adaptive since, at the end of each iteration (step 1.4) the value of k j
 is adapted

taking into account the columns already included in the solution.

The second phase of the GRASP is a local search heuristic. The most important concept in a

local search is the definition of the neighborhood for the problem in consideration. We

propose a exchange neighborhood, i.e. remove a column of the solution and add a new column

that covers at least one line uncovered. It is importance to notice that, for this neighborhood,

the number of columns of the neighbor solution is always equal to the number of columns of

the initial solution obtained in step 1.1 of GRASP.

More precisely, let x be a solution of the BDSP, and let Nx*   the set of column in the solution

x. Then, the neighborhood of the current solution x can be defined as follows:

N(x)={y: l,k N, l N (x )  l N  (y ) k N  (x )
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             and    also  (line)  and  and  }

1 0 0
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The exchange neighborhood, as described, leads to unfeasible solutions, i.e. some lines are not

covered since we only oblige that the entering column covers one uncovered line, but the

leaving column can leave one or more lines uncovered. Allowing these extra (unfeasible)

solutions is known as strategic oscillation, Glover and Laguna [1997], and provides escapes

from local optimal solutions and drives the search to good solutions. To control the

trajectories and avoid visiting to many unfeasible solutions, a fitness function that penalizes the
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unfeasibility is defined as follows: ( )f x c x K wj j
j

n

i
i

m

( ) min ,= − × −
= =

∑ ∑
1 1

0 1  where wi is the

number of columns in the current solution x that cover line i, and K>0 is a parameter

representing the “cost” of an uncovered line.

Another aspect of the local search is related with the candidate list of neighbors. The feasible

solutions for most of our real problems present a very small ratio between the number of

columns in the solution and the total number of columns. Therefore, the number of candidate

columns to enter is quite large. To avoid considering all possible columns, we start by the ones

with smaller penalized cost, defined next. Consider a current solution x, after removing the

column l, the penalized cost is obtained by taking in account the uncovered lines and

overcovered lines that the column covers after entering the solution. The penalized cost of

column k not in the solution is defined as follows:p c u Q qk k ik
i

m

ik
i

m

= + × + ×
= =
∑ ∑ U

1 1

, where

( )u a w aik ik i il= − −*min ,0 1 ,  ( )q a w aik ik i il= −* max ,0 , U>0 and Q>0 are parameters

associated with lines uncovered and overcovered, respectively, and wi defined as above. If a

column covers many uncovered lines the cost is reduced. On the other hand, if a column

covers many lines already covered, the cost increases.

The local search algorithm is a first improvement and can be described as follows:

1 Consider an initial solution

2 While there is an untested neighbor of x:

2.1 Let x’ be the next untested neighbor of x in the candidate list defined previously;

2.2 If f(x’) <f(x) let x=x’

3 Return x
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The reasons for using such a simple local search and neighborhood are due to the aim of

repeating several times the GRASP iteration. Each time starting with a different initial

solution, and the application of the GRASP as a subroutine of the tabu search and genetic

algorithm, as we will see.

4. Tabu search algorithm for the BDSP

Tabu Search is an adaptive procedure originally proposed by Glover [1986]. Recently, this

metaheuristic has been gaining importance as a very good search strategy method to solve

combinatorial optimization methods. For a recent survey see Glover & Laguna [1997].

 

The basic idea of tabu search is to escape from a local optimum by means of memory

structures. Each neighbor solution is characterized by the move and short term memory is

used to memorize the attributes of the most recent applied moves, incorporated via one or

more tabu list. Therefore, some moves are classified as tabu and consecutively some neighbor

solutions are not considered. To avoid not visiting a good solution, an aspiration criteria can

be considered. At each iteration, we choose the best neighbor of the current solution that it is

not tabu or verifies an aspiration criteria. The algorithm stops when a certain stopping-criteria

is verified. The best solution found during the search is then the output of the method.

 

Initially we will present the basic features of a simple tabu search algorithm for the bus driver

scheduling problem, and afterwards we will describe some new aspects of the heuristic.
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The main steps of the TS are:

1 Obtain an initial solution x.

2 While a certain stop-criteria is not verified

2.1 Obtain a neighbor of x, x’, not tabu or satisfying an aspiration criteria with minimal

cost among the neighbors of x

2.2 Set x=x’  and update the tabu list and aspiration criteria.

3 Return the best solution found.

 

The initial solution can be obtained by two methods: a random initial heuristic and a greedy

heuristic. The random initial works as follows: For each line, randomly select a column

between the ones that cover it. When all the lines have been considered, the redundant

columns are removed. The greedy heuristic builds a solution in a greedy fashion, at each step,

a column is selected to enter the solution following some greedy function; repeat this step until

all lines have been covered. This is the deterministic version of the greedy adaptive

probabilistic heuristic of the previous chapter.

We considered three neighborhoods, the exchange neighborhood, presented before, the

remove and the insert neighborhood. The insert neighborhood considers all solutions that can

be obtain from the current solution by the introduction of one column. In the opposite way,

the remove neighborhood considers all solutions that are obtained from the current one by

removing one column. Most of the solutions consist of a small number of columns. Therefore,

the insert neighborhood is larger than the remove neighborhood, since there is a large number

of candidate columns to enter the solution that to be removed. Due to the size of the insert

neighborhood, we consider a candidate list strategy. The strategy makes the search more

aggressive and avoids visiting not so good solutions. The candidate list is build considering the
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following rule: a column is considered for entering if covers one uncovered or single covered

line and if its penalized cost, pk, is less or equal than the average cost.

For each of the three neighborhoods a certain number of iterations are performed, which

depend on a parameter related to the size of the neighborhood. The order of the neighborhood

search is as follows: insert neighborhood, exchange neighborhood, remove neighborhood,

exchange neighborhood, and repeat.

To each solution we calculate its value using the fitness function, f(x), described before, since

we can have unfeasible solutions. Other evaluation functions related to the quality of the

service or combinations could be used.

Two tabu list were considered: the insert tabu list and the remove tabu list. The remove tabu

list contains all columns that have been inserted recently in the solution and therefore they

cannot been removed. The insert tabu list contains the columns that have been removed in the

most recent iterations, and therefore it is tabu to insert them again in the solution. The two

tabu list have different size because the candidates columns for each one is quite different. The

size of the insert tabu list is a percentage of number of columns in the first solution, and

smaller than the size of the remove one, which is a percentage of the total number of columns.

Finally, the aspiration criteria used was the most common one: the tabu status is overruled if

the neighbor solution has a objective function value smaller than the best found up to that

iteration
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Next we present some innovation aspects considered in the tabu search. The inclusion of these

new features has the objective of improving the search, and can be seen as intensification

strategies based on classical optimization and hybrid methods.

Suppose we apply the tabu search for several iterations using only the insert neighborhood.

The resulting solution will have a large number of columns, and each line will be covered by

several columns. To obtain good solutions with fewer columns and, such that each line is not

overcovered, we can apply an exact method to set covering subproblem using the cost

function. Note that the subproblem has a smaller dimension compared with the full problem,

since we are only considering the columns in the current solution. For small instances we can

apply an enumeration method. For larger instances we apply the GRASP method described

previously since the exact method takes too much time. This permits us to find good solutions,

eliminating the most expensive columns, which are inserted in the insert tabu list. Moreover,

this intensification strategy allows us to obtain solutions that would be difficult to find by the

usual search, and the computational time did not increase significantly.

5. Genetic algorithm for the BDSP

Genetic Algorithms (GA) were originally developed by Holland [1975] and are intelligent

search heuristics based on evolution. The basic idea of the genetic algorithms is that, during

the course of evolution, the best fitted individuals have better change to survive and

reproduce, meanwhile the least fitted individuals will be eliminated. A GA simulates this

behavior by taking into account a initial population of solutions (individuals) and fitness

function, usually associated with the objective function, and by means of some selection
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techniques and operators, this population is replaced by a new one, with higher fitness. This

cycle is repeated until a satisfactory solution is found.

 

The fundamental aspects of genetic algorithms are: the representation of the solutions, parent

selection, population replacement and the genetic operators, crossover and mutation.

 

GA has been applied to a wide range of problems in several areas. For a survey in GA see

Davis   [1996]. The GA proposed to solve the BDSP is based on the work of Beasley and Chu

[1996], but several aspects have been adapted to the specific problems we want to solve and

their environment.

The main steps of the GA are:

1 Generate a family of trial solutions.

2 Calculate the fitness of each solution.

3 While a certain stop-criteria is not verified

3.1  Select elements from the population

3.2  Crossover these elements.

3.3  Mutation some elements

3.4  Population replacement

4 Return the best solution found.

Solutions are represented as a binary vector of dimension n, indicating if the column (driver

duty) is or is not in the solution. This is the obvious representation of a covering solution, but

others have been suggested, see Beasley and Chu [1996]. The major problem of this

representation is that the application of a crossover or a mutation operator frequently
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produces an unfeasible solution. To control the unfeasibility, we use the fitness function

described previously. Also, if necessary, a greedy heuristic can be applied to restore feasibility.

The initial population is generated by different methods to guarantee some diversification. The

first method generates most of the population, except for 10 solutions, and can be described as

follows: for each line, choose randomly a column that covers it, and them apply a simple

heuristic to eliminate columns that only cover already covered lines. The remain 10 solution

are obtained by the heuristics described in Vasko and Wolf [1985], so we guarantee the

presence of some good solutions in the initial population and making the search to converge

faster. The initial population has 100 solution and, as the offsprings are introduce the

population, it can grow until 200. When this limit is obtained, we choose the 100 best

solutions and eliminate the remain ones

The parent are selected by a tournament selection based on the uniform probability function

and on the evaluations functions. In this method, two groups of T solutions are selected

uniformly from the population and the best solution of each group is selected for parent.

Beasley and Chu [1996] refer that this method is one of the more efficient methods and

suggest the value 2 for T. To determine the best solution of each group, it can be used

different evaluation functions, as the cost function, the fitness function or any quality service

measure as described in section 2. To diversify the search, at some stages, we randomly

choose one of the evaluation functions. The reason for having this approach is because the

main objective is to obtain different scenarios for the BDSP, not only to obtain the minimal

cost solution.
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The crossover operator defines the way of combining two or more parent solutions in a

offspring solution. Several method have been considered as the one-point and two-point

crossover, the uniform crossover based on the uniform distribution and the generalized fitness-

based crossover or fusion operator, see Beasley and Chu [1996]. We consider the two-point

crossover, where two crossover points are selected randomly and the segments of the parents

are swapped to produce two offspring solutions.

 

An improvement in the GA was obtained by defining a new crossover operator that we

denominate by perfect offspring. These operator considers two parents and try to obtain the

best offspring of these parents by solving a set covering subproblem, where all the lines are

considered but only the columns present in the parent solutions are taking in account. We

follow the intensification strategy described in previous section, applying exact methods for

very small instances and the GRASP method for larger ones. This approach follows the

methodology known as memetic algorithms, Moscato [1989] and a similar approach based on

Integer Linear Programming was used by Clement and Wren [1993]. The memetic algorithms

are a population-based global search that also considers local search heuristics applied to each

individual, and, in this way, combine several aspects of different methods to improve the

performance of the search. Our GA, not only combines aspects of different search methods,

but also optimization methods based on the structure of the problem. The perfect offspring

crossover allows the search to converge rapidly to good solutions and this idea can be applied

to other combinatorial optimization problems.

The mutation operator permits to introduce random variations in the solutions, and play an

important role in the capacity of the GA to diversify the search, especially when all the

solutions in the population become similar. A mutation is applied to each offspring solution
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after crossover. We use the mutation operator proposed by Beasley and Chu [1996] based on

removing or including a column, following the mutation rate presented next:

 numinv = 
m

m t m m
f

g c f1 4+ − −










exp( ( ) / )

 where: t = number of offspring solutions that have been generated; mf = final stable mutation

rate; mc = number of offspring solutions generated at which a mutation rate mf/2 was reached;

 mg = gradient at t=mc;

After the crossover and mutation, a offspring solution can be or not included in the

population, following the next heuristic. Iteratively, compare the child solution with the

solutions in the population starting at a random position. Three situations can occur:

1. A solution having better values for all evaluation function is found. Discard this child

solution, and go back an obtain a new one.

2. A solution having worst values for all evaluation function is found. The child solution

substitutes this solution.

3. If none of the above happens, then the child solution is not dominated by any solution in

the population, so add the child solution to the population, without removing any solution.

The last added offspring can be a parent in the next iteration.

For the GRASP and Tabu Search methods, we used the fitness function to evaluate the

solutions, however these methods allow to take in consideration other evaluation function if

proposed by the transportation company. For the Genetic Algorithm, we went a little further

and, at some stages of the search, we apply a diversification strategy by considering several

evaluations functions based on the service quality, and not only in the cost or fitness function.
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At the end of the search, the best solutions found for each of the active evaluators are output

and the user has access to all of them.

6. Summary of the computational results
 
 The motivation for this research was to develop solution methods to solve real crew

scheduling problems that can be used in a transportation planning system, in real-time and in a

user-friendly environment. Therefore, the computational experiment was design to analyze the

performance of the different metaheuristics previously described when applied to real

instances. Our main objectives are to gain understanding on the behavior of the different

methods and compare the performance of these ones with method actually used by GIST. We

present a summary of the extensive computational testing reported in Portugal [1998].

 

 All numerical tests were carried on a Workstation IBM Risc 600 with 128 MB Ram memory.

The algorithms were coded in C. Five real data-sets obtained directly from the companies

associated with the project GIST are considered, see Table 1. The density of matrix A is

between 2% and 6%.

 Table 1: Size of the test problems.
 

Group 1
S1 RL1 F2 RL2 RL3

m 98 215 141 348 348
n 2002 8511 30842 25790 74019

In Table 2 we present the results obtained by the LP method actually used by the GIST

transportation system. The results for the RL3 where obtained by other methods, due the

actual GIST system is not able to solve such a large instance. The remaining results are

presented in the following tables: the GRASP method are presented in Table 3, the Tabu
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Search heuristic in Table 4, and two versions of the Genetic Algorithms in Tables 5 (simple

GA, two point crossover) and 6 (perfect offspring crossover). For each test problem we

present the value of the cost function, the following evaluation functions: unfitness, total

number of duties, the number of single piece-of-work duties, and the time to find the best

solution.

 
Table 2: Computational results of the LP-Based Method.

 

  Opt./UB  LB  Unfitness  N. of
Services

 N. of single
p.o.w. duties

 Time
 seconds

 S1  282705*   25  48  9  5
 RL1  467254  426888  68  63  6  326
 F2  167321  159250  117  28  0  1150

 RL2  470017  381170  236  66  1  2220
 RL3*  453103  370307  -  64  -  2816

Table 3: Computational results of the GRASP Heuristic.

  Cost  Unfitness  N. of
Services

 N. of single
p.o.w. duties

 Best
Time

 S1  332123  39  59  0  95
 RL1  482876  51  66  6  908
 F2  165244  60  28  1  2614

 RL2  480632  146  69  1  2173
 RL3  459644  108  67  1  3608

 

Table 4: Computational results of the Tabu Search Heuristic.
 

  Cost  Unfitness  N. of
Services

 N. of single
p.o.w. duties

 Best
Time

 S1  209816  21  51  0  11
 RL1  466797  39  53  0  593
 F2  166028  41  22  0  351

 RL2  507306  97  64  0  186
 RL3  479870  75  68  0  3635

 
The tabu search outperformed the remaining methods, since overall it obtained the best results

for all the evaluations functions, however a few final solutions where unfeasible and it was

necessary to apply a heuristic to restore feasibility. Overall methods, the GRASP obtains the

worst results.
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Comparing the LP-based solutions with the TS-solutions, we can observe that these last

solutions have better values with respect to the three evaluations functions, meanwhile the cost

is a little higher. In average, the running times are similar for both methods. Showing the both

types of solutions to the final users, they comment that the TS-solutions have the

characteristics they are looking for: less number of single piece-of-work duties, smaller

unfitness, less or approximately the same number of services and similar cost.

Table 5: Computational results of the Genetic Algorithm (GA6).
 

  UB  Unfitness  N. of
Services

 N. of single
p.o.w. duties

 Best
Time

 S1  735092  24  53  2  13
 RL1  463840  38  61  6  165
 F2 177644  82  29  0  1144

 RL2  478586  139  68  1  338
 RL3  452482  102  64  1  540

 

Table 6: Computational results of the Genetic Algorithm-2 (GA9).
 

  Opt./UB  Unfitness  N. of
Services

 N. of single
p.o.w. duties

 Best
Time

 S1  711781  17  52  0  202
 RL1  473084  42  62  6  3608
 F2  177644  83  29  0  2397

 RL2  481780  132  66  1  3600
 RL3  456825  101  66  1  3623

 
 Considering the GA and the LP-based solutions, we can observed that, if the GA runs for a

short time, we can obtain similar solutions to the LP ones. The GA-solutions have small values

for the number of single piece-of-work duties and smaller unfitness value, approximately the

same number of services, but higher cost. For larger running times, the results improve for all

evaluation functions.
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 Between the two versions of the genetic algorithms, we can observe that the perfect offspring

crossover version (GA9) obtains slightly better results but at expensives of high computational

running times. Therefore, some more work is needed to obtain a faster perfect offspring

crossover.

 

 Users of different companies were asked to evaluate the performance of the different methods.

They point out the importance of the evaluations functions, other than the cost function, and

the advantage of being able to obtain several scenarios as the main benefit and utility of the

new metaheuristics. As a consequence of having good values for the unfitness and single

piece-of-work duties, the need for manual adjustments that yield satisfactory solutions is

reduced significantly leading to a better acceptance of the GIST system.

 

7. Conclusions and future work

In this paper we have presented several metaheuristics for solving the bus-driver scheduling

problem in transportation companies. These methods have been incorporated in the Decision

Support System for Transportation Planning GIST allowing to solve very large-scale problems

in real time, substituting the previous LP-based method that was object of several criticism by

the users.

Our computational testing showed that the Tabu Search and the Genetic Algorithms leads to

good results within reasonable times, and the results compare favorably with the actual LP-

based solutions. Creating real schedules, meeting the requirements of the final users shows the

success of this approach. Moreover, the system GIST using these new methods to build bus
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driver schedules permits the achievement of a final solution that do not need manual

adjustment by the user, a common practice for the LP-based solutions.

The system GIST can be used for operational decisions, helping the every day planning or as

strategic asset. During the negotiations of union contracts or changes in transportation

regulation, users can successfully manage the resources gaining a sustainable competitive

advantage. A similar approach is described in Campbell et al.[1997] for the airline industry.

As future work, we would like to consider more structure elements of the problems in the

metaheuristics. Since the set covering problem has been very well studied, the use of this

knowledge in the design of a metaheuristic can improve the search in terms of quality of the

solution and running times. Some of the ideas that we are currently working consider the mix

of column generation techniques with tabu search or genetic algorithms. This framework is the

next step of the approach used to improve the tabu search and the genetic algorithms by

considering strategic intensifications based on exact methods and the perfect offspring in

genetic algorithms for larger instances. Also, as future research topic, we are interested in

developing metaheuristics for the integration vehicle and crew scheduling problems.
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