
1

Checked Transactions in an Asynchronous Message Passing Environment

S.J. Caughey, M.C. Little & S.K. Shrivastava
Department of Computing Science,

University of Newcastle,
Newcastle upon Tyne, NE1 7RU, UK

Abstract

Traditionally transactions have been single-
threaded. In such an environment the thread terminating
the transaction is, by definition, the thread which
performed the work. Therefore, transaction termination is
implicitly synchronised with the completion of the
transactional work. With the increased availability of
both software and hardware multi-threading, transaction
services are being required to allow multiple threads to
be active within a transaction. In these systems it is
important to guarantee that all threads have completed
when a transaction is terminated, otherwise some work
may not be performed transactionally.

In this paper we present a protocol for the
enforcement of checked transactional behaviour within an
asynchronous environment. We illustrate the use of the
protocol within a proposed implementation for a CORBA-
compliant Object Transaction Service intended for a soft
real-time application which makes extensive use of
concurrency and asynchronous message passing.

Keywords : transactions, CORBA, distributed
systems, real-time

1. Introduction

Transactions (atomic actions) are used to guarantee
the consistency of work performed within their scope.
Transactions are units of work that have the following
ACID characteristics:

• Atomicity: The transaction completes successfully
(commits) or if it fails (aborts) all of its effects are
undone (rolled back).

• Consistency: Transactions produce consistent results
and preserve application specific invariants.

• Isolation: Intermediate states produced while a
transaction is executing are not visible to others.
Furthermore transactions appear to execute serially,
even if they are actually executed concurrently.

• Durability: The effects of a committed transaction are
never lost (except by a catastrophic failure).

Typically a transaction service operates by having
objects register their involvement in a transaction with a
transaction manager, which executes a multi-phase
commit protocol when the transaction is committed.
Traditionally transactions have been single-threaded
(where a thread is defined to be an entity which performs
work, e.g., a lightweight process, or a UNIX process.) In
such an environment the thread terminating the transaction
is, by definition, the thread which performed the work.
Therefore, transaction termination is implicitly
synchronised with the completion of the transactional
work.

With the increased availability of both software and
hardware multi-threading, transaction services are being
required to allow multiple threads to be active within a
transaction. In such systems it is important to guarantee
that all of these threads have completed when a
transaction is terminated, otherwise some work may not
be performed transactionally. Although protocols exist for
enforcing thread and transaction synchronisation in local
and distributed environments (commonly referred to as
checked transactions [1]), they assume that
communication between threads is synchronous (e.g., via
remote procedure call). A thread making a synchronous
call will block until the call returns, signifying that any
threads created have terminated. For example, the Object

2

Transaction Service (OTS), specified as one of the
Common Object Request Broker Architecture (CORBA)
Services [2] by the Object Management Group, specifies a
checked transactions protocol based upon the X/Open
model.

However, a range of distributed applications exist
which require extensive use of concurrency in order to
meet real-time performance requirements, and utilise
asynchronous message passing for communication. In
such environments it is difficult to guarantee
synchronisation between threads, since the application
may not communicate the completion of work to a sender,
as is done implicitly with synchronous invocations.

In this paper we will describe a proposed
implementation of checked transaction behaviour within a
soft real-time application which uses message passing for
communication. Our implementation places no restrictions
on the type of invocation mechanism used within the
application and has minimum impact upon programming
effort. Although our application is required to use a
CORBA compliant Object Request Broker (ORB) [3] for
the middleware with an OTS implementation, the ideas
presented are generally applicable to other message-
oriented middleware and transaction service
implementations.

2. A processing model

Before describing our application we will first define
a processing model with which to describe our ideas. In
this model all processing carried out within a system is
performed by threads which execute system function and
access system state. Both system state and function are
encapsulated within objects, and threads progress by
invoking objects i.e., invoking some function within an
object. We assume complete distribution transparency
within our model, so that invocation upon some object can
be perceived as the invoking thread ‘moving’ to where the
object resides, and executing the required operation there.

Invocation may be either synchronous or
asynchronous. With synchronous invocation the invoking
thread obeys call-return semantics, ‘moving’ to the object
to execute the required function and then returning to the
point in its program immediately succeeding the
invocation. An asynchronous invocation can be described
as the creation of a new thread whose task it is to execute
the required function. The creating thread continues
independent of the created thread. Upon completion of the
invoked function the created thread terminates.

As well as performing object invocations, a thread
may explicitly create another thread and specify the
function that the created thread is to execute. Note that in
our model the creation of a new thread and an
asynchronous invocation are equivalent. Both result in a
new thread which is independent of its creator.
Throughout the remainder of this paper we shall refer only
to asynchronous invocation in order to imply both.

A thread’s ‘involvement’ i.e. association, with a
particular transaction can be modelled as a record on a
logical stack known as a transaction context. A thread
becomes ‘involved’ whenever it invokes a transaction
‘begin’, in which case the new transaction is ‘pushed’ onto
its transaction context. Multiple transactions are present
within the transaction context when the thread is within a
nested transaction. The transaction at the top of the stack
is ‘active’. Any object invoked by a thread which is
‘active’ may choose to register itself with the transaction,
thereby ensuring its participation in the commit protocol
for that transaction. Any thread which is ‘active’ within a
transaction may execute the transaction ‘end’ at which
time the transaction is ‘popped’ off the transaction
context.

By default any newly created thread takes the same
transaction context as its creator. A transaction may
therefore have one or more ‘involved’ threads each of
which may be ‘active’.

3. Checked behaviour

Applications which do not create new threads and
only use synchronous invocations within transactions
implicitly exhibit checked behaviour. That is, it is
guaranteed that whenever the transaction ends there can
be no thread active within the transaction which has not
completed its processing. This is illustrated in figure 1, in
which (along with figures 2 and 3) vertical lines indicate
the execution of function, horizontal lines message
exchange, and the boxes represent objects. Figure 1
illustrates a client who starts a transaction by invoking a
synchronous ‘begin’ upon a transaction manager. The
client later performs a synchronous invocation upon
object a which in turn invokes object b. Each of these
objects registers itself as being involved in the transaction
with the manager. Whenever the client invokes the
transaction ‘end’ upon the manager, the manager is then
able to enter into the commit protocol (of which only the
final phase is shown here) with the registered objects
before returning control to the client.

3

However, when asynchronous invocation is allowed,
explicit synchronisation is required between threads and
transactions in order to guarantee checked behaviour.
Figure 2 illustrates the possible consequences of using
asynchronous invocation without such synchronisation. In
this example a client starts a transaction and then invokes
an asynchronous operation upon object a which registers
itself within the transaction as before. a then invokes an
asynchronous operation upon object b. Now, depending
upon the order in which the threads are scheduled, it is
possible that the client might call for the transaction to
terminate. At this point the transaction manager knows
only of a’s involvement within the transaction so enters
into the commit protocol, with a committing as a

consequence. Then b attempts to register itself within the
transaction, and is unable to do so. If the application
intended the work performed by the invocations upon a
and b to be performed within the same transaction, this
may result in application-level inconsistencies. If such
failures are to be avoided, checked behaviour must be
enforced regardless of the invocation mechanism.

We can avoid unchecked behaviour by requiring that,
within a transaction, i) every thread created must
synchronise with its creator (thread) immediately before
termination; ii) a thread cannot synchronise with its
creator until the threads it created have performed this
synchronisation; iii) a transaction may not execute its
commit protocol until the threads created by the initiating

Client Object a Object b Transaction
Manager

begin

invoke

invoke

register

register

end

commit

commit

time

Fig. 1 : Checked transaction behaviour

Client Object a Object b Transaction
Manager

begin

invoke

invoke

register

register

end

commit

oops !!!

Fig. 2 : Asynchronous invocations

4

thread i.e. the thread which initiated the transaction, have
performed this synchronisation.

The protocol is illustrated in figure 3. Here the
threads created by the invocation upon object a and b are
required to inform their creator that they have terminated
by sending a ‘synch’ message. The double parallel lines
indicate where threads are awaiting ‘synch’s for any
threads they created. The thread created by the invocation
upon object a cannot terminate until the thread it created
for the invocation upon object b returns a ‘synch’; and the
transaction ‘end’ may not proceed until the thread created
for the invocation upon object a returns a ‘synch’.

In this example the initiating thread is also the thread
which terminates the transaction, and it is therefore
implicit that all synchronisation is complete. However, as
we described earlier, within our model any thread which is
‘active’ within the transaction may terminate the
transaction. In such a case the transaction manager must
delay executing the commit protocol until it recognises
that the initiating thread has completed its
synchronisation.

The effect of introducing this additional
synchronisation is to turn asynchronous invocations,
occurring within a transaction, into a form of deferred
synchronous invocation. This ensures that the tree which
represents all the threads involved within the transaction,
rooted in the initiating thread, collapses eventually to the
root prior to commit. Our solution requires (unavoidable)
additional synchronisation messages to be exchanged but
does not limit the amount of concurrency obtainable
within a transaction and can be implemented so as to be

largely transparent to the application programmer.

In the remainder of this paper we shall describe a
proposed implementation within a CORBA compliant
ORB, which guarantees checked transaction behaviour
irrespective of the invocation mechanism used by an
application.

4. The application domain

Our target application domain is that of
telecommunication. Applications within this domain often
have to handle potentially large numbers of concurrent
events in a timely fashion. Failure to do so is seen as a
failure of the application by the event source and will
result in repeated retries and ultimately in user
dissatisfaction. This is typical of many telecommunication
applications (e.g., call processing). The application
endeavours to meet these soft real-time requirements
through the extensive use of concurrency. Concurrency is
obtained by allowing the application to create threads
either explicitly or, more commonly, through the
extensive use of asynchronous invocation.

The application uses a CORBA-compliant ORB to
support communicating objects distributed within a
number of address spaces throughout a loosely coupled
system. Asynchronous invocation is implemented as a
CORBA ‘one-way’ call. The CORBA specification for a
‘one-way’ call requires ‘best-effort’ semantics where
‘best-effort’ is defined by the ORB implementation. In the
case of our target application, the ORB simply endeavours
to deliver a message but does not return an

Client Object a Object b Transaction
Manager

begin

invoke

invoke

register

register

end

commit

commit

synch
synch

wait for all synchs

Fig. 3 : Thread synchronisation

5

acknowledgement of delivery.

Due to the application’s stringent performance
requirements, the threads which process asynchronous
invocations are not created dynamically but are
maintained in a per-address space pool, with a thread
being assigned to carry out the processing associated with
each invocation. When the processing is complete the
thread returns to the pool.

Figure 4 illustrates that the application consists of a
number of distributed spaces each of which contains a
pool of threads and a number of objects. An underlying
ORB allows both synchronous and asynchronous
invocations upon objects to be performed in a distribution
transparent manner. Some of the spaces have external
interfaces over which they may receive (and generate)
large numbers of concurrent events.

We are working with the implementors of the ORB
to identify areas where the ORB could be tailored to better
suit this type of application [4]. We are also in the process
of adding the Arjuna OTS-compliant transaction service
[5] for use within the application. Transactions are
primarily required for certain consistent updates to the
distributed databases upon which the application depends.
However, as the application is very large (containing
many thousands of lines of code) and constantly evolving,
it is impossible to predict how and where transactions
might be used within the application in the future. It is
therefore essential that transactions be capable of being
utilised anywhere within the application. Additionally it is
a requirement that the addition of transactions should have
minimal impact upon the current API so as to avoid
extensive changes to existing code and to protect the
programmer from unnecessary complication. The service
should conform to recognised standards so as to be
capable of future inter-operation with standards compliant

services e.g., persistence services or other transaction
services. All of these requirements can be satisfied by a
suitable OTS implementation.

5. Using the CORBA Object Transaction
Service

The CORBA OTS specification describes the
functionality and interfaces of a service intended to
support the use of transactions in applications composed
of distributed (CORBA-compliant) objects. The
specification describes how objects which wish to
participate within a transaction must register themselves
with a transaction manager. When a transaction commits
the transaction manager engages all participants in a 2-
phase commit protocol.

The transaction services may use either explicit or
implicit transaction propagation to transmit knowledge of
a transaction’s existence to an invoked object. Explicit
propagation is the responsibility of the application
programmer who must deliver the transaction context as
an invocation parameter, whilst implicit propagation is
automatically managed by the OTS without programmer
intervention. The use of explicit propagation makes it
impossible for the OTS to guarantee checked behaviour
since it relies upon the programmer in order to operate
correctly. Fortunately our application utilises implicit
propagation only. Explicit propagation will not be
considered further in this paper. The implementation is
further simplified by the application-specified limitation
that only the initiating thread may terminate the
transaction and that no nested transactions are allowed.
(Our transaction service already supports both of these
and the implementation described in the following section
could be adapted to operate without these limitations with
relatively minor changes).

ORB

External event
Asynchronous invocation
Synchronous invocation

Object

Thread

distributed application spaces

Fig. 4 : Application platform

6

The OTS specification [1], section 10.4, informs us
that “There are many possible implementations of
checking in a Transaction Service”. However, it only
gives details of an implementation which provides
equivalent function to that provided by the
request/response inter-process models defined by X/Open.
The implementation relies upon an application using only
synchronous or deferred synchronous invocations within
transactions, and upon additional checks imposed by the
OTS and the ORB to ensure all that deferred invocations
have completed before executing the commit protocol.

Our initial thoughts were to implement this version of
checked behaviour. To do so would require replacing all
asynchronous invocations within transactions with explicit
deferred synchronous invocations. Unfortunately,
although most of the activity within our application is
non-transactional, it is difficult, if not impossible, to
identify which invocations will be transactional. Indeed
the same invocation might occur both within and outside
of transactions. The difficulty is increased by the fact that,
as the application is constantly evolving, invocations
which today are only invoked outside of transactions
might at some time in the future be invoked within.

The only complete solution therefore would have
been to replace all asynchronous invocations throughout
our application with deferred synchronous. This was
deemed unacceptable due to the programming effort
involved and the consequent loss in performance caused
by generating and awaiting replies to invocations. Instead
our proposed implementation dynamically turns
asynchronous invocations into deferred synchronous, if
and only if, the invocation is occurring within a
transaction. This modification to the invocation
mechanism occurs at runtime, and is completely
transparent to the programmer.

6. Illustrative implementation

6.1 Overview

The aim of our proposed implementation is to allow
programmers the continued use and benefits of
concurrency within transactions whilst ensuring checked
behaviour. As the application obtains concurrency through
the creation of threads we must ensure that threads created
within transactions synchronise before the end of the
transaction in order to indicate that they have completed
their processing. As shown in Section 4, this can be
achieved by transforming asynchronous invocations (‘one-
way’ calls in our application) into deferred synchronous

calls and by ensuring all replies to these calls have been
received before proceeding.

In order to convert ‘one-way’ calls into deferred
synchronous, we require the ability to manipulate the
invocation protocol stack of the ORB. This can be
accomplished by using message interceptors, supported by
several commercial ORBs, such as Orbix, or, as in our
case, providing alternative implementations of the
asynchronous message send and receive primitives.
(Because we are working with the ORB implementors to
produce an ORB for this type of application, we can make
these modifications). This implementation requires no
further modification or enhancement to either the
transaction system or the ORB. Note, only those ‘one-
way’ calls which are invoked within transactions will be
affected.

In the remainder of this section we describe an
illustrative implementation to demonstrate the use of our
protocol. We shall present our implementation in the form
of pseudo-code and give an example of its use in the
section following that. Note that our pseudo-code does not
include error checking, the time-outs necessary to abort in
the face of thread failures, or concurrency control details.

6.2 The Obituary class

Each thread within a transaction owns an obituary
object which keeps a count of the number of threads from
whom a ‘synch’ is required. A call of ‘Synchronise’ will
block until all necessary ‘synch’s have been received.

class Obituary
{

Mutex wait_for_synchs = // initialise as
// unlocked

Int children_count = 0;

Void Add_Child ()
{ if (children_count++ == 1)

wait_for_synchs.Lock ();
}

Void Remove_Child ()
{ if (children_count-- == 0)

wait_for_synchs.Unlock ();
}

Void Synchronise ()
{ wait_for_synchs.Lock ();

// blocks until there are no more
// synchs to be received

}
} // end of class Obituary

7

6.3 The Thread class

The Thread class is shown below. Thread objects
which are within a transaction hold a ‘children’ Obituary
object, and (unless they are the thread which initiated the
transaction) a reference to a ‘parent’ Obituary object.

Class Thread
{

// unchanged variables and functions
........

static Thread Current ();
// returns the currently
// executing thread

// modified constructor
Void Thread (// parameters)
{ Register_Parent

(Current ().Register_Child ());

// execute the thread as normal
.........

}

Obituary children = null;
Obituary parent = null;

Void Transaction_Started ()
{ children = new Obituary ();}

Void Transaction_Ended ()
{ // we must be in a transaction

children.Synchronise ();
children = null;

}

Void Register_Parent(Obituary parent_in)
{ if (parent_in != null)

{ // the parent was in a transaction -
// so we are now in it
children = new Obituary ();
parent = parent_in;

}
}

Void Deregister_Parent ()
{ if (children != null)

{ // we are in a transaction
children.Synchronise ();
children = null;
parent.Remove_Child ();
parent = null;

}
}

Obituary Register_Child ()
{ if (children != null)

// we are in a transaction
children.Add_Child ();

return children;
}

} // end of class Thread

6.4 The Send and Receive primitives
Void Send (Object o, Message m)
{ // prepend the obituary object,

// if there is one
m.Prepend

(Thread.Current ().Register_Child ());

// carry on with normal send
……………..

}

Void Receive (Message m)
{ // this thread has been assigned from

// the free pool in order to perform the
// invocation

// register the parent’s obituary
// object, if there is one
Thread.Current ().Register_Parent

(m.Remove ());

// carry on with the invocation as
// normal
……………..

// get children synchs and then synch
// with parent, if there is one
Thread.Current ().Deregister_Parent ();

// the thread now returns to the free
// pool

}

Note that the collective effect of a ‘Send’ followed
by a ‘Receive’ (in terms of its effects upon threads) is the
equivalent to that achieved by one thread explicitly
creating a new Thread.

7. Example

We will now demonstrate our solution with a simple
example of a transaction which contains asynchronous
invocations. Our description will focus on thread
management without going into the transactional details.
The client’s view of the transaction (expressed in pseudo-
code) is detailed below and is independent of our
implementation of checked behaviour. The functions
‘Function1’ and ‘Function3’, which are not described, do
not involve any asynchrony internally. (Note that our
example is a simplification of the use of the OTS).

// application start

1) Transaction t = OTS.begin ();
// Transaction begin

ClassX x = // bind to x
x.Function1 (); // synchronous invocation

ClassY y = // bind to y

8

Message m = // create a message which will
// invoke ‘Function2’

2) Send (y, m); // asynchronous invocation

5) t.commit (); // Transaction end

// application end

class ClassY
{

3)Function2 ()
{ // do some work

……………………

ClassZ z = // bind to z
Message m = // create a message which

// will invoke ‘Function3’
2)Send (z, m);

// do some more work
……………………

4)}

// rest of the class
……………………..

}

We will now describe in more detail the actions
which our implementation performs at each to the relevant
points numbered in the pseudo-code above.

1. A new transaction is begun and ‘Transaction_Started’
invoked by it on the current thread.

2. When the message is sent, ‘Register_Child’ is
invoked upon the current thread to record the fact that
another child thread is involved, and the identity of
the parent is sent with the message.

3. When the message is received, the thread handling
the message invokes ‘Register_Parent’ to record the
parent thread.

4. When the thread finishes processing the message
then, prior to the completion of the asynchronous
‘receive’, the thread invokes ‘Deregister_Parent’ in
order to ‘synch’ this child.

5. The transaction is terminated and
‘Transaction_Ended’ invoked by it on the initiating
thread. This blocks until all synchronisation is
complete after which the commit protocol may be
executed.

8. Conclusions

We have presented here a protocol for the
enforcement of checked transactional behaviour within an
asynchronous environment. The protocol has been
described within a proposed implementation for a

CORBA-compliant Object Transaction Service intended
for a soft real-time application which makes extensive use
of concurrency and asynchronous message passing. The
protocol we have outlined above has the advantages that
a) it may be implemented so as to be largely transparent to
the programmer, b) it allows the continued unrestricted
use of threading, irrespective of whether a function is
being executed within a transaction or not, and c) it has
very low costs for non-transactional processing. The only
costs incurred are the need to send, and wait for, an extra
synchronisation message, indicating thread termination,
required for every asynchronous invocation performed
within a transaction. These costs are only borne within
transactions.

9. Acknowledgements

The work reported here has been supported in part by
grants from GPT Ltd. and UK Engineering and Physical
Sciences Research Council (grant no. GR/L 73708).

Thanks are given to S. Wheater (Newcastle
University) and H. Blair (GPT Ltd.) for their comments
on the paper.

10. References

1. "Distributed Transaction Processing: The XA Specification,
X/Open Document C193", X/Open Company Ltd., Reading,
U.K., ISBN 1-85912-057-1.

2. “CORBAservices : Common Object Services Specification”,
Object Management Group, March 31st, 1995.

3. "Common Object Request Broker Architecture and
Specification”, Revision 2.0, Object Management Group, July,
1995.

4. H. Blair, S.J. Caughey, H. Green and S.K. Shrivastava,
“Structuring Call Control Software Using Distributed Objects”,
Proc. of TreDS’96, Intl. Workshop on Trends in Distributed
Systems, Aachen 1996, LNCS 1161, pp. 94-107.

5. G.D. Parrington, S.K. Shrivastava, S.M. Wheater and M.C.
Little, "The Design and Implementation of Arjuna," USENIX
Computing Systems Journal, Vol 8, No 3, 1995.

