
Jini™ Discovery and Join
Specification
d the

ready
The Jini™ technology is a Java™ platform-centric distributed system designed aroun
goals of simplicity, flexibility, and federation. The Jini Discovery protocols are used by
entities that wish to start participating in a Jini system. This document specifies the
interactions between an entity that wishes to perform discovery and entities that are al
participating in a Jini system.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Discovery and Join Specification—1.0

Contents
1. Introduction . 1

1.1 Overview . 1

1.2 Terminology . 1

1.3 Host Requirements . 2

1.4 Protocol Overview . 3

1.5 Discovery in Brief . 3

1.6 Dependencies . 6

1.7 Comments . 6

2. The Discovery Protocols . 7

2.1 Protocol Roles . 7

2.2 The Multicast Request Protocol . 7

2.3 Discovery Using the Multicast Request Protocol 12

2.4 The Multicast Announcement Protocol 14

2.5 Unicast Discovery . 16

3. The Join Protocol . 21
Page iii

3.1 Persistent State . 21

3.2 The Join Protocol . 22

4. Network Issues . 25

4.1 Properties of the Underlying Transport 25

4.2 Bridging Calls to the Discovery Request Service 26

4.3 Limiting the Scope of Multicasts . 26

4.4 Using Multicast IP as the Underlying Transport 26

4.5 Address and Port Mappings for TCP and Multicast UDP 27

5. LookupLocator Class . 29

5.1 Jini Technology URL Syntax . 30

5.2 Serialized Form . 31
Page iv Jini™ Discovery and Join Specification–1.0

Introduction 1
1.1 Overview
Entities that wish to start participating in a distributed Jini system, known as a

djinn, must first obtain references to one or more Jini Lookup services. The

protocols that govern the acquisition of these references are known as the

discovery protocols. Once these references have been obtained, a number of

steps must be taken in order for entities to start communicating usefully with

services in a djinn; these steps are described by the join protocol.

1.2 Terminology
A host is a single hardware device that may be connected to one or more

networks. An individual host may house one or more Java™ Virtual Machines

(JVM).

Throughout this document, we make reference to a discovering entity, a joining
entity or simply to an entity.

◆ A discovering entity is simply one or more cooperating objects in the Java

programming language on the same host that are about to start, or are in the

process of, obtaining references to Jini lookup services.

◆ A joining entity comprises one or more cooperating objects in the Java

technology programming language on the same host that have just received

a reference to the lookup service and are in the process of obtaining services

from, and possibly exporting them to, a djinn.
Page 1

1

◆ An entity may be a discovering entity, a joining entity, or an entity that is

already a member of a djinn; the intended meaning should be clear from

context.

◆ A group is a logical name by which a group of djinns is identified.

Since all participants in a djinn are collections of one or more objects in the

Java programming language, this document will not make a distinction

between an entity that is a dedicated device using Jini technology or something

running in a JVM that is hosted on a legacy system. Such distinctions will be

made only when necessary.

1.3 Host Requirements
Hosts that wish to participate in a djinn must have the following properties:

◆ A functioning JVM, with access to all packages needed in order to run Jini

software

◆ A properly-configured network protocol stack

The properties required of the network protocol stack will vary depending on

the network protocol(s) being used. Throughout this document, we will

assume that IP is being used, and highlight areas that may apply differently to

other networking protocols.

1.3.1 Protocol Stack Requirements for IP Networks

Hosts that make use of IP for networking must have the following properties:

◆ An IP address. IP addresses may be statically assigned to some hosts, but

we expect that many hosts will have addresses assigned to them

dynamically. Dynamic IP addresses are obtained by hosts through use of

DHCP.

◆ Support for unicast TCP and multicast UDP. The former is used by

subsystems using Jini technology such as Java Remote Method Invocation

(RMI); both are used during discovery.
Page 2 Jini™ Discovery and Join Specification–1.0

1

◆ Provision of some mechanism (e.g. a simple HTTP server) that facilitates the

downloading of Remote Method Invocation (RMI) stubs and other

necessary code by remote parties. This mechanism does not have to be

provided by the host itself, but the code must be made available by some

cooperating party.

1.4 Protocol Overview
There are three related discovery protocols, each designed with different

purposes.

◆ The multicast request protocol is employed by entities that wish to discover

nearby lookup services. This is the protocol used by services that are

starting up and need to locate whatever djinns happen to be close. It can

also be used to support browsing of local lookup services.

◆ The multicast announcement protocol is provided to allow lookup services to

advertise their existence. This protocol is useful in two situations. When a

new lookup service is started, it may need to announce its availability to

potential clients. Also, if a network failure occurs and clients lose track of a

lookup service, this protocol can be used to make them aware of its

availability after network service has been restored.

◆ The unicast discovery protocol makes it possible for an entity to communicate

with a specific lookup service. This is useful for dealing with non-local

djinns, and for using services in specific djinns over a long period of time.

The discovery protocols require support for multicast or restricted-scope

broadcast, along with support for reliable unicast delivery, in the transport

layer. The discovery protocols make use of the Java platform’s object

serialization to exchange information in a platform-independent manner.

1.5 Discovery in Brief
This section provides a brief overview of the operation of the discovery

protocols. For a detailed description suitable for use by implementors, see

Chapter 2.
Page 3

1

1.5.1 Groups

A group is an arbitrary string that acts as a name. Each lookup service has a set

of zero or more groups associated with it. Entities using the multicast request

protocol specify a set of groups they want to communicate with, and lookup

services advertise the groups they are associated with using the multicast

announcement protocol. This allows for flexibility in configuring entities:

instead of maintaining a set of URLs for specific lookup services to contact, and

which need to be changed if any of these services moves, an entity can

maintain a set of group names.

Although group names are arbitrary strings, it is recommended that DNS-style

names (for example, “eng.sun.com”) be used to avoid name conflicts. One

group name, represented by the empty string, is predefined as the public group.

Unless otherwise configured, lookup services should default to being members

of the public group, and discovering entities should attempt to find lookup

services in the public group.

1.5.2 The Multicast Request Protocol

The multicast request protocol proceeds as follows.

1. The entity that wishes to discover a djinn establishes a TCP-based server

that accepts references to the lookup service. This server is an instance of the

multicast response service.

2. Lookup services listen for multicast requests for references to lookup

services for the groups they manage. These listening entities are instances of

the multicast request service. This is not an RMI-based service; the protocol is

described in chapter 2.

3. The discovering entity performs a multicast that requests references to

lookup services; it provides a set of groups in which it is interested, and

enough information to allow listeners to connect to its multicast response

server.

4. Each multicast request server that receives the multicast will, if it is a

member of a group for which it receives a request, connect to the multicast

response server described in the request, and use the unicast discovery

protocol to pass an instance of the lookup service’s

net.jini.core.lookup .ServiceRegistrar implementation.
Page 4 Jini™ Discovery and Join Specification–1.0

1

At this point, the discovering entity has one or more remote references to

lookup services.

Figure 1-1 The Multicast request protocol

1.5.3 The Multicast Announcement Protocol

The multicast announcement protocol follows these steps:

1. Interested entities on the network listen for multicast announcements of the

existence of lookup services. If an announcement of interest arrives at such

an entity, it uses the unicast discovery protocol to contact the given lookup

service.

2. Lookup services prepare to take part in the unicast discovery protocol (see

below), and multicast announcements of their existence at regular intervals.

Discovering Entity

Lookup Server

2. Lookup servers run
instances of the multicast
request service, which
listen for multicast requests
from discovering entities.

3. The discovering entity
performs a multicast that
requests references to
lookup services.

1. The discovering
entity sets up a
TCP server; this
is an instance of
the multicast
response service.

4. The lookup server connects to the discovering
entity’s multicast response server, and uses
unicast discovery to provide a reference to itself.
Page 5

1

1.5.4 The Unicast Discovery Protocol

The unicast discovery protocol works as follows:

1. The lookup service listens for incoming connections, and when a connection

is made by a client, decodes the request and, if the request is correct,

responds with a marshalled object that implements the

net.jini.core.lookup.ServiceRegistrar interface.

2. An entity that wishes to contact a particular lookup service uses known host

and port information to establish a connection to that service. It sends a

discovery request, and listens for a marshalled object as above in response.

1.6 Dependencies
This document relies on the following other specifications:

◆ Java Remote Method Invocation Specification

◆ Jini™ Lookup Service Specification

1.7 Comments
Please direct comments to jini-comments@java.sun.com .
Page 6 Jini™ Discovery and Join Specification–1.0

The Discovery Protocols 2
This chapter describes the discovery protocols. There are three closely related

discovery protocols: one is used to discover one or more lookup services on a

local area network (LAN), another is used to announce the presence of a

lookup service on a local network, and the last is used to establish

communications with a specific lookup service over a wide-area network

(WAN).

2.1 Protocol Roles
The multicast discovery protocols work together over time. When an entity is

initially started, it uses the multicast request protocol to actively seek out

nearby lookup services. After a limited period of time performing active

discovery in this way, it ceases using the multicast request protocol, and

switches over to listening for multicast lookup announcements via the

multicast announcement protocol.

2.2 The Multicast Request Protocol
The multicast request protocol allows an entity that has just been started, or

that needs to provide browsing capabilities to a user, to actively discover

nearby lookup services.
Page 7

2

2.2.1 Protocol Participants

Several components take part in the multicast request protocol. Of these, two

run on an entity that is performing multicast requests, and two run on the

entity that listens for such requests and responds.

On the requesting side live the following components:

◆ A multicast request client performs multicasts to discover nearby lookup

services.

◆ A multicast response server listens for responses from those lookup services.

These components are paired; they do not occur separately. Any number of

pairs of such components may coexist in a single JVM at any given time.

The lookup service houses the other two participants:

◆ A multicast request server listens for incoming multicast requests.

◆ A multicast response client responds to callers, passing each a proxy that

allows it to communicate with its lookup service.

Although these components are paired, as on the client side, only a single pair

will typically be associated with each lookup service.
Page 8 Jini™ Discovery and Join Specification–1.0

2

These local pairings apart, the remote client/server pairings should be clear

from the above description and the following diagram of protocol participants.

2.2.2 The Multicast Request Service

The multicast request service is not based on Java RMI; instead, it makes use of

the multicast datagram facility of the networking transport layer to request

that lookup services advertise their availability to a requesting host. In a

TCP/IP environment, the network protocol used is multicast UDP. Request

datagrams are encoded as a sequence of bytes, using the data and object

serialization facilities of the Java programming language to provide platform

independence.

2.2.3 Request Packet Format

A multicast discovery request packet body must:

◆ Be 512 bytes in size or less, in order to fit into a single UDP datagram

◆ Encapsulate its parameters in a platform-independent manner

◆ Be straightforward to encode and decode

multicast response
server

multicast request
client

multicast response
client

multicast request
server

multicast response
server

multicast request
client

lookup
service

JVM of discovering
entity

JVM of lookup
service
Page 9

2

Accordingly, we define the packet format to be a contiguous series of bytes as

would be produced by a java.io.DataOutputStream writing into a

java.io.ByteArrayOutputStream . The contents of the packet, in order of

appearance, are illustrated by the following fragment of pseudocode which

generates the appropriate byte array:

To elaborate on the roles of the variables above:

◆ The protoVersion variable contains an integer which indicates the version

of the discovery protocol, in order to permit interoperability between

different protocol versions. For the current version of the discovery protocol,

protoVersion must have the value 1.

◆ The port variable contains the TCP port respondents must connect to in

order to continue the discovery process.

◆ The groups variable contains a set (organized as an array) of strings

naming the groups the entity wishes to discover. This set may be empty,

which indicates that all lookup services are being looked for.

protocol version
port to contact

groups of interest
recently-heard lookup services

the final product

int protoVersion;
int port;
java.lang.String[] groups;
net.jini.core.lookup.ServiceID[] heard;

java.io.ByteArrayOutputStream byteStr =
new java.io.ByteArrayOutputStream();

java.io.DataOutputStream objStr =
new java.io.DataOutputStream(byteStr);

objStr.writeInt(protoVersion);
objStr.writeInt(port);
objStr.writeInt(heard.length);
for (int i = 0; i < heard.length; i++) {

heard[i].writeBytes(objStr);
}
objStr.writeInt(groups.length);
for (int i = 0; i < groups.length; i++) {

objStr.writeUTF(groups[i]);
}

byte[] packetBody = byteStr.toByteArray();
Page 10 Jini™ Discovery and Join Specification–1.0

2

◆ The heard variable contains a set (organized as an array) of

net.jini.core.lookup.ServiceID objects that identify lookup services

from which this entity has already heard, and which do not need to respond

to this request.

◆ The packetBody variable contains the marshaled discovery request in a

form that is suitable for putting into a datagram packet or writing to an

output stream.

The table below illustrates the contents of a multicast request packet body.

In the event that the size of the packet body should exceed 512 bytes, the set of

lookups from which an entity has heard must be left incomplete in the packet

body, such that the size of the packet body will come to 512 bytes or less. How

this is done is not specified. It is not permissible for implementations to simply

truncate packets at 512 bytes.

Similarly, if the number of groups requested causes the size of a packet body to

exceed 512 bytes, implementations must perform several separate multicasts,

each with a disjoint subset of the full set of groups to be requested, until the

entire set has been requested. Each request must contain the largest set of

responses heard that will keep the size of the request below 512 bytes.

2.2.4 The Multicast Response Service

Unlike the multicast request service, the multicast response service is a normal

TCP-based service. In this service, the multicast response client contacts the

multicast response server specified in a multicast request, after which unicast

Table 2-1 Fields in a multicast request packet body

count serialized type description

1 int protocol version

1 int port to connect to

1 int count of lookups heard

variable net.jini.core.lookup.ServiceID lookups heard

1 int count of groups

variable java.lang.String groups
Page 11

2

discovery is performed. The multicast response server to contact can be

determined by using the source address of the request that has been received,

along with the port number encapsulated in that request.

The only difference between the unicast discovery performed in this instance

and the normal case is that the entity being connected to initiates unicast

discovery, and not the connecting entity. An alternative way of looking at this

is that in both cases, once the connection has been established, the party that is

looking for a lookup service proxy initiates unicast discovery.

2.3 Discovery Using the Multicast Request Protocol
In this section, the discovery sequence is described for local area network

(LAN)-based environments that use the multicast request protocol to discover

one or more djinns.

2.3.1 Steps Taken by the Discovering Entity

The entity that wishes to discover a djinn takes the following steps:

1. It establishes a multicast request client, which will send packets to the well-

known multicast network endpoint on which the multicast request service

operates.

2. It establishes a TCP server socket that listens for incoming connections, over

which the unicast discovery protocol is used. This server socket is the

multicast response server socket.

3. It creates a set of net.jini.core.lookup.ServiceID objects. This set

contains service IDs for lookup services from which it has already heard,

and is initially empty.

4. It sends multicast requests at periodic intervals. Each request contains

connection information for its multicast response server, along with the

most recent set of service IDs for lookup services it has heard from.

5. For each response it receives via the multicast response service, it adds the

service ID for that lookup service to the set it maintains.

6. The entity continues multicasting requests for some period of time. Once

this point has been reached, it unexports its multicast response server and

stops making multicast requests.
Page 12 Jini™ Discovery and Join Specification–1.0

2

7. If the entity has received sufficient references to lookup services at this

point, it is now finished. Otherwise, it must start using the multicast

announcement protocol.

The interval at which requests are performed is not specified, though an

interval of five seconds is recommended for most purposes. Similarly, the

number of requests to perform is not mandated, but we recommend seven.

Since requests may be broken down into a number of separate multicasts, these

recommendations do not pertain to the number of packets to be sent.

2.3.2 Steps Taken by the Multicast Request Server

The system that hosts an instance of the multicast request service takes the

following steps:

1. It binds a datagram socket to the well-known multicast endpoint on which

the multicast request service lives, so that it can receive incoming multicast

requests.

2. When a multicast request is received, the discovery request server may use

the service ID set from the entity that is sending requests to determine

whether it should respond to that entity. If its own service ID is not in the

set, and any of the groups requested exactly matches any of the groups it is

a member of or the set of groups requested is empty, it must respond.

Otherwise, it must not respond.

3. If the entity must be responded to, the request server connects to the other

party’s multicast response server using the information provided in the

request, and provides a lookup service registrar using the unicast discovery

protocol.

2.3.3 Handling Responses from Multiple Djinns

What happens when there are several djinns on a network, and calls to an

entity’s discovery response service are made by principals from more than one

of those djinns, will depend on the nature of the discovering entity. Possible

approaches include the following:

If the entity provides a finder-style visual interface that allows a user to choose

one or more djinns for their system to join, it should loop at step 4 in section

2.3 above, and provide the ability to:
Page 13

2

◆ display the names and descriptions of the djinns it has found out about

◆ allow the user to select zero or more djinns to join

◆ continue to dynamically update its display, until the user has finished their

selection

◆ attempt to join all of those djinns that were selected by the user

On the other hand, if the behavior of the entity is fully automated, it should

follow the join protocol described in chapter 3.

2.4 The Multicast Announcement Protocol
The multicast announcement protocol is used by Jini Lookup services to

announce their availability to interested parties within multicast radius.

Participants in this protocol are the multicast announcement client, which

resides on the same system as a lookup service, and the multicast

announcement server, at least one instance of which exists on every entity that

listens for such announcements.

The multicast announcement client is a long-lived process; it must start at

about the same time as the lookup service itself, and remain running as long as

the lookup service is alive.

2.4.1 The Multicast Announcement Service

The multicast announcement service uses multicast datagrams to communicate

from a single client to an arbitrary number of servers. In a TCP/IP

environment, the underlying protocol used is multicast UDP.

Multicast announcement packets are constrained by the same requirements as

multicast request packets. The fields in a multicast announcement packet body

are as follows:

Table 2-2 Fields of a multicast announcement packet

count serialized type description

1 int protocol version

1 java.lang.String host for unicast discovery

1 int port to connect to
Page 14 Jini™ Discovery and Join Specification–1.0

2

The fields have the following purposes:

◆ The protocol version field provides for possible future extensions to the

protocol. For the current version of the multicast announcement protocol,

this field must contain the value 1. This field is written as if using the

java.io.DataOutput.writeInt method.

◆ The host field contains the name of a host to be used by recipients to which

they may perform unicast discovery. This field is written as if using the

java.io.DataOutput.writeUTF method.

◆ The port field contains the TCP port of the above host at which to perform

unicast discovery. This field is written as if using the

java.io.DataOutput.writeInt method.

◆ The service ID field allows recipients to keep track of the services from

which they have received announcements, so that they will not need to

unnecessarily perform unicast discovery. This field is written as if using the

net.jini.core.lookup.ServiceID.writeBytes method.

◆ The count field indicates the number of groups of which the given lookup

service is a member. This field is written as if using the

java.io.DataOutput.writeInt method.

◆ This is followed by a sequence of strings equal in number to the count field,

each of which is a group that the given lookup service is a member of. Each

instance of this field is written as if using the

java.io.DataOutput.writeUTF method.

In the case where the size of the set of groups represented by a lookup service

causes the size of a multicast announcement packet body to exceed 512 bytes,

several separate packets must be multicast, each with a disjoint subset of the

full set of groups, such that the full set of groups is represented by all packets.

1 net.jini.core.lookup.ServiceID service ID of originator

1 int count of groups

variable java.lang.String groups represented by

originator

Table 2-2 Fields of a multicast announcement packet

count serialized type description
Page 15

2

2.4.2 The Protocol

The details of the multicast announcement protocol are simple. The entity that

runs the lookup service takes the following steps:

1. It constructs a datagram socket object, set up to send to the well-known

multicast endpoint on which the multicast announcement service operates.

2. It establishes the server side of the unicast discovery service.

3. It multicasts announcement packets at intervals. The length of the interval is

not mandated, but 120 seconds is recommended.

An entity that wishes to listen for multicast announcements performs the

following set of steps:

1. It establishes a set of service IDs of lookup services from which it has

already heard, using the set discovered using the multicast request protocol

as the initial contents of this set.

2. It binds a datagram socket to the well-known multicast endpoint on which

the multicast announcement service operates, and listens for incoming

multicast announcements.

3. For each announcement received, it determines whether the service ID in

that announcement is in the set from which it has already heard. If so, or if

the announcement is for a group that is not of interest, it ignores the

announcement. Otherwise, it performs unicast discovery using the host and

port in the announcement to obtain a reference to the announced lookup

service, and then adds this service ID to the set from which it has already

heard.

2.5 Unicast Discovery
While workgroup-level devices only need to be able to discover local djinns, a

user may need to be able to access services in djinns that may be dispersed

more widely (e.g. in offices in other cities, or on other continents). To this end,

the software at the user’s fingertips must be able to obtain a reference to the

lookup service of a remote djinn. This is done using the unicast discovery

protocol.
Page 16 Jini™ Discovery and Join Specification–1.0

2

The Jini Discovery unicast protocol uses the underlying reliable unicast

transport protocol provided by the network, instead of the unreliable multicast

transport. In the case of IP-based networks, this means that the unicast

discovery protocol uses unicast TCP instead of multicast UDP.

2.5.1 The Protocol

The unicast discovery protocol is a simple request-response protocol.

In the case where an entity wishes to obtain a reference to a given djinn, the

entity has a lookup locator object for that djinn, and makes a TCP connection

to the host and port specified by that lookup locator. It sends a unicast

discovery request (see below), to which the remote host responds.

In the case where a lookup service is responding to a multicast request, the

request it is responding to contains the address and port to respond to, and it

makes a TCP connection to that address and port. The respondee sends a

unicast discovery request, and the lookup service responds with a proxy.

The protocol diagram below illustrates the flow when unicast discovery is

initiated by the discovering entity.

TCP connection established

unicast request sent

unicast response sent

discovering
entity

lookup
service
Page 17

2

The following protocol diagram indicates the flow when a lookup service

initiates unicast discovery in response to a multicast request.

2.5.2 Request Format

A discovery request consists of a stream of data as would be obtained by

writing code similar to the following:

The protoVersion variable above must have a value of 1 for the current

version of the unicast discovery protocol. The requestBody variable contains

the discovery request as would be sent to the unicast discovery request service.

protocol version

the final product

int protoVersion;

java.io.ByteArrayOutputStream byteStr =
new java.io.ByteArrayOutputStream();

java.io.DataOutputStream objStr =
new java.io.DataOutputStream(byteStr);

objStr.writeInt(protoVersion);

byte[] requestBody = byteStr.toByteArray();

TCP connection established

unicast request sent

unicast response sent

discovering
entity

lookup
service
Page 18 Jini™ Discovery and Join Specification–1.0

2

2.5.3 Response Format

The response to the above request consists of a stream of data as would be

obtained by writing code similar to the following:

When the discovering entity receives this data stream, it can deserialize the

MarshalledObject it has been sent, and use the get method of that object to

obtain a lookup service registrar for that djinn.

registrar to respond with
groups joined

the final product

net.jini.core.lookup.ServiceRegistrar reg;
String[] groups;

java.rmi.MarshalledObject obj =
new java.rmi.MarshalledObject(reg);

java.io.ByteArrayOutputStream byteStr =
new java.io.ByteArrayOutputStream();

java.io.ObjectOutputStream objStr =
new java.io.ObjectOutputStream(byteStr);

objStr.writeObject(obj);
objStr.writeInt(groups.length);
for (int i = 0; i < groups.length; i++) {

objStr.writeUTF(groups[i]);
}

byte[] responseBody = byteStr.toByteArray();
Page 19

2

Page 20 Jini™ Discovery and Join Specification–1.0

The Join Protocol 3
Having covered the discovery protocols, we continue on to describe the join

protocol. This protocol makes use of the discovery protocols to provide a

standard sequence of steps that services should perform when they are starting

up and registering themselves with a lookup service.

3.1 Persistent State
A service must maintain certain items of state across restarts and crashes.

These items are as follows:

◆ Its service ID. A new service will not have been assigned a service ID, so

this will be not be set when a service is started for the first time. After a

service has been assigned a service ID, it must continue to use it across all

lookup services.

◆ A set of attributes that describe the service’s lookup service entry.

◆ A set of groups in which the service wishes to participate. For most services,

this set will initially contain a single entry, the empty string (which denotes

the public group).

◆ A set of specific lookup services to register with. This set will usually be

empty for new services.

Note that by “new service” here, we mean one that has never before been

started, not one that is being started again, or one that has been moved from

one network to another.
Page 21

3

3.2 The Join Protocol
When a service initially starts up, it should pause a random amount of time

(up to 15 seconds is a reasonable range). This will reduce the likelihood of a

packet storm occurring if power is restored to a network segment that houses a

large number of services.

3.2.1 Initial Discovery and Registration

For each member of the set of specific lookup services to register with, the

service attempts to perform unicast discovery of each one, and registers with

each one. If any fails to respond, the implementor may choose to either retry or

give up, but the non-responding lookup service should not be automatically

removed from the set if an implementation decides to give up.

Joining Groups

If the set of groups to join is not empty, the service performs multicast

discovery, and registers with each of the lookup services that either respond to

requests or announce themselves as members of one or more of the groups the

service should join.

Order of Discovery

The unicast and multicast discovery steps detailed above do not need to

proceed in any strict sequence. The registering service must register the same

sets of attributes with each lookup service, and must use a single service ID

across all registrations.

3.2.2 Lease Renewal and Handling of Communication Problems

Once a service has registered with a lookup service, it periodically renews the

lease on its registration. A lease with a particular lookup service is only

cancelled if the registering service is instructed to unregister itself.

If a service cannot communicate with a particular lookup service, the action it

takes depends on its relation to that lookup service. If the lookup service is in

the persistent set of specific lookup services to join, the service must attempt to
Page 22 Jini™ Discovery and Join Specification–1.0

3

reregister with that lookup service. If the lookup service was discovered using

multicast discovery, it is safe for the registering service to forget about it, and

await a subsequent multicast announcement.

3.2.3 Making Changes and Performing Updates

Attribute Modification

If a service is asked to change the set of attributes with which it registers itself,

it saves the changed set in a persistent store, then performs the requested

change at each lookup service with which it is registered.

Registering and Unregistering with Lookup Services

If a service is asked to register with a specific lookup service, it adds that

lookup service to the persistent set of lookup services it should join, and then

registers itself with that lookup service as detailed above.

If a service is asked to unregister from a specific lookup service, and that

service is in the persistent set of lookup services to join, it should be removed

from that set. Whether or not this step needs to be taken, the service cancels the

leases for all entries it maintains at that lookup service.

3.2.4 Joining or Leaving a Group

If a service is asked to join a group, it adds the name of that group to the

persistent set of groups to join, and either starts or continues to perform

multicast discovery using this augmented group.

If the service is requested to leave a group, the steps are a little more complex.

1. It removes that group from the persistent set of groups to join.

2. It removes all lookup services that match only that group in the set of

groups it is interested in from the set it has discovered using multicast

discovery, and unregisters from those lookup services.

3. It either continues to perform multicast discovery with the reduced set of

groups or, if the set has been reduced to empty, ceases multicast discovery.
Page 23

3

Page 24 Jini™ Discovery and Join Specification–1.0

Network Issues 4
This chapter discusses various issues that pertain to the multicast network

protocol used by the multicast discovery service. Much of the discussion

centers around the Internet protocols, as the lookup discovery protocol is

expected to be most heavily used on IP-based internets and intranets.

4.1 Properties of the Underlying Transport
The network protocol that is used to communicate between a discovering

entity and an instance of the discovery request service is assumed to be

unreliable and connectionless, and to provide unordered delivery of packets.

This maps naturally onto both IP multicast and local-area IP broadcast, but

should work equally well with connection-oriented reliable multicast

protocols.

4.1.1 Limitations on Packet Sizes

Since we assume that the underlying transport does not necessarily deliver

packets in order, we must address this fact. While we could mandate that

request packets contain sequence numbers, such that they could be

reassembled in order by instances of the discovery request service, this seems

excessive. Instead, we require that discovery requests not exceed 512 bytes in

size, including headers for lower-level protocols. This squeaks in below the

lowest required MTU size that is required to be supported by IP

implementations.
Page 25

4

4.2 Bridging Calls to the Discovery Request Service
Whether or not calls to the discovery request service will need to be bridged

across LAN or wide area network (WAN) segments will depend on the

network protocol being used and the topology of the local network.

In an environment in which every LAN segment happens to host a Jini Lookup

service, bridging may not be necessary. This does not seem likely to be a

typical scenario.

Where the underlying transport is multicast IP, intelligent bridges and routers

must be able to forward packets appropriately. This simply requires that they

support one of the multicast IP routing protocols; most router vendors already

do so.

If the underlying transport were permitted to be local-area IP broadcast, some

kind of intelligent broadcast relay would be required, similar to that described

in the DHCP and BOOTP specifications. Since this would increase the

complexity of the infrastructure needed to support the Jini Discovery protocol,

we mandate use of multicast IP instead of broadcast IP.

4.3 Limiting the Scope of Multicasts
In an environment that makes use of IP multicast or a similar protocol, the

joining entity should restrict the scope of the multicasts it makes by setting the

time-to-live (TTL) field of outgoing packets appropriately. The value of the TTL

field is not mandated, but we recommend that it be set to 15.

4.4 Using Multicast IP as the Underlying Transport
In the case where multicast IP is being used as the underlying transport,

request packets are encapsulated using UDP (checksums must be enabled). A

combination of a well-known multicast IP address and well-known UDP port

is used by instances of the discovery request service and joining entities.
Page 26 Jini™ Discovery and Join Specification–1.0

4

4.5 Address and Port Mappings for TCP and Multicast UDP
The port number for Jini Lookup discovery requests is 4160 . This applies to

both the multicast and unicast discovery protocols. For multicast discovery, the

IP address of the multicast group over which discovery requests should travel

is 224.0.1.85 . Multicast announcements should use the address

224.0.1.84 .
Page 27

4

Page 28 Jini™ Discovery and Join Specification–1.0

LookupLocator Class 5
The LookupLocator class provides a simple interface for performing unicast

discovery:

Each constructor takes parameters that allow the object to determine what IP

address and TCP port number it should connect to. The first form takes a

hostname and port number. The second form takes what should be a jini -

scheme URL. If the URL is invalid, it throws a

package net.jini.core.discovery;

import java.io.IOException;
import java.io.Serializable;
import java.net.MalformedURLException;
import net.jini.core.lookup.ServiceRegistrar;

public class LookupLocator implements Serializable
{

public LookupLocator(String host, int port);
public LookupLocator(String url)

throws MalformedURLException;
public String getHost();
public int getPort();
public ServiceRegistrar getRegistrar()

throws IOException, ClassNotFoundException;
public ServiceRegistrar getRegistrar(int timeout)

throws IOException, ClassNotFoundException;
}

Page 29

5

java.net.MalformedURLException . Neither constructor performs the

unicast discovery protocol, nor does either resolve the hostname passed as

argument.

The getHost method returns the name of the host with which this object

attempts to perform unicast discovery, and the getPort method returns the

TCP port at that host to which this object connects. The equals method

returns true if both instances have the same host and port.

There are two forms of getRegistrar method. Each performs unicast

discovery and returns an instance of the proxy for the specified lookup service,

or throws either a java.io.IOException or a

java.lang.ClassNotFoundException if a problem occurs during the

discovery protocol. Each method performs unicast discovery every time it is

called.

The form of this method that takes a timeout parameter will throw a

java.io.InterruptedIOException if it blocks for more than timeout
milliseconds while waiting for a response. A similar timeout is implied for the

no-arg form of this method, but the value of the timeout in milliseconds may

be specified globally using the net.jini.discovery.timeout system

property, with a default equal to 60 seconds.

5.1 Jini Technology URL Syntax
While the Uniform Resource Locator (URL) specification merely demands that

a URL be of the form protocol:data , standard URL syntaxes tend to take

one of two forms:

◆ protocol://host:port/data

◆ protocol://host/data

The protocol component of a Jini technology URL is, not surprisingly, jini .

The hostname component of the URL is an ordinary DNS name or IP address.

If the DNS name resolves to multiple IP addresses, it is assumed that a lookup

service for the same djinn lives at each address. If no port number is specified,

the default is 41601.

The URL has no data component, since the lookup service is generally not

searchable by name. As a result, a Jini technology URL ends up looking like

1. If you speak hexadecimal, you will notice that 4160 is the decimal representation of CAFE - BABE.
Page 30 Jini™ Discovery and Join Specification–1.0

5

jini://example.org

with the port defaulting to 4160 since it is not provided explicitly, or, to

indicate a non-default port,

jini://example.com:4162

5.2 Serialized Form
The serialVersionUID of LookupLocator is 1448769379829432795. The

serialized fields are:

◆ String host - the host

◆ int port - the port
Page 31

5

Page 32 Jini™ Discovery and Join Specification–1.0

	Jini™ Discovery and Join Specification
	The Jini™ technology is a Java™ platform-centric d...
	Contents
	1. Introduction 1
	1.1 Overview 1
	1.2 Terminology 1
	1.3 Host Requirements 2
	1.4 Protocol Overview 3
	1.5 Discovery in Brief 3
	1.6 Dependencies 6
	1.7 Comments 6

	2. The Discovery Protocols 7
	2.1 Protocol Roles 7
	2.2 The Multicast Request Protocol 7
	2.3 Discovery Using the Multicast Request Protocol...
	2.4 The Multicast Announcement Protocol 14
	2.5 Unicast Discovery 16

	3. The Join Protocol 21
	3.1 Persistent State 21
	3.2 The Join Protocol 22

	4. Network Issues 25
	4.1 Properties of the Underlying Transport 25
	4.2 Bridging Calls to the Discovery Request Servic...
	4.3 Limiting the Scope of Multicasts 26
	4.4 Using Multicast IP as the Underlying Transport...
	4.5 Address and Port Mappings for TCP and Multicas...

	5. LookupLocator Class 29
	5.1 Jini Technology URL Syntax 30
	5.2 Serialized Form 31

	Introduction
	1
	1.1 Overview
	1.2 Terminology
	1.3 Host Requirements
	1.3.1 Protocol Stack Requirements for IP Networks

	1.4 Protocol Overview
	1.5 Discovery in Brief
	1.5.1 Groups
	1.5.2 The Multicast Request Protocol
	1. The entity that wishes to discover a djinn esta...
	2. Lookup services listen for multicast requests f...
	3. The discovering entity performs a multicast tha...
	4. Each multicast request server that receives the...
	Figure�1�1 The Multicast request protocol

	1.5.3 The Multicast Announcement Protocol
	1. Interested entities on the network listen for m...
	2. Lookup services prepare to take part in the uni...

	1.5.4 The Unicast Discovery Protocol
	1. The lookup service listens for incoming connect...
	2. An entity that wishes to contact a particular l...

	1.6 Dependencies
	1.7 Comments
	The Discovery Protocols
	2

	2.1 Protocol Roles
	2.2 The Multicast Request Protocol
	2.2.1 Protocol Participants
	2.2.2 The Multicast Request Service
	2.2.3 Request Packet Format
	2.2.4 The Multicast Response Service

	2.3 Discovery Using the Multicast Request Protocol...
	2.3.1 Steps Taken by the Discovering Entity
	1. It establishes a multicast request client, whic...
	2. It establishes a TCP server socket that listens...
	3. It creates a set of net.jini.core.lookup.Servic...
	4. It sends multicast requests at periodic interva...
	5. For each response it receives via the multicast...
	6. The entity continues multicasting requests for ...
	7. If the entity has received sufficient reference...

	2.3.2 Steps Taken by the Multicast Request Server
	1. It binds a datagram socket to the well-known mu...
	2. When a multicast request is received, the disco...
	3. If the entity must be responded to, the request...

	2.3.3 Handling Responses from Multiple Djinns

	2.4 The Multicast Announcement Protocol
	2.4.1 The Multicast Announcement Service
	2.4.2 The Protocol
	1. It constructs a datagram socket object, set up ...
	2. It establishes the server side of the unicast d...
	3. It multicasts announcement packets at intervals...
	1. It establishes a set of service IDs of lookup s...
	2. It binds a datagram socket to the well-known mu...
	3. For each announcement received, it determines w...

	2.5 Unicast Discovery
	2.5.1 The Protocol
	2.5.2 Request Format
	2.5.3 Response Format
	The Join Protocol
	3

	3.1 Persistent State
	3.2 The Join Protocol
	3.2.1 Initial Discovery and Registration
	Joining Groups
	Order of Discovery

	3.2.2 Lease Renewal and Handling of Communication ...
	3.2.3 Making Changes and Performing Updates
	Attribute Modification
	Registering and Unregistering with Lookup Services...

	3.2.4 Joining or Leaving a Group
	1. It removes that group from the persistent set o...
	2. It removes all lookup services that match only ...
	3. It either continues to perform multicast discov...
	Network Issues
	4

	4.1 Properties of the Underlying Transport
	4.1.1 Limitations on Packet Sizes

	4.2 Bridging Calls to the Discovery Request Servic...
	4.3 Limiting the Scope of Multicasts
	4.4 Using Multicast IP as the Underlying Transport...
	4.5 Address and Port Mappings for TCP and Multicas...
	LookupLocator Class
	5

	5.1 Jini Technology URL Syntax
	5.2 Serialized Form

