S
% sun

microsystems

Sun Microsystems

Enterprise JavaBean¥ Specification

This is the specification of the Enterprise JavaBé&¥harchitecture. The Enterprise JavaBeans
architecture is a component architecture for the development and deployment of component-
based distributed business applications. Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and multi-user secure. These applications may be writ-
ten once, and then deployed on any server platform that supports the Enterprise JavaBeans
specification.

Please send technical comments on this Draft by June 10, 1999 to:
ejb-spec-comments@sun.com

Please send product and business questions to:

ejb-marketing@sun.com

Copyright[d 1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303
All rights reserved.

Vlada Matena & Mark Haprre
May 7, 1999

Version 1.1, Public Draft

Enterprise JavaBeans 1.1, Public Draft Sun Microsystem Inc.

NOTICE

This Specification is protected by copyright and the information described herein may be protected by
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the follow-
ing license, no part of this Specification may be reproduced in any form by any means without prior writ-
ten authorization of Sun and its licensors, if any. Any use of this Specification and the information
described herein will be governed by these terms and conditions and the Export Control and General
Terms as set forth in Sun’s website Legal Terms. By viewing, downloading or otherwise copying this
Specification, you agree that you have read, understood, and will comply with all the terms and condi-
tions set forth herein.

Sun Microsystems, Inc. (“Sun”) hereby grants to you a fully-paid, nonexclusive, non-transferable, world-
wide, limited license (without the right to sublicense) under Sun'’s intellectual property rights that are es-
sential to:

(A) use internally for reference purposes only the Specification for the sole purpose of developing pre-

FCS JavdM applications or applets that may interoperate with fully compliant implementations of the
Specification as set forth herein; and (ii) reproduce and distribute the Specification or portions hereof,

only as part of documentation for your pre-FCS J&aapplications or applets for beta tesing purposes
only provided that you include a notice or other binding provisions that protect Sun’s interest consistent
with the terms contained herein, and

(B) practice the Specification for the limited purpose of creating and distributing a pre-FCS clean room
implementation of this Specification for beta testing purposes only that: (i) includes a complete imple-
mentation of the current version of this Specification for the optional components (as defined by Sun in
the Specification) which you choose to implement without subsetting or supersetting; (ii) implements all
the interfaces and functionality of the required packages for such optional component(s) as defined by
Sun, without subsetting or supersetting; (iii) does not add any additional packages, classes or methods to
the “java.*”, “sun.*", “javax.*”, “com.sun” packages, subpackages or their equivalents; (iv) passes all
test suites relating to the most recent published version of this Specification that is available from Sun
six (6) months prior to any beta or pre-FCS release of the clean room implementation or upgrade thereto;
(v) does not derive from any Sun source code or binary materials; and (vi) does not include any Sun bi-
nary materials without an appropriate and separate license from Sun. Other than this limited license, you
acquire no right, title or interest in or to this Specification or any other Sun intellectual property. This
Specification contains the proprietary information of Sun and may only be used in accordance with the
license terms set forth therein. This license will terminate immediately without notice from Sun if you
fail to comply with any provision of this license.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensor
is granted hereunder.

Sun, Sun Microsystems, the Sun logo, Java, Enterprise JavaBeans, JDBC, Java Naming and Directory
Interface, “Write Once Run Anywhere”, Java ServerPages, JDK, JavaBeans are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THIS SPECIFICATION IS PROVIDED “AS IS” AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

2 5/7/99

Enterprise JavaBeans 1.1, Public Draft Sun Microsystem Inc.

PARTICULAR PURPOSE, OR NON-INFRINGEMENT; THAT THE CONTENTS OF THE SPECIFI-
CATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT ANY PRACTICE OR IMPLEMEN-
TATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any com-
mitment to release or implement any portion of this Specification in any product(s).

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHI-

CAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW VERSIONS OF THE SPECIFICATION,

IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/

OR THE PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such
changes in the Specification will be governed by the then current terms and conditions for the applicable
version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES , INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU-
NITIVE DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY
USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Sun harmless from any claims based: (i) your use of the Specification, (ii) from the use or
distribution of your pre-FCS Java application, applet and/or clean room implementation, and (iii) from
any claims that later versions or releases of any Specification furnished to you are incompatible with the
Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in this li-
cense and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-
7013(c)(1)(ii)(Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19 (June 1987), or FAR 52.227-14(ALT
[ll) (June 1987), as applicable.

REPORT

As an Evaluation Posting of this Specification, you may wish to report any ambiguities, inconsistencies,
or inaccuracies you may find in connection with your evaluation of the Specification (“Feedback”). To
the extent that you provide Sun with any Feedback, you hereby: (i) agree that that such Feedback is pro-
vided on a non-proprietary and non-confidential basis and (ii) grant to Sun a perpetual, non-exclusive,
worldwide, fully paid-up, irrevocable license to incorporate, disclose, and use without limitation the
Feedback for any purpose relating to the Specification and future versions, implementations, and test
suites thereof.

3 5/7/99

Enterprise JavaBeans 1.1, Public Draft Sun Microsystem Inc.

4 5/7/99

Sun Microsystem Inc

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Enterprise JavaBeans 1.1, Public Draft

Table of Contents

T 1o [0 Tox i o] o 1R PP 19
1.1 Target QUAIENCEccoiiiiiii ettt ettt e et e e s sabe e e e e e 19
1.2 Whatis New iN EIB 1.1cooiiiiiiiieiiiee et 19
1.3 Application compatibility and interoperabilitycccccceieiiiiiiiiiiiieen. 20
1.4 ACKNOWIEAGIMENLS ...coiiiiiiiiiei ittt 20
1.5 OrganizatiOnccooiiiiiiiiiieee et a e e e e e e aaaaaea e 21
1.6 DOCUMENE CONVENTIONSuuiiiiiiiiiiaea ettt e e e e e e e e e et e e e e e e e e e e e e annnneeeeeeeeas 21
BIOUS .ttt b e b e e e are e snee s 23
2.1 OVErall QOAIS.... ... a e e 23
2.2 Goals fOr REIEASE 1.0 ...uuiiiiiiiiiiiie ettt e e e e e e e 24
2.3 GOoals for REIEASE L.1.......coiiiiieiiiie ittt 24
EJB ROIES @Nnd SCENAIIOSevviieiiiiiiiie ittt 25,
3.1 EJIB ROIES ...ttt 25
3.1.1 Enterprise Bean Provider ... 26
3.1.2 Application Assembler.............uuiiiiiiiii 26
.13 DEPIOYET ...ttt a e e 26
3.1.4 EJB Server ProVIAer.........ooo it 27
3.1.5 EJB Container Provider...........ccccocoiiiiiiiiii e 27
3.1.6 System adminiStrator..........c.uueieiiiiiiiee e 28
3.2 Scenario: Development, assembly, and deploymentcccccveviiieeeniiinnen. 28
OVEBIVIBW ...ttt ettt ettt ettt e e sh e e ekt e e eh et e s mb e e e sn b et e sab e 4 s s 33
4.1 Enterprise Beans as COMPONENTScooiiiiiiiiiiiiiieiaaa e e eieiiieeeee e e e e e e e e eeneeeeeees 33
4.1.1 Component CharaCteristiCsoocvuveiiiiiiiiieiiiie e 34
4.1.2 Flexible component Model..........ccccooiiiiiiiiiiiiiiiiie e 34
4.2 Enterprise JavaBeans CONIACTS.........ovuiiieiiiiiiie ettt 35
4.2.1 ClieNt-VIEW CONIACTcciiuiieriiieiireeiiie ettt e st 35
4.2.2 COMPONENE CONIIACTuuuiiiiiiiiiise et e e e e eee 36
4.2.3 EJDAr file woveeeeiiei i 37
4.2.4 CONLractS SUMMAIY ...cuuuuiiiiiiiiiiinieeeeeiiiin e e seesins e eesasr s s eeassn e seens 37
4.3 Session and entity ODJECES.uiiiiiieiiiee et 38
4.3.1 SESSION ODJECES ...t 38
4.3.2 ENtity ODJECTS. ..ot 39
4.4 Standard mapping to CORBA ProtOCOISccuvuiiiiiiiiieeee e 39
Client View 0f @ SESSION BEAN..........ccciiiiiiiiiiii et 43
B.1 OVEBIVIBW ..ttt ettt e ettt e e e e e e e e e e s e annnbebbeeeeaeaaaeeeeaannnes 43
LA = 1= N @] o 7= 1 1 S 44

5 5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

5.2.1 Locating an enterprise Bean’s home interfaceccccccccvvveeennnnnns 44
5.2.2 What a container provides..........cccoiiiiiiiiiiiiiiee e 45
5.3 HOME INEITACE. ... uuiieiiiie et r e e e e e e e e e e nnnes 45
5.3.1 Creating an EJB ODbJECt...........cccciiiiiiiiiiicc e 46
5.3.2 Removing an EJB ObJeCt........ccccciiiiiiiiei e 46
5.4 EJIB ODJECE.ccii i a7
5.5 SesSion ODJECt IdeNTILYuueiiiiiiieieie e a7
5.6 Client view of session Bean's life CYCle ..., 48
5.7 Creating and using a SESSION BEaAN...........cccoviiiiiiiiiiiiiiic e 49
5.8 ODJECT IdENLILY .oeeeeeeeiee e 50
5.8.1 Stateful SESSION BEANSuuviiiiiiiieeeieiiiiieiieeer e 50
5.8.2 Stateless SeSSION BEANScoiiuuiiiiiiiiiiii ettt 50
5.8.3 getPrimaryKey() .. .ccouiueiieeiiiiiiee ettt 51
5.9 TYPE NAITOWING c..ueeeeiieiiiieie ettt ettt e sttt e e e st e e s st e e e s s nbae e e e e neaes 51
Chapter 6 Session Bean Component CONIACT.cuiiiii it 53
L0 @ 1 =T VSR 53
LI C 1o - | TP RRRRUPUPPPORPPN 54
6.3 A container’s management of its WOrking Set...........cccccccviiiiiiiiiiiiiiieiiieeeeeee 54
6.4 CoNVErsSatioNal STALE..........uueiiiiiiiiiii e e e e e et e e e eaees 55
6.4.1 Instance passivation and conversational state..............cccccccvveeeeennnnnns 55
6.4.2 The effect of transaction rollback on conversational state 56
6.5 The protocol between a session Bean and its containerccccooeecvvvvvnnenn. 56
6.5.1 The require@essionBeaimterfacecccccocveveeiiiiiiieenniieee e 57
6.5.2 TheSessionContexterfacecccovveriiiiiiiiiiiiie e, 57
6.5.3 The optionabessionSynchronizatiomterface..............ccccoecvveeeennee. 58
6.5.4 Business method delegationcccuuiiiiiiiiiiiii i 58
6.5.5 Session Bean’s ejbCreate(...) methodscccooiiieiiiniis 58
6.5.6 Serializing session Bean Methodscccceeiiiiiiiiniieee e 59
6.5.7 Transaction context of session Bean methods...........ccccccceeeiiiiiinns 59
6.6 STATEFUL Session Bean State Diagram..........cccocveveeiiiiiieennniieee e 60
6.6.1 Operations allowed in the methods of a stateful session bean class . 63
6.6.2 Dealing With @XCEPLIONSvvviieiiiiiiie e 65
6.6.3 Missed ejpRemove() CallSoccuvviiiiiiiiiiieie e 65
6.6.4 Restrictions for tranSactionSceevveeeeeiiiiiiiiiire e 66
6.7 Object interaction diagrams for a STATEFUL session Beanccccccevveene.. 66
B.7. 1 NOBS.. .o e e e e e e 66
6.7.2 Creating a SesSIoN ODJECT.........cccciiiiiieiieee e 67
6.7.3 Starting a tranSaCioNuuveiiieieee i 67
6.7.4 Committing a tranSaCHioNcccvvvieeieiiee e 69
6.7.5 Passivating and activating an instance between transactions 69
6.7.6 Removing a Session ObJECtcccciveiiiiie e 70
6.8 Stateless SESSION BEANS..........eiii it 71
6.8.1 Stateless session Bean state diagram..........cccoevveeeiiiiiineeiniieeee e 72
6.8.2 Operations allowed in the methods of a stateless session bean class 73
6.8.3 Dealing With @XCEePLIONSeviieeiiiiiie et 75
5/7/99 6

Sun Microsystem Inc

Enterprise JavaBeans 1.1, Public Draft

6.9 Object interaction diagrams for a STATELESS session Beancc......... 75
6.9.1 Client-invoked Create()..........ooovuuiriiieiieee e 75
6.9.2 Business method iNVOCALIONeuveiiiiiieeiiiiiee e 76
6.9.3 Client-invoked remove()uuveeeieeieeeie e 77
6.9.4 Adding instance to the pool ... 77
6.10 The responsibilities of the enterprise Bean provider..............cccovvvveeeeeeeeninnns 79
6.10.1 Classes and interfaCescccuvuiiiiiiiiie e 79
6.10.2 ENterprise Bean CIassSuueiiiiiiiiiiiiiiiiiiie e 79
6.10.3 ejbCreate Methods........ccuuuiiiiiiiieee e 79
6.10.4 BUSINESS MELNOAScoi i 80
6.10.5 Enterprise Bean’s remote interfaceccccovvviveeiiiiineenniiee e, 80
6.10.6 Enterprise Bean’s home interface...........cccccovviiieiiiiniiec e, 81
6.11 The responsibilities of the container provider.............ooccciiiii e 81
6.11.1 Generation of implementation ClassSescoccvceeiiiiiiiie e, 82
6.11.2 EJB HOME ClAaSScceveiieiiiiiiee ettt e e e et e e e e e e e e e e e e 82
6.11.3 EJIB ODJECE ClaSS.....civeeiieiiiiieee et 82
6.11.4 HANAIE CIASS ..vvvveiieieeee ittt e e e e e e ae s 83
6.11.5 Meta-data ClasS......cccuuuuiiiiieeeeiie e e e e 83
6.11.6 NON-reentrant INSTANCES.......cccuviiiiiiiiee e eee s 83
6.11.7 Transaction scoping, Security, EXCEPLIONSeevevrrvrereeiniiiieeeeniinn. 83
Chapter 7 Example SESSION SCENAIOccooi it e e e PP 8
7.1 OVEIVIBW ..ttt ettt et e et ettt et et e e e e e e e e e nan bbb e e e e aeaaeeseeaannnnneeeeeeas 85
7.2 Inheritance relatioNShiPc..eeiiiiiiii e 86
7.2.1 What the session Bean provider is responsible for 88
7.2.2 Classes supplied by container provider...........cccccooveciiiiieeeeeeeeeeieinns 88
7.2.3 What the container provider is responsible for............ccccccvveeeeeeen. 88
Chapter 8 Client View Of @n ENItY........ccooiiiiiiiiiiiiie e al.....
S TR0 @ 1= oV PSRRI 91
I N | = N @0] ¢ =11 = PR PP RRR 92
8.2.1 Locating enterprise Bean's home interface...........cccocoiininins 93
8.2.2 What a container provides..........ccuuueiiiiiiaaeiin e 93
8.3 Enterprise Bean's home interface...........cccuviieiiiiiieiiiiiieeeee e 94
8.3.1 create MethOUS.........uviiiiiiiiie e e e 95
8.3.2 fiINder MEethOUS.....ccviiiee e 96
8.3.3 remoVve MEthOAScoo i 96
8.4 Entity EJB 0bject life CYCIEuveiiiiiiiii e 97
8.5 Primary key and object identity........ccccceevveeieiiiiiiiiie e 98
8.6 Entity Bean's remote iNterfacec..uueeiiiiiiiiiiii e 99
8.7 Entity BEan's handIe.........cooiiiiiiiiiiiiiie ittt 100
8.8 Entity HOME handIEsuvviiiiiiiiiii et 101
8.9 TYPE NAITOWINGeteeeieeieeeeee ittt ee e e e e e e e e e ettt e et e e e e e e e s e e annbebbeeeeaeaaaeaesaaannes 101

7 5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

Chapter 9 Entity Bean Component CONFACTcovuiiiieiiiiiiie ettt 103
0.1 CONCEPLS ..ottt 103
9.1.1 The runtime execution MOEl............c.corruiiieiiiiiiiie e 103
9.1.2 Granularity of entity ODJECES.......cciiiiiiiiiiiiie e 104
9.1.3 Entity persistence (data access protocol)cooeveiviiieiineiennnnnnne 105
9.1.3.1 Bean-managed PersiStENCE.........ccuueeriiiieeeeeiiiiiiiieiieeeee e 106
9.1.3.2 Container-managed PersiStENCEcoeviiiiuiiiiiierieaaaeeeeenns 107
9.1.4 INStaNCE life CYCI.....cooiiiiiiie i 108
9.1.5 The Entity Bean component CONtractcccceeeeeeiiiiiieiiiiienianaaennnn. 110
9.1.5.1 Enterprise Bean inStance’s VIEW:ccceeeveeeeeeniiiiiiinneen. 110
9.1.5.2 CONLAINEI'S VIBW:eoiiiiiiiiieeiiiiie ettt 113
9.1.6 Operations allowed in the methods of the entity bean class.............. 115
9.1.7 Caching of entity state and the ejbLoad and ejbStore methods 117
9.1.8 Finder method return tyPe ... 118
9.1.8.1 Single-object fiNder.........coviiiiiiiiiii e 118
9.1.8.2 Multi-object fiNnders. ... 119
9.1.9 Standard application exceptions for ENtitieS...........cccoovvveeeeriiiiieeennne 120
9.1.9.1 CreateEXCEePLIONeviiiiieeeieiiiiiieeee et 120
9.1.9.2 DuplicateKeyEXCEPLiONcccuuiiiiiiiiieeeeee e 121
9.1.9.3 FiNderEXCePtiONuuuiiiiiiiiaee e 121
9.1.9.4 ObjectNOtFOUNAEXCEPLIONevvieiiiiieaiiiiiiiiiiiiieee e 121
9.1.9.5 ReMOVEEXCEPLION ...uuviiiiiiiieeeiei e 122
9.1.10 COMMIL OPLIONSeeiiieieeeiieieee et e et e e e e e e e e e e eeaaaeeas 122
9.1.11 Concurrent access from multiple transactionscccccccoeeviuvrnneen. 123
9.1.12 Non-reentrant and re-entrant iNStANCEScccoevvvveeeeeiniiieeen e 125
9.1.13 Access from multiple clients in the same transaction context........... 126
9.1.13.1 Transaction “diamond” topology scenario...........cccccceeeennn. 126
9.1.13.2 Container Provider's responsibilitiescccccceeiiniiinns 127
9.1.13.3 Bean Provider's responsibilitieS...........cccccvvriivieiniiieneeeen 128
9.1.13.4 Application Assembler and Deployer’s responsibilities...... 129
9.2 Responsibilities of the Enterprise Bean Provider ..o, 129
9.2.1 Classes and iNterfaCesS.........coouiuiiiiiiiiiiiee e 129
9.2.2 ENterprise BEaN ClaSScuueiiiiiiiiiieiiiiiie et 129
9.2.3 ejbCreate MethodsS.........cooiuiiiiiiiiiii e 130
9.2.4 ejbPostCreate Methodsccooiuiiiiiiiiiiiii e 131
9.2.5 ejbFind Methodscoooiiiiiiiiiii 131
9.2.6 BUSINESS MELhOUS ...t 132
9.2.7 Enterprise Bean'’s remote interface..........ccccovveeieiniiiiieiiniiiee e, 132
9.2.8 Enterprise Bean’s home interface..........cccccvviiviiiiiiiiieieniicc e, 133
9.2.9 Enterprise Bean'’s primary Key Classccccceiviiiiiiiiniiiceeiiieen 134
9.3 The responsibilities of the container Providerccccoccuveeeiiiiiiee e 134
9.3.1 Generation of implementation ClasSesS...........ccccoevvvvvviiieieeeeee e, 134
9.3.2 EJB HOME ClaSS.....ccciuiiiiiiie ettt 135
9.3.3 EJB ObjJECE ClaSS...uuuviiiiie it 135
9.3.4 HANAIE CIASS......eeiiiiiiiiiii ettt 135
9.3.5 Home Handle Class.........ccoueiiiieiiiieiiie e 135
9.3.6 Meta-data ClassS.........cceevuiieiiiierii e 136
9.3.7 INStanCe’s re-NtranCe..........cccvvvviiiiiiieiii e 136
9.3.8 Transaction scoping, Security, eXCEPLioNScccveeeeeeviiiiivinvneeneeenn. 136
5/7/99 8

Sun Microsystem Inc

Enterprise JavaBeans 1.1, Public Draft

9.4 Entity Beans with container-managed persiStencCeooevvvvvvvieerieeeeeeininnns 136
9.4.1 Container-managed fields..........ccoovveiiieiii i 136
9.4.2 ejbCreate, JDPOSICIEALEcceeeeei ittt 138
9.4.3 EJDREMOVE. ...t 138
9.4.4 €JDLOA.........ci e —————— 139
9.4.5 I DSIONE cociii e 139
9.4.6 fiNder MEthOUS.........cviiiiiiiie e 139
9.4.7 PriMAry KEY tYPE ..vvvveiiiiie ettt e e e 140

9.4.7.1 Primary key that maps to a single field in the entity bean class140
9.4.7.2 Primary key that maps to multiple fields in the entity bean class140

9.4.7.3 Special case: Unknown primary key class.........c..ccccceeenee. 140
9.5 Object interaction diagramsS.........cueeiiiieiiiiie e 141
0.5, 1 NOTES ..ot 141
9.5.2 Creating an entity ODJECLcccuuuiiiiiiiiii e 142
9.5.3 Passivating and activating an instance in a transaction..................... 144
9.5.4 Committing & tranNSACHIONccoeeiiiiiiiiii e 146
9.5.5 Starting the Next tranSaCtioONc..eveiiiiiiieei e 148
9.5.6 Removing an entity 0bJeCtuviiiiiiiiii 151
9.5.7 Finding @n ODJECT........uiiiiiiiiee e 152
9.5.8 Adding and removing instance from the pool............ccccccceiiiiie. 153
Chapter 10 Example entity SCENAIIO.......ccoiiiiiiiieiiiee e 155.....
L0.1 OVEIVIEW ..ttt ettt ettt ettt sa e e st e st e e s br e e e bn e e s nn e e e nnre e e e 155
10.2 Inheritance relatioNShip ... 156
10.2.1 What the enterprise Bean provider is responsible for............cc.cc...... 157
10.2.2 Classes supplied by container provider..........ccccccevviiieieiniiieneeniine, 157
10.2.3 What the container provider is responsible for...........cccccoovviiiinnnnnn 157
Chapter 11 SUPPOIt fOr TrANSACHIONSeeeiiiiie ittt 159.....
P11 OVEIVIBW ettt ettt et e e e e e e e e e e b be bt e e e e e eaaaeee e e nnnbbneeeeeaaaeaas 159
0 O O I - 1S T o o 1 159
11.1.2 Transaction MOEl...........ooviiiiiiiiiiiie e 160
11.1.3 Relationship to JTA @nd JTS.......coiiiiiiiiiieiiee e 160
2 Yo7 = o - V4 o £ PSRRI 161
11.2.1 Update of multiple databasescccevviiriiiiiiiiiee e, 161
11.2.2 Update of databases via multiple EJB Servers........cccccccceeevieiinvnnnnen. 161
11.2.3 Client-managed demarcationcccceeveveeeeiiiiiiiiiiiiie e e e 162
11.2.4 Container-managed demarcationccccccceveeeeieiiiiiiiinieeee e e e 163
11.2.5 Bean-managed demarCation...........ccccoceeicuviiiiieiieeeee s ccirieree e e 164
11.2.6 Interoperability with non-Java clients and servers..........ccccccceeeveenns 164
11.3 Bean Provider's responsibilitiescccoiiiiiiiie e 165
11.3.1 Bean-managed versus container-managed demarcation 165
11.3.2 Local versus global transaction...............cceeieieeiiiniiiiiiiiieeee e 166
11.3.3 1S0latioN [EVEIS.....cccooeiiie e 166
11.3.4 Enterprise beans using bean-managed transaction............................ 167
11.3.4.1 getRollbackOnly() and setRollbackOnly() method............. 174
11.3.5 Enterprise beans using container-managed transaction 175

9 5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

11.3.5.1 javax.ejb.SessionSynchronization interface............cccccoo... 176
11.3.5.2 javax.ejb.EJBContext.setRollbackOnly() method 176
11.3.5.3 javax.ejb.EJBContext.getRollbackOnly() method.............. 177
11.3.6 Declaration in deployment desSCriptorcoovveeeeiriiieeeniniieee e 177

11.4 Application Assembler’s responsibilities ... 177
11.4.1 Transaction attribULESceeeiiiieiiiiieiie e 177

11.5 Deployer's reSpoNSIDIlItIES......c.cccciiiiiiiiiiiiiiieee e 180

11.6 Container Provider reSponSibilities...........oveiiiiiiiiiiiiiiice e 180
11.6.1 Bean-managed tranSaCtioNS..........cccoviuiiieeiiiiiieeiiiiee e 181
11.6.2 Container-managed tranSactionscccvcuveeeeiiiiiieeeeiiiiiee e riieeeee s 183

11.6.2.1 NOtSUPPOIE ...ccoiiiiiieeiiiiiie et 183
11.6.2.2 REQUIIE.....eiiieiiiiiiie ettt 184
11.6.2.3 SUPPOITS ..eeveiieeeieiiiiire ettt e e e e e e e e e e e eae s 184
11.6.2.4 REQUIFESNEWcciiiiiiiiiiieiiiiiie et et e et e e sbaee e 185
11.6.2.5 MaNAALOrYoveeiiiiiiiiiei et 185
L11.6.2.6 INEVET ..ottt 186
11.6.2.7 Transaction attribute SUMMArY.........cccovivveeeniiiiiieen e 186
11.6.2.8 Handling of setRollbackOnly() method............ccccccoovunneen. 187
11.6.2.9 Handling of getUserTransaction() method 187
11.6.2.10 javax.ejb.SessionSynchronization callbacks....................... 187
Chapter 12 Exception handlingccuuiiiiiiiiie e 189...

12,1 OVerview and CONCEPLSceeiiuuiriieiiiiiite ettt e e st e et sibbe e s s e e eees 189
12.1.1 Application eXCEPLIONSccciiiiiiiiie ittt 189
12.1.2 Goals for exception handlingccccoeevriiiiiiiinii e 190

12.2 Bean Provider's responsibilitiescceeeiiiiieiiii e 190
12.2.1 Application eXCEPLIONSccuuviiiiiiieee e 190
12.2.2 SYStEM EXCEPLIONS ...uvvviiiieeee e e e i ittt e e e e e e e e e s e r e e e e e e e e s e e e nanernreees 191

12.2.2.1 javax.ejb.NoSuchEntityEXCeptioncoecevvvvveneeeeeeennnn. 192

12.3 Container Provider responsibilities.............oooiiiiiiiiiiiiee e 192
12.3.1 Exceptions from an enterprise bean’s business methods................... 192
12.3.2 Exceptions from container-invoked callbacks.............ccccooviiiiiennenn. 194
12.3.3 javax.ejn.NOSUChENtItYyEXCEPLON.......cccoiiiiiiiiiiiiiieeiiiieee e 195
12.3.4 Non-existing Session ObJecCt..........c..eueiiiiiiii 195
12.3.5 Exceptions from the management of container-managed transactions195
12.3.6 REIEASE Of FESOUICESeiiiiiiiiiiee ettt e 196
12.3.7 Support for deprecated use of java.rmi.RemoteException................ 196

12.4 Client’s VIeW Of @XCEPLIONS......iiiiiii ittt e e e 196
12.4.1 Application EXCEPLION.uuviiieiiiiii et 197
12.4.2 java.rmi.RemoteEXCePLioNccooiiiiiiiiiiiiiiie e 197

12.4.2.1 javax.transaction.TransactionRolledbackException 198
12.4.2.2 javax.transaction.TransactionRequiredException............... 198
12.4.2.3 java.rmi.NoSuchObjectEXception............cccccvvererniiierernnnnn 199
12.5 System Administrator's responsibilities ..., 199
12.6 Differences from EJIB 1.0cccciiiiiiiiiiieeiiiee et 199
5/7/99 10

Sun Microsystem Inc

Enterprise JavaBeans 1.1, Public Draft

Chapter 13 SUPPOTIt fOr DIStIDULION ...t 201..
13,1 OVEIVIEW .ttt ettt etttk e e sa et e st e e st e e st et e e bn e e s rne e e nnree e e 201
13.2 Client-side objects in distributed environment ..., 202
13.3 Standard distribution ProtoCOl...........ceeiiiiiiiiiiiiiie e 202
Chapter 14 Enterprise bean enviroNmMent ... 03......... 2
I T R @ 1Y =T = PRI 203
14.2 Enterprise bean’s environment as a JNDI naming context..........ccccceeeeeeviiinns 204
14.2.1 Bean Provider's responsibilities. ... 205
14.2.1.1 Access to enterprise bean’s environment............cccccceeeeeennn. 205
14.2.1.2 Declaration of environment entries..........c.ccoccveeerrineeeeennnns 206
14.2.2 Application Assembler’s responsibilitycccccoeeiiiiiiiiiiiiieenn. 208
14.2.3 Deployer’s reSpoNnSIibilityoooiiiiiiiiiii e 208
14.2.4 Container Provider reSponsibilityccccoovvviiieiniiiieeieee e, 208
14.3 EJIB refEIrENCESeiii ittt e 208
14.3.1 Bean Provider's responsibilities........ccccooceeeeiiiiiiie e 209
14.3.1.1 EJB reference programming interfacesccccccovevveeeennns 209
14.3.1.2 Declaration of EJB references in deployment descriptor ... 209
14.3.2 Application Assembler’s responsibilities...........cccocoeiiiiiiniininnen. 210
14.3.3 Deployer’s responsibilityccooviiiiiiiiiii 212
14.3.4 Container Provider’s responsibility..........cccccvrieieiiniiie i 212
14.4 Resource factory referenCeSocuviiiiiiiiiiiiii e 212
14.4.1 Bean Provider’'s responsibilities..........cccoceiieeeiiiiiiiieeceeeee e 213

14.4.1.1 Programming interfaces for resource factory references.... 213
14.4.1.2 Declaration of resource factory references in deployment descriptor

214
14.4.1.3 Standard resource factory types........ccccvvuveeeriiiieeeenniinnennn 215
14.4.2 Deployer’s responsibilityccooviiiiiiiiii 215
14.4.3 Container provider responsibility.........ccccoovveeiiiiiii e 216
14.4.4 System Administrator's responsibilitycccccvviiiieiniiiieeniiieen, 217
14.5 Deprecated EJBContext.getEnvironment() methodcccoccviiiiiiiiennnnn. 217
Chapter 15 SECUINLY MANAGEMENT....ciii it e et e e e e e e e e e e e e e e e e e aaee e e e e anns s 219......
15,1 OVEIVIEW ..ttt ettt ettt ettt ettt e ettt e s sttt e e s ettt e e s sabbne e e e s nneeeeas 219
15.2 Bean Provider's responsibilitiescccoviiiieiie e 220
15.2.1 Invocation of other enterprise beansccccoviiiiiiiiiiiiiiie s 220
15.2.2 RESOUICE GICCESS.....uutririiiiieieeeiii ittt e te e e s e s e et e e e e e e s 221
15.2.3 Access of underlying OS reSOUICESuuvviiiieiiaeaaaeiiiiiiiiiieeaeaaae e 221
15.2.4 Programming style recommendations.........cccccceeeiieiiiiiiiiienieeeeenenne 221
15.2.5 Programmatic access to caller’s security context............cccccceeeeeennne 221
15.2.5.1 Use of getCallerPrincipal()coeeruurmmmmeeieieeeeieiiiiiiieee, 223
15.2.5.2 Use of isCallerInRole(String roleName)cccccoveuvveen. 224
15.2.5.3 Declaration of security roles referenced from the bean’s code225
15.3 Application Assembler’s responsibilities ... 226
15.3.1 SECUILY FOIES...ciiiiiiiiie ittt 227
15.3.2 Method PErmMiSSIONSciiiiiiiiiee it 228

11 5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

15.3.3 Linking security role references to security rolescccocccvveveeennn. 232
15.4 Deployer's reSPONSIDIlItIES.uviiiiiiiiiieiiiie e 232
15.4.1 Security domain and principal realm assignmentccccccceeeeeennn. 233
15.4.2 Assignment Of SECUNLY TOIESccooii i 233
15.4.3 Principal delegation.............cceeeiiiiiiiiiiiiiiieicee e 233
15.4.4 Security management Of reSOUICE aCCESSccccurrrrerereeeeeesieiiinernenens 234
15.4.5 General notes on deployment descriptor processing...........ccceeeeeuuenes 234
15.5 EJB Client ReSpONSIDIlItIESccevieeiiiiiiiiiiiece e 234
15.6 EJB Container Provider's responsibilities ..o 234
15.6.1 DeployMENE LOOIS ...uvviieiiiiiiiie ittt 234
15.6.2 SeCUrity dOMAIN(S) ..occcuvrrriererieeeeeeissiiiieeerreeee e s s s s ssnenrreeerereeeeeesennnnnes 235
15.6.3 Security MECNANISIMScoiiiiiiieiiiie et 235
15.6.4 Passing principals on EJB CallS..........cccccviiiiiiiiiiie e 235
15.6.5 Security methods in javax.ejbEIJBCONEXLcccovvvvveveriiiiiieeiniinenn. 236
15.6.6 Secure access to reSOUIrCe MANAGEIS.......cccuvrrrrrrrrereeeeeaiiiiirrrreeeeeeeeens 236
15.6.7 Principal MapPing ..cccoooveiieiiiiiee et 236
15.6.8 System PrinCipal........ccc.uvviiiiiieiee e 236
15.6.9 Runtime security enforCeEmMEeNtcoocvivieiiiiiiie e 237
15.6.20 AUt trail .ooeeeeeeeiiece e 237
15.7 System Administrator's reSponSibIlitieSeeeeeeviiiiciiiiiie e 238
15.7.1 Security domain administrationcccccveeeeeiiiiiiiiiiiiiee e 238
15.7.2 PrinCipal MapPing ..ooooocveeee et 238
15.7.3 AUIt trail FEVIEW....cciviiiee ettt e 238
Chapter 16 [D1=T0](0) Y0 a 1T o1 ae (2ol o 0] (o] (PR PPURPPPRR 239.....
TR R @ = 1= PSSR 239
16.2 Bean Provider's reSpoNnSIbIlItIESccveieiiiiiiiiiiieiceee e 240
16.3 Application Assembler's reSponSibility ..o 242
16.4 Deployer's reSPONSIbIlItIES.uviiiiiiiiiie e 244
16.5 Container Provider's responsibilities.............ooccciiiiieiii e 244
16.6 Deployment descriptor DTDocooiiiiiiiiiiieiee e 244
16.7 Deployment descriptor @XampPlecoiueiiiiiiiiiieiiieee e 258
Chapter 17 EJDJAF FIl© e 265
A R © Y= 1= PSSR 265
17.2 DeploymeNnt AESCIIPLON.cciieeeii ittt e e e e e e e e e e e s s a e e e e e e an 266
17.3 ClASS flES ..o e e 266
17.4 Deprecated iN EIB 1.1coooiiiiiiiiiiieie ettt 266
17.4.1 ejb-jar ManIfEStuuuuiiiiiiee e 266
17.4.2 Serialized deployment descriptor JavaBeans™ components............. 266
Chapter 18 RUNEIME ENVIFONMENT......eiiiiiiiiiie et 267.....
18.1 Bean Provider's responsibilitiesccveeiiiiiiiiiiiii e 267
18.1.1 APIs provided by CONtAINETcccveeeeeiiiiiiiiiiieeeecce e 268
5/7/99 12

Sun Microsystem Inc

Chapter 19

Chapter 20

Chapter 21

Appendix A

Appendix B

Enterprise JavaBeans 1.1, Public Draft

18.1.2 Programming reStriCtioNScccovriuiiiieiiiiiiee it 268
18.2 Container Provider's reSponSibilityccceeiiiiiiriiniiiee e 270
18.2.1 Java 2 based CONAINETcccviieeeiiiiiee e iiieee e st e e sraee e e s siaeeeeeannes 271
18.2.1.1 Java 2 APIS reqUIremMentsccccceevueeneeioreenee e 271
18.2.1.2 EJB 1.1 reqUIrEMENES......cuuvieieeeeeeeeeiiiinnireereeeeee e e e sessnneeneeens 272
18.2.1.3 JNDI 1.2 reqUIrEMENTS........cuvvirierieeeeeeeieiiiiiirneee e e e e e e e e e 272
18.2.1.4 JTA 1.0 reqUIrEMENTSccvvveeeeee et ee e e e e et e e e 272
18.2.1.5 JDBC™ 2.0 extension requirementscccccceveeeeeeeesiiiinnns 273
18.2.2 JIDK™ 1.1 based CONAINET.........cccoiiuiiieeeiiiiieeesiiieeeessiieeeeessreeeee e 273
18.2.2.1 JDK 1.1 APIS reqUIr€mMentsccccevvveireernieneennee e 273
18.2.2.2 EJB 1.1 reqUIrEMENES......uuvriiieeeeeeeieiiiiinineeeeeeeee e e e s e ssnneenneens 275
18.2.2.3 JINDI 1.2 reqUIrEMENTS........cuvviriirieeeeeeeieiiiiiirneeeee e e e e e e 275
18.2.2.4 JTA 1.0 reqUIrEMENTScevvieeeeee it e e e e e 275
18.2.2.5 JDBC 2.0 extension requiremMentsccccvvveeeeeeeeeneeiiiinnns 275
18.2.3 Argument passing SEMANLICS..........ccccuvririrriieeee e e e seciinrrrrr e e e e e e e e e 275
Responsibilities 0f EJB ROIES.........uuiiiiiiiiiieiieee e 277........
19.1 Bean Provider's responsibilities ... 277
19.1.1 APl rEQUIFEMENTS ..evviiiiiiiee ettt ie e e e e e s e e e e e e e e e s e s sarnnreaee e 277
19.1.2 Packaging reqUIrEMENTSceiieeeeeiiiiiiiiiieee e e e e e e e e e seeinrrereeeee e e e e e e e e aans 277
19.2 Application Assembler’s responsibilitiesccccccvveeeee i 278
19.3 EJB Container Provider's responsibilitieScc.eeveiiiiiiieiiiiieee e 278
19.4 Deployer's reSPONSIDIlItIESuvviiiiiiiiiiei e 278
19.5 System Administrator's responsibilities...........cccccvieiiieii e 278
19.6 Client Programmer’s responsSibilitiesccccoiiiiiiiiii e, 278
Enterprise JavaBeans™ AP REfErENCE.......uuuuiiiiieii i 279
PACKAGE JAVAX.EJD ... e 279
package javax.ejb.deployment.........ccouiiiiiiiiiiiiii 280
Related dOCUMENTSoii it e e e e e e s 281....
Features deferred to fUtUre releasesoovvevveiiiiiiie i TR 28
Frequently asked qUESTIONSoiiiiiiiiiiiiie e 285.......
B.1 Client-demarcated tranSaCHONScveiiiiiiiieiiiiiiee et sieeee e 285
B.2 INNEITANCE ...eeiiiiieeee e e e e as 286
B.3 Entities and relationShipcoooiiiiiiiiiiii e 287
B.4 Finder methods for entities with container-managed persistence 287
B.5 JDK 1.1 OF JAVA 2.t a e e e e e e e e e e e eeaeaaas 287
B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction.............. 287
B.7 How to obtain database CONNECLIONScccveeviiiiiee i 288
B.8 Session beans and primary KeY.........ccooiiiiiiiiiiiiiiiiiie e 288

13 5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

B.9 Copying of parameters required for EJB calls within the same JVM 288
Appendix C REVISION HISTOIY ..ottt et a e e e e 289
C.1 Changes SINCE REICASE 0.8ccooiiiiiiiiiiiiiie et 289
C.2 Changes sinCe Release 0.9.........cccuiiiiiiiii e e e 290
C.3 Changes since Release 0.95...... ... 291
C.4 Changes SINCE 1.0ciiiiiiiiiiee ettt e e e nbaeas 292
C.5 Changes sinCe L. Draft 1......ccccoiiiiiiiiee i e e e e e e e eaenes 293
C.6 Changes SiNCe 1.1 Draft 2.......cuuiiiiiiiiiie e 293
C.7 Changes sSince EJB 1.1 Draft 3ccooiuiiiiiiiiiiieeeiieee e 295
5/7/99 14

Sun Microsystem Inc

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39

Enterprise JavaBeans 1.1, Public Draft

List of Figures

Enterprise JavaBeans CONTACESccooiiiiiiiiiiiiiiieie e e e e s cerieee et e e e e e e s e s st eeeeeeeeeesennneneeees 38
Heterogeneous EJB ENVIFONMENTuuiiiiiiiiiee ittt e e e e e e e s s s sciarreee e e e e e e e e e s vmmme s 41

Client View of a SesSion EJB CONAINET.ccoiiiiiiiiiiiiiiiiiiiiieeeee e e e seiireeeeee e e e e« s - 4D

Lifecycle of @ SESSION EJB.coiiiiiiiiiii ittt s e e s e e 48

Session Bean EXample ODJECESiiiii i mmmmnnneeeeeeee e s 49
Lifecycle of a STATEFUL SeSSION EJB.......ooooiiiiiiiiiieiieie et e 61

OID for Creation of a Transactional SESSION EJB..........cccouiiiiiiiiiiiiiiieee s eeeesnnes 67

OID for protocol at start of Session EJB Transaction.cccccveeeeeieeeeiiiiiiiiiiieeee e e eeeeeeees 68.

OID for Transaction Synchronization Protocol for a Session EJB.ccccoocvivieiiiiieneennenen, 69...........
OID for Passivation and Activate of SESSION EJBS.c..cooiiiiiiiiiiiiiiieee e reeeeeeaaes 70Q

OID for the Destruction of a SESSION EJB........ccoiiiiiiiiiiiiiiie et smmmmeeeennmnn e 71

Lifecycle of & STATELESS SeSSION BEAN.cccuuiiiiiiiiiiiiee ittt e emmmn e e, 73

OID for creation of a STATELESS SeSSiON BEaAN.........c.cooviciiviiiiiiiiie e seeieneeeeeeee e e eeannnes 16..

OID for invocation of business method on STATELESS SesSion Beanccccoevvvviveeeiiiieee e 76
OID for removal of a STATELESS SesSSion Bean...........ccvviiiiiiiiiiiiiiiiieiieeieeeeeeciiiieieeeeeeea e

OID for Container Adding Instance to a Method-Ready Pool of STATELESS Session Beans.............. 78
OID for a Container Removing an Instance of STATELESS Session Bean from Ready Pool............... 78
Example of Inheritance Relationships Between EJB ClassSes........c.ccccveveiiiiiiieniiiiiee e Bl
Client View of Entity Enterprise JavaBeans ArchiteCture.............ccccvvveeevieeeeeiis e vecoooes 94..

Client View of EJB Entity Object Life CYCIEcuuviiiiiiiiiee e eee e e e e 97
Overview of the Entity EJB Runtime Execution Model ... 104.....

Client View of Underlying Data Sources Accessed Through Entity EJBScccoocieeeiiiiiieeeiniieeeenn. 106
Life cycle of an Enterprise BEan's INSLANCE.ccooiiiiiiiiiiiiiiiiee e e e cmmmeeeeeeenas 108

Multiple Clients Can Access the Same Entity EJB using multiple inStancesccccocccveeviiiieeeneen 124
Multiple Clients Can Access the Same Entity EJB using Single iNStancecccocoveeeiiiiieeeeniiieeeenns 125
Transaction diamONd SCENATO.........uuiiiiiiiiiie it ee et e e s s b e e e s e e eeesmneneaanseees 126
Handling of diamonds by a multi-process CONLAINETccocueriieiiiiiiieniiiiee e 128

OID of Creation of an enterprise Bean with Bean-managed persiStencCe.cccocvvveeiviiieeeiiniieee e 142
OID of Creation of an enterprise Bean with container-managed persiStence:ccccccveeeeeeieiiccvnvvnnnnnn. 143
OID of Passivation and Reactivation of an EJB instance with Bean-managed persistence................... 144
OID of Passivation and reactivation of an EJB instance with CMP.ccccccoiiiiiienninenen 45......... 1
OID of transaction commit protocol with an EJB instance with Bean-managed persistence............... 146
OID of transaction commit protocol for EJB instance with container-managed persistence. 147
OID of Start of Transaction for EJB instance using bean-managed persistence..........cccccvevvivveeeeennnen. 149
OID of Protocol performed for an EJB with CMP at the beginning of a new transaction.................... 150
OID of Destruction of an entity EJB with Bean-managed persiStence.occcuvveeieiiieeeeeeiiieciiiie 151
OID of Destruction of an entity EJB with container-managed persiStence.cccoocoevevviiieeeennciieeeen, 151
OID of Execution of a finder method on an entity EJB with Bean-managed persistence. 152
OID of Execution of a finder method on an entity EJB with container-managed persistence.............. 153

15 5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

Figure 40 OID of Sequence for a container adding an instance to the pool.cccceeiiiiiiiiniiiieeeeen 154.........
Figure 41 OID of Sequence for a container removing an instance from the pool.ccccovvi i, 154
Figure 42 Example of the inheritance relationship between the interfaces and classes:ccccovviiiiiiiiiiieneennnn. 156
Figure 43 Updates to SIMultaneous Databases...........cccvereieiiiiieniee e e resmeeennes 161

Figure 44 Updates to Multiple Databases in Same TranSacCtionccccvveieeeiiiiiiiiiiiiie e e e s 162...

Figure 45 Updates On Multiples Databases on MUltiple SEerVerS........cccccoiiiiiiiiiieeiiiiee e eeeeeeees 163....

Figure 46 Update of Multiple Databases From Non-transactional Client............ccccovviiiiiiiiiiie e 164........
Figure 47 Interoperating with Non-Java Clients and/Or SEIVEIS............coiciiiiiiieeieie e sccciveee e s s 165

Figure 48 Location of EJB ClIENt STUDS.ccoiiiiiiiiiiiiie et eeeeemmmeeeee e 202

5/7/99 16

Sun Microsystem Inc

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

Enterprise JavaBeans 1.1, Public Draft

List of Tables

EJB Roles in the eXample SCENANOS..........ccoiiiiiiiiiiiiie e e e e e e s snneeeeeeeeeanenes 31
Operations allowed in the methods of a stateful session bean with container-managed transactions64
Operations allowed in the methods of a stateless session bean with container-managed transactions...74

Operations allowed in the methods of an entity beancccccooiiviiii s 116....
Summary of COMMIt-tIME OPLIONS.eiiiiiiee e mmeeeaeeeeens 122
Container’s actions for methods of beans with bean-managed transactioncccccocceceeeiiiiieee e, 182
Transaction attribute SUMMIAIYceiiieiiiiii e e e e e e e s s s e e e e e e e e e s s s santeeee e s mmmmmmmmmmmmmnn e e 186

Handling of exceptions thrown by a business method of a bean with container-managed transactions.....
193

Table 9 Handling of exceptions thrown by a business method of a session with bean-managed transactions..194
Table 10 Java 2 Security policy for a standard EJB CONtaINErcceviveeeiiiiiiiiiiiiieeee e e 271..
Table 11 JDK 1.1 Security manager checks for a standard EJB Containerooooeiiiiiiieiiiaeeeninnns 4o 27

17 5/6/99

Sun Microsystems Inc.

Enterprise JavaBeans 1.1, Public Draft

5/6/99 18

Sun Microsystem Inc

Chapter 1

Enterprise JavaBeans 1.1, Public Draft

Introduction

1.1

Target audience

1.2

The target audiences for this specification are the vendors of transaction processing platforms, vendors
of enterprise application tools, and other vendors who want to support the Enterprise JavaBeans™
(EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the Enterprise
JavaBeans application programmer.

What is new in EJB 1.1

We have tightened the Entity bean specification, and made support for Entity beans mandatory for Con-
tainer Providers.

The other changes in the EJB 1.1 specification were motivated by the goal to improve the support for the
development, application assembly, and deployment of ISV-produced enterprise beans. The primary
changes we have made to the specification are as follows:

* Enhanced support for the enterprise bean’s environment. The Bean Provider must specify all
the bean’s environmental dependencies using entries in a JNDI naming context.

* Added support for Application Assembly in the deployment descriptor.
* Clearly separated the responsibilities of the Bean Provider and Application Assembler.

* Removed the EJB 1.0 deployment descriptor features that describe the Deployer’s output. The
role of the deployment descriptor is to describe the information that isinpet to the
Deployer, not the Deployersutput

The changes affected mainly Chapters 11, 14, 15, and 16. We minimized the impact on the server ven-
dors who implemented support for EJB 1.0 in their runtime. The only change to the runtime API of the
EJB Container is the replacement of jaea.security.ldentity class with thgava.secu-
rity.Principal interface, necessitated by changes in JDK 1.2.

We have also added a number of clarifications and corrections to the specification based on the input
that we have received from the reviewers.

19 5/7/99

Sun Microsystems Inc.

Introduction

Enterprise JavaBeans 1.1, Public Draft Application compatibility and interoperability

1.3 Application compatibility and interoperability

EJB 1.1 attempts to provide a high degree of application compatibility for enterprise beans that were
written for the EJB 1.0 specification. While the deployment descriptor of EJB 1.0 based enterprise
beans must be converted to the EJB 1.1 XML format, the enterprise bean code does not have to be
changed or re-compiled to run in an EJB 1.1 Container, except in the following situations:

The bean uses thavax.jts.UserTransaction interface. The package name of the
javax.jts interface has changed favax.transaction , and there has been minor
changes to the exceptions thrown by the methods of this interface. An enterprise bean that uses
the javax.jts.UserTransaction interface needs to be modified to use the new name
javax.transaction.UserTransaction

The bean uses thgetCallerldentity() or isCallerinRole(Identity iden-

tity) methods of thgavax.ejb.EJBContext interface. These method were depre-
cated in EJB 1.1 because the cl@g.security.Principal is deprecated in Java 2.
While a Container Provider may choose to provide a backward compatible implementation of
these two methods, the Container Provider is not required to do so. An enterprise bean written
to the EJB 1.0 specification needs to be modified to use the new methods to vadrlETB

1.1. Containers.

The bean is an entity bean with container-managed persistence. The required return value of
ejbPostCreate(...) is different in EJB 1.1 than in EJB 1.0. An enterprise bean with
container-managed persistence written to the EJB 1.0 specification needs to be recompiled to
work with all EJB 1.1 compliant Containers.

The bean is an entity bean whose finders do not definEitigerException in the meth-
ods’ throws clauses. EJB 1.1 requires that all finders defirfériderException.

The bean is an entity bean that useldserTransaction interface. In EJB 1.1, an entity
bean must not use théserTransaction interface.
The bean uses tHdserTransaction interface and implements ti&essionSynchro-

nization interface at the same time. This is disallowed in EJB 1.1.

The bean violates any of the additional semantic restrictions that are defined in EJB 1.1 but
were not defined in EJB 1.0.

The client view of an enterprise bean is the same in EJB 1.0 and EJB 1.1. This means that enterprise
beans written to EJB 1.1 can seamlessly interoperate with those written to EJB 1.0, and vice versa.

1.4 Acknowledgments

Rick Cattell, Linda Demichiel, Shel Finkelstein, Graham Hamilton, Li Gong, Rohit Garg, Susan Che-
ung, Hans Hrasna, Sanjeev Krishnan, Kevin Osborn, Bill Shannon, Anil Vijendran, and Larry Cable
have provided invaluable input to the design of Enterprise JavaBeans architecture.

5/7/99

20

Sun Microsystem Inc

Organization

1.5

Enterprise JavaBeans 1.1, Public Draft Introduction

The Enterprise JavaBeans architecture is a broad effort that includes contributions from numerous
groups at Sun and at partner companies. The ongoing specification review process has been extremely
valuable, and the many comments that we have received helped us to define the specification.

We would also like to thank all the reviewers who sent us feedback during the public review period.
Their input helped us to improve the specification.

Organization

1.6

Chapter 2, “Goals” discusses the advantages of Enterprise JavaBeans architecture.

Chapter 3, “Roles and Scenarios” discusses the responsibilities of the Bean Provider; Application
Assembler; Deployer; EJB Container and Server Providers; and System Administrators with respect to
the Enterprise JavaBeans architecture.

Chapter 4, “Fundamentals” defines the scope of the Enterprise JavaBeans specification.

Chapters 5 through 7 define Session Beans: Chapter 5 discusses the client view, Chapter 6 presents the
Session Bean component contract, and Chapter 7 outlines an example Session Bean scenario.

Chapters 8 through 10 define Entity Beans: Chapter 8 discusses the client view, Chapter 9 presents the
Entity Bean component contract, and Chapter 10 outlines an example Entity Bean scenario.

Chapters 11 through 15 discuss transactions, exceptions, distribution, environment, and security.
Chapters 16 and 17 describe the format of the ejb-jar file and its deployment descriptor.

Chapter 18 defines the runtime APIs that a compliant EJB container must provide to the enterprise bean
instances at runtime. The chapter also specifies the programming restrictions for portable enterprise
beans.

Chapter 19 summarizes the responsibilities of the individual EJB Roles.

Chapter 20 is the Enterprise JavaBeans API Reference.

Chapter 21 provides a list of related documents.

Document conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describ-
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

21 5/7/99

Sun Microsystems Inc.

Introduction Enterprise JavaBeans 1.1, Public Draft Document conventions

5/7/99 22

Sun Microsystem Inc

Overall goals Enterprise JavaBeans 1.1, Public Draft Goals

Chapter 2 Goals

2.1 Overall goals

We have set the following goals for the Enterprise JavaBeans (EJB) architecture:

* The Enterprise JavaBeans architecture will be the standard component architecture for build-
ing distributed object-oriented business applications in the Java™ programming language.
The Enterprise JavaBeans architecture will make it possible to build distributed applications
by combining components developed using tools from different vendors.

* The Enterprise JavaBeans architecture will make it easy to write applications: Application
developers will not have to understand low-level transaction and state management details;
multi-threading; resource pooling; and other complex low-level APIs.

* Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™” philosophy
of the Java programming language. An enterprise Bean can be developed once, and then
deployed on multiple platforms without recompilation or source code modification.

* The Enterprise JavaBeans architecture will address the development, deployment, and runtime
aspects of an enterprise application’s life cycle.

23 5/7/99

Sun Microsystems Inc.

Goals Enterprise JavaBeans 1.1, Public Draft Goals for Release 1.0

* The Enterprise JavaBeans architecture will define the contracts that enable tools from multiple
vendors to develop and deploy components that can interoperate at runtime.

* The Enterprise JavaBeans architecture will be compatible with existing server platforms. Ven-
dors will be able to extend their existing products to support Enterprise JavaBeans.

* The Enterprise JavaBeans architecture will be compatible with other Java programming lan-
guage APIs.

* The Enterprise JavaBeans architecture will provide interoperability between enterprise Beans
and non-Java programming language applications.

* The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

2.2 Goals for Release 1.0
In Release 1.0, we focused on the following aspects:

* Define the distinct “EJB Roles” that are assumed by the component architecture.

* Define the client view of enterprise Beans.

* Define the enterprise Bean developer’s view.

* Define the responsibilities of an EJB Container provider and server provider; together these
make up a system that supports the deployment and execution of enterprise Beans.

* Define the format of the ejb-jar file, EJB’s unit of deployment.

2.3 Goals for Release 1.1
In the EJB 1.1 Release, we want to focus on the following aspects:
* Provide better support for application assembly and deployment.
* Specify in greater detail the responsibilities of the individual EJB roles.
5/7/99 24

Sun Microsystem Inc

EJB Roles Enterprise JavaBeans 1.1, Public Draft EJB Roles and Scenarios

awers EJB ROles and Scenarios

3.1 EJB Roles

The Enterprise JavaBeans architecture defines six distinct roles in the application development and
deployment life cycle. Each EJB Role may be performed by a different party. The EJB architecture spec-
ifies the contracts that ensure that the product of each EJB Role is compatible with the product of the
other EJB Roles. The EJB specification focuses mainly on those contracts that are required to support
the development and deployment of ISV-written enterprise Beans.

In some scenarios, a single party may perform several EJB Roles. For example, the Container
Provider and the EJB Server Provider may be the same vendor. Or a single programmer may
perform the EJB Role of the Enterprise Bean Provider and the EJB Role of the Application
Assembler.

The following sections define the six EJB Roles.

25 5/7/99

Sun Microsystems Inc.

EJB Roles and Scenarios Enterprise JavaBeans 1.1, Public Draft EJB Roles

3.1.1

Enterprise Bean Povider

3.1.2

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His or her
output is an ejb-jar file that contains one or more enterprise bean(s). The Bean Provider is responsible
for the Java classes that implement the enterprise bean’s business methods; the definition of the bean’s
remote and home interfaces; and the bean’s deployment descriptor. The deployment descriptor includes
the structural information (e.g. the name of the enterprise bean class) of the enterprise bean and declares
all the enterprise bean’s external dependencies (e.g. the names and types of resources that the enterprise
bean uses).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider develops
reusable enterprise beans that typically implement business tasks, or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the Bean
Provider usually does not program transactions, concurrency, security, distribution and other services
into the enterprise Beans. The Bean Provider relies on the EJB Container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB Role of the Application Assembler.

Application Assembler

3.1.3

The Application Assembler combines enterprise beans into larger deployable application units. The
input of the Application Assembler is one or more ejb-jar files produced by Bean Provider(s), and the
output is one or more ejb-jar files that contain the enterprise beans with their application assembly
instructions. The application assembly instruction have been inserted into the deployment descriptors.

The Application Assembler can also combine enterprise beans with other types of application compo-
nents (e.g. Java ServerPages™) when composing an application.

The EJB specification describes the case in which the application assembly step afoueshe
deployment of the enterprise beans. However, the EJB architecture does not preclude the case that appli-
cation assembly is performadter the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise Beans.
The Application Assembler works with the enterprise Bean’s deployment descriptor and the enterprise
Bean'’s client-view contract. Although the Assembler must be familiar with the functionality provided by
the enterprise Beans’ remote and home interfaces, he or she does not have to have any knowledge of the
enterprise Beans’ implementation.

Deployer

The Deployer takes one or more ejb-jar file produced by a Bean Provider or Application Assembler, and
deploys the enterprise beans contained in the ejb-jar files in a specific operational environment. The
operational environment includes a specific EJB Server and Container.

5/7/99

26

Sun Microsystem Inc

EJB Roles

3.14

Enterprise JavaBeans 1.1, Public Draft EJB Roles and Scenarios

The Deployer must resolve all the external dependencies declared by the Bean Provider (e.g. the
Deployer must ensure that all resource factories used by the enterprise beans are present in the opera-
tional environment, and bind them to the resource factory references declared in the deployment
descriptor), and must follow the application assembly instructions defined by the Application Assem-
bler. To perform his role, the Deployer uses tools provided by the EJB Container Provider.

The Deployer’s output are enterprise beans (or an assembled application that includes enterprise beans)
that have been customized for the target operational environment, and are deployed in a specific EJB
Container.

The Deployer is an expert at a specific operational environment, and is responsible for the deployment
of enterprise Beans. For example, the Deployer is responsible for mapping the security roles defined by
the Application Assembler to the user groups and accounts that exist in the operational environment in
which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment tasks. The
deployment process is typically two-stage:

* The Deployer first generates the additional classes and interfaces that enable the container to
manage the enterprise beans at runtime. These classes are container-specific.

* The Deployer performs the actual installation of the enterprise beans and the additional
classes and interfaces into the EJB Container.

In some cases, a qualified Deployer may customize the business logic of the enterprise Beans at their

deployment. Such a Deployer would typically use the container tools to write relatively simple applica-
tion code that wraps the enterprise Bean'’s business methods.

EJB Sewer Provider

3.1.5

The EJB Server Provider is a specialist in the area of distributed transaction management, distributed
objects, and other lower-level system-level services. A typical EJB Server Provider is an OS vendor,
middleware vendor, or database vendor.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Provider

roles are the same vendor. Therefore, it does not define any interface requirements for the EJB Server
Provider.

EJB Container Provider

The EJB Container Provider (Container Provider for short) is responsible for providing the deployment
tools necessary for the deployment of enterprise beans, and for providing the runtime support for the
deployed enterprise beans’ instances.

From the perspective of the enterprise beans, the Container is a part of the target operational environ-
ment. It is the only part of the operational environment with which the enterprise bean instances interact
directly at runtime; all interactions of the instances with the operational environment are through the
Container.

27 5/7/99

Sun Microsystems Inc.

EJB Roles and Scenarios Enterprise JavaBeans 1.1, Public Draft Scenario: Development, assembly, and deploy-

3.1.6

The Container runtime provides the deployed enterprise beans with transaction and security manage-
ment, network distribution of clients, scalable management of resources, and other services that are gen-
erally required as part of a manageable server platform.

The “EJB Container Provider's responsibilities” defined by the EJB architecture are meant to be
requirements for the implementation of the EJB Container and Server. Since the EJB specification does
not architect the interface between the EJB Container and Server, it is left up to the vendor how to split
the implementation of the required functionality between the EJB Container and Server.

The expertise of the Container Provider is system-level programming, possibly combined with some
application-domain expertise. The focus of a Container Provider is on the development of a scalable,

secure, transaction-enabled container that is integrated with an EJB Server. The Container Provider

insulates the enterprise Bean from the specifics of an underlying EJB Server by providing a simple,

standard API between the enterprise Bean and the container (this API is the Enterprise JavaBeans com-
ponent contract).

For Entity Beans with container-managed persistence, the entity container is responsible for persistence
of the Entity Beans installed in the container. The Container Provider’s tools are used to generate code
that moves data between the enterprise Bean's instance variables, and a database or an existing appli-
cation.

The Container Provider typically provides support for versioning the installed enterprise Bean compo-
nents. For example, the Container Provider may allow enterprise Bean classes to be upgraded without
invalidating existing clients or losing existing enterprise Bean objects.

The Container Provider typically provides tools that allow the system administrator to monitor and
manage the container and the Beans running in the container at runtime.

System administrator

3.2

The System Administrator is responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure that includes the EJB Server and Container. The System
Administrator is also responsible for overseeing well-being of the deployed enterprise beans applica-
tions at runtime.

The EJB architecture does not define the contracts for system management and administration. The Sys-

tem Administrator typically uses runtime monitoring and management tools provided by the EJB Server
and Container Providers to accomplish these tasks.

Scenario: Development, assembly, and deployment

Aardvark Inc. specializes in application integration. Aardvark developedfiduelvarkPayrollenter-

prise bean which is a generic payroll access component that allows Java™ applications to access the
payroll modules of the leading ERP systems. Aardvark packagésatidearkPayrolenterprise bean in

a standard ejb-jar file and markets it as a customizable enterprise bean to application developers. In the
terms of the EJB architecture, Aardvark is Bean Providerof theAardvarkPayrolbean.

5/7/99

28

Sun Microsystem Inc

Scenario: Development, assembly, and deploymentEnterprise JavaBeans 1.1, Public Draft EJB Roles and Scenarios

Wombat Inc. is a Web-application development company. Wombat developed an employee self-service
application. The application allows a target enterprise’s employees to access and update employee
record information. The application includes tHemployeeServicge EmployeeServiceAdminand
EmployeeRecortnterprise beans. ThEmployeeRecordean is a container-managed entity that
allows deployment-time integration with an enterprise’s existing human resource applications. In terms
of the EJB architecture, Wombat is tBean Providerof the EmployeeServigeEmployeeServiceAd-

min, andEmployeeRecorénterprise beans.

In addition to providing access to employee records, Wombat would like to provide employee access to
the enterprise’s payroll and pension plan systems. To provide payroll access, Wombat licedsaslthe
varkPayrollenterprise bean from Aardvark, and includes it as part of the Wombat application. Because
there is no available generic enterprise bean for pension plan access, Wombat decides that a suitable
pension plan enterprise bean will have to be developed at deployment time. The pension plan bean will
implement the necessary application integration logic, and it is likely that the pension plan bean will be
specific to each Wombat customer.

In order to provide a complete solution, Wombat also develops the necessary non-EJB components of
the employee self-service application, such as the Java ServerPages™ (JSP) that invoke the enterprise
beans and generate the HTML presentation to the clients. Both the JSP pages and enterprise beans are
customizable at deployment time because they are intended to be sold to a number of target enterprises
that are Wombat customers.

The Wombat application is packaged as a collection of JAR files. A single ejb-jar file contains all the
enterprise beans developed by Wombat and alsoAdwelvarkPayrollenterprise bean developed by
Aardvark; the other JAR files contain the non-EJB application components, such as the JSP compo-
nents. The ejb-jar file contains the application assembly instructions describing how the enterprise
beans are composed into an application. In terms of the EJB architecture, Wombat performs the role of
the Application Assembler

Acme Corporation is a server software vendor. Acme developed an EJB Server and Container. In terms
of the EJB architecture, Acme performs tBdB Container Providerand anEJB Server Provider
roles.

The ABC Enterprise wants to enable its employees to access and update employee records, payroll
information, and pension plan information over the Web. The information is stored in ABC’s ERP sys-
tem. ABC buys the employee self-service application from Wombat. To host the application, ABC buys
the EJB Container and Server from Acme. ABC’s IT department, with the help of Wombat's consulting
services, deploys the Wombat self-service application. In terms of the EJB architecture, ABC's IT
department and Wombat consulting services performedt#m@oyerrole. ABC'’s IT department also
develops theABCPensionPlarenterprise bean that provides the Wombat application with access to
ABC's existing pension plan application.

ABC's IT staff is responsible for configuring the Acme product and integrating it with ABC’s existing
network infrastructure. The IT staff is responsible for the following tasks security administration, which
includes tasks such as adding and removing employee accounts; adding employees to user groups such
as the payroll department; and mapping principals from digital certificates that identify employees on
VPN connections from home computers to the Kerberos user accounts that are used on ABC's intranet.
ABC's IT staff also monitors the well-being of the Wombat application at runtime, and is responsible for
servicing any error conditions raised by the application. In terms of the EJB architecture, ABC'’s IT staff
performs the role of thBystem Administrator

29 5/7/99

Sun Microsystems Inc.

EJB Roles and Scenarios Enterprise JavaBeans 1.1, Public Draft Scenario: Development, assembly, and deploy-

The following diagrams illustrates the products of the various EJB Roles.

Aardvark
Payroll

ejb-jar file

(a) Aardvark’s product is an ejb-jar file with an enterprise bean

(e D
Record
Service
Payroll

ServiceAdmi

JAR file
with JSP pages

ejb-jar file
k with assembly instructich/

(b) Wombat's product is an ejb-jar file with several enterprise beans assembled into
an application. Wombat's product also includes non-EJB components.

T (7 ™

HR module
Aardvark

Employeé
Record
Employee
Service ardvar ———
SemiboAdmy (ABCPensid
Plan kABC,S ERP System/

deployed enterprise beans

k ACME EJB Container /
k ACME EJB Server /

(c) Wombat'’s application is deployed in ACME'’s EJB Container at the ABC enterprise.

deployed
JSP pages

/

ABC's pension
plan application

A Web Server

5/7/99 30

Sun Microsystem Inc

Scenario: Development, assembly, and deploymentEnterprise JavaBeans 1.1, Public Draft

EJB Roles and Scenarios

The following table summarizes the EJB Roles of the organizations involved in the scenario.

Table 1 EJB Roles in the example scenarios

Organization

EJB Roles

Aardvark Inc.

Bean Provider

Wombat Inc.

Bean Provider
Application Assembler

Acme Corporation

EJB Container Provider
EJB Server Provider

ABC Enterprise’s IT staff

Deployer
Bean Provider (0ABCPensionPlan
System Administrator

31

5/7/99

Sun Microsystems Inc.

EJB Roles and Scenarios Enterprise JavaBeans 1.1, Public Draft Scenario: Development, assembly, and deploy-

5/7/99 32

Sun Microsystem Inc

Enterprise Beans as components Enterprise JavaBeans 1.1, Public Draft Overview

Chapter 4 Ove rVIeW

This chapter provides an overview of the Enterprise JavaBeans specification.

4.1 Enterprise Beans as components

Enterprise JavaBeans is an architecture for component-based distributed computing. Enterprise Beans
are components of distributed transaction-oriented enterprise applications.

33 5/7/99

Sun Microsystems Inc.

Overview

Enterprise JavaBeans 1.1, Public Draft Enterprise Beans as components

4.1.1 Component characteristics

The essential characteristics of an enterprise Bean are:

An enterprise Bean typically contains business logic that operates on the enterprise’s data.
An enterprise Bean'’s instances are created and managed at runtime by a Container.
An enterprise Bean can be customized at deployment time by editing its environment entries.

Various metadata, such as a transaction and security attributes, are separate from the enterprise
Bean class. This allows the metadata to be managed by tools during application assembly a or
deployment (or both).

Client access is mediated by the Container in which the enterprise Bean is deployed.

If an enterprise Bean uses only the services defined by the EJB specification, the enterprise
Bean can be deployed in any compliant EJB Container. Specialized containers can provide
additional services beyond those defined by the EJB specification. An enterprise Bean that
depends on such a service can be deployed only in a container that supports the service.

An enterprise Bean can be included in an assembled application without requiring source code
changes or recompilation of the enterprise Bean.

A client view of an enterprise Bean is defined by the Bean Provider. The client view can be
manually defined by the Bean developer, or generated automatically by application develop-
ment tools. The client view is unaffected by the container and server in which the Bean is
deployed. This ensures that both the Beans and their clients can be deployed in multiple execu-
tion environments without changes or recompilation.

4.1.2 Flexible component model

The enterprise Bean architecture is flexible enough to implement components such as the following:

An object that represents a stateless service.

An object that represents a conversational session with a particular client. Such session objects
automatically maintain their conversational state across multiple client-invoked methods.

An entity object that represents a business object that can be shared among multiple clients.

Enterprise beans components are intended to be relatively coarse-grained business objects (e.g. pur-
chase order, employee record). Fine-grained objects (e.g. line item on a purchase order, employee’s
address) should not be modeled as enterprise bean components.

Although the state management protocol defined by the Enterprise JavaBeans architecture is simple, it
provides an enterprise Bean developer great flexibility in managing a Bean’s state.

5/7/99

34

Sun Microsystem Inc

Enterprise JavaBeans contracts Enterprise JavaBeans 1.1, Public Draft Overview

4.2

A client always uses the same API for object creation, lookup, method invocation, and destruction,
regardless of how an enterprise Bean is implemented, and what function it provides to the client.

Enterprise JavaBeans contracts

4.2.1

This section provides an overview of the Enterprise JavaBeans contracts. The contracts are described in
detail in the following chapters of this document.

Client-view contract

This is a contract between a client and a container. The client-view contract provides a uniform develop-
ment model for applications using enterprise Beans as components. This uniform model enables the use
of higher level development tools and allows greater reuse of components.

The enterprise bean client view is remotable—both local and remote programs can access an enterprise
bean using the same view of the enterprise bean.

A client of an enterprise bean can be another enterprise bean deployed in the same or different Con-
tainer. Or it can be an arbitrary Java program, such as an application, applet, or servlet. The client view

of an enterprise bean can also be mapped to non-Java client environments, such as CORBA clients that
are not written in the Java™ programming language.

The Enterprise Bean Provider and the container provider cooperate to create the enterprise bean’s client
view. The client view includes:

* Home interface

* Remote interface

* Object identity

* Metadata interface

* Handle
The enterprise beanfeoome interfacedefines the methods for the client to create, remove, and find EJB
Objects of the same type (i.e. they are implemented by the same enterprise bean class). The home inter-
face is specified by the Bean Provider; the Container creates a class that implements the home interface.

The home interface extends fagax.ejp.EJBHome interface.

A client typically locates an enterprise Bean home interface through the standard Java Naming and
Directory Interfac&™ (JNDI) API.

35 5/7/99

Sun Microsystems Inc.

Overview

4.2.2

Enterprise JavaBeans 1.1, Public Draft Enterprise JavaBeans contracts

An EJB Obiject is accessible via the enterprise begarisote interface The remote interface defines

the business methods callable by the client. The remote interface is specified by the Bean Provider; the
Container creates a class that implements the remote interface. The remote interface extends the
javax.ejb.EJBObject interface. Thgavax.ejb.EJBObject interface defines the opera-

tions that allow the client to access the EJB Object’s identity and create a persistent handle for the EJB

Object.

Each EJB Object lives in a home, and has a unique identity within its home. For session beans, the Con-
tainer is responsible for generating a new unique identifier for each Session Object. The identifier is not
exposed to the client. However, a client may test if two object references refer to the same Session
Object. For entity beans, the Bean Provider is responsible for supplying a primary key at Entity Object
creation time; the Container uses the primary key to identify the Entity Object. A client may obtain an
Entity Object’s primary key via thgavax.ejb.EJBObject interface. The client may also test if

two object references refer to the same Entity Object.

A client may also obtain the enterprise bean’s metadata interface. The metadata interface is typically
used by clients who need to perform dynamic invocation of the enterprise bean. (Dynamic invocation is
needed if the classes that provide the enterprise client view were not available at the time the client pro-
gram was compiled.)

Component contract

This subsection describes the contract between an enterprise Bean and its Container. The main require-
ments of the contract follow. (This is only a partial list of requirements defined by the specification.)

* The requirement for the Bean Provider to implement the business methods in the enterprise
bean class. The requirement for the Container provider to delegate the client method invocation
to these methods.

* The requirement for the Bean Provider to implementefixCreate , ejbPostCreate,
andejbRemove methods, and to implement tegoFind<METHOD> methods if the bean is
an entity with bean-managed persistence. The requirement for the Container provider to invoke
these methods during an EJB Object creation, removal, and lookup.

* The requirement for the Bean Provider to define the enterprise bean’s home and remote inter-
faces. The requirement for the Container Provider to provide classes that implement these
interfaces.

* For sessions, the requirement for the Bean Provider to implement the Container callbacks
defined in the javax.ejb.SessionBean interface and optionally the

5/7/99

36

Sun Microsystem Inc

Enterprise JavaBeans contracts Enterprise JavaBeans 1.1, Public Draft Overview

javax.ejb.SessionSynchronization interfaces. The requirement for the Container
to invoke these callbacks at the appropriate times.

For entities, the requirement for the Bean Provider to implement the Container callbacks
defined in thejavax.ejb.EntityBean interface. The requirement for the Container to
invoke these callbacks at the appropriate times.

The requirement for the Container Provider to implement persistence for entity beans with
container-managed persistence.

The requirement for the Container Provider to providejtivax.ejb.SessionContext

interface to session bean instances, andjdvex.ejb.EntityContext interface to
entity bean instances. The context interface allows the instance to obtain information from the
container.

The requirement for the Container to provide to the bean instances the JNDI context that con-
tains the enterprise bean’s environment.

The requirement for the Container to manage transactions, security, and exceptions on behalf
of the enterprise bean instances.

The requirement for the Bean Provider to avoid programming practices that would interfere
with the Container’s runtime management of the enterprise bean instances.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise Beans with their declar-
ative information. The ejb-jar file is intended to be processed by application assembly and deployment

tools.

The ejb-jar file is a contract used both between the Bean Provider and the Application Assembler, and
between the Application Assembler and the Deployer.

The ejb-jar file includes:

Java class files for the enterprise Beans and their remote and home interfaces.

An XML deployment descriptor. The deployment descriptor provides both the structural and
application assembly information about the enterprise beans in the ejb-jar file. The application
assembly information is optional. (Typically, only ejb-jar files with assembled applications
include this information.)

4.2.4 Contracts summary

The following figure illustrates the Enterprise JavaBeans contracts.

37 5/7/99

Sun Microsystems Inc.

Overview Enterprise JavaBeans 1.1, Public Draft Session and entity objects

Figure 1 Enterprise JavaBeans Contracts

_ client-view
client >

component
_ contract
Container

- /

EJB Server

- /

deployment descriptor

Note that while the figure illustrates only a remote client running outside of the Container, the cli-
ent-view API is also applicable to clients that are enterprise Beans deployed in the same Container.

4.3 Session and entity objects

The Enterprise JavaBeans architecture defines two types of enterprise Beans:
* A session object type.

* An entity object type.

4.3.1 Session objects

A typical session object has the following characteristics:

* Executes on behalf of a single client.

5/7/99 38

Sun Microsystem Inc

Standard mapping to CORBA protocols Enterprise JavaBeans 1.1, Public Draft Overview

4.3.2

* Can be transaction-aware.
* Updates shared data in an underlying database.

* Does not represent directly shared data in the database, although it may access and update
such data.

* Is relatively short-lived.

* |s removed when the EJB Container crashes. The client has to re-establish a new session
object to continue computation.

A typical EJB Container provides a scalable runtime environment to execute a large number of session
objects concurrently.

Session beans are intended to be stateful. The EJB specification also defta¢siess Sessioas a

special case of a Session Bean. There are minor differences in the API between stateful (normal) Ses-
sions, and stateless Sessions.

Entity objects

4.4

A typical entity object has the following characteristics:

* Provides an object view of transactional data in the database.

* Allows shared access from multiple users.

* Can be long-lived (lives as long as the data in the database).

* The entity, its primary key, and its remote reference survive the crash of the EJB Container. If
the state of an entity was being updated by a transaction at the time the server crashed, the
entity’s state is automatically reset to the state of the last committed transaction. The crash is
not fully transparent to the client—the client may receive an exception if it calls an entity on a

server that has experienced a crash.

A typical EJB Container and Server provide a scalable runtime environment for a large number of con-
currently active entity objects.

Standard mapping to CORBA protocols

To help interoperability for EJB environments that include systems from multiple vendors, we define a
standard mapping of the Enterprise JavaBeans client-view contract to the CORBA protocols.

The use of the EJB to CORBA mapping by the EJB Server is not a requirement for EJB 1.1 compliance.
A later release of the J2EE platform is likely to require the that the J2EE platform vendor implement the
EJB to CORBA mapping.

39 5/7/99

Sun Microsystems Inc.

Overview Enterprise JavaBeans 1.1, Public Draft Standard mapping to CORBA protocols

The EJB-to-CORBA mapping covers:

1. Mapping of the EJB remote and home interfaces to RMI-IIOP. This mapping is an identity
mapping because every remote and home interface is an RMI-1IOP interface.

2. Propagation of transaction context over IIOP.

3. Propagation of security context over IIOP.

4, Interoperable naming service.

The EJB-to-CORBA mapping not only enables on-the-wire interoperability among multiple vendors’
implementations of the EJB Container, but also enables non-Java clients to access server-side applica-
tions written as enterprise Beans through standard CORBA APIs.

The EJB-to-CORBA mapping depends on the standard CORBA Obiject Services protocols for the prop-
agation of the transaction and security context.

The CORBA mapping is defined in an accompanying document [8].

While the EJB-to-CORBA mapping defines the mapping of the EJB application interfaces and transac-
tion interoperability, the mapping must be used in conjunction with other CORBA standards to ensure
full “on-the-wire” interoperability. For example, multiple EJB servers must agree on the security proto-
col to achieve seamless interoperability.

The following figure illustrates a heterogeneous environment that includes systems from five different
vendors.

5/7/99 40

Sun Microsystem Inc

Standard mapping to CORBA protocols Enterprise JavaBeans 1.1, Public Draft Overview
Figure 2 Heterogeneous EJB Environment

Enterprise

JavaBeans

client lHoP Enterprise Enterprise

vendorl JavaBeans JavaBeans

Java IDL opP EJB lloP EJB

client | server —— ' server

vendor 2 oP

vendor 4 vendor 5

CORBA

client

vendor 3

41 5/7/99

Sun Microsystems Inc.

Overview Enterprise JavaBeans 1.1, Public Draft Standard mapping to CORBA protocols

5/7/99 42

Sun Microsystem Inc

Overview

Chapter 5

5.1

Enterprise JavaBeans 1.1, Public Draft Client View of a Session Bean

Client View of a Session Bean

This chapter describes the client view of a session enterprise Bean. The session Bean itself implements
the Bean'’s business logic. The Bean’s container provides functionality for remote access, security, con-
currency, transactions, and so forth.

Although the client view of the enterprise Bean is provided by classes implemented by the container, the
container itself is transparent to the client.

Overview

For a client, a session enterprise Bean is a non-persistent object that implements some business logic
running on the server. One way to think of a session object is that a session object is a logical extension
of the client program that runs on the server. A session object is not shared among multiple clients.

A client accesses a session enterprise Bean through the session Bean's remote interface. The object that
implements this remote interface is calledEdB object. An EJB object is a remote Java programming
language object accessible from a client through the standard Java™ APIs for remote object invocation

[3].

43 5/7/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans 1.1, Public Draft EJB Container

From its creation until destruction, an EJB object lives in a container. Transparently to the client, the
container provides security, concurrency, transactions, swapping to secondary storage, and other ser-
vices for the EJB object.

Each session EJB object has an identity which, in gendoas notsurvive a crash and restart of the
container, although a high-end container implementation can mask container and server crashes to the
client.

The client view of an EJB object is location-independent. A client running in the same JVM as the EJB
object uses the same API as a client running in a different JVM on the same or different machine.

A client of an enterprise bean can be another enterprise bean deployed in the same or different Con-
tainer; or an arbitrary Java program, such as an application, applet, or servlet. The client view of an
enterprise bean can also be mapped to non-Java client environments, such as CORBA clients that are
not written in the Java programming language.

Multiple EJB classes can be installed in a container. The container allows the clients to look up the
home interfaces of the installed EJB classes via JNDI. Each home interface provides methods to create
and remove the EJB objects of the corresponding EJB class.

The client view of an EJB object is the same, irrespective of the implementation of the enterprise Bean
and its container.

5.2 EJB Container

An EJB Container (container for short) is a system that functions as the “container” for enterprise
Beans. Enterprise Beans of multiple EJB classes can live in the same container. The client can look up
the home interface for a specific EJB class using JNDI. The container is responsible for making the
installed EJB classes available to the client through JNDI.
A container is where an enterprise Bean object lives, just as a record lives in a database, and a file or
directory lives in a file system.

5.2.1 Locating an entemprise Beans home interface

A client locates an enterprise Bean’s home interface using JNDI. For example, a contai@artfor
EJB objects can be located using the following code segment:

Context initialContext = new InitialContext();

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(“applications/mall/freds-carts”),
CartHome.class);

A client’s INDI name space may be configured to include the home interfaces of EJB classes installed
in multiple EJB Containers located on multiple machines on a network. The actual locations of an EJB
class and EJB Container are, in general, transparent to the client.

5/7/99

44

Sun Microsystem Inc

Home interface Enterprise JavaBeans 1.1, Public Draft

The lifecycle of the distributed object implementing the home interface is Container-specific. A client
application should be able to retrieve a home interface object reference, and then use it multiple times

during the client application’s lifetime.

A client can pass a home interface object reference to another application. The receiving application can
use the home interface in the same way that it would a home interface object reference obtained via

JNDI.

5.2.2 What a container provides

Client View of a Session Bean

The following diagram illustrates the view that a session container provides to its clients.

Figure 3 Client View of a Session EJB Container.

container

EJB objects ’
//(EJB Home>

kEJB class 1

client

_

EJB objects ’

EJB Home >

kEJB class 2

/

5.3 Home interface

An EJB Container implements the home interface of each enterprise Bean installed in the container. The
container makes the home interfaces available to the client through JNDI.

45

5/7/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans 1.1, Public Draft Home interface

The home interface allows a client to do the following:

Create a new EJB object.
Remove an EJB object.

Get the javax.ejbh.EJBMetaData interface for the enterprise Bean. The
javax.ejb.EJBMetaData interface is intended to allow application assembly tools to
discover information about the enterprise Bean. The meta-data is defined to allow loose cli-
ent/server binding and scripting.

Obtain a handle for the home object. The home handle can be serialized and written to stable
storage; later, possibly in a different JVM, the handle can be deserialized from stable storage
and used to obtain a reference to the home object.

5.3.1 Creating an EJB object

5.3.2

A home interface defines one or mareeate(...) methods, one for each way to create an EJB
object. The arguments of tleeeate methods are typically used to initialize the state of the created EJB

object.

The following example illustrates a home interface that defines a simgiee(...) method:

public interface CartHome extends javax.ejb.EJBHome {

Cart create(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

The following example illustrates how a client creates a new EJB object usitrgede(...)
method of theCartHome interface:

cartHome.create(“John”, “7506");

Removing an EJB object

A client may remove an EJB object using tfremove() method on thgavax.ejb.EJBObject
interface, or theemove(Handle handle) method of thgavax.ejb.EJBHome interface.

Because Session Beans do not have primary keys that are accessible to clients, invoking the

javax.ejb.Home.remove(Object primaryKey) method on a session results in the

javax.rmi.RemoteException

5/7/99

46

Sun Microsystem Inc

EJB object

Enterprise JavaBeans 1.1, Public Draft Client View of a Session Bean

5.4 EJB object

5.5

A client never accesses instances of the enterprise Bean'’s class directly. A client always uses the enter-
prise Bean’'s remote interface to access an enterprise Bean’s instance. The class that implements the
enterprise Bean’s remote interface is provided by the container. The distributed objects that this class
implements are calle8JB objects

An EJB object supports:

* The business logic methods of the object. The EJB object delegates invocation of a business
method to the enterprise Bean instance.

* The methods of th@vax.ejb.EJBObject interface. These methods allow the client to:
* Get the EJB object’s home interface.
e Get the EJB object’s handle.
* Test if the EJB object is identical with another EJB object.
* Remove the EJB object.

The implementation of the methods defined in jéneax.ejb.EJBObject interface is provided by
the container.

Session object identity

Session objects are intended to be private resources used only by the client that created them. For this
reason, session EJB objects, from the client’s perspective, appear anonymous. In contrast to entity EJB
objects, which expose their identity as a primary key, session objects hide their identity. As a result, the

EJBObject.getPrimaryKey() and EJBHome.remove(Object primaryKey) methods
result in ajava.rmi.RemoteException when called on a Session Bean. when Bi#Meta-
Data.getPrimaryKeyClass() method is invoked on a meta-data object for a Session Bean, the
java.lang.RuntimeException results.

Since all session objects hide their identity, there is no need to provide a finder for them. The home
interface for a session object must not define any finder methods.

A session EJB object handle can be held beyond the life of a client process by serializing the handle to
persistent store. When the handle is later deserialized, the session EJB object it returns will work as long
as the object still exists on the server. (An earlier timeout or server crash may have destroyed it.)

The client code must use th@vax.rmi.PortableRemoteObject.narrow...) method to
convert the result of thgetEJBODbject() method invoked on a handle to the remote interface type.

47 5/7/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans 1.1, Public Draft Client view of session Bean'’s life cycle

5.6 Client view of session Bean’s life cycle

From a client point of view, the life cycle of a session Bean object is illustrated below

Figure 4 Lifecycle of a Session EJB.

client’'s method on reference
generates NoSuchObjectException

does not exist

release reference

an
not referenced

referenced

object.remove(),
home.remove(...),
home.create(...) system exception in bean,
bean timeout,

or

Container crash

exists handle.getEJBODbject(exists
and and
not referenced referenced

release reference v

client’'s method on reference

Containe_r crash,
or bean timeout

An EJB object does not exist until it is created. When an object is created by a client, the client gets a
reference to the newly created EJB object.

A client that has a reference to an object can then do any of the following:
* Invoke application methods on the object through the session Bean'’s remote interface.
* Get a reference to the object’s home interface.
* Get a handle for the object
* Pass the object as a parameter or return value within the scope of the client.

* Remove the object. A container may also remove the object automatically when the object’s
lifetime expires.

5/7/99 48

Sun Microsystem Inc

Creating and using a session Bean Enterprise JavaBeans 1.1, Public Draft Client View of a Session Bean

References to an EJB object that does not exist are invalid. Attempted invocations on an object that does
not exist will throwjava.rmi.NoSuchObjectException

5.7 Creating and using a session Bean

An example of the session Bean runtime objects is illustrated by the following diagram:

Figure 5

Session Bean Example Objects

container

\

(e)
; CartBean
client \{ CartHome -

N

/

A client creates &art session object (which provides a shopping service) usioeate(...)
method of the Cart’s home interface. The client then uses this object to fill the cart with items and to
purchase its contents.

Suppose that the end-user wishes to start the shopping session on a work machine and later complete
this session from a home machine. The client might implement this feature by getting the session’s han-
dle, sending the serialized handle to his home, and using it to reestablish access to th€ariginal

For the following example, we start off by looking up the Cart's home interface in JNDI. We then use
the home interface to creat€art EJB object, and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.create(...);

cart.addItem(66);

cart.addItem(22);

49 5/7/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans 1.1, Public Draft Object identity

Next we decide to complete this shopping session at a later time so we serialize a handle to this cart ses-
sion and store it in a file:

Handle cartHandle = cart.getHandle();
serialize cartHandle, store in a file...

Finally we deserialize the handle at a later time and purchase the content of the shopping cart:

Handle cartHandle = deserialize from a file...

Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(
cartHandle.getEJBObiject(), Cart.class);

cart.purchase();

cart.remove();

5.8 Object identity

5.8.1 Stateful Session Beans
A stateful session EJB object has a unique identity that is assigned by the container at create time.
A client can determine if two object references refer to the same session EJB object by invoking the
isldentical(Object otherObject) method on of the references.
The following example illustrates the use of tis&lentical(Object otherObject) method
for a stateful Session Bean.
FooHome fooHome = ...; // obtain home of a stateful EJB
Foo fool = fooHome.create(...);
Foo foo2 = fooHome.create(...);
if (fool.isldentical(fool)) {// this test must return true
}
if (fool.isldentical(foo2)) {// this test must return false
}

5.8.2 Stateless Session Beans

All EJB objects of the same stateless Session Bean have the same object identity, which is assigned by
the container.

Theisldentical(Object otherObiject) method always returns true when used to compare
object references of two EJB objects of the same stateless Session Bean.

5/7/99

50

Sun Microsystem Inc

Type narrowing

5.8.3

Enterprise JavaBeans 1.1, Public Draft Client View of a Session Bean

The following example illustrates the use of tis&dentical(Object otherObject) method
for a stateless Session Bean.

FooHome fooHome = ...; // obtain home of a stateless EJB
Foo fool = fooHome.create();

Foo foo2 = fooHome.create();

if (fool.isldentical(fool)) {// this test returns true

}

if (fool.isldentical(foo2)) {// this test returns true

}

getPrimaryK ey()

5.9

The object identifier of a Session Bean is, in general, opaque to the client. The regetPama-
ryKey() on a Session Bean object reference resujs/armi.RemoteException

Type narrowing

A client program that is intended to be interoperable with all compliant EJB Container implementations
must use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

Note: Programs using the cast operator for narrowing the remote and home interfaces are likely to fail
if the Container implementation uses RMI-IIOP as the underlying communication transport.

51 5/7/99

Sun Microsystems Inc.

Client View of a Session Bean Enterprise JavaBeans 1.1, Public Draft Type narrowing

5/7/99 52

Sun Microsystem Inc

Overview

Chapter 6

6.1

Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

Session Bean Component Contract

This chapter specifies the contract between a session Bean and its container. It defines the life cycle of a
session Bean instance.

This chapter defines the developer’s view of session Bean state management and the container’s respon-
sibility for managing it.

Overview

By definition, a session Bean instance is an extension of the client that creates it:

¢ |ts fields contain @onversational stateon behalf of the client. This state describes the conver-
sation represented by a specific client/instance pair.

* |t typically reads and updates data in a database on behalf of the client. Within a transaction,
some of this data may be cached in the Bean.

* |ts lifetime is typically that of its client.

53 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Goals

A session Bean instance’s life may also be terminated by a container-specified timeout or the
failure of the server it is running on. For this reason, a client must always be prepared to recre-
ate a new instance if it loses the one it is using.

Typically, a session Bean’s conversational state is not written to the database. A Bean developer simply
stores it in the Bean’s fields and assumes its value is retained for the lifetime of the Bean.

On the other hand, cached database data must be explicitly managed by the Bean. A Bean must write
any cached database updates prior to the Bean'’s transaction completion, and it must refresh its copy of
any potentially stale database data at the beginning of the next transaction.

6.2 Goals
The goal of the session Bean model is to make developing a session Bean as simple as developing the
same functionality directly in a client.
The container manages the life cycle of the session Bean, notifying it when Bean action may be neces-
sary, and providing a full range of services to ensure that the Bean implementation is scalable and can
support a large number of clients.
The remainder of this section describes the session Bean life cycle in detail and the protocol between
the Bean and its container.

6.3 A container’s management of its working set

In order to efficiently manage the size of its working set, a session Bean container may need to tempo-
rarily transfer the state of an idle session Bean to some form of secondary storage. The transfer from the
working set to secondary storage is cap)edsivation The transfer back is calledtivation.

A container may only passivate a session Bean when that Beatnitisa transaction.

In order to help its container manage its state, a session Bean is specified at deployment as having one of
the following state management modes:

* STATELESS - the Bean contains no conversational state between methods; any Bean instance
can be used for any client.

e STATEFUL - the Bean contains conversational state which must be retained across methods
and transactions.

5/7/99

54

Sun Microsystem Inc

Conversational state Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.4 Conversational state

A STATEFUL session Bean'’s conversational state is defined as its field values plus the transitive closure
of the objects from the session Bean'’s fields by following Java object references.

In advanced cases, a session Bean’s conversational state may contain open resources, such as open sock-
ets and open database cursors. A container cannot retain such open resources while a session Bean is
passivated. A developer of such a session Bean must close and open the resources egiRgshe

sivate andejbActivate notifications.

6.4.1 Instance passration and corversational state

The Bean Provider is required to ensure thatefigPassivate method leaves the instance fields
ready to be serialized by the Container. The objects that are assigned to the instanteiasient
fields after theejbPassivate method completes must be one of the following:

* A serializable objeé!

* Anull

* An EJB object reference, even if the stub class is not serializable.

* Areference to th&essionContext object, even if it is not serializable.

* A reference to the environment naming context (i.e.jgv@:comp/env ~ JNDI context) or
any of its subcontexts.

This means, for example, that the Bean Provider must close all JDBC™ connectiejiassi-
vate , and assign the instance’s fields storing the connectionslto .

The Bean Provider must assume that the content of transient fields may be lost betwejbR éise
sivate andejbActivate notifications.

The enterprise Bean provider must not store the reference oBdssionContext object in a
transient field.

The restrictions on the use of transient fields ensure that Containers can use Java Serialization during
passivation and activation.

The enterprise Bean provider must not store the reference of the environment JNDI naming context or
and its subcontexts inteansient field.

The following are the requirements for the Container.

[1] Note that the Java Serialization protocol determines whether an object is serializable or not dynamically. This means that it is pos-
sible to serialize an object of a serializable subclass of a non-serializable declared field type.

55 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft ~ The protocol between a session Bean and its

6.4.2

The container performs the Java programming language Serialization (or its equivalent) of the
instance’s state after it invokes thipPassivate method on the instance.

The container must be able to properly save and restore the reference to EJBs objects stored in the
instance’s state even if the classes that implement the object references are not serializable.

The container may use, for example, the object replacement technique that is part of the
java.io.ObjectOutputStream and java.io.ObjectinputStream protocol to externalize the EJB references.

If the EJB instance stores in its conversational state an object reference javélxeejb.Ses-

sionContext interface passed to the instance in 8&SessionContext(...) method, the
container must be able to save and restore the reference across the instance’s passivation. The container
can replace the origin@essionContext object with a different and functionally equivaleBes-
sionContext object during activation.

If the EJB instance stores in its conversational state an object referencgdedtemmp/env JNDI

context or its subcontext, the container must be able to save and restore the object reference across the
instance’s passivation. The container can replace the original object with a different and functionally
equivalent object during activation.

The container may destroy an instance if the instance does not meet the requirements for serialization
afterejbPassivate

While a session container is not required to use the Serialization protocol for the Java programming lan-
guage to store the state of a passivated session instance, it must achieve the equivalent result. The one
exception is that containers are not required to reset the valtraredient fields during activatiol!.

Declaring the enterprise Bean'’s fields as “transient” is, in general, discouraged.

The effect of transaction ollback on corversational state

6.5

A session Bean’s conversational state is not transactional. It is not automatically rolled back to its initial
state if the Bean'’s transaction rolls back.

If a rollback could result in an inconsistency between a session Bean'’s conversational state and the state

of the underlying database, the Bean developer (or the application development tools used by the devel-
oper) must use thafterCompletion notification to manually reset its state.

The protocol between a session Bean and its container

Containers themselves make no actual service demands on their session Beans. The calls a container
makes on a Bean provide it with access to container services and deliver notifications issued by the con-
tainer.

(2]

This is to allow the Container to swap out an instance’s state through techniques other than the Java Serializatidrgprotocol
example, the Container’s Java Virtual Machine implementation may use a block of memory to keep the instance’s variables, and
the Container swaps the whole memory block to the disk instead of performing Java Serialization on the instance.

5/7/99

56

Sun Microsystem Inc

The protocol between a session Bean and its containerEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.5.1 The required SessionBearnterface

All session Beans must implement ®essionBean interface.

The setSessionContext method is called by the Bean’s container to associate a session Bean
instance with its context maintained by tbentainer. Typically a session Bean retains its session con-
text as part of its conversational state.

The ejpRemove notification signals that the instance is in the process of being removed by the con-
tainer.

The ejbPassivate notification signals the intent of the container to passivate the instance. The
ejbActivate notification signals the instance it has just been reactivated. Since containers automat-
ically maintain the conversational state of a session Bean instance while it is passivated, most session
Beans can ignore these notifications. Their purpose is to allow advanced Beans to maintain open
resources that need to be closed prior to an instance’s passivation and reopened during an instance’s
activation.

6.5.2 The SessionContexinterface

All Bean containers provide their Bean instances witBessionContext . This gives the Bean
instance access to the instance’s context maintained by the containeéde$sienContext inter-
face has the following methods:

* ThegetEJBObject method returns the EJB object for the instance.
* ThegetEJBHome method returns the home interface for the instance’s EJB class.

* The getCallerPrincipal method returns thgava.security.Principal that
identifies the invoker of the Bean instance’s EJB object.

* TheisCallerInRole predicate tests if the Bean caller has a particular role.

* The setRollbackOnly method allows the instance to mark the current transaction such
that the only outcome of the transaction is a rollback. Only enterprise beans using con-
tainer-managed transactions can use this method.

* The getRollbackOnly method allows the instance to test if the current transaction has
been marked for rollback. Only enterprise beans using container-managed transactions can use
this method.

* The getUserTransaction method returns th@vax.transaction.UserTrans-
action interface that the Bean can use for explicit transaction demarcation, and for obtaining
transaction status. Only enterprise beans using bean-managed transactions can use this inter-
face.

57 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft ~ The protocol between a session Bean and its

6.5.3

The optional SessionSyntronization interface

6.5.4

A session Bean can optionally implement fagax.ejb.SessionSynchronization inter-
face. This interface can provide the Bean with transaction synchronization naotifications. Session Beans
use these notifications to manage database data they may cache within transactions.

The afterBegin notification signals a session instance that a new transaction has begun. The con-
tainer invokes this method before the first business method within a transactioaft€Hgegin
notification is invoked with the transaction context. The instance may do any database work it requires
within the scope of the transaction.

The beforeCompletion notification is issued when a session instance’s client has completed work

on its current transaction but prior to committing the instance’s resources. At this time, the instance
should write out any database updates it has cached. The instance can cause the transaction to roll back
by invoking thesetRollbackOnly method on its session context.

TheafterCompletion notification signals that the current transaction has completed. A completion
status oftrue indicates that the transaction has committed; a statteds# indicates that a rollback

has occurred. Since a session instance’s conversational state is not transactional, it may need to manu-
ally reset its state if a rollback occurred.

All container providers must suppddessionSynchronization . It is optional only for the Bean
implementor. If a Bean class implemer@sssionSynchronization , the container must invoke
theafterBegin , beforeCompletion andafterCompletion notifications as required by the
spec.

The SessionSynchronization interface may be implemented only by a stateful Session Bean
using container-managed transactions. TBessionSynchronization interface must not be

implemented by a stateless Session Bean.
There is no need for a Session Bean with bean-managed transaction to rely on the synchronization call

backs since the bean is in control of the commit—the bean knows when the transaction is about to be
committed, and it knows the outcome of the transaction commit.

Business method delegation

6.5.5

The enterprise Bean'’s remote interface defines the business methods callable by a client. The enterprise
Bean’s remote interface is implemented by the EJB object class generated by the container tools. The

EJB object class delegates an invocation of a business method to the matching business method that is
implemented in the enterprise Bean class.

Session Bears ejbCreate(....methods

A client creates a session Bean instance using one afrda#e methods defined in the Bean’s home
interface. The Bean’s home interface is provided by the Bean developer; its implementation is generated
by the deployment tools provided by the container provider.

5/7/99

58

Sun Microsystem Inc

The protocol between a session Bean and its containerEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

The container creates an instance of a session Bean in three steps. First, the container calls the Bean
class’newinstance method to create a Bean instance. Second, the container caketBes-
sionContext method to pass the context object to the instance. Third, the container calls the
instance’sejbCreate method whose signature matches the signature ofctbate method

invoked by the client. The input parameters sent from the client are passedjCiteate method.

Each session Bean must have at leastajp€reate method. The number and signatures of a session
Bean'screate methods are specific to each EJB class.

Since a session Bean represents a specific, private conversation between the Bean and its client, its cre-

ate parameters typically contain the information the client uses to customize the Bean instance for its
use.

6.5.6 Serializing session Bean methods

A container serializes calls to each instance. Most containers will support many instances of a Bean exe-
cuting concurrently; however, each instance sees only a serialized sequence of method calls. Therefore,
a session Bean does not have to be coded as reentrant.

The container must serialize all the container-invoked callbacksefidPassivate, before-
Completion , etc. methods), and it must serialize these callbacks with the client-invoked business
method calls.

If a client-invoked business method is in progress on an instance when another client-invoked call, from
the same or different client, arrives at the same instance, the container must throw the
javax.rmi.RemoteException to the second client. Clients are not allowed to make concurrent
calls to a session object.

One implication of this rule is that it is illegal to make a “loopback” call to a session Bean instance. An
example of a loopback call is when a client calls instance A, instance A calls instance B, and B calls A.
The loopback call attempt from B to A would result in the container throwingaha.rmi.Remo-
teException to B.

6.5.7 Transaction context of session Bean methods

A session Bean'sfterBegin and beforeCompletion methods are always called with the
proper global transaction context.

The implementation of a business method defined in the remote interface is invoked in the scope of a
transaction determined by the transaction attribute specified in the deployment descriptor.

A session Bean’sewlInstance, setSessionContext ,ejpCreate , ejpbRemove , ejbPas-
sivate , ejbActivate, andafterCompletion methods are called outside of the client’s global
transaction.

59 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft STATEFUL Session Bean State Diagram

6.6

For example, it would be wrong to perform database operations within a session Bjla@ieate

or ejpRemove method and to assume that the operations are executed under the protection of a global
transaction. TheejpCreate andejbRemove methods are not controlled by a transaction attribute
because handling rollbacks in these methods would greatly complicate the session instance’s state dia-
gram (see next section).

STATEFUL Session Bean State Diagram

The following figure illustrates the life cycle of a STATEFUL session Bean instance.

5/7/99

60

Sun Microsystem Inc

STATEFUL Session Bean State Diagram Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

Figure 6 Lifecycle of a STATEFUL Session EJB

instance throws system
does not exception from any method

exist
create(args)

v

1. newlnstance() ejbRemove()
2. setSessionContext(sc) *

3. ejbCreate(args) timeout

chosen as LRU victim

remove(),
or timeout *
ejbPassivate()
non-tx metho passive
tx method ejbActivate()
' f
afterBegin() commit rollback method

Y \

1. beforeCompletion() afterCompletion(false)
2. afterCompletion(true)

\/i hod)ﬁ different tx method
tx method meth
ready in TX > CRROR

create() action initiated by client
newlnstance action initiated by containef

The following steps describe the life cycle of a STATEFUL transactional session Bean instance:

* A session Bean’s life starts when a client invokeseate(...) method on the enterprise
Bean’s home interface. This causes the container to innakenstance() on the Bean

61 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft STATEFUL Session Bean State Diagram

class to create a new memory object for the enterprise Bean. Next, the containeetalls
SessionContext() andejbCreate(...) on the instance, and returns an EJB object
reference to the client. The instance is now in the method ready state.

The Bean instance is now ready for client’s business methods. Based on the transaction
attributes in the enterprise Bean’s deployment descriptor and the transaction context associated
with the client’s invocation, a business method is or is not executed in a global transaction con-
text (shown as tx method and non-tx method in the diagram). See Chapter 11 for how the con-
tainer deals with transactions.

A non-transactional method is executed while the instance is in the method ready state.

An invocation of a transactional method causes the instance to be included in a transaction.
When the Bean instance is included in a transaction, the container issudetBegin()

method on it. TheafterBegin is delivered to the instance before any business method that

is executed as part of the transaction. The instance becomes associated with the transaction and
will remain associated with the transaction until the transaction completes.

Bean methods invoked by the client in this transaction can now be delegated to the Bean
instance. An error occurs if a client attempts to invoke a method on the Bean and the deploy-

ment descriptor for the method requires that the container invoke the method in a different

transaction context than the one that the instance is currently associated with, or in no transac-
tion context.

If a transaction commit has been requested, the transaction service notifies the container, which
issues deforeCompletion on the instance. (The transaction service notifies the container
before actually committing the transaction.) WhieaforeCompletion is invoked, the
instance should write any cached updates to the database.

The transaction service then attempts to commit the transaction, resulting in either a commit or
rollback. If, in the previous step, a transaction rollback had been requested, the rollback status
is reached without issuirlgeforeCompletion

When the transaction completes, the container isaftesCompletion on the instance,
specifying the status of the completion (commit or rollback). If a rollback occurred, the Bean
instance may need to reset its conversational state back to the value it had at the beginning of
the transaction.

The container’s caching algorithm may decide that the Bean instance should be evicted from
memory (this could be done at the end of each method, or by using an LRU policy). The con-
tainer issuegjbPassivate on the instance. After this completes, the container must save

the instance’s state to secondary storage. A session Bean can be passivated only between trans-
actions, and not within a transaction.

While the instance is in the passivated state, the Container may remove the instance and the
associated EJB Obiject after a timeout specified by the deployer has expired. All object refer-
ences and handles for the associated EJB Object become invalid. If a client attempts to invoke

5/7/99

62

Sun Microsystem Inc

STATEFUL Session Bean State Diagram Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract
the EJB Object, the Container will throw thgva.rmi.NoSuchObjectException to
the client.

* If a client invokes a passivated session Bean instance, the container will activate the instance.
To activate the session instance, the container restores the instance’s state from secondary stor-
age and issuegbActivate on it.

* The session Bean is again ready for client methods.

* When the client callsemove() on the EJB object, this causes the container to isfhRe-
move() on the Bean instance. This ends the life of the session Bean instance. Any subsequent
attempt by its client to invoke the instance will cause jinea.rmi.NoSuchObjectEx-
ception to be thrown. (This exception is a subclasgaya.rmi.RemoteException).
Note that a container can implicitly invoke themove() method on the instance after the
lifetime of the EJB object has expired. Themove() method cannot be called when the
instance is participating in a transaction. An attempt to remove a session instance while the
instance is in a transaction will cause the container to throwathex.ejb.RemoveEx-
ception to the client.

6.6.1 Operations allowed in the methods of a stateful session bean class

Table 2 defines the methods of a stateful session bean class in which the session bean instances can
access the methods of thevax.ejb.SessionContext interface, thgava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

If a session bean instance attempts to invoke a method dbélssionContext interface, and the
access is not allowed in Table 2, the Container must throwjabe.lang.lllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager or an enterprise bean, and the access is
not allowed in Table 2, the behavior is undefined by the EJB architecture.

63 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract

Enterprise JavaBeans 1.1, Public Draft

STATEFUL Session Bean State Diagram

Table 2

Operations allowed in the methods of a stateful session bean with container-managed transactions

Bean method

Bean method can perform the following operations

Container-managed transactions

Bean-managed transactions

constructor

setSessionContext

SessionContext methodgetEJBHome
JNDI access to java:comp/env

SessionContext methodgetEJBHome,
getUserTransaction

JNDI access to java:comp/env

ejbCreate
ejbRemove
ejbActivate
ejbPassivate

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBODbject

JNDI access to java:comp/env

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBObject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

business method
from remote interface

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerinRole setRollback-
Only, getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerinRole setRollback-
Only, getEJBObject,
getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

afterBegin
beforeCompletion

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerInRole setRollback-
Only, getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

afterCompletion

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBODbject

JNDI access to java:comp/env

N/A

(a bean with bean-managed transactio
cannot implement the SessionSynchro
zation interface)

s
ni-

Additional restrictions:

* The getRollbackOnly

and setRollbackOnly

methods of theSessionContext

interface should be used only in the enterprise bean methods that execute in the context of a
global transaction. The Container must throw thea.lang.lllegalStateExcep-
tion if the methods are invoked while the instance is not associated with a global transaction.

5/7/99

64

Sun Microsystem Inc

STATEFUL Session Bean State Diagram Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

The reasons for disallowing the operations in Table 2 follow:

Invoking thegetEJBObject methods is disallowed in the session bean methods in which
there is no EJB Object identity associated with the instance.

Invoking the getCallerPrincipal and isCallerInRole methods is disallowed in
the session bean methods for which the Container does not have a client security context.

Invoking thegetRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction context,
and to all session beans with bean-managed transactions.

Accessing resource managers and enterprise beans is disallowed in the session bean methods
for which the Container does not have a meaningful transaction context or client security con-
text.

Accessing resource managers and enterprise beans is disallowed éjb@reate and
ejpbRemove method of a stateful session bean with container-managed transactions even
though the Container has a meaningful transaction and client security context. Allowing trans-
actional resource manager and enterprise bean access in these operations would greatly com-
plicate the instance life cycle because the life cycle diagram in Figure 6 would have to include
transitions that deal with rollback of the transaction that includesejp€reate and
ejpbRemove methods.

TheUserTransaction interface is unavailable to the enterprise beans with container-man-
aged transactions.

6.6.2 Dealing with exceptions

6.6.3

A RuntimeException thrown from any method of the enterprise bean class (including the business
methods and the callbacks invoked by the Container) results in the transition to the “does not exist”
state. Exception handling is described in detail in Chapter 12.

From the client perspective, the corresponding EJB Object does not exist any more. Subsequent invoca-
tions through the object reference will resulfama.rmi.NoSuchObjectException

MissedejbRemove() calls

The Bean Provider cannot assume that the Container will always involegtRemove() method on
a Session instance. The following scenarios res@ftiRemove() not being called on an instance:

A crash of the EJB Container.
A system exception thrown from the instance’s method to the Container.

A timeout of client inactivity while the instance is in tipassive state. The timeout is speci-
fied by the Deployer in an EJB Container implementation specific way.

65 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Object interaction diagrams for a STATEFUL

If the session bean instance allocates resources igjtitereate(...) method and/or in the busi-

ness methods, and releases normally the resources @jtRemove() method, these resources will

not be automatically released in the above scenarios. The application using the session bean should pro-
vide some clean up mechanism to periodically clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the session bean

stores the shopping cart content in a database, the application should provide a program that runs peri-
odically and removes “abandoned” shopping carts from the database.

6.6.4 Restrictions for transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked busi-
ness methods. The restrictions are enforced by the container and must be observed by the client pro-
grammer.

* A session Bean instance can participate in at most a single transaction at a time.

* If a session Bean instance is participating in a transaction, it is an error for a client to invoke a
method on the session Bean in a different or no transaction context. It is also an error to invoke
a method on the session Bean if the deployment descriptor would cause the container to exe-
cute the method in a different transaction context or no transaction context. The container will
throw thejava.rmi.RemoteException to the client in such a case.

* If asession Bean instance is participating in a transaction, it is an error for a client to invoke the
remove method on the session Bean or its home interface. The container must detect such an
attempt and throw thvax.ejb.RemoveException to the client. The container should
not mark the client’s transaction for rollback, allowing the client to recover.

6.7 Object interaction diagrams for a STATEFUL session Bean

This section contains object interaction diagrams (OID) that illustrates the interaction of the classes.

(o]
~
=

Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These are either
classes that are part of the container, or classes that were generated by the container tools. These classes
communicate with each other through protocols that are container-implementation specific. Therefore,
the communication between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather than as
a prescriptive one.

5/7/99 66

Sun Microsystem Inc

Object interaction diagrams for a STATEFUL session BeanEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.7.2 Creating a session object

The following diagram illustrates the creation of a transactional session enterprise Bean

Figure 7 OID for Creation of a Transactional Session EJB.

container provided classes

client EJB EJB container session synchro-| instance transaction
home object context nization service

Create(argsz

setSe%SionContext()

\
ejbCreate(args)

;
\
\
\
\
\
\
\
‘ &
\
\
\
\
|
\

- Xy

6.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transaction

67 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Object interaction diagrams for a STATEFUL

Figure 8 OID for protocol at start of Session EJB Transaction.

container provided classes

client EJB EJB container session sync_hro- instance transactiodatabase
home object context nization service

|
. . \ . .
javax.transaction.UserTransaction.begin()

| |

\ \
| | | DI

business method - \ \
| | |
| | |

If the instance was passivated itlis reactivated
| | |

1

registerSynchronization(syn(fhronizatiqn)
|
\
\

new

I
\
|
|
|
|
-
\
\ \
>I read some data

register respurce manager

business method

business method)
business method

|
\
|
|
\
|
\
\
\
\
|
|
|
\
|
|
\ afterBegin
\
|
\
\
\
|
|
|
|
\
|
\
\
|
|

XX

-
|
\

5/7/99 68

Sun Microsystem Inc

Object interaction diagrams for a STATEFUL session BeanEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.7.4 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session enterprise Bean

instance
Figure 9 OID for Transaction Synchronization Protocol for a Session EJB.
container provided classes
client EJB EJB container session synchro-| instance transactiodatabase

home object context nization service

| | |
UserTransaction.commit() ‘ ‘ -

| beforeCompletion(

\
beforeCopwpletion()

write updges to DB

X

prepare

|

commit

|

|

|

\

\

\

\

\

\

\

\

\

\ \
‘ afterCompIetion(statuls)
|
\
|
\
|
\
|
\
|
\
|

¢ | I

afterCompletion(status)

6.7.5 Passvating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session enterprise Bean instance.
Passivation typically happens spontaneously based on the needs of the container. Activation typically
occurs when a client calls a method

69 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Object interaction diagrams for a STATEFUL

Figure 10 OID for Passivation and Activate of Session EJBs.

container provided classes

client EJB EJB container instance synchro-| instance secondary store
home object context nization
|
|
|
|
\
|
Passivation: |

write state

Activation:

read state

ejbActivate

|
\
\
|
|
\
. . \
ejbPassivate >|
\
|
|
\
|
|
\
i
\
\
|
\
|
|
|
\
i
\
\

1
1

6.7.6 Removing a session object

The following diagram illustrates the destruction of a session Bean

5/7/99 70

Sun Microsystem Inc

Stateless session Beans Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

Figure 11

OID for the Destruction of a Session EJB.

container provided classes

client EJB EJB containersession sync_hro— instance
home object context nization

>I ejpRemove()

remove()

1

6.8 Stateless session Beans

Stateless session Beans are session Beans with no conversational state. This means that all Bean
instances are equivalent when they are not involved in serving a client-invoked method.

The term “stateless” signifies that an instance has no state for a specific client. However, the instance
variables of the instance can contain the state across client-invoked method calls. Examples of such
states include an open database connection and an object reference to an EJB object.

The home interface of a stateless session Bean must haeai@® method that takes no arguments,
and returns the session Bean’s remote interface. The home interface must not have acreatber
methods. The session enterprise Bean class must define a sjp@ieeate method that takes no
arguments.

Since all instances of a stateless session Bean are equivalent, the container can choose to delegate a cli-
ent’s work to any available instance.

A container only needs to retain the number of instances required to service the current client load. Due

to client “think time,” this number is typically much smaller than the number of active clients. Passiva-

tion is not needed for stateless sessions. If another stateless session Bean instance is needed to handle an
increase in client work load, the container creates one. If a stateless session Bean is not needed to handle
the current client work load, the container can destroy it.

71 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Stateless session Beans

6.8.1

Since stateless session Beans minimize the resources needed to support a large population of clients,
depending the implementation of the container, applications that use this approach may scale somewhat
better than those using stateful session Beans. This benefit may be offset by the increased complexity of
the client application that uses the stateless Beans.

Clients use thereate andremove methods on the home interface of a stateless session Bean in the
same way as on a stateful session Bean. To the client that it appears as if the client is controlling the life
cycle of an EJB instance. However, the container is handlingtthate andremove calls without
necessarily creating and removing an EJB instance.

There is no fixed mapping between clients and stateless instances. The container simply delegates a cli-
ent’s work to any available instance that is method-ready.

A stateless session must not implementdlax.ejb.SessionSynchronization interface.

Stateless session Bean state diagram

When a client calls a method on its stateless session Bean reference, the container selects one of its
method-readyinstances and delegates the method invocation to it.

The following figure illustrates the life cycle of a STATELESS session Bean instance

5/7/99

12

Sun Microsystem Inc

Stateless session Beans Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract
Figure 12 Lifecycle of a STATELESS Session Bean.
does not
exist

1. newlnstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

method

method() action initiated by client
ejbCreate() action initiated by container

The following steps describe the lifecyle of a session Bean instance:

* A stateless session Bean'’s life starts when the container invodwinstance() on the
Bean class to create a new memory object for the enterprise Bean. Next, the container calls
setSessionContext() followed by ejbCreate() on the instance. The container can
perform the instance creation at anytime, with no relationship to a client’s invokingy¢he
ate() method.

* The Bean instance is now ready to be delegated a business method call from any client.
* When the container no longer needs the instance (which usually happens when the container

wants to reduce the number of instances in the method-ready pool), the container invokes
ejpbRemove() on it. This ends the life of the stateless session Bean instance.

6.8.2 Operations allowed in the methods of a stateless session bean class

Table 3 defines the methods of a stateless session bean class in which the session bean instances can
access the methods of tievax.ejb.SessionContext interface, thgava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

73 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract

If a session bean instance attempts to invoke a method dbélssionContext

Enterprise JavaBeans 1.1, Public Draft

access is not allowed in Table 3, the Container must throwjahe.lang.lllegalStateEx-

ception.

If a session bean instance attempts to access a resource manager or an enterprise bean and the access is

not allowed in Table 3, the behavior is undefined by the EJB architecture.

Table 3

Operations allowed in the methods of a stateless session bean with container-managed transactions

Bean method

Bean method can perform the following operations

Container-managed transactions

Bean-managed transactions

constructor

setSessionContext

SessionContext methodgetEJBHome
JNDI access to java:comp/env

SessionContext methodgetEJBHome,
getUserTransaction

JNDI access to java:comp/env

ejbCreate
ejbRemove

SessionContext methodgetEJBHome
getRollbackOnlysetRollbackOnly
getEJBODbject

JNDI access to java:comp/env

SessionContext methodgetEJBHome
getEJBODbject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

business method
from remote interface

SessionContext methodgetEJBHome
getCallerPrincipal getRollback-
Only, isCallerInRole setRollback-
Only, getEJBObject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

SessionContext methodgetEJBHome
getCallerPrincipal isCallerinRole
getEJBObject, getUserTransaction

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access

Additional restrictions:

* The getRollbackOnly
interface should be used only in the enterprise bean methods that execute in the context of a

and setRollbackOnly

methods of theSessionContext

global transaction. The Container must throw thea.lang.lllegalStateExcep-

tion if the methods are invoked while the instance is not associated with a global transaction.

The reasons for disallowing operations in Table 3:

* Invoking thegetEJBODbject

methods is disallowed in the session bean methods in which

there is no EJB Object identity associated with the instance.

* Invoking the getCallerPrincipal
the session bean methods for which the Container does not have a client security context.

and isCallerInRole

5/7/99

74

Stateless session Beans

interface, and the

methods is disallowed in

Sun Microsystem Inc

Object interaction diagrams for a STATELESS session BeanEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

* Invoking thegetRollbackOnly and setRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction context,
and to all session beans with bean-managed transactions.

* Accessing resource managers and enterprise beans is disallowed in the session bean methods
for which the Container does not have a meaningful transaction context or client security con-
text.

* TheUserTransaction interface is unavailable to enterprise beans with container-managed
transactions.

6.8.3 Dealing with exceptions

A RuntimeException thrown from any method of the enterprise bean class (including the business
methods and the callbacks invoked by the Container) results in the transition to the “does not exist”
state. Exception handling is described in detail in Chapter 12.

From the client perspective, the corresponding EJB Object continues to exist. The client can continue
accessing the EJB Object because the Container can delegate the client’s requests to another instance.

6.9 Object interaction diagrams for a STATELESS session
Bean

This section contains object interaction diagrams that illustrates the interaction of the classes.

6.9.1 Client-invoked create()

The following diagram illustrates the creation of an EJB object that is implemented by a stateless ses-
sion Bean.

75 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Object interaction diagrams for a STATELESS

Figure 13 OID for creation of a STATELESS Session Bean

container-provided classes

client EJB EJB container session synchro-| instance transaction
home object context nhization service

| | |
| create() | |
new

6.9.2 Business method imocation

The following diagram illustrates the invocation of a business method.

Figure 14 OID for invocation of business method on STATELESS Session Bean

container-provided classes

client EJB EJB container session synchro- instance transactiodatabase
home object context hization service

|
\
business method

L

| | |

[[[

| | |

| | |

\ \ \

business method | \ |
\

read or m}odate some data

| |
| |
\ \
| |
\ \
\ \
| |
\ \
\ \ register resource manafper
\ \
| |
\ \
| |
\ \
| |
| |

5/7/99 76

Sun Microsystem Inc

Object interaction diagrams for a STATELESS session BeanEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.9.3 Client-invoked remove()

The following diagram illustrates the destruction of an EJB object that is implemented by a stateless
session Bean.

Figure 15 OID for removal of a STATELESS Session Bean

container-provided classes

client EJB EJB containersession sync_hro- instance
home object context nization

! remove()

6.9.4 Adding instance to the pool

The following diagram illustrates the sequence for a container adding an instance to the method-ready
pool.

77 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Object interaction diagrams for a STATELESS

Figure 16 OID for Container Adding Instance to a Method-Ready Pool of STATELESS Session Beans

container-provided classes

EJB EJB container session synchro-| instance transaction
home object context nhization service

| |

new |

new |

|
setSessibnContext()
|

XN

ejbCreaH‘e()
\
\

The following diagram illustrates the sequence for a container removing an instance from the
method-ready pool.

Figure 17 OID for a Container Removing an Instance of STATELESS Session Bean from Ready Pool

container-provided classes

EJB EJB container session sync_hro- instance transaction
home object context hization service

\ \
ejbRerqove()

;
\
\
|

5/7/99 78

Sun Microsystem Inc

The responsibilities of the enterprise Bean providerEnterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.10

The responsibilities of the enterprise Bean provider

6.10.1

This section describes the responsibilities of session enterprise Bean provider to ensure that an enter-
prise Bean can be deployed in any EJB Container.

Classes and interfaces

6.10.2

The enterprise Bean provider is responsible for providing the following class files:
* Enterprise Bean class.
* Enterprise Bean’'s remote interface.

* Enterprise Bean's home interface.

Enterprise Bean class

6.10.3

The following are the requirements for session enterprise Bean class:

The class must implement, directly or indirectly, jgnax.ejb.SessionBean interface.

The class must be definedmsblic , must not bdinal , and must not babstract

The class must havepaiblic constructor that takes no parameters.

The class must not define thiealize() method.

The class may, but is not required to, implement the enterprise Bean’s remote iiterface

The class must implement the business methods amjbiiecate = methods.

The class can optionally implement jagax.ejb.SessionSynchronization interface.

The enterprise bean class may have superclasses and/or superinterfaces. If the enterprise bean has super-
classes, the business methods, éfi#Create methods, the methods of ti&essionBean inter-

face, and the methods of the optiofBd@ssionSynchronization interface may be defined in the
enterprise bean class, or any of its superclasses.

ejbCreatemethods

The enterprise Bean class must define one or nefis€reate(...) methods whose signatures
must follow these rules:

(3]

It is recommended that the enterprise bean class not implement the remote interface to prevent inadvertentipiassray of
method argument or result.

79 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft The responsibilities of the enterprise Bean pro-

The method name must bfpCreate

The method must be declaredpablic

The method must not be declaredinal or static

The return type must bid .

The methods arguments must be legal types for RMI-IIOP.

The throws clause may define arbitrary application exceptions, possibly including the
javax.ejb.CreateException

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throwdhe.rmi.RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-
pliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeException to
indicate non-application exceptions to the Container (see Section 12.2.2).

6.10.4 Business methods

The class may define zero or more business methods whose signatures must follow these rules:

The function names can be arbitrary, but they must not conflict with the names of the methods defined
by the EJB architecturejpCreate , ejbActivate , etc.).

The business method must be declarepldic

The method must not be declaredinal or static

The methods arguments and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throyattzermi.RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-

pliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeException to
indicate non-application exceptions to the Container (see Section 12.2.2).

6.10.5 Enterprise Beans remote interface

The following are the requirements for the enterprise Bean's remote interface:
The interface must extend tjavax.ejb.EJBObject interface.
The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-

ments and return values must be of valid types for RMI-IIOP, and their throws clause must include the
java.rmi.RemoteException

5/7/99 80

Sun Microsystem Inc

The responsibilities of the container provider Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.10.6

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-1IOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the enterprise
Bean'’s class. The matching method must have:

* The same name.
* The same number and types of arguments, and the same return type.

* All the exceptions defined in the throws clause of the matching method of the enterprise Bean
class must be defined in the throws clause of the method of the remote interface.

Enterprise Beans home interface

6.11

The following are the requirements for the enterprise Bean’s home interface signature:

The interface must extend tjavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-
ments and return values must be of valid types for RMI-IIOP, and that their throws clause must include

thejava.rmi.RemoteException

The home interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-1IOP rules for the definition of remote interfaces.

A Session Bean'’s home interface defines one or oresde(...) methods.

Eachcreate method must be namedreate’, and it must match one of thejbCreate methods
defined in the enterprise Bean class. The matckjp@reate method must have the same number
and types of arguments. (Note that the return type is different.)

The return type for areate method must be the enterprise Bean’s remote interface type.

All the exceptions defined in the throws clause ofginCreate method of the enterprise Bean class
must be defined in the throws clause of the matctriegte method of the remote interface.

The throws clause must inclugeyax.ejb.CreateException

The responsibilities of the container provider

This section describes the responsibilities of the container provider to support a session Bean. The con-
tainer provider is responsible for providing the deployment tools, and for managing the Session Bean
objects at runtime.

81 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft The responsibilities of the container provider

6.11.1

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the container provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

Generation of implementation classes

6.11.2

The deployment tools provided by the container are responsible for the generation of additional classes

when the enterprise Bean is deployed. The tools obtain the information that they need for generation of

the additional classes by introspecting the classes and interfaces provided by the enterprise Bean pro-
vider and by examining the Bean'’s deployment descriptor.

The deployment tools must generate the following classes:

* A class that implements the enterprise Bean’s home interface (EJB Home class).

* A class that implements the enterprise Bean’s remote interface (EJB Object class).
The deployment tools may also generate a class that mixes some container-specific code with the enter-
prise Bean class. This code may, for example, help the container to manage the Bean instances at runt-
ime. Subclassing, delegation, and code generation can be used by the tools.
The deployment tools may also allow the generation of additional code that wraps the business methods
and is used to customize the business logic to an existing operational environment. For example, a wrap-

per for adebit function on theAccountManager Bean may check that the debited amount does
not exceed a certain limit.

EJB Home class

6.11.3

The EJB home class, which is generated by the deployment tools, implement the enterprise Bean'’s
home interface. This class implements the methods ojavex.ejb.EJBHome interface, and the
create methods specific to the enterprise Bean.

The implementation of eacltreate(...) method invokes a matchingjbCreate(...)
method.

The implementation of theemove(...) methods defined in thiavax.ejp.EJBHome interface

must activate the instance (if the instance is in the passive state) and invajbRiegenove method on
the instance.

EJB Object class

The EJB Obiject class, which is generated by the deployment tools, implements the enterprise Bean’s
remote interface. It implements the methods ofjthex.ejb.EJBObject interface and the busi-
ness methods specific to the enterprise Bean.

5/7/99

82

Sun Microsystem Inc

The responsibilities of the container provider Enterprise JavaBeans 1.1, Public Draft Session Bean Component Contract

6.11.4

The implementation of theemove() method (defined in thgvax.ejb.EJBODbject interface)
must activate the instance (if the instance is in the passive state) and inva{bRigenove method on
the instance.

The implementation of each business method must activate the instance (if the instance is in the passive
state) and invoke the matching business method on the instance.

Handle class

6.11.5

The deployment tools are responsible for implementing the handle classes for the enterprise Bean's
home and remote interfaces.

Meta-data class

6.11.6

The deployment tools are responsible for implementing the class that provides meta-data to the client
view contract. The class must be a valid RMI Value class and must implemeavtneejb.EJB-
MetaData interface.

Non-reentrant instances

6.11.7

The container must ensure that only one thread can be executing an instance at any time. If a client
request arrives for an instance while the instance is executing another request, the container must throw
thejava.rmi.RemoteException to the second request.

Note that a session enterprise Bean is intended to support only a single client. Therefore, it
would be an application error if two clients attempted to invoke the same session Bean.

One implication of this rule is that an application cannot make loopback calls to a session Bean
instance.

Transaction scoping, securityexceptions

The container must follow the rules with respect to transaction scoping, security checking, and excep-
tion handling, as described in Chapters 11, 15, and 12.

83 5/7/99

Sun Microsystems Inc.

Session Bean Component Contract Enterprise JavaBeans 1.1, Public Draft The responsibilities of the container provider

5/7/99 84

Sun Microsystem Inc

Overview Enterprise JavaBeans 1.1, Public Draft Example Session Scenario

camerr EXAMple Session Scenario

This chapter describes an example development and deployment scenario of a session enterprise Bean.
We use the scenario to explain the responsibilities of the enterprise Bean provider and those of the con-
tainer provider.

The classes generated by the container provider’s tools in this scenario should be considered illustra-
tive rather than prescriptive. Container providers are free to implement the contract between a session
enterprise Bean and its container in a different way, provided that it achieves an equivalent effect (from
the perspectives of the enterprise Bean provider and the client-side programmer).

7.1 Overview

Wombat Inc. has developed tBartBean session Bean. The CartBean is deployed in a container pro-
vided by the Acme Corporation.

85 5/7/99

Sun Microsystems Inc.

Example Session Scenario Enterprise JavaBeans 1.1, Public Draft Inheritance relationship

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illustrated in the fol-
lowing diagram:

5/7/99 86

Sun Microsystem Inc

Inheritance relationship Enterprise JavaBeans 1.1, Public Draft Example Session Scenario
Figure 18 Example of Inheritance Relationships Between EJB Classes
java_rmi_Remote java.io.SeriaIizabIe
JDK
: Enterprise
EJBMetaData EJBObject EnterpriseBean JavaBeans
Z% EJBHome 4
SessionBean

enterprise bean
provider
(Wombat Inc.)

CartHome
CartBean
AcmeRemote container
id

AcmeMetaData | AcmeHome AcmeBean p(f(\:/%wg)r
produced by
Acme tools

AcmeCartHome AcmeRemoteCart

AcmeCartMetaData AcmeCartBean

——> extends or implements interface
——p» extends implementation, code generation, or delegation

Java interface Java class

87 5/7/99

Sun Microsystems Inc.

Example Session Scenario

Enterprise JavaBeans 1.1, Public Draft Inheritance relationship

7.2.1 What the session Bean mvider is responsible ér

Wombat Inc. is responsible for providing the following:

Define the session Bean'’s remote interface (Cart). The remote interface defines the business
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject inter-
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface must
be defined as public.

Write the business logic in the session Bean class (CartBean). The enterprise Bean class may,
but is not required to, implement the enterprise Bean’s remote interface (Cart). The enterprise
Bean must implement the javax.ejb.SessionBean interface, and define the ejbCreate(...) meth-
ods invoked at an EJB object creation.

Define a home interface (CartHome) for the enterprise Bean. The home interface must be
defined as public, extend the javax.ejb.EJBHome interface, and follow the standard rules for
RMI-IIOP remote interfaces.

Define a deployment descriptor that specifies any declarative metadata that the session Bean
provider wishes to pass with the Bean to the next stage of the development/deployment work-
flow.

7.2.2 Classes supplied by container mvider

7.2.3

The following classes are supplied by the container provider Acme Corp:

The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome methods.

The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject methods.

The AcmeBean class provides additional state and methods to allow Acme’s container to manage its
session Bean instances. For example, if Acme’s container uses an LRU algorithm, then AcmeBean may
include the clock count and methods to use it.

The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMetaData methods.

What the container provider is responsible ér

The tools provided by Acme Corporation are responsible for the following:

Generate the remote Bean class (AcmeRemoteCart) for the session Bean. The remote Bean
class is a “wrapper” class for the enterprise Bean and provides the client view of the enter-
prise Bean. The tools also generate the classes that implement the communication stub and
skeleton for the remote Bean class.

Generate the implementation of the session Bean class suitable for the Acme container (Acme-
CartBean). AcmeCartBean includes the business logic from the CartBean class mixed with the

5/7/99

88

Sun Microsystem Inc

Inheritance relationship Enterprise JavaBeans 1.1, Public Draft Example Session Scenario

services defined in the AcmeBean class. Acme tools can use inheritance, delegation, and code
generation to achieve a mix-in of the two classes.

* Generate the implementation class for the session Bean’s home interface (AcmeCartHome).
The tools also generate the classes that implement the communication stub and skeleton for the
home class.

* Generate the class (AcmeCartMetaData) that implements the javax.ejb.EJBMetaData inter-
face for the Cart Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way Acme Corp imple-
mented them). Other container providers may use different mechanisms to produce their runtime
classes, which will likely be different from those generated by Acme'’s tools.

89 5/7/99

Sun Microsystems Inc.

Example Session Scenario Enterprise JavaBeans 1.1, Public Draft Inheritance relationship

5/7/99 90

Sun Microsystem Inc

Overview

Chapter 8

8.1

Enterprise JavaBeans 1.1, Public Draft Client View of an Entity

Client View of an Entity

This chapter describes the client view of an entity EJB object. It is actually a contract fulfilled by an
enterprise Bean'’s container in which the enterprise Bean is installed. Only the business methods are
supplied by the enterprise Bean itself.

Although the client view of the enterprise Beans is provided by classes implemented by the container,
the container is transparent to the client.

Overview

For a client, an entity enterprise Bean is an object that represents an object view of an entity stored in a
persistent storage, such as a database, or an entity that is implemented by an existing enterprise applica-
tion.

A client accesses an entity enterprise Bean through the Entity Bean’s remote interface. The object that
implements the remote interface is calledealB object. An EJB object is a remote Java programming
language object that is accessible from a client through the standard Java™ APIs for remote object invo-
cation [3].

91 5/7/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans 1.1, Public Draft EJB Container

8.2

From its creation until its destruction, an EJB object lives in a container. Transparently to the client, the
container provides security, concurrency, transactions, persistence, and other services for the EJB
objects that live in the container. The container is transparent to the client—there is no API that a client
can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the Entity Bean is
installed properly synchronizes access to the entity state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the container in
which the entity object has been created. The object identity is implemented by the container.

The client view of an EJB object is location independent. A client running in the same JVM as the EJB
object uses the same API as a client running in a different JVM on the same or different machine.

A client of an enterprise bean can be another enterprise bean deployed in the same or different Con-
tainer; or an arbitrary Java program, such as an application, applet, or servlet. The client view of an
enterprise bean can also be mapped to non-Java client environments, such as CORBA clients not written
in the Java programming language.

Multiple EJB classes can be installed in a container. For each EJB class installed in a container, the con-
tainer implements the enterprise Bedmsne interface.The home interface allows the client to create,

look up, and remove entity EJB objects of a given enterprise Bean. A client can look up the enterprise
Bean’s home interface through JNDI; it is the responsibility of the container to make the enterprise
Bean’s home interface available in the JNDI name space.

A client view of an EJB object is the same, irrespective of the implementation of the enterprise Bean

and its container. This ensures that a client application is portable across all container implementations
in which the enterprise Bean might be deployed.

EJB Container

An EJB Container (Container for short) is a system that functions as a “container” for enterprise Beans.
A container is where an enterprise Bean object lives, just as a record lives in a database, and a file or
directory lives in a file system.

Multiple EJB classes can be installed in a single container. For each EJB class installed in a container,
the container provides home interface that allows the client to create, look up, and remove EJB
objects of the corresponding EJB class. The container makes the enterprise Beans’ home interfaces
(defined by the Bean provider and implemented by the container provider) available in the JNDI name
space for clients.

An EJB Server may host one or multiple EJB Containers. The containers are transparent to the client:
there is no client APl to manipulate the container, and there is no way for a client to tell in which con-
tainer an enterprise Bean is installed.

5/7/99

92

Sun Microsystem Inc

EJB Container

8.2.1

Enterprise JavaBeans 1.1, Public Draft Client View of an Entity

Locating enterprise Beans home interface

8.2.2

A client locates an enterprise Bean’s home interface using JNDI. For example, the home interface for
the Account enterprise Bean can be located using the following code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)
javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(“applications/bank/accounts”),
AccountHome.class);

A client's INDI name space may be configured to include the home interfaces of EJB classes installed
in multiple EJB Containers located on multiple machines on a network. The actual location of an EJB
Container is, in general, transparent to the client.

What a container provides

The following diagram illustrates the view that an entity container provides to its clients.

93 5/7/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans 1.1, Public Draft Enterprise Bean's home interface

Figure 19 Client View of Entity Enterprise JavaBeans Architecture

container \

EJB objects

EJB Home >

client k EJB class 1 /
\

L)

EJB objects ’

EJB Home >

k EJB class 2 /

other EJB classes

/

8.3 Enterprise Bean’s home interface

The container provides the implementation of the home interface of each enterprise Bean installed in the
container. The container makes the home interface of every enterprise Bean installed in the container

accessible to the clients through JNDI. The implementation class of an enterprise Bean's home interface
is calledEJB home.

5/7/99 94

Sun Microsystem Inc

Enterprise Bean’s home interface Enterprise JavaBeans 1.1, Public Draft Client View of an Entity

8.3.1

The home interface of an Entity Bean allows a client to do the following:

* Create new EJB objects.

* Look up existing EJB objects.

* Remove an EJB object.

* Get the javax.ejh.EJBMetaData interface for the enterprise Bean. The javax.ejb.EJBMetaData
interface is intended to allow application assembly tools to discover information about the
enterprise Bean. The meta-data is defined to allow loose client/server binding and scripting.

* Obtain a handle for the home object. The home handle can be serialized and written to stable
storage; later, possibly in a different JVM, the handle can be deserialized from stable storage

and used to obtain a reference to the home object.

An enterprise Bean’s home interface must extenddtiax.ejb.EJBHome interface, and follow the
standard rules for Java programming language remote interfaces.

createmethods

An Entity Bean's home interface can define zero or nmoveate(...) methods, one for each way to
create an EJB object. The arguments ofdreate methods are typically used to initialize the state of
the created EJB object.

The return type of areate method is the enterprise Bean'’s remote interface.

The throws clause of evegreate method must include th@va.rmi.RemoteException and
thejavax.ejb.CreateException . It may include additional application-level exceptions.

The following home interface illustrates two possitrleate methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,
double initialBalance)
throws RemoteException, CreateException;
public Account create(String accountNumber,
double initialBalance)
throws RemoteException, CreateException,
LowlnitialBalanceException;

The following example illustrates how a client creates a new EJB object:

AccountHome accountHome = ...;
Account account = accountHome.create(*John”, “Smith”, 500.00);

95 5/7/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans 1.1, Public Draft Enterprise Bean's home interface

8.3.2

finder methods

An Entity Bean’s home interface defines one or nfander method¥, one for each way to look up

an EJB object, or collection of EJB objects of a particular type. The name of each finder method must
start with the prefix find”, such adindLargeAccounts (...). The arguments of a finder method are
used by the Entity Bean implementation to locate the requested entity objects. The return type of a
finder method must be the enterprise Bean's remote interface, or a type representing a collection of EJB
objects (see Subsection 9.1.8).

The throws clause of every finder method must includgakie.rmi.RemoteException and the
javax.ejb.FinderException

The home interface of every Entity Bean includes timdByPrimaryKey(primaryKey)
method that allows a client to locate an Entity Bean using a primary key. The name of the method is

alwaysfindByPrimaryKey ; it has a single argument that is of the enterprise Bean's primary key
type, and its return type is the enterprise Bean’s remote interface. The implementatiorfinfithe
ByPrimaryKey(primaryKey) method must ensure that the entity exists in the underlying data-
base.

The following example shows tli@dByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {

pﬁblic Account findByPrimaryKey(String AccountNumber)
throws RemoteException, FinderException;

The following example illustrates how a client usesfit@ByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333");

The javax.ejb.EJBHome interface defines several methods that allow the client to remove EJB

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,
RemoveException;
void remove(Object primaryKey) throws RemoteException,
RemoveException;

8.3.3 remove methods
objects.
}
[4]

The findByPrimaryKey(primaryKeynethod is mandatory for all Entity Beans.

5/7/99

96

Sun Microsystem Inc

Entity EJB object life cycle Enterprise JavaBeans 1.1, Public Draft Client View of an Entity

8.4 Entity EJB object life cycle

This section describes the life cycle of an EJB object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity EJB object life cycle. (The term
referencedin the diagram means that the client program has a reference to the EJB object.)

Figure 20 Client View of EJB Entity Object Life Cycle

obj.businessMethod(...)
throwsNoSuchObjectException

release reference / does not exist

an an
not referenced referenced

object.remove()

or

direct direct delete home.create(...)

insert or home.remove(...)
home.remove(...) or

direct delete

home.find(...) ﬁists
and
referenced

release reference \/4

object.businessMethod(...)

exists \

and
not referenced

create() action initiated by client
direct delete action on database from outside EUB

An EJB object does not exist until it is created. Until it is created, it has no identity. After it is created, it
has identity. A client creates an EJB object using the enterprise Bean’s home interface that is imple-

mented by the container. When an EJB object is created by a client, the client obtains a reference to the
newly created EJB object.

97

5/7/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans 1.1, Public Draft Primary key and object identity

8.5

In an environment with legacy data, EJB objects may “exist” before the container and EJB object are
deployed. In addition, an entity EJB object may be “created” in the environment via a mechanism other
than by invoking acreate(...) method of the home interface (e.g. by inserting a database record),
but still may be accessible by a container’s clients via the finder methods. Also, an EJB object may be
deleted directly using other means than tieenove() operation (e.g. by deletion of a database
record). The “direct insert” and “direct delete” transitions in the diagram represent such direct database
manipulation.
A client can get a reference to an existing EJB object in any of the following ways:

* Receive a reference as a parameter in a method call (input parameter or result).

* Look up the EJB object using a finder method of the enterprise Bean’s home interface.

* Obtain the reference from a Bean’s handle. (see Section 8.7)
A client that has a reference to an object can do any of the following:

* Invoke business methods on the object through the EJB object’'s remote interface.

* Obtain a reference to the enterprise Bean’s home interface.

* Pass the reference as a parameter or return value.

* Obtain the EJB object’s primary key.

* Obtain the EJB object’s handle.

* Remove the EJB object.

All references to an object that does not exist are invalid. All attempted invocations on an object that
does not exist will result in gava.rmi.NoSuchObjectException being thrown.

All entity EJB objects are considergersistent objects The lifetime of an entity EJB object is not lim-

ited by the lifetime of the Java Virtual Machine process in which it executes. A crash of the Java Virtual
Machine may result in a rollback of current transactions, but does not destroy previously created EJB
entity objects, or invalidate their references held by clients.

Multiple clients can access the same EJB object concurrently. Transactions are used to isolate the cli-
ents’s work from each other.

Primary key and object identity

Every entity EJB object has a unique identity within its home. The object’s identity within its container
is determined by the EJB object’s home and primary key. If two EJB objects have the same home and
the same primary key, they are considered identical.

5/7/99

98

Sun Microsystem Inc

Entity Bean’s remote interface Enterprise JavaBeans 1.1, Public Draft Client View of an Entity

8.6

The Enterprise JavaBeans architecture allows a primary key class to be any class that is a legal Value
Type in RMI-IIOP. The primary key class is specific to an enterprise Bean class (i.e. each enterprise
Bean class may have a different class for its primary key).

A client that holds a reference to an EJB object can determine the object’s identity within its home by
invoking thegetPrimaryKey() method on the reference. The object identity associated with a ref-
erence does not change over the lifetime of the reference. (ThggtRrimaryKey() will always

return the same value when called on the same entity reference.)

A client can test whether two EJB object references refer to the same entity by usistfiéei-
cal(object) method. Alternatively, if a client obtains two object references from the same home, it
can determine if they refer to the same entity by comparing their primary keys usinggtrs
method.

The following code illustrates using tledentical() method to test if two object references refer
to the same entity EJB object:

Account accl =...;
Account acc2 =...;

if (acctl.isldentical(acc?)) {

accl and acc2 are the same EJB objects
}else {

acc2 and acc? are different EJB object

A client that knows the primary key of an entity EJB object can obtain a reference to the object by
invoking thefindByPrimaryKey(key) method of the home interface implemented by the con-
tainer.

Note that the Enterprise JavaBeans architecture does not specify “object equality” (i.e use=sf the
operator) for EJB object references. The result of comparing two object references using the Java pro-
gramming languagebject.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the same object is not guaran-
teed to yield the same result. Therefore, a client should always ussddbatical method to deter-

mine if two EJB object references refer to the same EJB object.

Entity Bean’s remote interface

A client accesses an Entity Bean through the enterprise Bean's remote interface. An enterprise Bean'’s
remote interface must extend tfavax.ejb.EJBObject interface. A remote interface defines the
business methods that are callable by clients.

99 5/7/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans 1.1, Public Draft Entity Bean’s handle

The following example illustrates the definition of an Entity Bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)
throws java.rmi.RemoteException,
InsufficientBalanceException;
void credit(double amount)
throws java.rmi.RemoteException;
double getBalance()
throws java.rmi.RemoteException;

The javax.ejb.EJBObject interface defines methods that allow the client to perform the follow-
ing operations on an EJB object’s reference:

* Obtain the home interface for the EJB class.
* Remove the EJB object.

* Obtain the EJB object’s handle.

* Obtain the EJB object’s primary key.

The implementation of the methods defined in jéneax.ejb.EJBObject interface is provided by
the container. The business methods are delegated to the enterprise Bean class.

Note that the EJB object does not expose the enterprise Bean's methodgaviathejb.Enter-

priseBean interface to the client. These interfaces are not intended for the client—they are used by
the container to manage the EJB instances.

8.7 Entity Bean’s handle

A handle is an object that identifies an EJB object. A client that has a reference to an EJB object can
obtain the object’s handle by invokiggtHandle() = method on the reference.

Since a handle class exterjdsa.io.Serializable , a client may serialize it. The client may use
the serialized handle later, possibly in a different process or even system, to re-obtain a reference to the
EJB object identified by the handle.

The client code must use th@vax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thgetEJBODbject() method invoked on a handle to the remote interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a program
running in one JVM must be able to serialize the handle, and another program running in a different
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically imple-
mented to be usable over a long period of time—it must be usable at least across a server restart.

5/7/99 100

Sun Microsystem Inc

Entity Home handles Enterprise JavaBeans 1.1, Public Draft Client View of an Entity

8.8

Containers that store long-lived entities will typically provide handle implementations that allow clients

to store a handle for a long time (possibly many years). Such a handle will be usable even if parts of the
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced while the
client has stored the handle.

The use of a handle is illustrated by the following example:

/I A client obtains a handle of an account EJB object and
/I stores the handle in stable storage.

1l

ObjectOutputStream stream = ...;

Account account = ...;

Handle handle = account.getHandle();
stream.writeObject(handle);

/I A client can read the handle from stable storage, and use the

/I handle to ressurect an object reference to the

/I account EJB object.

1l

ObjectinputStream stream = ...;

Handle handle = (Handle) stream.readObject(handle);

Account account = (Account)javax.rmi.PortableRemoteObject.narrow(
handle.getEJBODbject(), Account.class);

account.debit(100.00);

Entity Home handles

8.9

The EJB specification allows the client to obtain a handle for the home object. The client can use the
home handle to store a reference to a home interface in stable storage, and re-create the reference later.
This handle functionality may be useful to a client that needs to use the home interface in the future, but
does not know the JNDI name of the home interface.

A handle to a home interface is defined byj#vax.ejb.HomeHandle interface.

The client code must use th@vax.rmi.PortableRemoteObject.narrow...) method to
convert the result of thgetEJBHome() method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a program
running in one JVM must be able to serialize the handle, and another program running in a different
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically imple-
mented to be usable over a long period of time—it must be usable at least across a server restart.

Type narrowing

A client program that is intended to be interoperable with all compliant EJB Container implementations
must use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

101 5/7/99

Sun Microsystems Inc.

Client View of an Entity Enterprise JavaBeans 1.1, Public Draft Type narrowing

Note: Programs that use the cast operator to narrow the remote and home interfaces are likely to fail if
the Container implementation uses RMI-IIOP as the underlying communication transport.

5/7/99 102

Sun Microsystem Inc

Concepts Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

«aers ENtIYY Bean Component Contract

Note: Container support for entity enterprise Beans is a mandatory feature starting in the EJB
1.1 release.

The Entity Bean component contract is the contract between an Entity Bean and its container. It defines
the life cycle of an Entity Bean instance and the model for method delegation of the client-invoked busi-
ness methods. The main goal of this contract is to ensure that a component is portable across all compli-
ant EJB Containers.

This chapter defines the enterprise Bean developer’s view of this contract and the container’s responsi-
bility for managing the component’s life cycle.

9.1 Concepts

9.1.1 The runtime execution model

This section describes the runtime model and the classes used in the description of the contract between
an entity enterprise Bean and its container.

103 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract

Enterprise JavaBeans 1.1, Public Draft

Concepts

Figure 21 Overview of the Entity EJB Runtime Execution Model
container |
|
| N
| \
|
EJB home |
enterprise Bea)
| instances
EJB objects |
client _ ! Bean class 1 /
I
I
|
| N
EJB home |
enterprise Bea)
Instances
EJB objects |
\\ | Bean class 2 /
| %
l
classes generated by | classes provided by
container tools I enterprise bean provider
An enterprise Bean instances an object whose class was provided by the enterprise Bean developer.
An EJB object is an object whose class was generated at deployment time by the container provider's
tools. The EJB object class implements the enterprise Bean’s remote interface. A client never references
an enterprise Bean instance directly—a client always references an EJB object whose implementation is
provided by the container.
An EJB home object provides the life cycle operations (create, remove, find) for its EJB objects. The
class for the EJB home object was generated by the container provider's tools at deployment time. The
home object implements the enterprise Bean’s home interface that was defined by the Bean Provider.
9.1.2 Granularity of entity objects
This section provides guidelines to the Bean Providers for modeling of business objects as EJB Entities.
5/7/99 104

Sun Microsystem Inc

Concepts Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

In general, an EJB Entity should represent an independent business object that has an independent iden-
tity and lifecycle, and is referenced by multiple enterprise beans and/or clients.

A dependent objecthould not be modeled as an EJB Entity. Instead, a dependent object is better imple-
mented as a Java class (or several classes) and included as part of the Entity bean on which it depends.

A dependent object can be characterized as follows. An object B is a dependent object of an object A, if
B is created by A, accessed only by A, and removed by A. This implies, for example, that if B exists when
A is being removed, B is automatically removed as well. It also implies that other programs can access
the object B only indirectly through object A. In other words, the object A fully manages the lifecycle of
the object B.

For example, a purchase order might be implemented as an Entity bean, but the individual line items on
the purchase order should be implemented as helper classes, not as Entity beans. An employee record
might be implemented as an Entity bean, but the employee address and phone number should be imple-
mented as helper classes, not as Entity beans.

The state of an entity that has dependent objects is often stored in multiple database records and spans
multiple tables.

In addition, the Bean Provider must take into consideration the following factors when making a deci-
sion on the granularity of an entity object:

* Every method call to an entity object via the remote and home interface is potentially a remote
call. Even if the calling and called enterprise bean are collocated in the same JVM, the call
must go through the Container, which must create copies of all the parameters that are passed
through the interface by value (i.e. all parameters that do not extenjavhemi.Remote
interface). The Container is also required to check security and apply the declarative transac-
tion attribute on the inter-component calls. The overhead of an inter-component call will likely
be prohibitive for most fine-grained object interactions.

* The EJB deployment descriptor does not provide a mechanism for describing object schemas

(the relationships among the fine-grained objects, and how fine-grained objects are mapped to
the underlying database).

9.1.3 Entity persistence (data access ptocol)

An entity enterprise Bean implements an object view of an entity stored in an underlying database, or an
entity implemented by an existing enterprise application (for example, by a mainframe program or by a
packaged application). The data access protocol for transferring the state of the entity between the enter-
prise Bean instance and the underlying database is referred to agpelgestence

The entity component protocol allows the enterprise Bean provider either to implement the enterprise
Bean’s persistence directly in the enterprise Bean class or in one or more helper objects provided with
the enterprise bean class (Bean-managed persistence), or to delegate the enterprise Bean’s persistence to
the container (container-managed persistence).

In many cases, the underlying data source may be an existing application rather than a database.

105 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

Figure 22 Client View of Underlying Data Sources Accessed Through Entity EJBs

(a) Entity bean is an object view of a record in the database

/ Container \

Account
Entity Bea

- /

Account 100

(b) Entity bean is an object view of an existing application

/ Container \

Account
Entity Bea

existing Account 100

application

AN

9.1.3.1 Bean-managed persistence

In the Bean-managed case, the enterprise Bean provider writes database access calls (e.g. using
JDBC™ or SQLJ) directly in the Entity bean component. The data access calls are performed in the
ejbCreate(...) , ejpRemove() , ejpbFind<METHOD> (), ejbLoad() , and ejbStore()

methods; and/or in the business methods.

The data access calls can be coded directly into the enterprise bean class, or can be encapsulated in a
data access component that is part of the Entity bean.

We expect that most enterprise beans will be created by application development tools which will
encapsulate data access in components. These data access components will probably not be the same
for all tools. This EJB specification does not define the architecture for data access objects or strategies.

If the data access calls are coded directly in the enterprise bean class, it may more difficult to adapt the
Entity component to work with a database that has a different schema, or with a different type of data-
base.

5/7/99 106

Sun Microsystem Inc

Concepts

9.1.3.2

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

If the data access calls are encapsulated in data access components, the data access components may
optionally provide deployment interfaces to allow adapting data access to different schemas, or even to

a different database type. These data access component strategies are beyond the scope of the EJB spec-
ification.

Container-managed persistence

In the container-managed case, the Bean developer does not write the database access calls in the enter-
prise Bean. Instead, the container provider’s tools generate the database access calls at the enterprise
Bean’s deployment time (i.e. when the enterprise Bean class is installed into a container). The enterprise
Bean provider must specify in the deployment descriptor the list of instance fields for which the con-
tainer provider tools must generate access calls.

The advantage of using container-managed persistence is that the enterprise Bean class can be largely
independent from the data source in which the entity is stored. The container tools can generate classes

that use JDBC or SQLJ to access the entity state in a relational database, or classes that implement

access to a non-relational data source, such as an IMS database, or classes that implement function calls
to existing enterprise applications.

The disadvantage is that sophisticated tools must be used at deployment time to map the enterprise
Bean'’s fields to a data source. These tools and containers are typically specific to each data source.

The essential difference between an entity with bean-managed and container-managed persistence is

that in the bean-managed case, the data access components are provided as part of the Entity bean,

whereas in the container-managed case, the data access components are generated at deployment time
by the container tools.

107 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

9.1.4 Instance life cycle

Figure 23 Life cycle of an Enterprise Bean'’s instance.

instance throws
does not system exception
exist from any method

| 1. unsetEntityContext()

1. newlnstance()
2. setEntityContext(ec)

ejbFind<METHOD>()

ejbCreate(args) ejbRemove()
ejbPostCreate(arg ejbActivate()
ejbLoad() ejbStore()

business method

An instance is in one of the three states:
¢ |t does not exist.

* Pooled state. An instance in the pooled state is not associated with any particular EJB object
identity.

* Ready state. An instance in the ready state is assigned to an EJB object.
The following steps describe the life cycle of an entity enterprise Bean instance:
* An enterprise Bean instance’s life starts when the container creates the instance using newln-

stance(). The container then invokes the setEntityContext() method to pass the instance a refer-
ence to an entity context interface. The entity context object allows the instance to invoke

5/7/99 108

Sun Microsystem Inc

Concepts

Notes:

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

services provided by the container and to obtain the information about the caller of a cli-
ent-invoked method.

The instance enters the pool of available instances of the enterprise Bean class. While the
instance is in the available pool, the instance is not associated with an identity of a specific EJB

object. All instances in the pool are equivalent, and therefore can be assigned by the container
to any EJB object at the transition to the ready state. While the instance is in the pooled state,

the container may use the instance to execute any of the enterprise Bean’s finder methods
(shown as ejbFind<METHOD>(...) in the diagram). The instance doésnove to the ready

state during the execution of a finder method.

An instance transitions from the pooled state to the ready state when the container picks that
instance to service a client call on an EJB object. There are two possible transitions from the
pooled to the ready state: through the ejbCreate(...) and ejbPostCreate(...) methods, or through
the ejbActivate() method. The container invokes the ejbCreate(...) and ejbPostCreate(...) meth-
ods when the instance is assigned to an EJB object during EJB object creation (i.e. when the
client invokes a create method on the Bean’s home object). The container invokes the ejbActi-
vate() method on an instance when an instance needs to be activated to service an invocation on
an existing EJB object because there is no suitable instance in the ready state.

When an enterprise Bean instance is in the ready state, the instance is associated with a specific
EJB object. While the instance is in the ready state, the container can invoke the ejbLoad() and
ejbStore() methods zero or more times. A business method can be invoked on the instance zero
or more times. Invocations of the ejbLoad() and ejbStore() methods can be arbitrarily mixed
with invocations of business methods. The purpose of the ejbLoad and ejbStore methods is to
synchronize the state of the instance with the state of the entity in the underlying data source—
the Container can invoke these methods at anytime it determines that there is a need to syn-
chronize the instance’s state.

Eventually, the container will transition the instance to the pooled state. There are two possible
transitions from the ready to the pooled state: through the ejbPassivate() method, and through
the ejpRemove() method. The container invokes the ejbPassivate() method when the container
wants to disassociate the instance from the EJB object without removing the EJB object. The
container invokes the ejpRemove() method when the container is removing the EJB object (i.e.
when the client invoked the remove() method on the EJB object, or one of the remove() meth-
ods on the enterprise Bean’s home interface).

When the instance is put back into the pool, it is no longer associated with the identity of the
EJB object. The container can assign the instance to any EJB object of the same enterprise
Bean class.

An instance in the pool can be removed by calling the unsetEntityContext() method on the
instance.

The entity context passed by the container to the instance irsetiEntityContext

method is an interface, not a class that contains static information. For example, the result of
the EntityContext.getPrimaryKey() method might be different each time an
instance moves from the pooled state to the ready state, and the resultgeft@adler-

109 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts
Principal() andisCallerinRole(...) methods may be different in each business
method.

2. A RuntimeException thrown from any method of the enterprise bean class (including the

business methods and the callbacks invoked by the Container) results in the transition to the
“does not exist” state. The Container must not invoke any method on the instance after a
RuntimeException has been caught. From the client perspective, the corresponding Entity
EJB Object continues to exist. The client can continue accessing the Entity EJB Object
because the Container can use a different instance to delegate the client’s requests. Exception
handling is described further in Chapter 12.

3. The container is not required to maintain a pool of instances in the pooled state. The pooling
approach is an example of a possible implementation, but it is not the required implementation.

9.1.5 The Entity Bean component contract

This section specifies the contract between an Entity Bean and its container. The contract specified here
assumes the use of Bean-managed persistence. The differences in the contract for container-managed
persistence are defined in Section 9.4.

9.1.5.1 Enterprise Bean instance’s view:
The following describes the enterprise Bean instance’s side of the contract:

An enterprise Bean is responsible for implementing the following functionality in the enterprise Bean
methods:

* A public constructor that takes no arguments.

* public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference tdtiidyContext interface to the
enterprise Bean instance. If the enterprise Bean instance needs to use the entity context during
its lifetime, it must remember the entity context in an instance variable.

It is unspecified in which transaction context this method is called. An identity of an EJB
object is not available during this method.

The instance can take advantage of skeéEntityContext(ic) method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be specific
to an EJB object identity since the instance might be reused during its lifetime to serve multi-
ple EJB objects.

* public void unsetEntityContext();
A container invokes this method before terminating the life of the instance.

It is unspecified in which transaction context this method is called. An identity of an EJB
object is not available during this method.

5/7/99 110

Sun Microsystem Inc

Concepts

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

The instance can take advantage of thresetEntityContext() method to free any
resources that are held by the instance. (These resources typically had been allocated by the
setEntityContext() method.)

public PrimaryKeyClass ejbCreate(...) ;

There are zefd or moreejbCreate(...) methods, whose signatures match the signa-
tures of thecreate(...) methods of the enterprise Bean’s home interface. The container
invokes arejbCreate(...) method on an enterprise Bean instance when a client invokes
a matchingreate(...) function.

The implementation of thejbCreate(...) method typically validates the client-supplied
arguments, and inserts a record representing the entity into the database. The method also ini-
tializes the instance’s variables. TegpCreate(...) method must return the primary key

for the created entity.

An ejbCreate(...) method executes in the transaction context determined by the transac-
tion attribute of the matchingreate(...) method, as described in subsection 11.6.2.
Depending on the value of the transaction attribute, the transaction context can be the client’s
transaction context, a new transaction context, or non-existent.

public void ejbPostCreate(...);

For eachejbCreate(...) method, there is a matchirggbPostCreate(...) method

that has the same input parameters but the return value is void. The container invokes the
matchingejbPostCreate(...) method after it invokes thejbCreate(...) method,

with the same arguments. The EJB object identity is available duringjtifeostCre-

ate(...) method. The instance may, for example, pass its own EJB object reference to
another EJB object as a method argument.

An ejbPostCreate(...) method executes in the same transaction context as the previous
ejbCreate(...) method.

public void ejbActivate();

The container invokes this method on the instance when the container picks the instance from
the pool and assigns it to a specific EJB object identity. djbdctivate() method gives

the enterprise Bean instance the chance to acquire additional resources that it needs while it is
in the ready state.

This method executes in an unspecified transaction context. The instance can obtain the iden-
tity of the EJB object via thgetPrimaryKey() or getEJBODbject() method on the
entity context. The instance can rely on the fact that the primary key and EJB object identity

will remain associated with the instance until the completioneifPassivate() or
ejbRemove()
Note that the instance should not use &jieActivate() method to read the state of the

entity from the database; the instance should load its state onlydjptttmad() method.

public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disassociate
the instance from an EJB object identity, and to put the instance back into the pool of available

[5] An entity enterprise Bean has egbCreate(...andejbPostCreate(..nethods if it does not define any create methods in its home
interface. Such an entity enterprise Bean does not allow the clients to create new EJB objects. The enterprise Bean restricts the cli-
ents to accessing entities that were created through direct database inserts.

111 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

instances. The ejbPassivate() method gives the enterprise Bean the chance to release any
resources that should not be held while the instance is in the pool. (These resources typically
had been allocated during the ejbActivate() method.)

This method executes in an unspecified transaction context. The instance can still obtain the
identity of the EJB object via thgetPrimaryKey() or getEJBODbject() method on
the entity context.

Note that instance should not use #jpPassivate() method to write its state to the data-
base; the instance should store its state only irji&tore() method.

public void ejpRemove() ;

The container invokes this method on an instance as a result of a client’s invoking a remove
method. The instance is in the ready state wh@yRemove() is invoked and it will be
entered into the pool when the method completes.

This method executes in the transaction context determined by the transaction attribute of the
remove method that triggered thejpRemove method. The instance can still obtain the
identity of the EJB object via thgetPrimaryKey() or getEJBObject() method on

the entity context.

An enterprise Bean instance should use this method to remove its entity representation in the
database.

Since the instance will be entered into the pool, the state of the instance at the end of this
method must be equivalent to the state of a passivated instance. This means that the instance
must release any resource that it would normally release @jliRassivate() method.

public void ejbLoad() ;

The container invokes this method on an instance in the ready state to inform the instance that
it must synchronize the entity state cached in its instance variables from the entity state in the
database. The instance must be prepared for the container to invoke this method at any time
that the instance is in the ready state.

If the instance is caching the entity state (or parts of the entity state), the instance must not use
the previously cached state in the subsequent business method. The instance may take advan-
tage of theejpLoad method, for example, to refresh the cached state by reading it from the
database.

This method executes in the transaction context determined by the transaction attribute of the
business method that triggered #jpLoad method. Depending on the value of the transac-
tion attribute, the transaction context can be the client’s transaction context, a new transaction
context, or non-existent. The transaction attributes are described in subsection 11.6.2.

public void ejbStore();

The container invokes this method on an instance to inform the instance that the instance must
synchronize the entity state in the database with the entity state cached in its instance variables.
The instance must be prepared for the container to invoke this method at any time that the

instance is in the ready state.

An instance must write any updates cached in the instance variables to the database in the
ejbStore() method.

This method executes in the same transaction context as the prejbbiosd or ejbCre-
ate method invoked on the instance. All business methods between the prejiiuosd

5/7/99

112

Sun Microsystem Inc

Concepts Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

orejbCreate method and thigjbStore methods are also invoked in this transaction con-
text.

* public primary key type or collectiogjbFind<METHOD>(...) ;

The container invokes this method on the instance when the container selects the instance to
execute a matching client-invokdchd<METHOD>(...) method. The instance is in the
pooled state (i.e. it is not assigned to any particular EJB object identity) when the container
selects the instance to execute #jleFind<METHOD> method on it, and is returned to the
pooled state when the execution of djlegFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the transaction context determined by the trans-
action attribute of the matchiriopd(...) method, as described in subsection 11.6.2.

The implementation of aejbFind<METHOD> method typically uses the method’s argu-
ments to locate the requested object or a collection of objects in the database. The method must
return a primary key or a collection of primary keys to the container (see Subsection 9.1.8).

9.1.5.2 Container’s view:

This subsection describes the container’s side of the state management contract. The container must call
the following methods:

* public void setEntityContext(ec) ;

The container invokes this method to pass a reference to the enterprise Bean'’s entity context to
the enterprise Bean. The container must invoke this method after it creates the instance, and
before it puts the instance into the pool of available instances.

It does not matter whether the container calls this method inside or outside of a transaction
context. At this point, the entity context is not associated with any EJB object.

* public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of instances
in the pool. After this method completes, the container must not reuse this instance.

It does not matter whether the container calls this method inside or outside of a transaction
context.

* public PrimaryKeyClass ejbCreate(...) ;
public void ejbPostCreate(...) ;

The container invokes these two methods during the creation of an EJB entity object as a result
of a client’s invoking areate(...) method on the enterprise Bean's EJB home.

The container first invokes thejbCreate(...) method whose signature matches the
create(...) method invoked by the client. ThgbCreate(...) method returns a pri-

mary key for the created entity. The container creates an EJB object reference for the primary
key. The container then invokes a matchigjgPostCreate(...) method to allow the
instance to fully initialize itself. Finally, the container returns the EJB object reference to the
client.

The container must invoke thegbCreate(...) andejbPostCreate(...) methods
in the transaction context determined by the transaction attribute of the matctgng
ate(...) method, as described in subsection 11.6.2. Depending on the value of the transac-

113 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

tion attribute, the transaction context can be the client’s transaction context, a new transaction
context, or non-existent.

public void ejbActivate() ;

The container invokes this method on an enterprise Bean instance at activation time (i.e., when
the instance is taken from the pool and assigned to an EJB object). The container must ensure
that the primary key of the associated EJB object is available to the instance if the instance

invokes thegetPrimaryKey() or getEJBObject() method on its entity context.

A container may call this method inside or outside of a transaction context.

Note that instance is not yet ready for the delivery of a business method. The container must
still invoke theejbLoad() method prior to a business method.

public void ejbPassivate() ;

The container invokes this method on an enterprise Bean instance at passivation time (i.e.,
when the instance is being disassociated from an EJB object and moved into the pool). The
container must ensure that the primary key of the associated EJB object is still available to the
instance if the instance invokes tgetPrimaryKey() or getEJBODbject() method

on its entity context.

A container may call this method inside or outside of a transaction context.

Note that if the instance state has been updated by a transaction, the container must first invoke
theejbStore() method on the instance before it invok@zPassivate() on it.

public void ejpRemove();

The container invokes this method before it ends the life of an EJB object as a result of a cli-
ent’s invoking a remove operation.

The container invokes this method in the transaction context determined by the transaction
attribute of the invokedemove method. Depending on the value of the transaction attribute,
the transaction context can be the client’s transaction context, a new transaction context, or
non-existent.

The container must ensure that the primary key of the associated EJB object is still available to
the instance in thejbRemove() method (i.e. the instance can invoke thetPrima-

ryKey() or getEJBObject() method on itEntityContext in the ejbRemove()

method).

public void ejbLoad() ;

The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its instance state from its state in the database. The exact times that the
container invokegjbLoad depend on the configuration of the component and the container,
and are not defined by the EJB architecture. Typically, the container wikgdlbad before

the first business method within a transaction to ensure that the instance can refresh its cached
state of the entity from the database. After the faftLoad within a transaction, the con-

tainer is not required to recognize that the state of the entity in the database has been changed
by another transaction, and it is not required to notify the instance of this change via another
ejbLoad call.

The container must invoke this method in the transaction context determined by the transaction
attribute of the business method that triggereddistoad method. Depending on the value

5/7/99

114

Sun Microsystem Inc

Concepts

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

of the transaction attribute, the transaction context can be the client’s transaction context, a new
transaction context, or non-existent. Transaction attributes are described in subsection 11.6.2.

* public void ejbStore() ;

The container must invoke this method on the instance whenever it becomes necessary for the
instance to synchronize its state in the database with the state of the instance’s fields. This syn-
chronization always happens at the end of a transaction. However, the container may also
invoke this method when it passivates the instance in the middle of a transaction, or when it
needs to transfer the most recent state of the entity to another instance for the same entity in the
same transaction (see Subsection 9.1.13).

The container must invoke this method in the same transaction context as the previously
invokedejbLoad orejbCreate method.

* public primary key type or collectiogjbFind<METHOD>(...) ;

The container invokes thegbFind<METHOD>(...) method on an instance when a client
invokes a matchinnd<METHOD>(...) method on the enterprise Bean’s home interface.
The container must pick an instance that is in the pooled state (i.e. the instance is not associ-
ated with any EJB object) for the execution of thpFind<METHOD>(...) method. If

there is no instance in the pooled state, the container creates one and cedltEiay-

Context(...) method on the instance before dispatching the finder method.

After the ejpFind<METHOD>(...) method completes, the instance remains in the pooled
state. The Container may, but is not required to, activate the objects that were located by the
finder using the transition through tbpActivate() method.

The container must invoke tfeggbFind<METHOD>(...) method in the transaction context
determined by the transaction attribute of the matcffimay...) method, as described in
subsection 11.6.2. Depending on the value of the transaction attribute, the transaction context
can be the client’s transaction context, a new transaction context, or non-existent.

If the ejbFind<METHOD> method is declared to return a single primary key, the container
creates an EJB object reference for the primary key and returns it to the client. If the
ejbFind<METHOD> method is declared to return a collection of primary keys, the container
creates a collection of EJB objects for the primary keys returned &jpRind<METHOD> ,

and returns the collection to the client. (See Subsection 9.1.8 for information on collections.)

9.1.6 Operations allowed in the methods of the entity bean class

Table 4 defines the methods of an entity bean class in which the enterprise bean instances can access the
methods of thgavax.ejb.EntityContext interface, thgava:comp/env environment nam-
ing context, resource managers, and other enterprise beans.

If an entity bean instance attempts to invoke a method ofghtityContext interface, and the
access is not allowed in Table 4, the Container must throwjahe.lang.lllegalStateEx-
ception.

If an entity bean instance attempts to access a resource manager or an enterprise bean, and the access is
not allowed in Table 4, the behavior is undefined by the EJB architecture.

115 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract

Enterprise JavaBeans 1.1, Public Draft

Concepts

Table 4

Operations allowed in the methods of an entity bean

Bean method

Bean method can perform the following operations

constructor

setEntityContext
unsetEntityContext

EntityContext methodgetEJBHome
JNDI access to java:comp/env

ejbCreate

EntityContext methodgetEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBODbject

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbPostCreate

EntityContext methodggetEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejpbRemove

EntityContext methodggetEJBHomggetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbFind

EntityContext methodgetEJBHomegetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnly

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

ejbActivate
ejbPassivate

EntityContext methodgietEJBHomggetEJBODbjectgetPrimaryKey

ejbLoad
ejbStore

EntityContext methodggetEJBHomggetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

business method
from remote interface

EntityContext methodgietEJBHomggetCallerPrincipal getRollbackOnly
isCallerinRole setRollbackOnlygetEJBObjectgetPrimaryKey

JNDI access to java:comp/env
Resource manager access
Enterprise bean access

5/7/99

116

Sun Microsystem Inc

Concepts

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

Additional restrictions:

The getRollbackOnly and setRollbackOnly methods of theEntityContext

interface should be used only in the enterprise bean methods that execute in the context of a
global transaction. The Container must throw thea.lang.lllegalStateExcep-

tion if the methods are invoked while the instance is not associated with a global transaction.

Reasons for disallowing operations:

Invoking thegetEJBObject andgetPrimaryKey methods is disallowed in the entity
bean methods in which there is no EJB Object identity associated with the instance.

Invoking the getCallerPrincipal andisCallerInRole methods is disallowed in
the entity bean methods for which the Container does not have a client security context.

Invoking thegetRollbackOnly and setRollbackOnly methods is disallowed in the
entity bean methods for which the Container does not have a meaningful transaction context.

Accessing resource managers and enterprise beans is disallowed in the entity bean methods for
which the Container does not have a meaningful transaction context or client security context.

9.1.7 Caching of entity state and theejpLoad andejbStore methods

An instance of an entity bean with bean-managed persistence can cache the entity state between busi-
ness methods. An instance may choose to cache the entire entity state, parts of the state, or no state at

all.

The container-invokedjbLoad andejbStore methods assist the instance with the management of
the cached entity state. The instance must handiglthead andejbStore methods as follows:

When the container invokes tlegbStore method on the instance, the instance must push all
cached updates of the entity state to the underlying database. The container inva{bs the
Store method at the end of a transaction, and may also invoke it at other times when the
instance is in the ready state. (For example the container may imjpo&ore , when passi-
vating an instance in the middle of a transaction, or when transferring the instance’s state to
another instance to support distributed transactions in a multi-process server.)

When the container invokes tlegpLoad method on the instance, the instance must discard
any cached entity state. The instance may, but is not required to, refresh the cached state by
reloading it from the underlying database.

117 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

9.18

The following examples, which are illustrative but not prescriptive, show how an instance may cache the
entity state:

* Aninstance loads the entire entity state in #jeLoad method and caches it until the con-
tainer invokes thejbStore method. The business methods read and write the cached entity
state. ThesjpStore method writes the updated parts of the entity state to the database.

* Aninstance loads the most frequently used part of the entity state @jlthead method and
caches it until the container invokes tb@Store method. Additional parts of the entity
state are loaded as needed by the business methodsejdBtore method writes the
updated parts of the entity state to the database.

* Aninstance does not cache any entity state between business methods. The business methods
access and modify the entity state directly in the database ejitiad andejbStore
methods have an empty implementation.

We expect that the most entity developers will not code the cache management and data access calls

manually in the enterprise bean class. We expect that they will rely on application development tools to
provide various data access components that encapsulate data access and provide state caching.

Finder method return type

9.1.8.1

Single-object finder

Some finder methods (such efpFindByPrimaryKey) are designed to return at most one Entity
object. For these single-object finders, the result type ofittxMETHOD>(...) method defined in

the entity’'s home interface is the entity’s remote interface. The result type of the corresponding
ejbFind<METHOD>(...) implementation method defined in the entity’s implementation class is
the entity’s primary key type.

The following code illustrates the definition of a single-object finder.

/I Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

Account findByPrimaryKey(AccountPrimaryKey primkey)
throws FinderException, RemoteException;

}

/I Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

.b.ublic AccountPrimaryKey ejbFindByPrimaryKey(
AccountPrimaryKey primkey)
throws FinderException

5/7/99

118

Sun Microsystem Inc

Concepts Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.1.8.2 Multi-object finders

Some finder methods are designed to return multiple Entity objects. For these multi-object finders, the
result type of thdind<METHOD>(...) method defined in the entity’s home interface isodlection

of objects implementing the entity’s remote interface. The result type of the corresponding
ejbFind<METHOD>(...) implementation method defined in the entity’s implementation class is a
collection of objects of the entity’s primary key type.

The Bean Provider can choose two types to define a collection type for a finder:
e the JDK™ 1.Jjava.util.Enumeration interface
* the Java™ Z2ava.util.Collection interface

A Bean Provider that wants to ensure that the enterprise Bean is compatible with containers and clients
based on JDK 1.1 s must use jénea.util. Enumeration interface for the finder’s result ty[flb

A Bean Provider targeting only containers and clients based on Java 2 can jseathél.Col-
lection interface for the finder’s result type.

The Bean Provider must ensure that the objects in jhea.util.Enumeration or
java.util.Collection returned from theejbFind<METHOD>(...) method are compatible
with the Entity’s primary key class (i.e. their type is the primary key class or a subclass thereof).

The following is an example of a multi-object finder method definition that is compatible with contain-
ers and clients that are based on both JDK 1.1 and Java 2:

/I Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

jé{va.util.Enumeration findLargeAccounts(double limit)
throws FinderException, RemoteException;

/I Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

5ﬁblic java.util. Enumeration ejbFindLargeAccounts(
double limit) throws FinderException
{

}

[6] The finder will be also compatible with Java 2-based Containers and Clients.

119 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

9.1.9

The following is an example of a multi-object finder method definition that is compatible with only with
containers and clients based on Java 2:

/I Entity’s home interface

public AccountHome extends javax.ejb.EJBHome {

jéiva.util.CoIIection findLargeAccounts(double limit)
throws FinderException, RemoteException;

/I Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

ﬁjblic java.util.Collection ejbFindLargeAccounts(
double limit) throws FinderException
{

}

Standard application exceptionsdér Entities

9.1.9.1

The EJB specification defines the following standard EJB application exceptions:

* javax.ejb.CreateException

* javax.ejb.DuplicateKeyException

* javax.ejb.FinderException

* javax.ejb.ObjectNotFoundException

* javax.ejb.RemoveException
This section describes their use by entities with bean-managed persistence. The use of the exceptions by
entity beans with container-manager persistence is the same, with one additional element: The responsi-

bilities for throwing the exceptions apply to the data access methods generated by the Container Pro-
vider’s tools.

CreateException

From the client’'s perspective, @reateException (or a subclass o€reateException) indi-

cates that an application level error occurred duringcteate(...) operation. If a client receives

this exception, the client does not know, in general, whether the entity was created but not fully initial-
ized, or not created at all. Also, the client also does not know whether or not the transaction has been
marked for rollback. (However, the client may determine the transaction status usldgetieans-

action interface.)

5/7/99

120

Sun Microsystem Inc

Concepts

9.1.9.2

9.1.9.3

9.1.94

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

The Bean Provider throws tHereateException (or subclass ofcreateException) from the
ejbCreate(...) and ejbPostCreate(...) methods to indicate an application-level error
from the entity create or initialization operation. Optionally, the Bean Provider may mark the transac-
tion for rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be
lost if the transaction were committed by the client. Typically, when a CreateException is thrown, it
leaves the database in a consistent state, allowing the client to recover. For example, ejbCreate may
throw the CreateException to indicate that the some of the arguments to the create(...) methods are
invalid.

The Container treats tiereateException as any other application exception. See Section 12.3.

DuplicateKeyException
The DuplicateKeyException is a subclass o€reateException . It is thrown by theejb-
Create(...) methods to indicate to the client that the entity cannot be created because an entity

with the same key already exists. The unique key causing the violation may be the primary key, or
another key defined in the underlying database.

Normally, the Bean Provider should not mark the transaction for rollback before throwing the excep-
tion.

When the client receives tHauplicateKeyException , the client knows that the entity was not
created, and that the client’s transaction has not typically been marked for rollback.

FinderException

From the client’'s perspective, EinderException (or a subclass oFinderException) indi-
cates that an application level error occurred duringfitne...) operation. Typically, the client’s
transaction has not been marked for rollback because BfrtlerException

The Bean Provider throws tHeinderException (or subclass ofinderException) from the
ejbFind<METHOD>(...) methods to indicate an application-level error in the finder method. The
Bean Provider should not, typically, mark the transaction for rollback before throwirfgjriderEx-
ception

The Container treats tl@nderException as any other application exception. See Section 12.3.

ObjectNotFoundException

The ObjectNotFoundException is a subclass ofinderException . It is thrown by the
ejbFind<METHOD>(...) methods to indicate that the requested entity object does not exist.

Only single-object finders (see Subsection 9.1.8) may throw this exception. Multi-object finders must
not throw this exception.

121 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

9.1.9.5 RemoveException

From the client’'s perspective, RemoveException (or a subclass oRemoveException) indi-

cates that an application level error occurred duringraove(...) operation. If a client receives this
exception, the client does not know, in general, whether the entity was removed or not. The client also
does not know if the transaction has been marked for rollback. (However, the client may determine the
transaction status using thiserTransaction interface.)

The Bean Provider throws tHeemoveException (or subclass oRemoveException) from the
ejpbRemove() method to indicate an application-level error from the entity removal operation.
Optionally, the Bean Provider may mark the transaction for rollback before throwing this exception.
The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would be
lost if the transaction were committed by the client. Typically, when a RemoteException is thrown, it
leaves the database in a consistent state, allowing the client to recover.

The Container treats tiRemoveException as any other application exception. See Section 12.3.

9.1.10 Commit options

The Entity Bean protocol is designed to give the Container the flexibility to select the disposition of the
instance state at transaction commit time. This flexibility allows the Container to optimally manage the
caching of entity state.

The Container can select from the following commit-time options:

e Option A: The Container caches a “ready” instance between transactions. The Container
ensures that the instance has exclusive access to the state of the object in the persistent storage.
Therefore, the Container does not have to synchronize the instance’s state from the persistent
storage at the beginning of the next transaction.

* Option B: The Container caches a “ready” instance between transactions. In contrast to Option
A, in this option the Container does not ensure that the instance has exclusive access to the
state of the object in the persistent storage. Therefore, the Container must synchronize the
instance’s state from the persistent storage at the beginning of the next transaction.

* Option C: The Container does not cache a “ready” instance between transactions. The Con-
tainer returns the instance to the pool of available instances after a transaction has completed.

The following table provides a summary of the commit-time options.

Table 5 Summary of commit-time options
Write instance state | Instance stays Instance state
to database ready remains valid
Option A Yes Yes Yes

5/7/99 122

Sun Microsystem Inc

Concepts

Enterprise JavaBeans 1.1, Public Draft

Entity Bean Component Contract

Table 5 Summary of commit-time options
Write instance state | Instance stays Instance state
to database ready remains valid
Option B Yes Yes No
Option C Yes No No

Note that the container synchronizes the instance’s state with the persistent storage at transaction com-
mit for all three options.

The selection of the commit option is transparent to the Entity Bean implementation—the Entity Bean
will work correctly regardless of the commit-time option chosen by the Container. The Bean Provider
writes the Entity bean in the same way.

The object interaction diagrams in subsection 9.5.4 illustrate the three alternative commit options in
detail.

9.1.11 Concurrent access fom multiple transactions

When writing the business methods, the enterprise Bean developer does not have to worry about con-
current access from multiple transactions. The enterprise Bean developer may assume that the container
will ensure appropriate synchronization for Entity Beans that are accessed concurrently from multiple
transactions.

The entity container typically uses one of the following implementation strategies to achieve proper
synchronization. (These strategies are illustrative, not prescriptive.)

* The container activates multiple instances of the enterprise Bean, one for each transaction in
which the entity is being accessed. The transaction synchronization is performed automatically
by the underlying database during the database access calls performed djplLtbad |,
ejbCreate , ejbStore , andejpRemove methods. The database system provides all the
necessary transaction synchronization; the container does not have to perform any synchroni-
zation logic. The commit-time options B and C in Subsection 9.5.4 apply to this type of con-
tainer.

123 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts
Figure 24 Multiple Clients Can Access the Same Entity EJB using multiple instances
Container

/ EB instances\

T 1 Account 100
Client 1 inTX1 —
L 4
N EJB Object
Account 10
Client 2 TX 2

Account 100

Account 100
inTX 2

- /

With this strategy, the type of lock acquired by ejbLoad leads to a trade-off. If ejbLoad acquires an
exclusive lock on the instance's state in the database, then throughput of read-only transactions could
be impacted. If ejbLoad acquires a shared lock and the instance is updated, then ejbStore will need to
promote the lock to an exclusive lock. This may cause a deadlock if it happens concurrently under mul-
tiple transactions.

* The container acquires exclusive access to the instance’s state in the database. The container
activates a single instance and serializes the access from multiple transactions to this instance.
The commit-time option A in Subsection 9.5.4 applies to this type of container.

5/7/99 124

Sun Microsystem Inc

Concepts Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract
Figure 25 Multiple Clients Can Access the Same Entity EJB using single instance
Container
EB instance

Client 1
. container blocks Client 2
Client 2 ™2 until Client 1 finishes

- /

Account 100

9.1.12 Non-reentrant and re-entrant instances

By default, an Entity Bean instance is not re-entrant. If an instance executes a client request in a given
transaction context, and another request with the same transaction context arrives at the EJB object, the
container will throw thgava.rmi.RemoteException to the second request. This rules allows the
Bean developer to program the Bean as single-threaded, non-reentrant code.

The functionality of some Entity Beans may require loopbacks in the same transaction context. An
example of a loopback is when the client calls Bean A, A calls Bean B, and B calls back A in the same
transaction context. The Bean’s method invoked by the loopback shares the current execution context
(which includes the transaction and security contexts) with the Bean’s method invoked by the client.

If the Entity bean is specified as non-reentrant in the deployment descriptor, the Container must reject
an attempt to re-enter the instance via the bean’s remote interface while the instance is executing a busi-
ness method. (This can happen, for example, if the instance has invoked another enterprise bean, and the
other enterprise bean try to make a loopback call.) The container must reject the loopback call and
throw thejava.rmi.RemoteException to the caller. The container must allow the call if the
Bean’s deployment descriptor specifies that the Bean is re-entrant.

Re-entrant Beans must be programmed and used with great caution. First, the Bean programmer must
code the Bean with the anticipation of a loopback call. Second, since the container cannot, in general,
tell a loopback from a concurrent call from a different client, the client programmer must be careful to
avoid code that could lead to a concurrent call in the same transaction context.

125 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Concepts

9.1.13

Concurrent calls in the same transaction context targeted at the same EJB object are illegal, and may
lead to unpredictable results. Since the container cannot, in general, distinguish between an illegal con-
current call and a legal loopback, application programmers are encouraged to avoid using loopbacks.
Entity Beans that do not need callbacks can be marked as non-reentrant in the deployment descriptor,
allowing the container to detect and prevent illegal concurrent calls from clients.

Access fom multiple clients in the same transaction context

This section describes a more complex distributed transaction scenario, and specifies the required Con-
tainer’'s behavior for this scenarios.

9.1.13.1 Transaction “diamond” topology scenario

An Entity EJB Object may be accessed by multiple clients in the same transaction. For example, pro-
gram A may start a transaction, call program B and program C in the transaction context, and then com-
mit the transaction. If programs B and C access the same Entity EJB Object, the topology of the
transaction creates a diamond.

Figure 26

Transaction diamond scenario

EJB Container

4 N
> EJB Object

- /

Program C X1

An example (not realistic in practice) is a client program that tries to perform two purchases at two dif-
ferent stores within the same transaction. At each store, the program that is processing the client’s pur-
chase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C access the
Entity EJB Object through different network paths. This case is challenging because most high-end EJB
servers implement the EJB Container as a collection of multiple processes, running on the same or mul-
tiple machines. Each client is typically connected to a single process. If clients B and C connect to dif-
ferent processes of the EJB Container, and both B and C needs to access the same Entity EJB Object in
the same transaction, the issue is how the Container can make it possible for B and C to see a consistent
state of the Entity object within the same transaEtion

5/7/99

126

Sun Microsystem Inc

Concepts

Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

The above example illustrates a simple diamond. We use the term diamond to refer to any distributed
transaction scenario in which an Entity EJB Object is accessed in the same transaction through multiple
network paths.

Note that in the diamond scenario the clients B and C must access the Entity EJB Object serially. Con-
current access to an Entity EJB Object in the same transaction context would be considered an applica-
tion programming error, and it would be handled in a Container-specific way.

Note that the issue of handling diamonds in not unique to the EJB architecture. This issue exists in all
distributed transaction processing systems.

The following subsections define the responsibilities of the EJB Roles when handling distributed trans-
action topologies that may lead to a diamond.

9.1.13.2 Container Provider’s responsibilities

The EJB specification requires that the Container provide support for local diamonds. In a local dia-
mond, components A, B, C, and D are deployed in the same EJB Container.

The EJB specification does not require an EJB Container to support distributed diamonds. In a distrib-
uted diamond, a target Entity EJB Object is accessed from multiple clients in the same transaction
through multiple network paths, and the clients (programs B and C) are not enterprise beans deployed in
the same EJB Container as the target Entity EJB Object.

If the Container Provider chooses not to support distributed diamonds, and if the Container can detect
that a client invocation would lead to a diamond, the Container should throjathemi.Remo-
teException to the client.

If the Container Provider chooses to support distributed diamonds, it should provide a consistent view
of the entity state within a transaction. The Container Provider can implement the support in several
ways. (The options that follow are illustrative, not prescriptive.)

* Always instantiate the EJB Entity Object in the same process, and route all clients’ requests to
this process. Within the process, the Container routes all the requests within the same transac-
tion to the same enterprise bean instance.

* Instantiate the EJB Entity Object in multiple processes, and usgltistore andejbLoad
methods to synchronize the state of the instances within the same transaction. For example, the
Container can issuejbStore after each business method, and issji.oad before the
start of the next business method. This technique ensures that the instance used by a one client
sees the updates done by other clients within the same transaction. An illustration of this
approach follows.

This diamond problem applies only to the case when B and C are in the same transaction.

127 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract

Enterprise JavaBeans 1.1, Public Draft Concepts

Figure 27

Handling of diamonds by a multi-process Container

Multi-process EJB Container

(process 1
TX1
Account 100

ejbLoad/ejbStore

/

ejbLoad/ejbStore

process 2
™1 Account 100
Program C L instance 2

/

Program B makes a call to an Entity bean representing Account 100. The request is routed to an instance
in process 1. The Container invokefoLoad on the instance. The instance loads the state from the
database in thejpLoad method. The instance updates the state in the business method. When the
method completes, the Container invok@isStore . The instance writes the updated state to the data-
base in thejbStore method.

Now program C makes a call to the same entity in the same transaction. The request is routed to a differ-
ent process (2). The Container involabLoad on the instance. The instance loads the state from the
database in thejbLoad method. The loaded state was written by the instance in process 1. The
instance updates the state in the business method. When the method completes, the Container invokes
ejbStore . The instance writes the updated state to the databasecib®tere = method.

In the above scenario, the Container presents the business methods of the Entity Account 100 with a
consistent view of the entity state within the transaction.

Note that a more sophisticated Container might avoid cabijbgoad andejbStore on each busi-
ness method by using a distributed lock manager.

9.1.13.3 Bean Provider’s responsibilities

The diamond case is transparent to the Bean Provider—the Bean Provider does not have code the enter-
prise bean differently for the bean to participate in a diamond. Any solution to the diamond problem
implemented by the Container is transparent to the bean, and does not change the semantics of the bean.

5/7/99

128

Sun Microsystem Inc

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.1.13.4 Application Assembler and Deployer’s responsibilities

9.2

The Application Assembler and Deployer should be aware that distributed diamonds might occur. In
general, the Application Assembler should try to avoid creating unnecessary distributed diamonds.

If a distributed diamond is necessary, the Deployer should advise the Container (using a Container-spe-
cific API) that an Entity bean may be involved in distributed diamond scenarios.

Responsibilities of the Enterprise Bean Provider

9.2.1

This section describes the responsibilities of an entity enterprise Bean provider to ensure that an enter-
prise Bean can be deployed in any EJB Container.

The requirements are stated for the provider of an entity bean with bean-managed persistence. The dif-
ferences for entities with container-managed persistence are defined in Section 9.4.

Classes and interfaces

9.2.2

The enterprise Bean provider is responsible for providing the following class files:
* Enterprise Bean class
* Enterprise Bean's remote interface
* Enterprise Bean’s home interface

* Primary key class

Enterprise Bean class

The following are the requirements for an entity enterprise Bean class:

The class must implement, directly or indirectly, jégneax.ejb.EntityBean interface.
The class must be defined@aglic , and must not babstract

The class must not be definedfiasl

The class must define a public constructor that takes no arguments.

The class must not define tfiealize() method.

129 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Responsibilities of the Enterprise Bean Provider

The class may, but is not required to, implement the enterprise Bean’'s remote intrfatee class
implements the enterprise Bean’s remote interface, the class must provide no-op implementations of the
methods defined in thgvax.ejb.EJBObject interface. The container will never invoke these
methods on the Bean class at runtime.

A no-op implementation of these methods is required to avoid defining the EJB class as abstract.

The class must implement the business methods, andji@reate, ejbPostCreate, and
ejbFind<METHOD> methods as described later in this section.

The enterprise bean class may have superclasses and/or superinterfaces. If the enterprise bean has super-
classes, the business methods, dfigCreate and ejbPostCreate methods, the finder meth-

ods, and the methods of tBmtityBean interface may be defined in the enterprise bean class, or any

of its superclasses.

9.2.3 ejbCreatemethods

The enterprise Bean class may define zero or nefib€reate(...) methods whose signatures
must follow these rules:

The method name must bfpCreate

The method must be declaredpablic

The method must not be declaredinal or static

The return type must be the primary key type.

The methods arguments and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throwdhe.rmi.RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeException
to indicate non-application exceptions to the Container (see Section 12.2.2).

[8] Itis recommended that the enterprise bean class not implement the remote interface to prevent inadvertentipassray of
method argument or result.

5/7/99 130

Sun Microsystem Inc

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.2.4 ejbPostCreatemethods

For eachejbCreate(...) method, the enterprise Bean class must define a mateijiripst-
Create(...) method, using the following rules:

The method name must bfpPostCreate

The method must be declaredpasblic

The method must not be declaredinal or static
The return type must bmid .

The methods arguments must be the same as the arguments of the mafjblireate(...)
method.

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.CreateException

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throvatleermi.RemoteEx-

ception to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeEx-
ception to indicate non-application exceptions to the Container (see Section 12.2.2).

9.2.5 ejbFind methods

The enterprise Bean class may also define addit@ypBlInd<METHOD>(...) finder methods.
The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefigjdFind” (e.g. ejbFindByPrimaryKey
ejbFindLargeAccounts , ejbFindLateShipments).

A finder method must be declaredpasblic
The method must not be declaredinal or static
The methods arguments types must be legal types for RMI-IIOP.

The return type of a finder method must be the enterprise Bean’s primary key type, or an EJB primary
key collection (se&ectionSubsection 9.1.8).

The throws clause may define arbitrary application specific exceptions, including the
javax.ejb.FinderException

Every entity enterprise Bean class must definegjb&indByPrimaryKey method. The result type
for this method must be the primary key type (i.e. tieFindByPrimaryKey method must be a
single-object finder).

131 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Responsibilities of the Enterprise Bean Provider

9.2.6

Compatibility Note: EJB 1.0 allowed the finder methods to throwj#ha.rmi.RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeException
to indicate non-application exceptions to the Container (see Section 12.2.2).

Business methods

9.2.7

The class may define zero or more business methods whose signatures must follow these rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the callback
methods used by the EJB architecture.

The business method must be declarepldic

The method must not be declaredinal or static

The methods arguments and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throyattzermi. RemoteExcep-

tion toindicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1 com-

pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeException
to indicate non-application exceptions to the Container (see Section 12.2.2).

Enterprise Beans remote interface

The following are the requirements for the enterprise Bean's remote interface:

The interface must extend tjavax.ejb.EJBObject interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-
ment and return value types must be valid types for RMI-1IOP, and their throws clause must include the

java.rmi.RemoteException

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the enterprise
Bean'’s class. The matching method must have:

* The same name.
* The same number and types of its arguments, and the same return type.

* All the exceptions defined in the throws clause of the matching method of the enterprise Bean
class must be defined in the throws clause of the method of the remote interface.

5/7/99

132

Sun Microsystem Inc

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.2.8 Enterprise Beans home interface

The following are the requirements for the enterprise Bean’s home interface signature:

The interface must extend tfavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their argu-
ment and return types must be of valid types for RMI-IIOP, and that their throws clause must include the

java.rmi.RemoteException

The home interface is allowed to have superinterfaces. Use of interface inheritance is subject to the
RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the home interface must be one of the following:

* A create method.

* A finder method.
Eachcreate method must be namedreate’, and it must match one of thejbCreate methods
defined in the enterprise Bean class. The matchjp@reate method must have the same number
and types of its arguments. (Note that the return type is different.)
The return type for areate method must be the enterprise Bean’s remote interface type.
All the exceptions defined in the throws clause of the matckib@reate andejbPostCreate
methods of the enterprise Bean class must be included in the throws clause of the matehiag
method of the remote interface (i.e the set of exceptions defined fardade method must be a
superset of the union of exceptions defined foefb€reate andejbPostCreate methods)
The throws clause of@eate method must include thavax.ejb.CreateException
Eachfinder method must be namediid <METHOD>" (e.g.findLargeAccounts), and it
must match one of thejbFind<METHOD> methods defined in the enterprise Bean class (e.g.
ejbFindLargeAccounts). The matchingjbFind<METHOD> method must have the same num-

ber and types of arguments. (Note that the return type may be different.)

The return type for dind<METHOD> method must be the enterprise Bean’s remote interface type
(for a single-object finder), or a collection thereof (for a multi-object finder).

The home interface must always include fiByPrimaryKey method, which is always a sin-
gle-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause ofegioFind ~ method of the enterprise Bean class
must be included in the throws clause of the matcfimty method of the remote interface.

The throws clause offmder method must include thavax.ejb.FinderException

133 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft The responsibilities of the container provider

9.2.9

Enterprise Beans primary key class

9.3

The Bean provider must specify a primary key class in the deployment descriptor.
The primary key class must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of theshCode() and equals(Object
other) methods to simplify the management of the primary keys by client code.

The responsibilities of the container provider

9.3.1

This section describes the responsibilities of the container provider to support Entity Beans. The con-
tainer provider is responsible for providing the deployment tools, and for managing Entity Bean objects
at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we

assume that the deployment tools are provided by the container provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

Generation of implementation classes

The deployment tools provided by the container provider are responsible for the generation of addi-
tional classes when the enterprise Bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the enter-
prise Bean provider and by examining the Bean’s deployment descriptor.

The deployment tools must generate the following classes:

* A class that implements the enterprise Bean’s home interface.

* A class that implements the enterprise Bean’s remote interface.
The deployment tools may also generate a class that mixes some container-specific code with the enter-
prise Bean class. The code may, for example, help the container to manage the Bean instances at runt-
ime. Subclassing, delegation, and code generation can be used by the tools.
The deployment tools may also allow generation of additional code that wraps the business methods and
that is used to customize the business logic for an existing operational environment. For example, a

wrapper for adebit function on theAccount Bean may check that the debited amount does not
exceed a certain limit.

5/7/99

134

Sun Microsystem Inc

The responsibilities of the container provider Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.3.2 EJB Home class

The EJB home class, which is generated by deployment tools, implements the enterprise Bean's home
interface. This class also implements the methods ofidhax.ejb.EJBHome interface, and the
type-specificreate andfinder methods specific to the enterprise Bean.

The implementation of eachreate(...) methods invokes a matchingjbCreate(...)
method, followed by the matchingjbPostCreate(...) method, passing thereate(...)
parameters to these methods.

The implementation of theemove(...) methods defined in thiavax.ejp.EJBHome interface
must activate an instance (if an instance is not already in the ready state) and inveigRémove
method on the instance.

The implementation of eachfind<METHOD>(...) methods invokes a matching
ejbFind<METHOD>(...) method. The implementation of tHsnd<METHOD>(...) method
must create an EJB object for the primary key returned fromejhEind<METHOD>, and return the
EJB object reference to the client. If tegoFind<METHOD> method returns a collection of primary
keys, the implementation of theind<METHOD>(...) method must create a collection of EJB
objects for the primary keys, and return the collection to the client.

9.3.3 EJB Obiject class

The EJB Object, which is generated by deployment tools, implements the enterprise Bean’s remote
interface. It also implements the methods of jgneax.ejb.EJBObject interface and the business
methods specific to the enterprise Bean.

The implementation of theemove(...) method (defined in thmvax.ejb.EJBObject inter-
face) must activate an instance (if an instance is not already in the ready state) and inak&éie
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not already in
the ready state) and invoke the matching business method on the instance.

9.3.4 Handle class

The deployment tools responsible for implementing the handle class for the enterprise Bean. The handle
class must be serializable by the Java programming language Serialization protocol.

As the handle class is not EJB type specific, the container may use a single class for all deployed enter-
prise beans.

9.3.5 Home Handle class

The deployment tools responsible for implementing the home handle class for the enterprise Bean. The
handle class must be serializable by the Java programming language Serialization protocol.

135 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Entity Beans with container-managed persis-

9.3.6

Because the home handle class is not EJB type specific, the container may use a single class for the
homes of all deployed enterprise beans.

Meta-data class

9.3.7

The deployment tools are responsible for implementing the class that provides meta-data to the client
view contract. The class must be a valid RMI-IIOP Value Type, and must implement the
javax.ejb.EJBMetaData interface.

Because the meta-data class is not EJB type specific, the container may use a single class for all
deployed enterprise beans.

Instance’s re-entrance

9.3.8

The container runtime must enforce the rules defined in Section 9.1.12.

Transaction scoping, securityexceptions

9.4

The container runtime must follow the rules on transaction scoping, security checking, and exception
handling described in Chapters 11, 15, and 12.

Entity Beans with container-managed persistence

94.1

The previous sections described the component contract for Entity Beans with Bean-managed persis-
tence. This section specifies the contract for the Entity Beans with container-managed persistence.

The deployment descriptor for an entity bean indicates whether the entity bean uses bean-managed per-
sistence or container-managed persistence.

The contract for an entity bean with container-managed persistence is the same as that for an entity with

bean-managed persistence (as described in the previous sections), except for the differences described
in the following subsections.

Container-managed fields

An entity bean with container-managed persistence relies on the Container Provider’s tools to generate
methods that perform data access on behalf of the enterprise bean instances. The generated methods
transfer data between the enterprise bean instance’s variables and the underlying resource manager at
the times defined by the EJB specification. The generated methods also implement the creation,
removal, and lookup of the entity in the underlying database.

An Entity Bean with container-manager persistence must not code explicit data access—all data access
must be deferred to the Container.

5/7/99

136

Sun Microsystem Inc

Entity Beans with container-managed persistenceEnterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

The Bean Provider is responsible for using tinep-field elements of the deployment descriptor to
declare the instance’s fields that the Container must load and store at the defined times.

The container is responsible for transferring data between the Bean’s instance variables and the underly-
ing data source before or after the execution ofédjiCreate , ejpRemove , ejbLoad , andejb-

Store methods, as described in the following subsections. The container is also responsible for the
implementation of the finder methods.

The following requirements ensure that an Entity Bean can be deployed in any compliant container.

* The Bean Provider must ensure that the Java types assigned to the container-managed fields are
one of the following: Java primitive types, Java serializable types, or references to enterprise
beans’ remote or home interfaces.

* The Container Provider may, but is not required to, use Java serialization to store the entity
state in the database. If the container chooses a different approach, the effect should be equiva-
lent to that of Java Serialization. The Container must also be capable of persisting references to
enterprise beans’ remote and home interfaces (for example, by storing their handle or primary

key).

Although the above requirements allow the Bean Provider to specify almost any arbitrary types for the
container-managed fields, we expect that in practice the Bean Provider will use relatively simple Java
types, and that most Containers will be able to map these simple Java types to columns in a database
schema to externalize the entity state in the database, rather than use Java serialization.

If the Bean Provider expects that the container-managed fields will be mapped to database fields, he or
she should provide mapping instructions to the Deployer. The mapping between the instance’s con-
tainer-managed fields and the schema of the underlying resource manager will be then realized by the
data access classes generated by the container provider’s tools. Because entity beans are typically
coarse-grained objects, the content of the container-managed fields may be stored in multiple rows, pos-
sibly spread across multiple database tables. These mapping techniques are beyond the scope of the
EJB specification, and do not have to be supported by an EJB compliant container. (The container may
simply use the Java serialization protocol in all cases).

Because a compliant EJB Container is not required to provide any support for mapping the con-
tainer-managed fields to a database schema, a Bean Provider of entities that expect mapping to an
underlying database schema should use bean-managed persistence instead.

The provider of entities with container-managed persistence must take into account the following limi-
tations of the container-managed persistence protocol:

* Data aliasing problems. If container-managed fields of multiple entity beans map to the same
data item in the underlying database, the entity beans may see an inconsistent view of the data
item if the multiple entity beans are invoked in the same transaction. (That is, an update of the
data item done through a container-managed field of one entity bean may not be visible to
another entity bean in the same transaction if the other entity bean maps to the same data item.)

* Eager loading of state. The Container loads the entire entity state into the container-managed
fields before invoking thejbLoad method. This approach may not be suitable for entities
whose state is large, and whose business methods require access to only parts of the state.

137 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Entity Beans with container-managed persis-

9.4.2

An entity designer who runs into the limitations of the container-managed persistence should use
bean-managed persistence instead.

ejbCreate, ejpPstCreate

9.4.3

With Bean-managed persistence, the enterprise Bean developer is responsible for writing the code that

inserts a record into the database in #jleCreate(...) methods. However, with container-man-
aged persistence, the container performs the database insert aéigrGheate(...) method com-
pletes.

The enterprise Bean developer’s responsibility is to initialize the container-managed fieldsjln an
Create(...) method from the input arguments such that wieginCreate(...) returns, the
container can extract the container-managed fields from the instance and insert them into the database.

The ejbCreate(...) method must be defined to return the primary key class type. Because the
ejbCreate(...) method of an entity with container-managed persistence does not know the pri-
mary key (the primary key will be established by the Container laterejth@reate(...) method
should return @ull . The return value is ignored by the Container.

The container is responsible for extracting the primary key fields of the newly created entity representa-
tion in the database, and for creating an EJB object reference for the primary key. The Container must
establish the primary key before it invokes #ibPostCreate(...) method. The container may
create the representation of the entity in the database immediatelgjai@reate(...) returns, or

it can defer it to a later time (for example to the time after the matchjnBostCreate(...) has

been called, or to the end of the transaction).

Then the container invokes the matchiefbPostCreate(...) method on the instance. The
instance can discover the primary key by caltietPrimaryKey() on its entity context object.

The container must invokeibCreate , perform the database insert operation, and inekPost-

Create in the in the transaction context determined by the transaction attribute of the matoiing

ate(...) method, as described in subsection 11.6.2. Depending on the value of the transaction
attribute, the transaction context can be the client’s transaction context, a new transaction context, or
non-existent.

ejbRemove

The container invokes thgjbRemove() method on an Entity Bean instance with container-managed
persistence in response to a client-invokethove() operation on an EJB object reference or on the
EJB home interface.

The enterprise Bean provider can use ¢flBRemove method to implement any actions that must be
done before the entity representation is removed from the database.

After ejpRemove returns, the container removes the entity representation from the database.

5/7/99

138

Sun Microsystem Inc

Entity Beans with container-managed persistenceEnterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.4.4

The container must perforgibRemove and the database delete operation in the transaction context
determined by the transaction attribute of the invokethove method, as described in subsection
11.6.2. Depending on the value of the transaction attribute, the transaction context can be the client’s
transaction context, a new transaction context, or non-existent.

ejbLoad

9.4.5

When the container needs to synchronize the state of an instance with the entity state in the database,
the container reads the entity state from the database into the container-managed fields and then it
invokes theejpLoad() method on the instance.

The enterprise Bean developer can rely on the container’'s having loaded the container-managed fields
from the database just before the container invokecjbeoad() = method. The enterprise Bean can

use theejpLoad() method, for instance, to perform some computation on the values of the fields that
were read by the container (for example, uncompressing text fields).

ejbStore

9.4.6

When the container needs to synchronize the state of the entity state in the database with the state of the
instance, the container first calls tpStore() method on the instance, and then it extracts the con-
tainer-managed fields and writes them to the database.

The enterprise Bean developer should useegjb&tore() method to set up the values of the con-

tainer-managed fields just before the container writes them to the database. For examgjle, the
Store() method may perform compression of text before the text is stored in the database.

finder methods

The enterprise Bean provider does not write the firglpF(nd<METHOD>(...)) methods.

The finder methods are generated at Bean deployment time using the container provider’s tools. The
tools can, for example, create a subclass of the enterprise Bean class that implements the
ejbFind<METHOD>() methods, or the tools can generate the implementation of the finder methods
directly in the class that implements the enterprise Bean's home interface.

Note that theejpFind<METHOD> names and parameter signatures do not provide the container tools
with sufficient information for automatically generating the implementation of the finder methods for
methods other thagjbFindByPrimaryKey . Therefore, the bean provider is responsible for provid-

ing a description of each finder method. The bean Deployer uses container tools to generate the imple-
mentation of the finder methods based in the description supplied by the bean provider. The Enterprise
JavaBeans architecture does not specify the format of the finder method description.

139 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Entity Beans with container-managed persis-

9.4.7

primary k ey type

94.7.1

9.4.7.2

9.4.7.3

The container must be able to manipulate the primary key type. Therefore, the primary key type for a
Bean with container-managed persistence must follow the rules in this subsection, in addition to those
specified in Subsection 9.2.9.

There are two ways to specify a primary key class for an entity bean with container-managed persis-
tence:

* Primary key that maps to a single field in the entity bean class
* Primary key that maps to multiple fields in the entity bean class

The second method is necessary to include compound keys, and the first method is convenient for sin-
gle-field keys. Without the first method, simple types such as String would have to be wrapped in a
user-defined class.

Primary key that maps to a single field in the entity bean class

The Bean Provider uses thimkey-field element of the deployment descriptor to specify the
container-managed field of the bean class that contains the primary key. The field’s type must be the pri-
mary key type.

Primary key that maps to multiple fields in the entity bean class
The class must beublic , and must have public constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-managed
fields. (This allows the container to extract the primary key fields from an instance’s container-managed
fields, and vice versa.)

As explained in Subsection 9.2.9, in special situations the Bean Provider may defer the specification of
the primary key type to the entity bean Deployer.

Special case: Unknown primary key class

In special situations, the Bean Provider may choose not to specify the primary key class for an entity
bean with container-managed persistence. This case happens if the Bean Provider wants to allow the
Deployer to select the primary key fields at deployment time. The Deployer uses instructions supplied
by the Bean Provider (these instructions are beyond the scope of the EJB spec.) to define a suitable pri-
mary key class.

In this special case, the type of the argument offith@ByPrimaryKey method must be declared as
java.lang.Object , and the return value ofejbCreate() must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deployment
descriptor as of the typava.lang.Object.

5/7/99

140

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.5

The primary key class is specified at deployment time when the Bean Provider develops enterprise
beans that is intended to be used with multiple back-ends that provide persistence, and when these mul-
tiple back-ends require different primary key structures.

Use of entity beans with deferred primary key type specification limits the client application program-
ming model because the clients written prior to deployment of the entity bean may not use, in general,
the methods that rely on the knowledge of the primary key type (for example, EJBHome.findByPrima-

ryKey(...)).
The implementation of the enterprise bean class methods must be done carefully. For example, the meth-

ods should not depend on the type of the object returned from EntityContext.getPrimaryKey(), because
the return type is determined by the Deployer after the EJB class has been written.

Object interaction diagrams

(o]

=

This section uses object interaction diagrams to illustrate the interactions between an Entity Bean
instance and its container.

Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These classes are
either part of the container or are generated by the container tools. These classes communicate with
each other through protocols that are container implementation specific. Therefore, the communication
between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather than as
a prescriptive one

141 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

9.5.2 Creating an entity object

Figure 28 OID of Creation of an enterprise Bean with Bean-managed persistence.

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
home object context hization service

"

Create(argsz

|

javax.transact}ion.Usel‘lTransaction.begin() 1 :
I

\ \

\ \

\ \

\ \

|

|

|
ejberate(args)

P
| create representatiow DB
register redource mangger
new
ejbPostCreate(args)

|
\
|
I
\
\
\
\
\
\
\
\
\
\
|
\
\
\
\
\
\
\
new
\ \ j

registérSynchronization(S)}nchronizaﬁon)
\
|
\
\
i
|
|
|

| |
business methpd

’i business method

SR DU (. S

.

5/7/99 142

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

Figure 29 OID of Creation of an enterprise Bean with container-managed persistence:

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
home object context nhization service

javax.transact‘ion.UsellTransaction.begin() |
| | |
I
\ \

\

| |
\ \
| |
[I I I
\ \ \
\ \ \ \
create(args‘ | | |

\ \

| |

I I

\ \

\

\

ejbCréate(args)
I

1

|
|
\
\
\
\
|
\
\
\
extraé‘t container—manageé field :
| >

register resource manager

create entity representation in DB

new |

-

\

\

\

\

\

\

\

\

\

\

\

\

| ejbPostCreate(args)
\ \
\
\
\
\
\
\
\
\
\
\
\
\
|

|

\

\

\

\

\

\

\

\ \
new |

\ \ >*

registérSynchronization(S))nchroniza{ion)
\
|
\
|
|
|
|
\
|

|
\
business method \ . \
| 1 business method |

1
7
1

\
\ \
\ \
\ \
\ \
\ \
B
"
\ \
\ \
\ \
\ \
\ \
\ \
\ \

143 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

9.5.3 Passvating and activating an instance in a transaction

Figure 30 OID of Passivation and Reactivation of an EJB instance with Bean-managed persistence.

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
home object context nization service

\
business method

|
\
>|‘ busin%ss method

ejbStore()

write state to DB

"

\
|
|
\
|
| ejbPassivate()
|
|
|
\
|
\

business method

|
ejbActivate()

\

\
ejbLoad()

|

\

|

busines‘g method
I

read state from DB

!
\
\
\
\
\
\
\
\

busines§ method
\

business method

oy X Yy J X X

5/7/99 144

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

Figure 31 OID of Passivation and reactivation of an EJB instance with CMP.

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
home object context nization service

\
business method

|
\
>|‘ busin(‘?ss method

\

|

»]
\ \
\

ejbStore() ’i

\
extract container-managed fields

7
:

update entity state in DB

ejbPassivate()

business method

\
ej bActivf";tte 0
\

read enﬁty state from DB |
\

\
set cont§iner-managed fields

ejbLoad()
|

busines‘§ method

ﬂ
-
1

\ \
business method

\

|

business method

|
\
\
\
\
\
\
l
\
&
\
\
\
\
\
:
\
1
\
\
\
\
\
\
\
\
\
\

145 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

9.5.4 Committing a transaction

Figure 32 OID of transaction commit protocol with an EJB instance with Bean-managed persistence.

container-provided classes

client EJB EJB container instance synchro-| instance transactiodatabase
home object context nization service

| | |
javax.transaction.UserTransaction.commit() ‘ ‘ >

| beforeCompletion(

\
ejbStore()

write statgjto DB

o

prepare

J

]

|

|

\

\

\

\

\

\

\

\

| afterCompletion(staty
| -t |
\ \
|

\

|

\

|

\

|

\

|

\

|

)
~

\

| .
| | commit

|

|

Option A:] mark “no;t registered]

Option B:| mark “inValid state”
\

- \
Option C:]ejbPassivate()
Rt <4

5/7/99 146

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

Figure 33 OID of transaction commit protocol for EJB instance with container-managed persistence.

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
home object context nization service

| | |
javax.transaction.UserTransaction.commit() ‘ ‘ >

beforeCompletion
\ -< Comp (

|

\

|

\ \
ejbStore() [
\

\

\

\

extract container-maraged fields
_— - _»

update erﬁtity state in pB
\

: prepare >I
"

\
: | commit
\

|

\

|

|

|

|

|

|

|

|

|

|

|

‘ afterCompletion(statt
| < i
|
|
|
|
\
|
|
|
|
|
|
|
|

)
~

Option A:| mark “not registered|
\

Option B: [mark “invalid state”
|

. \
Option C: ejbPassivate()
B

147 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

9.5.5 Starting the next transaction

The following diagram illustrates the protocol performed for a Bean with Bean-managed persistence at
the beginning of a new transaction. The three options illustrated in the diagram correspond to the three
commit options in the previous subsection.

5/7/99 148

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

Figure 34 OID of Start of Transaction for EJB instance using bean-managed persistence.

container-provided classes

client EJB EJB container instance synchro- instance transactiodatabase
home object context nization service

|
javax.transaction.User}Transaction.begin()
T

business method

L

Option A:{ do nothing

[
\
L
\
\
\
|

Option B:] ejbLoad()
read staté from D

register I‘ES‘OUI'CG manager

Option C:|eibActivate()

read state from D
register respurce manajer

— Y X

new

\
\
\
\
|
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
>

registerSynchronization(syn‘khronizati
I
\
\
!
|
\
\
1
|

o _ _ _

n)

business method

business method
’i business method

|
\
|
[
\
|
\
\
\
|
\
\
\
\
\
\
|
\
[ejbLoad()
\
|
\
\
\
|
\
\
|
\
\
\
|
\
\
\
|

B I B

149 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

Figure 35 OID of Protocol performed for an EJB with CMP at the beginning of a new transaction.
container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
home object context nization service

|
javax.transaction.User‘Transaction.begin()

register resource manafygr

| |
| | |
! } L |
business method > 1 1 1
Option A1, nothing ‘ | |
| | |
| | |
) read state from DB | | |
Option B: ‘
|

ejbLoad()

Option C:| ejbActivate()

read entity state from DB

| register re§ource manapgr

>

ejbLoad()

new >*

|
| |
\ \
| | |
| | |
\ \ \
| | |
registerSynchronization(synghronization) ‘
| | >i |
\ \ \ \
1 \ \
\ \ \
| | |
\ \ \
\ | |
| | |
| | |

business method

business method

1
ﬂ

|
|

>| business method
|

5/7/99 150

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

9.5.6 Removing an entity object

Figure 36 OID of Destruction of an entity EJB with Bean-managed persistence.

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
home object context hization service

\
|
remove representation

i
\
|
>| in DB
| g
|
|

- remove()
>I ejpbRemove()

Figure 37 OID of Destruction of an entity EJB with container-managed persistence.

container-provided classes

client EJB EJB container entity ~ synchro-| instance transactiodatabase
home object context nization service
| |
| |
remove
‘ 0 -

remove representation in DB

|
|
|
ejpbRemove() >I
\
\
|
|
|

7

151 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

9.5.7 Finding an object

Figure 38 OID of Execution of a finder method on an entity EJB with Bean-managed persistence.

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
home object context hization service

| | |
\ \ \
| find<METHODp(args)

\

|

eiji+d<METHOD>(args)

\
\
new

|
\
\
\
:
\
!
\
\

|
|
|
|
\
\
1 search DB
|
\
|

5/7/99 152

Sun Microsystem Inc

Object interaction diagrams Enterprise JavaBeans 1.1, Public Draft Entity Bean Component Contract

Figure 39 OID of Execution of a finder method on an entity EJB with container-managed persistence.

container-provided classes

client EJB EJB container entity synchro-| instance transactiodatabase
home object context nization service
| | I | |
\ | \ | \
| find<METHOD}(args)| | |
\ | \
\ | | \
| searéh DB | |
l | l ~
: new : : :
\ 1 \ \
\ \ \ \
| | |

9.5.8 Adding and removing instance from the pool

The diagrams in Subsections 9.5.2 through 9.5.7 did not show the sequences between the “does not
exist” and “pooled” state (see the diagram in Section 9.1.4).

153 5/7/99

Sun Microsystems Inc.

Entity Bean Component Contract Enterprise JavaBeans 1.1, Public Draft Obiject interaction diagrams

Figure 40 OID of Sequence for a container adding an instance to the pool.

container-provided classes

EJB EJB container entity synchro-| instance transactiodatabase
home object context nization service
| I |
| new | |
1 »I
new | \
’| \
setEntit;‘/Context(ec) |
| ™1
\ \
| |
| |
Figure 41 OID of Sequence for a container removing an instance from the pool.

container-provided classes

EJB EJB container entity synchro-| instance transactiodatabase
home object context nization service
| | |
\ \ \
unsetErptityContext()

5/7/99 154

Sun Microsystem Inc

Overview

Chapter 10

10.1

Enterprise JavaBeans 1.1, Public Draft Example entity scenario

Example entity scenario

This chapter describes an example development and deployment scenario for an entity enterprise Bean.
We use the scenario to explain the responsibilities of the enterprise Bean provider and those of the con-
tainer provider.

The classes generated by the container provider’s tools in this scenario should be considered illustra-
tive rather than prescriptive. Container providers are free to implement the contract between an enter-

prise Bean and its container in a different way that achieves an equivalent effect (from the perspectives
of the enterprise Bean provider and the client-side programmer).

Overview

Wombat Inc. has developed tAecountBean enterprise Bean. The AccountBean enterprise Bean is
deployed in a container provided by the Acme Corporation.

155 5/7/99

Sun Microsystems Inc.

Example entity scenario Enterprise JavaBeans 1.1, Public Draft Inheritance relationship

10.2 Inheritance relationship

Figure 42 Example of the inheritance relationship between the interfaces and classes:
java.rmi_Remote java.io.SeriaIizabIe
[[& JDK
: Enterprise
EJBMetaData £)BObject EnterpérgseBean JavaBeans

EJBHome EntityBean

enterprise Bean
provider

Account (Wombat Inc.)

AccountHome

AccountBean
AcmeRemote container
provider
AcmeMetaData AcmeHome AcmeBean (Acme)

produced by

Acme tools

AcmeAccountHome AcmeRemoteAccount
AcmeAccountMetaData AcmeAccountBean

——> extends or implements interface
——p» extends implementation, code generation, or delegation

Java interface Java class

5/7/99 156

Sun Microsystem Inc

Inheritance relationship

Enterprise JavaBeans 1.1, Public Draft Example entity scenario

10.2.1 What the entemprise Bean povider is responsible ér

Wombat Inc. is responsible for providing the following:

Define the enterprise Bean'’s remote interface (Account). The remote interface defines the busi-
ness methods callable by a client. The remote interface must extend the javax.ejb.EJBObject
interface, and follow the standard rules for a RMI-IIOP remote interface. The remote interface
must be defined as public.

Write the business logic in the enterprise Bean class (AccountBean). The enterprise Bean class
may, but is not required to, implement the enterprise Bean'’s remote interface (Account). The

enterprise Bean must implement the javax.ejb.EntityBean interface, and define the ejbCre-
ate(...) methods invoked at an EJB object creation.

Define a home interface (AccountHome) for the enterprise Bean. The home interface defines
the EJB class specific create and finder methods. The home interface must be defined as public,
extend the javax.ejb.EJBHome interface, and follow the standard rules for RMI-IIOP remote
interfaces.

Define a deployment descriptor that specifies any declarative metadata that the enterprise
Bean provider wishes to pass with the enterprise Bean to the next stage of the develop-
ment/deployment workflow.

10.2.2 Classes supplied by container mvider

The following classes are supplied by the container provider, Acme Corp:

The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome methods.
The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject methods.
The AcmeBean class provides additional state and methods to allow Acme’s container to man-
age its enterprise Bean instances. For example, if Acme’s container uses an LRU algorithm,

then AcmeBean may include the clock count and methods to use it.

The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMetaData
methods.

10.2.3 What the container provider is responsible 6r

The tools provided by Acme Corporation are responsible for the following:

Generate the remote Bean class (AcmeRemoteAccount) for the enterprise Bean. The remote
Bean class is a “wrapper” class for the enterprise Bean and provides the client view of the
enterprise Bean. The tools also generate the classes that implement the communication stub
and skeleton for the remote Bean class.

157 5/7/99

Sun Microsystems Inc.

Example entity scenario Enterprise JavaBeans 1.1, Public Draft Inheritance relationship

* Generate the implementation of the enterprise Bean class suitable for the Acme container
(AcmeAccountBean). AcmeAccountBean includes the business logic from the AccountBean
class mixed with the services defined in the AcmeBean class. Acme tools can use inheritance,
delegation, and code generation to achieve mix-in of the two classes.

* Generate the home class (AcmeAccountHome) for the enterprise Bean. The home class imple-
ments the enterprise Bean's home interface (AccountHome). The tools also generate the
classes that implement the communication stub and skeleton for the home class.

* Generate a class (AcmeAccountMetaData) that implements the javax.ejb.EJBMetaData inter-
face for the Account Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way Acme Corp imple-
mented them). Other container providers may use different mechanisms to produce their runtime
classes, and the generated classes most likely will be different from those generated by Acme’s tools.

5/7/99 158

Sun Microsystem Inc

Overview Enterprise JavaBeans 1.1, Public Draft Support for Transactions

ez SUPPOI for Transactions
One of the key features of the Enterprise JavaBeans™ architecture is support for distributed transac-
tions. The Enterprise JavaBeans architecture allows an application developer to write an application that
atomically updates data in multiple databases which may be distributed across multiple sites. The sites
may use EJB Servers from different vendors.

11.1 Overview
This section provides a brief overview of transactions and illustrates a number of scenarios of transac-
tions in EJB.
11.1.1 Transactions

Transactions are a proven technique for simplifying application programming. Transactions free the
application programmer from dealing with the complex issues of failure recovery and multi-user pro-
gramming. If the application programmer uses transactions, the programmer divides the application’s
work into units called transactions. The transactional system ensures that a unit of work either fully
completes, or the work is fully rolled back. Furthermore, transactions make it possible for the program-
mer to design the application as if it ran in an environment that executes units of work serially.

159 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Overview

11.1.2

Support for transactions is an essential component of the Enterprise JavaBeans architecture. The enter-
prise Bean Provider and the client application programmer are not exposed to the complexity of distrib-
uted transactions. The Bean Provider can choose between using programmatic transaction demarcation
in the enterprise bean code or declarative transaction demarcation performed automatically by the EJB
Container. In the latter case, the Container demarcates transactions per instructions provided by the
Application Assembler. In both cases, the burden of implementing transaction management is on the
EJB Container and Server Providers. The EJB Container and Server implement the necessary low-level
transaction protocols, such as the two-phase commit protocol between a transaction manager and a data-
base system, transaction context propagation, and distributed two-phase commit.

Transaction model

11.1.3

The resource access performed by an enterprise bean is done in the scope of a transaction. A transaction
can be local or global. A local transaction is managed by the resource manager; a global transaction is
managed by a global transaction manager that is part of the EJB Server. The scope of a local transaction
is limited to a single resource manager; the scope of a global transaction may include multiple resource
managers and may span multiple servers on the network.

In the case of an enterprise bean with bean-managed transactions, it is the Bean Provider who decides
whether a local or global transaction is used. In the case of an enterprise bean with container-managed
transactions, it is the transaction attribute set by the Application Assembler or Deployer that determines
if a local or global transaction is used.

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot have any
child (nested) transactions.

Note: The decision not to support nested transactions allows vendors of existing transaction

processing and database management systems to incorporate support for Enterprise Java-
Beans. If these vendors provide support for nested transactions in the future, Enterprise Java-
Beans may be enhanced to take advantage of nested transactions.

Relationship to JTA and JTS

The Java™ Transaction API (JTA) [5] is a specification of the interfaces between a transaction manager
and the other parties involved in a distributed transaction processing system: the application programs,
the resource managers, and the application server.

Java Transaction Service (JTS) [6] API is a Java binding of the CORBA Object Transaction Service
(OTS) 1.1 specification. JTS provides transaction interoperability using the standard IIOP protocol for
transaction propagation between servers. The JTS API is intended for vendors who implement transac-
tion processing infrastructure for enterprise middleware. For example, an EJB Server vendor may use a
JTS implementation as the underlying transaction manager.

The EJB architecture does not require the EJB Container to support the JTS interfaces. The EJB archi-
tecture requires that the EJB Container supportjdvax.transaction.UserTransaction

interface defined in JTA, but it does not require the support for the JTA resource manager and applica-
tion server interfaces.

5/7/99

160

Sun Microsystem Inc

Scenarios

11.2

Enterprise JavaBeans 1.1, Public Draft Support for Transactions

Scenarios

11.2.1

This section describes several scenarios that illustrate the distributed transaction capabilities of the
Enterprise JavaBeans architecture.

Update of multiple databases

The Enterprise JavaBeans architecture makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise Bean X. X updates data using two database con-
nections that the Deployer configured to connect with two different databases, A and B. Then X calls
another enterprise Bean Y. Y updates data in database C. The EJB Server ensures that the updates to
databases A, B, and C are either all committed, or all rolled back.

Figure 43

11.2.2

Updates to Simultaneous Databases

client EJB Server

=lsi=

database A database Bdatabase C

The application programmer does not have to do anything to ensure transactional semantics. The enter-
prise Beans X and Y perform the database updates using the standard JDBC™ API. Behind the scenes,
the EJB Server enlists the database connections as part of the transaction. When the transaction com-

mits, the EJB Server and the database systems perform a two-phase commit protocol to ensure atomic
updates across all the three databases.

Update of databases via multiple EJB Seers

The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in a sin-
gle transaction.

161 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Scenarios

In the following figure, a client invokes the enterprise Bean X. X updates data in database A, and then

calls another enterprise Bean Y that is installed in a remote EJB Server. Y updates data in database B.

The Enterprise JavaBeans architecture makes it possible to perform the updates to databases A and B
as a single transaction.

Figure 44

11.2.3

Updates to Multiple Databases in Same Transaction

EJB Server EJB Server

x -

client

database A database B

When X invokes Y, the two EJB Servers cooperate to propagate the transaction context from X to Y. This
transaction context propagation is transparent to the application-level code.

At transaction commit time, the two EJB Servers use a distributed two-phase commit protocol (if the
capability exists) to ensure the atomicity of the database updates.

Client-managed demacation

A Java client can use th@vax.transaction.UserTransaction interface to explicitly
demarcate transaction boundaries. The client program obtainguhg.transaction.User-
Transaction interface using JNDI as defined in the JTA specification [5].

A client program using explicit transaction demarcation may perform, via enterprise beans, atomic
updates across multiple databases residing at multiple EJB Servers, as illustrated in the following figure.

5/7/99

162

Sun Microsystem Inc

Scenarios Enterprise JavaBeans 1.1, Public Draft Support for Transactions
Figure 45 Updates On Multiples Databases on Multiple Servers
EJB Server
client
/
commin database A
EJB Server
database B
The application programmer demarcates the transaction wégin and commit calls. If the enter-
prise beans X and Y are configured to use a client transaction (i.e. their methods have either the
Required, Mandatory, or Supports transaction attribute), the EJB Server ensures that the updates to
databases A and B are made as part of the client’s transaction.
11.2.4 Container-managed demacation

Whenever a client invokes an enterprise Bean, the container interposes on the method invocation. The
interposition allows the container to control transaction demarcation declaratively throumanec-

tion attribute that is set by the Application Assembler. (See [11.4.1] for a description of transaction
attributes.)

For example, if an enterprise Bean method is configured withRéguired transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, the Con-
tainer automatically initiates a transaction whenever a client invokes a transaction-enabled enterprise
Bean. If the client request contains a transaction context, the container includes the enterprise bean
method in the client transaction.

163 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Scenarios

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise Bean
X. Since the message from the client does not include a transaction context, the container starts a new
transaction before dispatching the remote method on X. X's work is performed in the context of the
transaction. When X calls other enterprise Beans (Y in our example), the work performed by the other
enterprise Beans is also automatically included in the transaction (subject to the transaction attribute of
the other enterprise Bean).

Figure 46

11.2.5

Update of Multiple Databases From Non-transactional Client

client EJB Server

database A database B

The container automatically commits the transaction at the time X returns a reply to the client.

Bean-managed dematation

11.2.6

A session Bean can use tfawax.transaction.UserTransaction interface to programmati-
cally demarcate transactions.

Inter operability with non-Java clients and severs

Although the focus of the Enterprise JavaBeans architecture is the Java API for writing distributed
enterprise applications in the Java programming language, it is desirable that such applications are also
interoperable with non-Java clients and servers.

A container can make it possible for an enterprise Bean to be invoked from a non-Java client. For exam-
ple, the CORBA mapping of the Enterprise JavaBeans architecture [8] allows any CORBA client to
invoke any enterprise Bean object on a CORBA-enabled server using the standard CORBA API.

5/7/99

164

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

Figure 47

11.3

Interoperating with Non-Java Clients and/or Servers

CORBA client EJB Server

CICS
|
LU 6.2

bridge

database A database B

Providing connectivity to existing server applications is also important. An EJB Server may choose to
provide access to existing enterprise applications, such as applications running under CICS on a main-
frame. For example, an EJB Server may provide a bridge that makes existing CICS programs accessible
to enterprise Beans. The bridge can make the CICS programs visible to the Java programming lan-
guage-based developer as if the CICS programs were other enterprise Beans installed in some con-
tainer on the EJB Server.

Note: It is beyond the scope of the Enterprise JavaBeans specification to define the bridging
protocols that would enable such interoperability.

Bean Provider’s responsibilities

11.3.1

This section describes the Bean Provider's view of transactions and defines his responsibilities.

Bean-managed @rsus containermanaged demacation

As part of the design of an enterprise bean, the Bean Provider must make a decision whether the enter-
prise bean will demarcate transactions programmatically in the business methods, or whether the trans-
action demarcation is to be performed by the Container based on the Application Assembler's
instructions. (See [11.3.6] for more information.)

If the enterprise bean performs transaction demarcation programmatically, the enterprise bean is
referred to as an enterprise bean udiegin-managed transactioif the enterprise bean relies on the
Container to perform transaction demarcation based on the Application Assembler’s instructions, the
enterprise bean is referred to as an enterprise beanaasitagner-managed transaction

165 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

11.3.2

A Session Bean can be designed for bean-managed transactions or for container-managed transactions.
(But it cannot be both at the same time.)

An Entity Bean must always be designed for container-managed transactions.

Local versus global transaction

11.3.3

A local transaction is managed by the resource manager itself. A local transaction ensures the ACID
properties for multiple updates to the same resource manager. Local transactions cannot ensure the ato-
micity of updates to multiple resource managers, for the following reason: If an enterprise bean per-
forms updates to multiple resource managers, each using its own local transaction, every resource
manager commits or rolls back its transaction independently from the other resource managers’ transac-
tions.

A global transaction is managed by a global transaction manager, which is typically part of the EJB
Server. A global transaction manager ensures the ACID properties for multiple updates to multiple
resource managers by performing a two-phase commit protocol across the multiple resource managers
enlisted in a transaction.

An enterprise bean using a bean-managed transaction manages local transactions by using the transac-
tion demarcation API specific to each resource manager type. For example, an enterprise bean using
JDBC to access a database uses the transaction-related methodgaatkgl.Connection

interface (i.e.commit() , rollback() , andsetAutoCommit(...)) to demarcate transactions

on the connection.

An enterprise bean using bean-managed transaction demarcates global transactions by using the
javax.transaction.UserTransaction interface. All updates to the resource managers
between theUserTransaction.begin() and UserTransaction.commit () methods are
performed in a global transaction.

For an enterprise bean using container-managed transaction, the transaction attribute specified in the
deployment descriptor by the Application Assembler determines if the container should include the
invocation of the enterprise bean’s business method as part of a global transaction, or whether the busi-
ness method is executed using local transaction(s). See Subsection 11.6.2 for the rules that specify how
the Container deals with container-managed transactions.

Isolation levels

Transactions not only for make completion of a unit of work atomic, but also isolate the units of work
from each other, provided that the system allows concurrent execution of multiple units of work.

Theisolation leveldescribes the degree to which the access to a resource by a transaction is isolated
from the access to the resource by other concurrently executing transactions.

5/7/99

166

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

The following are guidelines for managing isolation levels in enterprise beans.

* The API for managing an isolation level is resource manager specific. (Therefore, the EJB
architecture does not define an API for managing isolation level.)

* If an enterprise bean uses multiple resources, the Bean Provider may specify the same or dif-
ferent isolation level for each resource. This means, for example, that if an enterprise bean
accesses multiple resources in a transaction, access to each resource may be associated with a
different isolation level.

* The Bean Provider must take care when setting an isolation level. Most resource managers
require that all accesses to the resource manager within a transaction are done with the same
isolation levels. An attempt to change the isolation level in the middle of a transaction may
cause undesirable behavior, such as an implicit sync point (a commit of the changes done so
far).

* For session beans using bean-managed transactions, the Bean Provider can specify the desir-
able isolation level programmatically in the enterprise bean’s methods, using the resource man-
ager-specific APl. For example, the Bean Provider can use the
java.sgl.Connection.setTransactionlsolation(...) method to set the
appropriate isolation level for database access.

* For session beans with container-managed transactions and entity beans with bean-managed
persistence, the Bean Provider can specify the desirable isolation level programmatically in the
enterprise bean’s methods, using the resource manager-specific APl. The Bean Provider must
ensure that the management of the isolation levels performed by the bean’s code will not result
in conflicting isolation level requests for a resource within a transaction.

* For entity beans using container-managed persistence, transaction isolation is managed by the
data access classes that are generated by the container provider’s tools. The tools must ensure
that the management of the isolation levels performed by the data access classes will not result
in conflicting isolation level requests for a resource within a transaction.

* Additional care must be taken if multiple enterprise beans access the same resource manager in
the same transaction. Conflicts in the requested isolation levels must be avoided.

11.3.4 Enterprise beans using bean-managed transaction

This subsection describes the requirements for the Bean Provider of an enterprise bean using bean-man-
aged transaction.

The enterprise bean using bean-managed transaction must be a Session bean.

An instance of an enterprise bean using bean-managed transaction can perform both global and local
transactions. An instance must not start a global transaction until it completes all the local transactions
that it has previously started. An instance that started a global transaction must complete the transaction
before it starts a new global transaction or a local transaction.

167 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

To demarcate local transactions, the Bean Provider must use a resource manager-specific API (e.g.
JDBC).

To demarcate global transactions, the Bean Provider must usbetiiemanaged transactiomll

updates to the resource managers betweebseeTransaction.begin() andUserTransac-
tion.commit () calls are performed in a global transaction. While an instance is in a global transac-
tion, the instance must not attempt to demarcate transaction boundaries using the resource-specific
demarcation APl (e.g. it must not call theommit() or rollback() method on the
java.sql.Connection interface).

A stateful Session Bean instance may, but is not required to, commit a started global transaction or any
started local transactions before a business method returns. If a global transaction has not been com-
pleted by the end of a business method, the Container retains the association between the transaction
and the instance across multiple client calls until the instance eventually completes the transaction. If a
local transaction (or multiple transactions if the instance has accessed multiple resource managers) has
not been completed by the end of a business method, the resource (e.g. a JDBC connection) used by the
instance automatically retains the local transaction association across multiple client calls.

The bean-managed transaction programming model presented to the programmer of a stateful Session
Bean is natural because it is the same as that used by a stand-alone Java application.

A stateless session instance must commit all transactions, local and global, before a business method
returns.

5/7/99

168

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

The following example illustrates a business method that performs local transactions on two database
connections.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
javax.sgl.DataSource dsl;
javax.sgl.DataSource ds2;
java.sql.Connection conl;
Java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

InitialContext initCtx = new InitialContext();

/I obtain conl object and set it up for transactions

dsl = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbc/Databasel”);

conl = dsl.getConnection();

stmtl = conl.createStatement();

/I obtain con2 object and set it up for transactions

ds2 = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbc/Database2”);

con2 = ds2.getConnection();

stmt2 = con2.createStatement();

/I start local transaction on conl and do some work

stmtl.executeQuery(...);

stmtl.executeUpdate(...);

/I start local transaction on con2 and do some work
stmt2.executeQuery(...);

/l interleave some work on conl
stmtl.executeUpdate(...);

/I commit local transaction on con2
con2.commit();

stmtl.executeUpdate(...);
/I commit local transaction on conl

conl.commit();

I/l release resource
conl.close();
con2.close();

169 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

The following example illustrates a business method that performs a global transaction on two database
connections.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {

javax.transaction.UserTransaction ut;
Javax.sgl.DataSource dsl;
javax.sgl.DataSource ds2;
java.sql.Connection conl;
Java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

InitialContext initCtx = new InitialContext();
/I obtain conl object and set it up for transactions

dsl = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabasel”);
conl = dsl.getConnection();

stmtl = conl.createStatement();

/I obtain con2 object and set it up for transactions

ds2 = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase2");

con2 = ds2.getConnection();

stmt2 = con2.createStatement();

I

/I Now do a global transaction that involves conl and con2.
1

ut = ejbContext.getUserTransaction();

/Il start the transaction
ut.begin();

/l Do some updates to both con1 and con2. The Container
/I automatically enlists conl and con2 with the global

/I transaction.

stmtl.executeQuery(...);

stmtl.executeUpdate(...);

stmt2.executeQuery(...);

stmt2.executeUpdate(...);

stmtl.executeUpdate(...);

stmt2.executeUpdate(...);

/I commit the global transaction
ut.commit();

/I release resource
stmtl.close();
stmt2.close();
conl.close();
con2.close();

5/7/99 170

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

171 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

The following example illustrates a stateful Session Bean that retains a global transaction across three
client calls, invoked in the following ordenethod1 method2 andmethod3

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
javax.sgl.DataSource dsl;
javax.sgl.DataSource ds2;
java.sgl.Connection conl;
Java.sgl.Connection con2;

public void method1(...) {
java.sqgl.Statement stmt;

InitialContext initCtx = new InitialContext();

/l obtain user transaction interface
ut = ejbContext.getUserTransaction();

/I start a global transaction
ut.begin();

/l make some updates on conl

dsl = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabasel”);

conl = dsl.getConnection();

stmt = conl.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

Il

/I The Container retains the global transaction
/I associated with the instance to the next client
/I call (which is method2(...)).

1

}

public void method2(...) {
java.sgl.Statement stmt;

InitialContext initCtx = new InitialContext();

/I make some updates on con2

ds2 = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase2”);

con2 = ds2.getConnection();

stmt = con2.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

/I The Container retains the global transaction
/I associated with the instance to the next client
/I call (which is method3(...)).

}

public void method3(...) {
java.sgl.Statement stmt;

/I obtain user transaction interface
ut = ejbContext.getUserTransaction();

5/7/99 172

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

/I make some more updates on conl and con2
stmt = conl.createStatement();
stmt.executeUpdate(...);

stmt = con2.createStatement();
stmt.executeUpdate(...);

/I commit the global transaction
ut.commit();

/l release resources
stmt.close();
conl.close();
con2.close();

173 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

It is possible for an enterprise bean to open and close a database connection in each business method
(rather than hold the connection open until the end of transaction). In the following example, if the cli-
ent executes the sequence of methadsthod] method2 method2 method2 and method3) all the

database updates done by the multiple invocatiomaethodZ2are performed in the scope of the same
transaction, which is the transaction startech@thodland committed imethod3

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
InitialContext initCtx;

public void method1(...) {
java.sqgl.Statement stmt;

/I obtain user transaction interface
ut = ejbContext.getUserTransaction();

/I start a global transaction
ut.begin();
}

public void method2(...) {
javax.sgl.DataSource ds;
java.sgl.Connection con;
Java.sqgl.Statement stmt;

// open connection

ds = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase”);

con = ds.getConnection();

/I make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

/I close the connection
stmt.close();
con.close();

}

public void method3(...) {
// obtain user transaction interface
ut = ejpContext.getUserTransaction();
/I commit the global transaction
ut.commit();

}
11.3.4.1 getRollbackOnly() and setRollbackOnly() method

An enterprise bean with bean-managed transactions must not uggtiRellbackOnly() and
setRollbackOnly() methods of th&JBContext interface.

5/7/99 174

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

There is no need for an enterprise bean with bean-managed transactions to use these methods, for these
reasons:

* An enterprise bean using bean-managed transactions can obtain the status of a global transac-
tion by using thegetStatus() method of thgavax.transaction.UserTrasac-
tion interface.

* An enterprise bean using bean-managed transactions can rollback a global transaction using
therollback() method of thgavax.transaction.UserTrasaction interface.

11.3.5 Enterprise beans using containemanaged transaction

This subsection describes the requirements for the Bean Provider of an enterprise bean using con-
tainer-managed transaction.

The enterprise bean’s business methods must not use any resource-specific transaction management
methods that would interfere with the Container's demarcation of transaction boundaries. For example,
the enterprise bean methods must not use the following methods ¢dvthsql.Connection
interface:commit() , setAutoCommit(...) , androllback()

The enterprise bean’s business methods must not attempt to obtain or ysgathéransac-
tion.UserTransaction interface.

175 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

The following is an example of a business method in an enterprise bean that uses container-managed
transaction. The business method updates two databases using JDBC™ connections. Transaction
demarcation is provided by the Container per the Application Assembler’s instructions.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
java.sgl.Connection conl;
Java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

/I obtain conl and con2 connection objects
conl=..;
con2 = ...,

stmtl = conl.createStatement();
stmt2 = con2.createStatement();

1

/I Perform some updates on conl and con2. The Container
/I automatically enlists conl and con2 with the container-

/l managed transaction.

stmtl.executeQuery(...);
stmtl.executeUpdate(...);

stmt2.executeQuery(...);
stmt2.executeUpdate(...);

stmtl.executeUpdate(...);
stmt2.executeUpdate(...);

}

11.3.5.1 javax.ejb.SessionSynchronization interface

A stateful Session Bean using container-managed transaction can optionally implement the
javax.ejb.SessionSynchronization interface. The use of th8essionSynchroniza-
tion interface is described in Subsection 6.5.2.

11.3.5.2 javax.ejb.EJBContext.setRollbackOnly() method

An enterprise bean using container-managed transactions can s&RiobackOnly() method

of its EJBContext object to mark the transaction such that the transaction can never commit. Typi-
cally, a bean to marks a transaction for rollback in order to protect data integrity before throwing an
application exception because application exceptions do not automatically cause the Container to roll-
back the transaction.

For example, an AccountTransfer bean which debits one account and credits another account could
mark a transaction for rollback if it successfully performs the debit operation, but encounters a failure
during the credit operation.

5/7/99

176

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions
11.3.5.3 javax.ejb.EJBContext.getRollbackOnly() method
An enterprise bean using container-managed transactions can ysRodlbackOnly() method

of its EJBContext object to test if the current transaction has been marked for rollback. The transac-
tion might have been marked for rollback by the enterprise bean itself, by other enterprise beans, or by
other components (outside of the EJB specification scope) of the transaction processing infrastructure.

11.3.6 Declaration in deployment descriptor
The Bean Provider of a Session Bean must usertmesaction-type element to declare whether
the Session Bean is of the bean-managed or container-managed transaction type. (See [16] for informa-
tion about the deployment descriptor.)
The transaction-type element is not supported for Entity beans because all Entity beans must use con-
tainer-managed transaction.

11.4 Application Assembler’s responsibilities

This section describes the view and responsibilities of the Application Assembler.
There is no mechanism for an Application Assembler to affect enterprise beans using bean-managed
transactions. The Application Assembler must not define transaction attributes for an enterprise bean
that is declared as using bean-managed transaction.
The Application Assembler can use ttransaction attributemechanism described below to manage
transaction demarcation for enterprise beans using container-managed transaction.

11.4.1 Transaction attributes

A transaction attribute is a value associated with a method of an enterprise bean’s remote or home inter-
face. The transaction attribute specifies how the Container must manage transactions for a business
method when a client invokes the business method via the enterprise bean home or remote interface.

The transaction attribute should be specified only for the following remote and home interface methods:

* For a session bean, the transaction attribute should be specified only for the user defined busi-
ness methods in the remote interface. It should not be specified fogrttm/e and thecre-
ate methods because the delegaggdRemove andejbCreate methods always run in
theNotSupported mode.

* For an entity bean, the transaction attribute should be specified for the user defined business
methods in the remote interface, and forrdmove , create , andfind methods.

If the deployment descriptor specifies a transaction attribute for methods other than those listed above,
the Container should ignore the attribute.

177 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Application Assembler’s responsibilities

Enterprise JavaBeans defines the following values for the transaction attribute:
* NotSupported
* Required
e Supports
* RequiresNew
* Mandatory
* Never

Refer to Subsection 11.6.2 for the specification of how the value of the transaction attribute affects the
transaction management performed by the Container.

Providing the transaction attributes for an enterprise bean is an optional requirement for the Application
Assembler in the sense that the Application Assembler must either specify a value of the transaction
attribute forall the methods of the remote and home interfaces of a given enterprise bean, or specify
none

If the Application Assembler does not specify the transaction attributes for an enterprise bean, the
Deployer must perform this task.

If an enterprise bean implements tf@rax.ejb.SessionSynchronization interface, the
Application Assembler can specify only the following values for the transaction attributes of the bean’s
methodsRequired , RequiresNew , orMandatory .

The above restriction is necessary to ensure that the enterprise bean is invoked only in a global transac-
tion. If the bean were invoked without a global transaction, the Container would not be able to send the
transaction synchronization calls because the Container does not have control of the local transactions.

The tools used by the Application Assembler can determine if the bean implements the
javax.ejb.SessionSynchronization interface, for example, by using the Java reflection API
on the enterprise bean'’s class.

The following is the description of the deployment descriptor rules that the Application Assembler uses
to specify transaction attributes for the methods of the enterprise beans’ remote and home interfaces.
(See [16.6] for the complete syntax of the deployment descriptor.)

The Application Assembler uses thentainer-transaction elements to define the transaction
attributes for the methods of the enterprise beans’ remote and home interfaces.céach
tainer-transaction element consists of a list of one or moneethod elements, and the
trans-attribute element. Theontainer-transaction element specifies that all the listed
methods are assigned the specified transaction attribute value. It is required that all the methods speci-
fied in a singlecontainer-transaction element be methods of the same enterprise bean.

5/7/99

178

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

Themethod element uses thejb-name , method-name , andmethod-args elements to denote
one or more methods of an enterprise bean’s home and remote interfaces. There are three legal styles of
composing thenethod element:

Style 1:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name>*</method-name>
</method>

This style is used to specify a default value of the transaction attribute for the methods for
which there is no Style 2 or Style 3 element specified. There must be at mostoane

tainer-transaction element that uses the Styleniethod element for a given enter-
prise bean.
Style 2:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name> METHOg&method-name>
</method>

This style is used for referring to a specified method of the remote or home interface of the
specified enterprise bean. If there are multiple methods with the same overloaded name, this
style refers to all the methods with the same name. There must be at mostoone
tainer-transaction element that uses the Stylen#thod element for a given method
name. If there is also eontainer-transaction element that uses Style 1 element for

the same bean, the value specified by the Style 2 element takes precedence.

Style 3:
<method>
<ejb-name> EJBNAME/ejb-name>
<method-name> METHOg&method-name>
<method-param> PARAMETER </method-param>

<method-param> PARAMETER $#method-param>
</method>

This style is used to refer to a single method within a set of methods with an overloaded name.
The method must be one defined in the remote or home interface of the specified enterprise
bean. If there is also @ontainer-transaction element that uses the Style 2 element for

the method name, or the Style 1 element for the bean, the value specified by the Style 3 ele-
ment takes precedence.

The optionalmethod-intf element can be used to differentiate between methods with the same
name and signature that are defined in both the remote and home interfaces.

179 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Deployer’s responsibilities

11.5

The following is an example of the specification of the transaction attributes in the deployment descrip-
tor. TheupdatePhoneNumber method of theEmployeeRecord enterprise bean is assigned the
transaction attribut®RequiresNew ; all other methods of thEmployeeRecord bean are assigned

the attributeRequires . All the methods of the enterprise beaardvarkPayroll are assigned the
attributeMandatory .

<ejb-jar>
ééssembly—descriptor>

<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>
</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>RequiresNew</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Deployer’s responsibilities

11.6

The Deployer is responsible for ensuring that the methods of the deployed enterprise beans with con-
tainer-managed transactions have been assigned a transaction attribute. If the transaction attributes have
not been assigned previously by the Assembler, they must be assigned by the Deployer.

Container Provider responsibilities

This section defines the responsibilities of the Container Provider.

Every client method invocation on an enterprise Bean object via the bean’s remote and home interface is
interposed by the Container, and every resource used by an enterprise bean is obtained via the Con-
tainer. This managed execution environment allows the Container to affect the enterprise bean’s transac-
tion management.

5/7/99

180

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

11.6.1

This does not imply that the Container must interpose on every resource access performed by the enter-
prise bean. Typically, the Container interposes only the resource factory (e.g. a JDBC data source)
JNDI look up by registering container-specific implementation of the resource factory object. The
resource factory object allows the Container to obtain the XAResource interface as described in the JTA
specification and pass it to the transaction manager. After the set up is done, the enterprise bean com-
municates with the resource manager without going through the Container.

Bean-managed transactions

This subsection defines the Container’s responsibilities for the transaction management of enterprise
beans that use bean-managed transaction.

Note that only Session beans can be used with bean-managed transaction. A Bean Provider is not
allowed to provide an Entity bean that uses bean-managed transaction.

The Container must manage client invocations to an enterprise bean instance with bean-managed trans-
action as follows. When a client invokes a business method via the enterprise bean’s remote or home

interface, the Container suspends any transaction that may be associated with the client request. If there
is a global transaction associated with the instance (this would happen if the instance started the transac-
tion in some previous business method), the Container associates the method execution with this trans-
action.

The Container must make thavax.transaction.UserTransaction interface available to
the enterprise bean’s business method vigdtax.ejb.EJBContext interface. When an instance
uses thgavax.transaction.UserTransaction interface to perform a global transaction, the

Container must enlist all the resources used by the instance betwdaseging andcommit() (or
rollback()) methods with the global transaction. When the instance attempts to commit the transac-
tion, the Container is responsible for the global coordination of the transaction EBmmit

In the case of atatefulsession bean, it is possible that the business method that started a global transac-
tion completes without committing or rolling back the transaction. In such a case, the Container must

retain the association between the transaction and the instance across multiple client calls until the
instance commits or rolls back the transaction. When the client invokes the next business method, the
Container must invoke the business method in this transaction context.

[9]

The Container typically relies on a transaction manager that is part of the EJB Server to perform the two-phase commit across all
the enlisted resources.

181 5/7/99

Sun Microsystems Inc.

Support for Transactions

Enterprise JavaBeans 1.1, Public Draft Container Provider responsibilities

If a statelessession bean instance starts a transaction in a business method, it must commit the transac-
tion before the business method returns (this applies to both global and local transactions). The Con-

tainer must detect the case in which a global transaction was started, but not completed, in the business
method, and handle it as follows:

* Log this as an application error to alert the system administrator.
* Roll back the started transaction.

* Discard the instance of the session bean.

to the client.

* Throw thejava.rmi.RemoteException

Note that the Container typically cannot ensure that a stateless session bean instance has completed the
local transactions that it started in the business method.

The actions performed by the Container for an instance with bean-managed transaction are summarized
by the following table. T1 is a transaction associated with a client request, T2 is a transaction that is cur-
rently associated with the instance (i.e. a transaction that was started but not completed by a previous
business method).

Table 6 Container’s actions for methods of beans with bean-managed transaction
Global transaction currently Global transaction associated
Client’s transaction associated with instance with the method
none none none
T1 none none
none T2 T2
T1 T2 T2

The following items each entry in the table:

* Ifthe client request is not associated with a transaction and the instance is not associated with a
transaction, the container invokes the instance with no transaction context.

* If the client is associated with a transaction T1, and the instance is not associated with a trans-
action, the container suspends the client’s transaction association and invokes the method with

5/7/99

182

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

no transaction context. The container resumes the client’s transaction association (T1) when
the method completes.

* If the client request is not associated with a transaction and the instance is already associated
with a transaction T2, the container invokes the instance with the transaction that is associated
with the instance (T2). This case can never happen for a stateless Session Bean.

* |If the client is associated with a transaction T1, and the instance is already associated with a
transaction T2, the container suspends the client’'s transaction association and invokes the
method with the transaction context that is associated with the instance (T2). The container
resumes the client’s transaction association (T1) when the method completes. This case can
never happen for a stateless Session Bean.

The Container must allow the enterprise bean instance to perform serially several global transactions in
a method.

When an instance attempts to start a global transaction usingbéigin() method of the
javax.transaction.UserTransaction interface while the instance has not committed the
previous global transaction, the Container must throwjakiex.transaction.NotSupporte-

dException inthebegin() method.

Note that in addition to the above rule, the Bean Provider must not start a global transaction while there
are any uncommitted local transactions. However, the Container cannot easily enforce this rule. Viola-
tion of this rule may be detected by some resource managers, but the ability to detect the violation is not
required by the EJB specification. Most likely, the Container will get an exception when trying to enlist
the resource with the global transaction.

The Container must throw thava.lang.lllegalStateException if an instance of a bean
with bean-managed transactions attempts to invokegiigollbackOnly() or getRollback-
Only() method of thgavax.ejb.EJBContext interface.
11.6.2 Container-managed transactions

The Container is responsible for providing the transaction demarcation for the enterprise beans that the
Bean Provider declared as using container-managed transactions. For these enterprise beans, the Con-
tainer must demarcate transactions as specified in the deployment descriptor by the Application Assem-
bler. (See [16] for more information about the deployment descriptor.)
The following subsections define the responsibilities of the Container for managing the invocation of an
enterprise bean business method when the method is invoked via the enterprise bean’s home or remote
interface. The Container’s responsibilities depend on the value of the transaction attribute.

11.6.2.1 NotSupported

The Container must invoke an enterprise Bean method whose transaction attribute iNc&Sup-
ported without a global transaction context.

183 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Container Provider responsibilities

11.6.2.2

11.6.2.3

If a client calls with a transaction context, the container suspends the association of the transaction con-
text with the current thread before invoking the enterprise bean’s business method. The container
resumes the suspended association when the business method has completed. The suspended transac-
tion context of the client is not passed to the resources or other enterprise Bean objects that are invoked
from the business method.

The EJB specification has no specific requirements for the transactional semanticdNokt $ug-

ported case. If the enterprise bean’s method accesses resources, the access to each resource is typi-
cally performed using local transactions. The Container is free to use local transactions in a container
and resource specific way to implement the semantics dfiti8upported transaction attribute. For
example, the Container may wrap all access to a resource within a business method in a single local
transaction, or set up the resource such that each individual resource access is a single transaction.

If the business method invokes other enterprise beans, the Container passes no transaction context with
the invocation.

Required

The Container must invoke an enterprise Bean method whose transaction attribute Resmtited
with a global transaction context.

If a client invokes the enterprise Bean’s method while the client is associated with a transaction context,
the container invokes the enterprise Bean's method in the client’s transaction context.

If the client invokes the enterprise Bean’s method while the client is not associated with a transaction
context, the container automatically starts a new global transaction before delegating a method call to
the enterprise Bean business method. The Container automatically enlists all the resources accessed by
the business method with the global transaction. If the business method invokes other enterprise beans,
the Container passes the transaction context with the invocation. The Container attempts to commit the
transaction when the business method has completed. The container performs the commit protocol
before the method result is sent to the client.

Supports

The Container invokes an enterprise Bean method whose transaction attribute iSgpptots as
follows.

* If the client calls with a transaction context, the Container performs the same steps as
described in th®equired case.

* If the client calls without a transaction context, the Container performs the same steps as
described in th&lotSupported case.

5/7/99

184

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

The Supportdransaction attribute must be used with caution. This is because of the different transac-
tional semantics provided by the two possible modes of execution. Typical§ygportstransaction

attribute is used instead of tHRequiredattribute as a performance optimization to avoid the overhead

of a global transaction for the case of a non-transactional caller. However, this optimization should be
used only if the transactional semantics of M@&Supporteatase are sufficiently strong. (This would be

the case when the bean uses only a single resource and when container can ensure that all accesses to
the resource from the business method are done in a single local transaction.) If the transaction seman-
tics of theNotSupportedcase are weak (e.g. when the resource manager cannot combine multiple
access calls into a single local transaction), thenRleguiredattribute should be used instead.

11.6.2.4 RequiresNew

The Container must invoke an enterprise Bean method whose transaction attribute is set to
RequiresNew with a new global transaction context.

If the client invokes the enterprise Bean’s method while the client is not associated with a transaction
context, the container automatically starts a new global transaction before delegating a method call to
the enterprise Bean business method. The Container automatically enlists all the resources accessed by
the business method with the global transaction. If the business method invokes other enterprise beans,
the Container passes the transaction context with the invocation. The Container attempts to commit the
transaction when the business method has completed. The container performs the commit protocol
before the method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transaction con-
text with the current thread before starting the new transaction and invoking the business method. The
container resumes the suspended transaction association after the business method and the new transac-
tion has been completed.

11.6.2.5 Mandatory

The Container must invoke an enterprise Bean method whose transaction attribute Maedabory
in a client’s transaction context (which is always a global transaction context). The client is required to
call with a global transaction context.

* If the client calls with a transaction context, the Container performs the same steps as
described in th®equired case.

* If the client calls without a transaction context, the Container throwgatheex.transac-
tion.TransactionRequiredException exception.

185 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Container Provider responsibilities

11.6.2.6 Never

The Container must not invoke an enterprise Bean method whose transaction attribute Mesatrto
in a global transaction context. The client is required to call without a transaction context.

* If the client calls with a transaction context, the Container throwgatea.rmi.Remote-
Exception exception.

* If the client calls without a transaction context, the Container performs the same steps as
described in th&lotSupported case.

11.6.2.7 Transaction attribute summary

The following table provides a summary of the transaction context that the Container passes to the busi-
ness method and resources used by the business method, as a function of the transaction attribute and
the client’s transaction context. T1 is a transaction passed with the client request, T2 is a transaction ini-
tiated by the Container.

Table 7 Transaction attribute summary
Transaction associated | Transaction associated
Transaction attribute Client’s transaction with business method with resources
none none local
NotSupported
T1 none local
none T2 T2
Required
T1 T1 T1
none none local
Supports
T1 T1 T1
none T2 T2
RequiresNew
T1 T2 T2
none error N/A
Mandatory
T1 T1 T1
none none local
Never
T1 error N/A

If the enterprise bean’s business method invokes other enterprise beans via their home and remote inter-
faces, the transaction indicated in the column “Transaction associated with business method” will be

passed as part of the client context to the target enterprise bean.

5/7/99

186

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans 1.1, Public Draft Support for Transactions

11.6.2.8 Handling ofsetRollbackOnly() method

If an enterprise bean instance invokes $k&RollbackOnly() method of theEJBContext inter-
face, the Container has two responsibilities:

* The Container must ensure that the transaction will never commit. Typically, the Container
instructs the transaction manager to mark the transaction for rollback.

* If the Container initiated the transaction (global or local) immediately before dispatching the
business method to the instance (as opposed to the transaction being inherited from the caller),
the Container must note that the instance has invokedétRollbackOnly() method.

When the business method invocation completes, the Container must roll back rather than
commit the transaction. If the business method has returned normally or with an application

exception, the Container must pass the method result or the application exception to the client
after the Container performed the rollback.

The second requirement is not redundant because while the first requirement ensures the rollback of glo-
bal transactions, it does not apply to local transactions. The requirement for the Container to note that
an instance has invoked setRollbackOnly() is also needed for achieving reasonable semantics of inter-
actions between application exceptions and transactions. See Chapter 12 for exception handling.

11.6.2.9 Handling ofgetUserTransaction() method

If an instance with container-managed transactions attempts to involgetitiserTransaction()
method of theEJBContext interface, the Container must throw thava.lang.lllegal-
StateException

11.6.2.10 javax.ejb.SessionSynchronization callbacks
If a Session Bean class implements taeax.ejb.SessionSynchronization interface, the
Container must invoke theafterBegin() , beforeCompletion() and afterComple-
tion(...) callbacks on the instance as part of the transaction commit protocol.
The Container invokes thefterBegin() method on an instance before it invokes the first business

method in a transaction.

The beforeCompletion() method is the last chance given to the enterprise bean instance to cause
the transaction to rollback. The instance may cause the transaction to roll back by invokigBthe
Context.setRollbackOnly() method.

187 5/7/99

Sun Microsystems Inc.

Support for Transactions Enterprise JavaBeans 1.1, Public Draft Container Provider responsibilities

5/7/99 188

Sun Microsystem Inc

Overview and Concepts Enterprise JavaBeans 1.1, Public Draft Exception handling

ez 2XCEPLION handling

12.1 Overview and Concepts

12.1.1 Application exceptions

An application exceptions an exception defined in the throws clause of a method of the enterprise
Bean’s home and remote interface, other thafjetee rmi.RemoteException

Application exceptions are used by the enterprise bean business methods to inform the client of abnor-
mal application-level conditions, such as unacceptable values of the input arguments to a business
method. A client can typically recover from an application exception. Application exceptions are not
intended for reporting system-level problems.

For example, thé\ccountenterprise bean may throw an application exception to report t thatigst
operation cannot be performed because of an insufficient balanceAddwuintbean should not use an
application exception to report, for example, the failure to obtain a database connection.

189 5/7/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

The javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Fin-

derException , and subclasses thereof, are considered to be application exceptions. These excep-
tions are used as standard application exceptions to report errors to the client fraredbe |,

remove , andfinder methods (see Subsection 9.1.9). These exceptions are covered by the rules on
application exceptions that are defined in this chapter.

12.1.2 Goals for exception handling

The EJB specification for exception handling is designed to meet these high-level goals:

* An application exception thrown by an enterprise bean instance should be reported to the client
precisely(i.e. the client gets the same exception).

* An application exception thrown by an enterprise bean instance should not automatically roll-
back a client’s transaction. The client should typically be given a chance to recover a transac-
tion from an application exception.

* An unexpected exception that may have left the instance’s state variables and/or underlying
persistent data in an inconsistent state can be handled safely.

12.2 Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider with respect to exception han-
dling.

12.2.1 Application exceptions

The Bean Provider defines the application exceptions in the throws clauses of the methods of the remote
and home interface. Because application exceptions are intended to be handled by the client, and not by
the system administrator, they should be used only for reporting business logic exceptions, not for
reporting system level problems.

The Bean Provider is responsible for throwing the appropriate application exception from the business
method to report a business logic exception to the client. Because the application exception does not
automatically result in marking the transaction for rollback, the Bean Provider must do one of the fol-
lowing to ensure data integrity before throwing an application exception from an enterprise bean
instance:

* Ensure that the instance is in a state such that a client’s attempt to continue and/or commit the
transaction does not result in loss of data integrity. For example, the instance throws an appli-
cation exception indicating that the value of an input parameter was invalid before the instance
performed any database updates.

* Mark the transaction for rollback using tl&IBContext.setRollbackOnly() method
before throwing an application exception. Marking the transaction for rollback will ensure that
the transaction can never commit.

5/7/99

190

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Exception handling

The Bean Provider is also responsible for using the standard EJB application exceptions
(javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Find-
erException , and subclasses thereof) as described in Subsection 9.1.9.

12.2.2 System exceptions
This subsection describes how the Bean Provider should handle various system-level exceptions and
errors that an enterprise bean instance may encounter during the execution of a business method or a
container callback method (egjbLoad).
The enterprise bean business method and container callback methods may encounter various exceptions
or errors that prevent the method from successful completion. Typically, this happens because the
exception or error is unexpected, or the exception is expected but the EJB Provider does not know how
to recover from it. Examples of such exceptions and errors are: failure to obtain a database connection,
JNDI exceptions, unexpectddemoteException from invocation of other enterprise bedg
unexpectedRuntimeException , JVM errors, etc.
If the enterprise bean method encounters a system-level exception or error that does not allow the
method to successfully complete, the method should throw a suitable non-application exception that is
compatible with the method’s throws-clause. While the EJB specification does not prescribe the exact
usage of the exception, it encourages the Bean Provider to follow these guidelines:
* If the bean method encountergRaintimeException or error, it should simply propagate
the error from the bean method to the Container (i.e. the bean method does not have to catch
the exception).
* If the bean method performs an operation that results in a checked exception that the bean
method cannot recover, the bean method should throwathex.ejb.EJBException
that wraps the original exception.
* Any other unexpected error conditions should be reported usingattae.ejb.EJBEX-
ception.
Note that thgavax.ejbh.EJBException is a subclass of thmva.lang.RuntimeExcep-
tion , and therefore it does not have to be listed in the throws-clauses of the business methods.
The Container catches a non-application exception, logs it (which can result in alerting the System
Administrator), and throws thjgva.rmi.RemoteException (or subclass thereof) to the client.
The Bean Provider can rely on the Container to perform to following tasks when catching a non-appli-
cation exception:
* The transaction in which the bean method participated will be rolled back.
* No other method will be invoked on an instance that threw a non-application exception.
[10] Note that the enterprise bean business method may attempt to recover from a RemoteException. The text in this subsection applies

only to the case the business method does not wish to recover from the RemoteException.

191 5/7/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans 1.1, Public Draft Container Provider responsibilities

This means that the Bean Provider does not have to perform any cleanup actions before throwing a
non-application exception. It is the Container that is responsible for the cleanup.

12.2.2.1 javax.ejb.NoSuchEntityException

12.3

TheNoSuchEntityException is a subclass dEJBException . It should be thrown by the entity
bean class methods to indicate that the underlying entity has been removed from the database.

An entity bean class typically throws this exception from ¢l oad andejbStore methods, and
from the methods that implement the business methods defined in the remote interface.

Container Provider responsibilities

123.1

This section describes the responsibilities of the Container Provider for handling exceptions. The EJB
architecture specifies the Container’s behavior for the following exceptions:

* Exceptions from enterprise bean’s business methods.
* Exceptions from container-invoked callbacks on the enterprise bean.

* Exceptions from management of container-managed transactions.

Exceptions from an enteprise beans business methods

Business methodsre considered to be the methods defined in the enterprise bean’s remote and home
interface (including all their superinterfaces); and the following methefi&Create(...) , ejb-
PostCreate(...) , ejbRemove() , and theejpFind<METHOD> methods.

5/7/99

192

Sun Microsystem Inc

Container Provider responsibilities

Enterprise JavaBeans 1.1, Public Draft

Exception handling

Table 8 specifies how the Container must handle the exceptions thrown by the business methods for
beans with container-managed transactions. The table specifies the Container’s action as a function of
the condition under which the business method executes and the exception thrown by business method.
The table also illustrates the exception that the client will receive and how the client can recover from

the exception. (Section 12.4 describes the client’s view of exceptions in detail.)

Table 8

Handling of exceptions thrown by a business method of a bean with container-managed transactions.

Method condition

Method exception

Container’s action

Client’s view

AppException

Re-throw AppException

Receives AppExceptiq

Can attempt to continue
computation in the trans
action, and eventually
commit the transaction
(the commit would fail if
the instance callesket-
RollbackOnly()).

Bean method runs in th
context of the caller's
transaction [Note A].

all other exceptions and
errors

Log the exception or
error [Note B].

Mark the transaction for
rollback.

Discard instance
[Note C].

Throw Transaction-
RolledBackException to
the client.

ReceiveSrransaction-
RolledBackException

Continuing transaction is
fruitless.

Bean method runs in the
context of a transaction
that the Container starteq
immediately before dis-

AppException

If the instance called sg
RollbackOnly(), then
rollback the transaction,
and re-throw AppExcep-
tion.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

t-Receives AppException.

If the client executes in a|
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

patching the business
method [Note D].

all other exceptions

Log the exception or
error.

Rollback the con-
tainer-started transactio

Discard instance.
Throw RemoteException

ReceivesRemoteExcep-
tion .

If the client executes in a
.transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

Notes:
(Al
(B]

istrator is alerted of the problem.

[C] _
on the instance.
[D] _
tion.

The caller can be another enterprise bean or an arbitrary client program.
Log the exception or errameans that the Container logs the exception or error so that the System Admin-

193

>

Discard instanceneans that the Container must not invoke any business methods or container callbacks

This case also applies when the Container invokes the business method in the context of a local transac-

5/7/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans 1.1, Public Draft Container Provider responsibilities

Table 9 specifies how the Container must handle the exceptions thrown by the business methods for
beans with bean-managed transactibhsThe table specifies the Container’s action as a function of the
condition under which the business method executes and the exception thrown by business method. The
table also illustrates the exception that the client will receive and how the client can recover from the
exception. (Section 12.4 describes the client’s view of exceptions in detail.)

Table 9 Handling of exceptions thrown by a business method of a session with bean-managed transactions.

Bean method condition | Bean method exception| Container action Client receives

AppException Re-throw AppException Receives AppExceptiq

>

all other exceptions Log the exception or | ReceiveRemoteExcep-
error. tion .

) Mark for rollback a glo-
Bean is stateful or state-| bal transaction that has
less Session. been started, but not yet|
completed, by the
instance.

Discard instance.
Throw RemoteException

12.3.2 Exceptions from containerinvoked callbacks

This subsection specifies the Container’s handling of exceptions thrown from the container-invoked
callbacks on the enterprise bean. This subsection applies to the following callback methods:

* The ejbActivate() , ejbLoad() , ejbPassivate() , ejbStore() , setEntity-
Context(EntityContext) , and unsetEntityContext() methods of theEnti-
tyBean interface.

* The ejbActivate() , ejbPassivate() , and setSessionContext(Session-
Context) methods of th&essionBean interface.

* The afterBegin(), beforeCompletion() and afterCompletion(boolean)
methods of th&essionSynchronization interface.

[11] Note that the EJB specification allows only Session beans to use bean-managed transactions.

5/7/99 194

Sun Microsystem Inc

Container Provider responsibilities Enterprise JavaBeans 1.1, Public Draft Exception handling

1233

The Container must handle all exceptions or errors from these methods as follows:
* Log the exception or error to bring the problem to the attention of the System Administrator.

* If the instance is in a global transaction, mark the transaction for rollback. Rollback any local
transactions started by the instance.

* Discard the instance (i.e. the Container must not invoke any business methods or container
callbacks on the instance).

» If the exception or error happened during the processing of a client invoked method, throw the
java.rmi.RemoteException to the client. If the instance executed in the client’s trans-
action, the Container should throw tfevax.transaction.TransactionRolled-

BackException because it provides more information to the client. (The client knows that
it is fruitless to continue the transaction.)

javax.ejb.NoSuchEntityException

12.3.4

TheNoSuchEntityException is a subclass dtJBException . If it is thrown by a method of an
entity bean class, the Container must handle the exception using the rul&JB&xception
described in Sections 12.3.1 and 12.3.2.

To give the client a better indication of the cause of the error, the Container should throw the

java.rmi.NoSuchObjectException to the client (which is a subclass @fva.rmi.Remo-
teException).

Non-existing session object

1235

If a client makes a call to a session object that has been removed, the Container should throw the
java.rmi.NoSuchObjectException to the client (which is a subclass jafva.rmi.Remo-
teException).

Exceptions from the management of containemanaged transactions

The container is responsible for starting and committing the container-managed transactions, as
described in Subsection 11.6.2. This subsection specifies how the Container must deal with the excep-
tions that may be thrown by the transaction start and commit operations.

If the Container fails to start or commit a container-managed transaction, the Container must throw the
java.rmi.RemoteException to the client.

However, the Container should not throw flaga.rmi.RemoteException if the Container per-

forms a transaction rollback because the instance has invokegtRellbackOnly() method on

its EJBContext object. In this case, the Container must rollback the transaction and pass the business
method result or the application exception thrown by the business method to the client.

195 5/7/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans 1.1, Public Draft Client’s view of exceptions

Note that some implementations of the Container may retry a failed transaction transparently to the cli-
ent and enterprise bean code. Such a Container would throvjatreermi.RemoteException
after a number of unsuccessful tries.

12.3.6 Release of esources
When the Container is discarding an instance because of a system exception, the Container should
release all the resources held by the instance.
Resources held by the instance in the context of a global transaction will be automatically released at
the transaction rollback that is forced by the Container. Typically, the Container does not have to take
any additional measures other than mark the transaction for rollback.
Resources accessed in the context of a local transactions should be explicitly released by the Container.
This is optional for the Container because for some resource managers the Container may not be capa-
ble of releasing the resources held by the instance.

12.3.7 Support for deprecated use ofava.rmi.RemoteException
The EJB 1.0 specification allowed the business methagbCreate , ejbPostCreate
ejbFind<METHOD>, ejbRemove , and the container-invoked callbacks (i.e. the methods defined in
the EntityBean , SessionBean , andSessionSynchronization interfaces) implemented in
the enterprise bean class to usejtha.rmi.RemoteException to report non-application excep-
tions to the Container.
This use of thgava.rmi.RemoteException is deprecated in EJB 1.1—enterprise beans written
for the EJB 1.1 specification should usejthex.ejb.EJBException instead.
The EJB 1.1 specification requires that a Container support the deprecated use of the
java.rmi.RemoteException . The Container should treat thava.rmi.RemoteExcep-
tion thrown by an enterprise bean method in the same way as it is specified for the
javax.ejb.EJBException
Note: The use of th@va.rmi.RemoteException is deprecated only in the above-mentioned
methods. The methods of the remote and home interface still must us@dtreni.RemoteEx-
ception as required by the EJB specification.

12.4 Client's view of exceptions

This section describes the client’s view of exceptions received from enterprise bean invocation.

A client accesses an enterprise Bean through the enterprise Bean's remote and home interfaces. Both of
these interfaces are Java RMI interfaces, and therefore the throws clauses of all their methods (including
those inherited from superinterfaces) include the mandgtsty.rmi.RemoteException. The

throws clauses may include an arbitrary number of application exceptions.

5/7/99

196

Sun Microsystem Inc

Client’s view of exceptions Enterprise JavaBeans 1.1, Public Draft Exception handling

12.4.1

Application exception

12.4.2

If a client program receives an application exception from an enterprise bean invocation, the client can
continue calling the enterprise bean. An application exception does not result in the removal of the EJB
object.

If a client program receives an application exception from an enterprise bean invocation while the client
is associated with a transaction, the client can typically continue the transaction because an application
exception does not automatically causes the Container to mark the transaction for rollback.

For example, if a client receives tli&xceedLimitExceptiompplication exception from theéebitmethod

of an Accountbean, the client may invoke tldebitmethod again, possibly with a lower debit amount
parameter. If the client executed in a transaction context, throwingueedLimitExceptiomxception
would not automatically result in rolling back, or marking for rollback, the client’s transaction.

Although the Container does not automatically mark for rollback a transaction because of a thrown
application exception, the transaction might have been marked for rollback by the enterprise bean
instance before it threw the application exception. There are two ways to learn if a particular application
exception results in transaction rollback or not:

» Statically. Programmers can check the documentation of the enterprise bean’s remote or home
interface. The Bean Provider may have specified (although he is not required to) the applica-
tion exceptions for which the enterprise bean marks the transaction for rollback before throw-
ing the exception.

* Dynamically. Clients that are enterprise beans using container-managed transactions can use
thegetRollbackOnly() method of thgavax.ejb.EJBContext object to learn if the
current transaction has been marked for rollback; other clients may uggetBtatus()
method of thgavax.transaction.UserTransaction interface to obtain the trans-
action status.

java.rmi.RemoteException

The client receives thgva.rmi.RemoteException as an indication of a failure to invoke the
enterprise bean method or to properly complete its invocation. The exception can be thrown by the Con-
tainer or by the communication subsystem between the client and the Container.

If the client receives thgava.rmi.RemoteException exception from a method invocation, the
client, in general, does not know if the enterprise Bean's method has been completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have been
marked for rollback by the communication subsystem or target bean’s Container.

For example, the transaction would be marked for rollback if the underlying transaction service or the
target Bean'’s Container doubted the integrity of the data because the business method may have been
partially completed. Partial completion could happen, for example, when the target bean’'s method
returned with a RuntimeException exception, or if the remote server crashed in the middle of executing
the business method.

197 5/7/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans 1.1, Public Draft Client’s view of exceptions

The transaction may not necessarily be marked for rollback. This might occur, for example, when the
communication subsystem on the client-side has not been able to send the request to the server.

When a client executing in a transaction context receivBeioteException from an enterprise
bean invocation, the client may use either of the following strategies to deal with the exception:

* Discontinue the transaction. If the client is the transaction originator, it may simply rollback its
transaction. If the client is not the transaction originator, it can mark the transaction for roll-
back or perform an action that will cause a rollback. For example, if the client is an enterprise
bean, the enterprise bean may throRuntimeException which will cause the Container
to rollback the transaction.

* Continue the transaction. The client may perform additional operations on the same or other
enterprise beans, and eventually attempt to commit the transaction. If the transaction was
marked for rollback at the time tHeemoteException was thrown to the client, the commit
will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction status to
avoid fruitless computation on a transaction that has been marked for rollback. A client that is an enter-
prise bean with container-managed transactions can ugeJ€ontext.getRollbackOnly()

method to test if the transaction has been marked for rollback; a client that is an enterprise bean with
bean-managed transactions, and other client types, can usse¢hgransaction.getStatus()

method to obtain the status of the transaction.

Some implementations of EJB Servers and Containers may provide more detailed exception reporting
by throwing an appropriate subclass of jhga.rmi.RemoteException to the client. The fol-

lowing subsections describe the several subclasses ¢d\themi.RemoteException that may

be thrown by the Container to give the client more information.

12.4.2.1 javax.transaction.TransactionRolledbackException

The javax.transaction.TransactionRolledbackException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.
If a client receives thgavax.transaction.TransactionRolledbackException , the cli-

ent knows for sure that the transaction has been marked for rollback. It would be fruitless for the client
to continue the transaction because the transaction can never commit.

12.4.2.2 javax.transaction.TransactionRequiredException

The javax.transaction.TransactionRequiredException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.
Thejavax.transaction.TransactionRequiredException informs the client that the tar-

get enterprise bean must be invoked in a client’s transaction, and that the client invoked the enterprise
bean without a transaction context.

This error usually indicates that the application was not properly formed.

5/7/99

198

Sun Microsystem Inc

System Administrator’s responsibilities Enterprise JavaBeans 1.1, Public Draft Exception handling

12.4.2.3 java.rmi.NoSuchObjectException
The java.rmi.NoSuchObjectException is a subclass of th@va.rmi.RemoteExcep-

tion. Itis thrown to the client if a remote business method cannot complete because the EJB Object
no longer exists.

12.5 System Administrator’s responsibilities

The System Administrator is responsible for monitoring the log of the non-application exceptions and
errors logged by the Container, and for taking actions to correct the problems that caused these excep-
tions and errors.

12.6 Differences from EJB 1.0

The EJB 1.1 specification of exception handling preserved the rules defined in the EJB 1.0 specification,
with the following exceptions:

* EJB 1.0 specified that the enterprise bean business methods and container-invoked callbacks
use thgava.rmi.RemoteException to report non-application exceptions. This practice
is deprecated in EJB 1.1—the enterprise bean methods should yaeakejb.EJBEX-
ception , or other suitabl®untimeException to report non-application exceptions.

* In EJB 1.1, all non-application exceptions thrown by the instance result in the rollback of the
transaction in which the instance executed, and in discarding the instance. In EJB 1.0, the Con-
tainer would not rollback a transaction and discard the instance if the instance threw the
java.rmi.RemoteException

* In EJB 1.1, an application exception does not cause the Container to automatically rollback a
transaction. In EJB 1.0, the Container was required to rollback a transaction when an applica-
tion exception was passed through a transaction boundary started by the Container. In EJB 1.1,
the Container performs the rollback only if the instance have invokedétieollback-

Only() method on it€JBContext object.

199 5/7/99

Sun Microsystems Inc.

Exception handling Enterprise JavaBeans 1.1, Public Draft Differences from EJB 1.0

5/7/99 200

Sun Microsystem Inc

Overview

Chapter 13

Enterprise JavaBeans 1.1, Public Draft Support for Distribution

Support for Distribution

13.1 Overview

The home and remote interfaces of the enterprise bean’s client view are defined as Java™ RMI [3] inter-
faces. This allows the Container to implement the home and remote interfadissrimited objectsA

client using the home and remote interfaces can reside on a different machine than the enterprise bean
(location transparency), and the object references of the home and remote interfaces can be passed over
the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise beans to the
legal RMI-IIOP types [7]. This makes it possible for the EJB Container implementors to use RMI-IIOP
as the object distribution protocol.

Note: The EJB 1.1 specification does not require Container vendors to use RMI-IIOP. A later release of
the J2EE platform is likely to require a J2EE platform implementor to implement the RMI-IIOP proto-
col for EJB interoperability in heterogeneous server environments.

201 5/7/99

Sun Microsystems Inc.

Support for Distribution Enterprise JavaBeans 1.1, Public Draft Client-side objects in distributed environment

13.2 Client-side objects in distributed environment

When the RMI-IIOP protocol or similar distribution protocols are used, the client communicates with

the enterprise bean usisgubsfor the server-side objects. The stubs implement the home and remote
interfaces.

Figure 48 Location of EJB Client Stubs.

client address space (i.e. JVM) container address space (i.e. JVM)

5 e S
container
< EJB home stub LCEJB home obje@

remote
client

JB object enterprise Bea

EJB object stu@—z C E

- / - /

The communication stubs used on the client side are artifacts generated at enterprise Bean’s deployment
time by the EJB Container provider tools. The stubs used on the client are standard if the Container uses
RMI-1IOP as the distribution protocol; the stubs are Container-specific otherwise.

13.3 Standard distribution protocol

The standard mapping of the Enterprise JavaBeans architecture to CORBA is defined in [8].

The mapping enables the following interoperability:

A client using an ORB from one vendor can access enterprise Beans residing on an EJB Server
provided by another vendor.

Enterprise Beans in one EJB Server can access enterprise Beans in another EJB Server.

A non-Java CORBA client can access any enterprise Bean object.

5/7/99 202

Sun Microsystem Inc

Overview

Chapter 14

14.1

Enterprise JavaBeans 1.1, Public Draft Enterprise bean environment

Enterprise bean environment

This chapter specifies the interfaces for accessing the enterprise bean environment.

Overview

The Application Assembler and Deployer should be able to customize an enterprise bean’s business
logic without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent from the
operational environment in which the application will be deployed. Most enterprise beans must access
resources and external information. The key issue is how enterprise beans can locate the external infor-
mation without the knowledge of how the external information is named and organized in the target

operational environment.

The enterprise bean environment mechanism attempts to address both of the above issues.

203 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft Enterprise bean’s environment as a JNDI nam-

This chapter is organized as follows.

Section 14.2 defines the interfaces that specify and access the enterprise bean’s environment.
The section illustrates the use of the enterprise bean’s environment for generic customization
of the enterprise bean’s business logic.

Section 14.3 defines the interfaces for obtaining the home interface of another enterprise bean
using anEJB referenceAn EJB reference is a special entry in the enterprise bean’s environ-
ment.

Section 14.4 defines the interfaces for obtaining a resource factory usiagwace factory ref-
erence An resource factory reference is a special entry in the enterprise bean’s environment.

14.2 Enterprise bean’s environment as a JNDI naming context

The enterprise bean’s environment is a mechanism that allows customization of the enterprise bean’s
business logic during deployment or assembly. The enterprise bean’s environment allows the enterprise
bean to be customized without the need to access or change the enterprise bean’s source code.

The Container implements the enterprise bean’s environment, and provides it to the enterprise bean
instance through the JNDI interfaces. The enterprise bean’s environment is used as follows:

1.

The enterprise bean’s business methods access the environment using the JNDI interfaces. The

Bean Provider declares in the deployment descriptor all the environment entries that the enter-
prise bean expects to be provided in its environment at runtime.

The Container provides an implementation of the JNDI naming context that stores the enter-

prise bean environment. The Container also provides the tools that allow the Deployer to create
and manage the environment of each enterprise bean.

The Deployer uses the tools provided by the Container to create the environment entries that
are declared in the enterprise bean’s deployment descriptor. The Deployer can set and modify
the values of the environment entries.

The Container makes the environment naming context available to the enterprise bean

instances at runtime. The enterprise bean'’s instances use the JNDI interfaces to obtain the val-
ues of the environment entries.

Each enterprise bean defines its own set of environment entries. All instances of an enterprise bean
within the same home share the same environment entries. Enterprise bean instances are not allowed to
modify the bean’s environment at runtime.

If an enterprise bean is deployed multiple times in the same Container, each deployment results in the
creation of a distinct home. The Deployer may set different values for the enterprise bean environment
entries for each home.

5/7/99

204

Sun Microsystem Inc

Enterprise bean’s environment as a JNDI naming contextEnterprise JavaBeans 1.1, Public Draft Enterprise bean environment

Terminology warning: The enterprise bean’s “environment” should not be confused with the “environ-
ment properties” defined in the JNDI documentation.

The following subsections describe the responsibilities of each EJB Role.

14.2.1 Bean Provider’s responsibilities

This section describes the Bean Provider’s view of the enterprise bean’s environment, and defines his or
her responsibilities.

14.2.1.1 Access to enterprise bean’s environment

An enterprise bean instance locates the environment naming context using the JNDI interfaces. An
instance createsjavax.naming.InitialContext object by using the constructor with no argu-
ments, and looks up the environment naming via tinéialContext under the name
java:comp/env . The enterprise bean’s environment entries are stored directly in environment nam-
ing context, or in any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the deployment
descriptor.

205 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft Enterprise bean’s environment as a JNDI nam-

The following code example illustrates how an enterprise bean accesses its environment entries.

public class EmployeeServiceBean implements SessionBean {

ﬁjblic void setTaxInfo(int numberOfExemptions, ...)
throws InvalidNumberOfExemptionsException {

/l Obtain the enterprise bean’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

/I Obtain the maximum number of tax exemptions
/I configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
/I configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

/I Use the environment entries to customize business logic.
if (numberOfExeptions > maxExemptions ||
numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

/I Get some more environment entries. These environment
/I entries are stored in subcontexts.

String vall = (String)myEnv.lookup(“foo/namel”);

Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

/I The enterprise bean can also lookup using full pathnames.

Integer val3 = (Integer)
initCtx.lookup(“java:comp/env/name3");

Integer vald = (Integer)
initCtx.lookup("java:comp/env/foo/name4");

}

14.2.1.2 Declaration of environment entries

The Bean Provider must declare all the environment entries accessed from the enterprise bean’s code.
The environment entries are declared usingehe-entry elements in the deployment descriptor.
Eachenv-entry element describes a single environment entry. ilneentry element consists of

an optional description of the environment entry, the environment entry name relative to the
java:comp/env context, the expected Java type of the environment entry value (i.e. the type of the
object returned from the JNIokup method), and an optional environment entry value.

The environment entry values may be one of the following Java tyjtesg , Integer , Boolean ,
Double , andFloat

5/7/99 206

Sun Microsystem Inc

Enterprise bean’s environment as a JNDI naming contextEnterprise JavaBeans 1.1, Public Draft Enterprise bean environment

If the Bean Provider provides a value for an environment entry, the value can be changed later by the
Application Assembler or Deployer. The value must be a literal that is valid for a Java assignment to a
variable of the specified type. This means, for example, that a value of an environment entry of the type
String must be enclosed in double quotes.

The following example is the declaration of environment entries used bin@oyeeService-
Bean whose code was illustrated in the previous subsection.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<env-entry>
<description>
The maximum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
<description>
The minimum number of tax exemptions
allowed to be set.
</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/namel</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>"valuel"</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>
</env-entry>
<env-entry>
<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
</env-entry>
<env-entry>
<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>
</env-entry>

</session>
</enterprise-beans>

207 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft EJB references

14.2.2

Application Assembler’s responsibility

The Application Assembler is allowed to modify the values of the environment entries set by the Bean
Provider, and is allowed to set the values of those environment entries for which the Bean Provider has
not specified any initial values.

The Deployer must ensure that the values of all the environment entries declared by an enterprise bean

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for

* Provide a deployment tool that allows the Deployer to set and modify the values of the enter-

* Implement thgava:comp/env environment naming context, and provide it to the enter-
prise bean instances at runtime. The naming context must include all the environment entries
declared by the Bean Provider, with their values supplied in the deployment descriptor or set
by the Deployer. The environment haming context must allow the Deployer to create subcon-

* The Container must ensure that the enterprise bean instances have only read access to their
environment variables. The Container must throw jtheax.naming.OperationNot-
SupportedException from all the methods of thmvax.naming.Context interface
that modify the environment naming context and its subcontexts.

14.2.3 Deployer’s responsibility
are set to meaningful values.
which no value has been specified.
14.2.4 Container Provider responsibility
The container provider has the following responsibilities:
prise bean’s environment entries.
texts if they are needed by an enterprise bean.
14.3 EJB references

This section describes the programming and deployment descriptor interfaces that allow the Bean Pro-
vider to refer to the homes of other enterprise beans using “logical’ names EdldeferencesThe

EJB references are special entries in the enterprise bean’s environment. The Deployer binds the EJB ref-
erences to the enterprise bean’s homes in the target operational environment.

The deployment descriptor also allows the Application Assemblénkcan EJB reference declared in

one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb-jar file
in the same J2EE application unit. The link is an instruction to the tools used by the Deployer that the
EJB reference should be bound to the home of the specified target enterprise bean.

5/7/99

208

Sun Microsystem Inc

EJB references

Enterprise JavaBeans 1.1, Public Draft Enterprise bean environment

14.3.1 Bean Provider’s responsibilities

This subsection describes the Bean Provider's view and responsibilities with respect to EJB references.

14.3.1.1 EJB reference programming interfaces

The Bean Provider must use EJB references to locate the home interfaces of other enterprise bean as fol-
lows.

e Assign an entry in the enterprise bean’s environment to the reference. (See subsection 14.3.1.2
for information on how EJB references are declared in the deployment descriptor.)

* The EJB specification recommends, but does not require, that all references to other enterprise
beans be organized in thejb subcontext of the bean’s environment (i.e. in the
Java:comp/env/ejb JNDI context).

* Look up the home interface of the referenced enterprise bean in the enterprise bean’s environ-
ment using JNDI.

The following example illustrates how an enterprise bean uses an EJB reference to locate the home
interface of another enterprise bean.

public class EmployeeServiceBean implements SessionBean {

public void changePhoneNumber(...) {

// Obtain the default initial INDI context.
Context initCtx = new InitialContext();

/I Look up the home interface of the EmployeeRecord

/I enterprise bean in the environment.

Object result = initCtx.lookup(
"java:comp/env/ejb/EmplRecord");

/I Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

}

In the example, the Bean Provider of timployeeServiceBean enterprise bean assigned the envi-

ronment entryejo/EmplRecord as the EJB reference name to refer to the home of another enter-
prise bean.

14.3.1.2 Declaration of EJB references in deployment descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider must not
use aenv-entry element to declare it. Instead, the Bean Provider must declare all the EJB references
using theejb-ref elements of the deployment descriptor. This allows the ejb-jar consumer (i.e.
Application Assembler or Deployer) to discover all the EJB references used by the enterprise bean.

209 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft EJB references

Eachejb-ref element describes the interface requirements that the referencing enterprise bean has
for the referenced enterprise bean. ®je-ref element contains an optiondéscription ele-
ment; and the mandatoejb-ref-name, ejb-ref-type , home, andremote elements.

The ejb-ref-name element specifies the EJB reference name; its value is the environment entry
name used in the enterprise bean code. gberef-type element specifies the expected type of
the enterprise bean; its value must be eitetity or Session . Thehome andremote elements
specify the expected Java types of the referenced enterprise bean’s home and remote interfaces.

The following example illustrates the declaration of EJB references in the deployment descriptor.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<ejb-ref>
<description>
This is a reference to the entity bean that
encapsulates access to employee records.
</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>
</ejb-ref>

</session>

</enterprise-beans>

14.3.2 Application Assembler’s responsibilities

The Application Assembler can use thip-link element in the deployment descriptor to link an
EJB reference to a target enterprise bean. The link will be observed by the deployment tools.

5/7/99 210

Sun Microsystem Inc

EJB references Enterprise JavaBeans 1.1, Public Draft Enterprise bean environment

The Application Assembler specifies the link between two enterprise beans as follows:

* The Application Assembler uses the optioefi-link element of theejb-ref element
of the referencing enterprise bean. The value offbelink element is the name of the tar-
get enterprise bean. (It is the name defined indjirename element of the target enterprise
bean.) The target enterprise bean can be in the same ejb-jar file, or in another ejb-jar in the
same J2EE application unit as the referencing enterprise bean.

* The Application Assembler must ensure that the target enterprise bean is type-compatible with
the declared EJB reference. This means that the target enterprise bean must be of the type indi-
cated in theejb-ref-type element, and that the home and remote interfaces of the target
enterprise bean must be Java type-compatible with the interfaces declared in the EJB reference.

The following illustrates apjb-link in the deployment descriptor.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<ejb-ref>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

</session>

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entit.y'>
</ente'r'brise—beans>
The Application Assembler uses tlegh-link element to indicate that the EJB reference “Empl-

Record” declared in th&mployeeService enterprise bean has been linked to tmploy-
eeRecord enterprise bean.

211 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft Resource factory references

14.3.3 Deployer’s responsibility

The Deployer is responsible for the following:

* The Deployer must ensure that all the declared EJB references are bound to the homes of
enterprise beans that exist in the operational environment. The Deployer may use, for example,
the JINDILinkRef mechanism to create a symbolic link to the actual INDI hame of the target
enterprise bean’s home.

* The Deployer must ensure that the target enterprise bean is type-compatible with the types
declared for the EJB reference. This means that the target enterprise bean must of the type indi-
cated in theejb-ref-type element, and that the home and remote interfaces of the target
enterprise bean must be Java type-compatible with the home and remote interfaces declared in
the EJB reference.

* If an EJB reference declaration includes #jle-link element, the Deployer must bind the
enterprise bean reference to the home of the enterprise bean specified as the link’s target.

14.3.4 Container Provider’s responsibility

14.4

The Container Provider must provide the deployment tools that allow the Deployer to perform the tasks
described in the previous subsection. The deployment tools provided by the EJB Container provider
must be able to process the information supplied inejberef elements in the deployment descrip-

tor.

At the minimum, the tools must be able to:

* Preserve the application assembly information indjtelink elements by binding an EJB
reference to the home interface of the specified target enterprise bean.

* Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an EJB
reference by binding it to a specified compatible target enterprise bean.

Resource factory references

A resource is a Java object that encapsulates access to a resource manager. A resource factory is an
object that is used to create resources. For example, an object that implemgatatbgl.Con-

nection interface is a resource that provides access to a database management system, and an object
that implements thmvax.sgl.DataSource interface is a resource factory.

This section describes the enterprise bean programming and deployment descriptor interfaces that allow
the enterprise bean code to refer to resource factories using logical namesesdade factory refer-

ences The resource factory references are special entries in the enterprise bean’s environment. The
Deployer binds the resource factory references to the actual resource factories that exist in the target
operational environment.

5/7/99

212

Sun Microsystem Inc

Resource factory references Enterprise JavaBeans 1.1, Public Draft Enterprise bean environment

14.4.1 Bean Provider’s responsibilities

This subsection describes the Bean Provider's view of locating resource factories and defines his
responsibilities.

14.4.1.1 Programming interfaces for resource factory references
The Bean Provider must use resource factory references to obtain resources as follows.

* Assign an entry in the enterprise bean’s environment to the resource factory reference. (See
subsection 14.4.1.2 for information on how resource factory references are declared in the
deployment descriptor.)

* The EJB specification recommends, but does not require, that all resource factory references be
organized in the subcontexts of the bean’s environment, using a different subcontext for each
resource manager type. For example, all IDBC™ DataSource references might be declared in
the java:comp/env/jdbc subcontext, and all JMS connection factories in the
Java:comp/env/jms subcontext.

* Lookup the resource factory object in the enterprise bean’s environment using the JNDI inter-
face.

* Invoke the appropriate method on the resource factory method to obtain a resource. The factory
method is specific to the resource type. It is possible to obtain multiple resource objects by
calling the factory object multiple times.

The Bean Provider has two choices with respect to dealing with associating a principal with the
resource access:

* Allow the Deployer to set up principal mapping or resource sign-on information. In this case,
the enterprise bean code invokes a resource factory method that has no security-related param-
eters.

* Sign on to the resource from the bean code. In this case, the enterprise bean invokes the appro-
priate resource factory method that takes the sign-on information as method parameters.

The Bean Provider uses thes-auth deployment descriptor element to indicate which of the two
resource authentication approaches is used.

We expect that the first form (i.e. letting the Deployer to set up the resource sign-on information) will be
the approach used by most enterprise beans.

213 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft Resource factory references

The following code sample illustrates obtaining a resource.

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {

/I obtain the initial INDI context
Context initCtx = new InitialContext();

/I perform JNDI lookup to obtain resource factory
javax.sgl.DataSource ds = (javax.sgl.DataSource)
initCtx.lookup(“java:comp/env/jdbc/EmployeeAppDB");

/I Invoke factory to obtain a resource. The security

/I principal for the resource is not given, and therefore
/I it will be configured by the Deployer.
java.sgl.Connection con = ds.getConnection();

14.4.1.2 Declaration of resource factory references in deployment descriptor

Although a resource factory reference is an entry in the enterprise bean’s environment, the Bean Pro-
vider must not use aemv-entry element to declare it.

Instead, the Bean Provider must declare all the resource factory references in the deployment descriptor
using theresource-ref elements. This allows the ejb-jar consumer (i.e. Application Assembler or
Deployer) to discover all the resource factory references used by an enterprise bean.

Eachresource-ref element describes a single resource factory referencereduirce-ref

element consists of th@escription element; and the mandatorgs-ref-name , res-type
andres-auth elements. Thees-ref-name element contains the name of the environment entry
used in the enterprise bean’s code. Tégtype element contains the Java type of the resource fac-
tory that the enterprise bean code expects. fHseauth element indicates whether the enterprise
bean code performs resource sign-on programmatically, or whether the Container signs on to the
resource based on the principal mapping information supplied by the Deployer. The Bean Provider indi-
cates the sign-on responsibility by setting the value ofrdgauth element toBean or Con-

tainer

The type declaration allows the Deployer to identify the type of the resource factory.

Note that the indicated type is the Java type of the resource factory, not the Java type of the resource.

5/7/99

214

Sun Microsystem Inc

Resource factory references Enterprise JavaBeans 1.1, Public Draft Enterprise bean environment

The following example is the declaration of resource references used WyntipoyeeService
enterprise bean illustrated in the previous subsection.

<enterprise-beans>
<session>

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>

<resource-ref>
<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

</session>
</enterprise-beans>

14.4.1.3 Standard resource factory types

14.4.2

The Bean Provider must use tl@vax.sgl.DataSource resource factory type for obtaining
JDBC connections, and thi@vax.jms.QueueConnectionFactory or thejavax.jms.Top-
icConnectionFactory for obtaining JMS connections.

It is recommended that the Bean Provider names JDBC data sourcegandtemmp/env/jdbc
subcontext, and JMS connection factories injdlra:comp/env/jms subcontext.

Note: A future EJB specification will add the “connector” mechanism that will allow an enterprise bean

to use the API described in this section to obtain resource objects that provide access to additional
back-end systems.

Deployer’s responsibility

The Deployer uses deployment tools to bind the resource factory references to the actual resource facto-
ries configured in the target operational environment.

The Deployer must perform the following tasks for each resource factory reference declared in the
deployment descriptor:

* Bind the resource factory reference to a resource factory that exists in the operational environ-
ment. The Deployer may use, for example, the JMiDkRef mechanism to create a sym-

215 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft Resource factory references

14.4.3

bolic link to the actual JNDI name of the resource factory. The resource factory type must be
compatible with the type declared in tles-type element.

Provide any additional configuration information that the resource manager needs for opening
and managing resources. The configuration mechanism is resource manager specific, and is
beyond the scope of this specification.

If the value of thees-auth element iContainer , the Deployer is responsible for config-
uring the sign-on information for the resource. This is performed in a manner specific to the
EJB Container and resource manager; it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used at the
enterprise beans application level to the security domain and principal realm of the resource manager,
the Deployer or System Administrator must define the mapping. The mapping is performed in manner
specific to the EJB Container and resource manager; it is beyond the scope of the current EJB specifica-

tion.

Container provider responsibility

The EJB Container provider is responsible for the following:

Provide the deployment tools that allow the Deployer to perform the tasks described in the pre-
vious subsection.

Provide the implementation of the resource factory classes.

If the Bean Provider set thes-auth of a resource reference Rean, the Container must
allow the bean to perform explicit programmatic sign-on using the resource manager’s API.

The Container must provide tools that allow the Deployer to set up resource sign-on informa-
tion for the resource manager references wheseauth element is set t€ontainer

The minimum requirement is that the Deployer must be able to specify the user/password
information for each resource factory reference declared by the enterprise bean, and the Con-
tainer must be able to use the user/password combination for user authentication when obtain-
ing a resource by invoking the resource factory.

Although not required by the EJB specification, we expect that Containers will support some form of a
single sign-on mechanism that spans the application server and the resource managers. The Container
will allow the Deployer to set up the resources such that the EJB caller principal can be propagated
(directly or through principal mapping) to a resource manager, if required by the application.

While not required by the EJB specification, most EJB Container providers also provide the following
features:

A tool to allow the System Administrator to add, remove, and configure a resource manager for
the EJB Server.

A mechanism to pool resources for the enterprise beans and otherwise manage the use of
resources by the Container. The pooling must be transparent to the enterprise beans.

5/7/99

216

Sun Microsystem Inc

Deprecated EJBContext.getEnvironment() methodEnterprise JavaBeans 1.1, Public Draft Enterprise bean environment

14.4.4 System Administrator’s responsibility

14.5

The System Administrator is typically responsible for the following:
* Add, remove, and configure resource managers in the EJB Server environment.

In some scenarios, these tasks can be performed by the Deployer.

DeprecatecEJBContext.getEnvironment() method

The environment naming contekitroduced in EJB 1.1 replaces the EJB 1.0 concepvironment
properties

An EJB 1.1 compliant Container is not required to implement support for the EJB 1.0 style environment
properties. If the Container does not implement the functionality, it should throw a RuntimeException
(or subclass thereof) from tle)BContext.getEnvironment() method.

If an EJB 1.1 compliant Container chooses to provide support for the EJB 1.0 style environment proper-
ties (so that it can support enterprise beans written to the EJB 1.0 specification), it should implement the
support as described below.

When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they should
place the definitions of the environment properties intodftel O-properties subcontext of the
environment naming context. Thenv-entry elements should be defined as follows: the
env-entry-name element contains the name of the environment propertyeiveentry-type

must bejava.lang.String , and the optionaknv-entry-value contains the environment
property value.

For example, an EJB 1.0 enterprise bean with two environment propiieandbar , should declare
the followingenv-entry elements in its EJB 1.1 format deployment descriptor.

<env-entry>
env-entry-name>ejb10-properties/foo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

<env-entry>
<description>bar’s description</description>
<env-entry-name>ejb10-properties/bar</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>"bar value"</env-entry-value>

</env-entry>

The Container should provide the entries declared inehdO-properties subcontext to the
instances as gva.util.Properties object that the instances obtain by invoking E#BCon-
text.getEnvironment() method.

217 5/7/99

Sun Microsystems Inc.

Enterprise bean environment Enterprise JavaBeans 1.1, Public Draft Deprecated EJBContext.getEnvironment()

The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following example.

public class SomeBean implements SessionBean {
SessionContext ctx;
java.util.Properties env;

public void setSessionContext(SessionContext sc) {
Ctx = sC;
env = ctx.getEnvironment();

}

public someBusinessMethod(...) ... {
String fooValue = getProperty(*foo");
String barValue = getProperty("bar");

5/7/99 218

Sun Microsystem Inc

Overview Enterprise JavaBeans 1.1, Public Draft Security management

cameris OECUINYY Management

This chapter defines the EJB support for security management.
The deployment aspect of security management has changed significantly since EJB 1.0. These changes

were made primarily to support ISV enterprise beans, which are usually written without the knowledge
of the target security domain.

15.1 Overview

We set the following goals for the security management in the EJB architecture:

* Shift the burden of securing the application from the application developer (i.e. from the Bean
Provider) to more qualified EJB Roles. The EJB Container provider provides the implementa-
tion of the security infrastructure; the Deployer and System Administrator define the security
policies.

* Allow the security policies to be set by the Deployer at deployment time rather than being
hard-coded by the Bean Provider at development time.

* Allow the enterprise bean applications to be portable across multiple EJB Servers that use dif-
ferent security mechanisms.

219 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft Bean Provider's responsibilities

15.2

The EJB architecture encourages the Bean Provider to implement the enterprise bean class without
hard-coding the security policies and mechanisms into the business methods. In many cases, the enter-
prise bean'’s business method should not contain any security-related logic.

The Application Assembler (which could be the same party as the Bean Provider) maysaefimity

rolesfor an application composed of one or more enterprise beans. A security role is a semantic group-
ing of permissions that a given type of users of the application must have in order to successfully use the
application. The Applications Assembler can define (declaratively in the deployment deseriptood
permissiondor each security role. A method permission is a permission to invoke a specified group of
methods of the enterprise beans’ home and remote interfaces. The security roles defined by the Applica-
tion Assembler presents a simplified security view of the enterprise beans application to the Deployer—
the Deployer’s view of the application’s security requirements is the small set of security roles rather
than a large number of individual methods.

The Deployer is responsible for assigning principals or groups of principals defined in the target opera-
tional environment to the security roles defined for the enterprise beans in the deployment descriptor by
the Application Assembler. The Deployer is also responsible for configuring other aspects of the secu-
rity management of the enterprise beans, such as principal mapping for inter-enterprise bean calls and
principal mapping for resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with the
client call has been assigned by the Deployer to have at least one security role that is allowed to invoke
the business method.

The Container Provider is responsible for enforcing the security policies at runtime, providing the tools
for managing security at runtime, and providing the tools used by the Deployer to manage security dur-
ing deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a simple
programmatic interface that the Bean Provider may use to access the security context from the business
methods.

The following sections define the responsibilities of the individual EJB Roles with respect to security
management.

Bean Provider’s responsibilities

15.2.1

This section defines the Bean Provider’s perspective of the EJB architecture support for security, and
defines his responsibilities.

Invocation of other enteprise beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s remote or
home interface. The EJB architecture provides neither programmatic nor deployment descriptor inter-
faces for the invoking enterprise bean to control the principal passed to the invoked enterprise bean.

5/7/99

220

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

15.2.2

The management of caller principals passed on enterprise bean invocations (i.e. principal delegation) is
set up by the Deployer and System Administrator in a Container-specific way. The Bean Provider and
Application Assembler should describe all the requirements for the caller’s principal management of
inter-enterprise bean invocations as part of the description. The default principal management (in the
absence of other deployment instructions) is to propagate the caller principal from the caller to the
callee. (That is, the called enterprise bean will see the same returned valu&dBientext.get-
CallerPrincipal() as the calling enterprise bean.)

Resource access

15.2.3

Section 14.4 defines the protocol for accessing resources, including the requirements for security man-
agement.

Access of underlying OS esources

15.2.4

The EJB architecture does not define the operating system principal under which enterprise bean meth-
ods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the underly-
ing OS resources, such as files. (See subsection 15.6.8 for the reasons behind this rule.)

We believe that most enterprise business applications store information in resource managers such as

relational databases rather than in resources at the operating system levels. Therefore, this rule should
not affect the portability of most enterprise beans.

Programming style ecommendations

15.2.5

The Bean Provider should neither implement security mechanisms nor hard-code security policies in
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security mecha-
nisms provided by the EJB Container, and should let the Application Assembler and Deployer define
the appropriate security policies for the application.

The Bean Provider and Application Assembler may use the deployment descriptor to convey secu-

rity-related information to the Deployer. The information helps the Deployer to set up the appropriate
security policy for the enterprise bean application.

Programmatic access to calles security context

Note: In general, security management should be enforced by the Container in a manner that is trans-
parent to the enterprise beans’ business methods. The security API described in this section should be
used only in the less frequent situations in which the enterprise bean business methods need to access
the security context information.

221 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft Bean Provider's responsibilities

The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods that
were defined in EJB 1.0) that allow the Bean Provider to access security information about the enter-
prise bean’s caller.

public interface javax.ejb.EJBContext {

I

/I The following two methods allow the EJB class
I to access security information.

I

java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

I

Il The following two EJB 1.0 methods are deprecated.
I

java.security.ldentity getCallerldentity();

boolean isCallerInRole(java.security.ldentity role);

}

The Bean Provider can invoke thetCallerPrincipal andisCallerinRole methods only in
the enterprise bean’s business methods for which the Container has a client security context, as specified
in Table 2 on page 64, Table 3 on page 74, and Table 4 on page 116.

The getCallerldentity() and isCallerInRole(ldentity role) methods are depre-
cated in EJB 1.1. The Bean Provider must usegéCallerPrincipal() andisCallerin-
Role(String roleName) methods for new enterprise beans.

An EJB 1.1 compliant container may choose to implement the two deprecated methods as follows.

* A Container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass oRuntimeException) from the getCallerl-
dentity() method.

* A Container that wants to provide support for thetCallerldentity() method should
return an instance of a subclass of fhea.security.ldentity abstract class from the
method. ThegetName() method invoked on the returned object must return the same value
thatgetCallerPrincipal().getName() would return.

* A Container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass oRuntimeException) from the isCallerIn-
Role(ldentity identity) method

* A Container that wants to implement tlieCallerinRole(Identity identity)
method should implement it as follows:

public isCallerinRole(ldentity identity) {
return isCallerinRole(identity.getName());
}

5/7/99

222

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

15.2.5.1 Use ofjetCallerPrincipal()

The purpose of the getCallerPrincipal() method is to allow the enterprise bean methods to obtain the
current caller principal’'s name. The methods might, for example, use the name as a key to information
in a database.

An enterprise bean can invoke thetCallerPrincipal() method to obtain gava.secu-
rity.Principal interface representing the current caller. The enterprise bean can then obtain the
distinguished name of the caller principal using thetName() method of thejava.secu-
rity.Principal interface.

The meaning of theurrent caller the Java class that implements jaea.security.Principal
interface, and the realm of the principals returned bygCallerPrincipal() method depend
on the operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains. The
security infrastructure may perform one or more mapping of principals on the path from an EJB caller

to the EJB object. For example, an employee accessing his company over the Internet may be identified
by an userid and password (basic authentication), and the security infrastructure may authenticate the
principal and then map the principal to a Kerberos principal that is used on the enterprise’ s intranet
before delivering the method invocation to the EJB object. If the security infrastructure performs princi-
pal mapping, the getCallerPrincipal() method returns the principal that is the result of the mapping, not
the original caller principal. (In the previous example, getCallerPrincipal() would return the Kerberos
principal.) The management of the security infrastructure, such as principal mapping, is performed by
the System Administrator role; it is beyond the scope EJB specification.

223 5/7/99

Sun Microsystems Inc.

Security management

Enterprise JavaBeans 1.1, Public Draft Bean Provider's responsibilities

The following code sample illustrates the use ofgéCallerPrincipal() method.

public class EmployeeServiceBean implements SessionBean {

}

EJBContext ejbContext;

public void changePhoneNumber(...) {

/I Obtain the default initial INDI context.
Context initCtx = new InitialContext();

/I Look up the home interface of the EmployeeRecord

/I enterprise bean in the environment.

Object result = initCtx.lookup(
"java:comp/env/ejb/EmplRecord");

/I Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

/I obtain the caller principal.
callerPrincipal = ejpContext.getCallerPrincipal();

/I obtain the caller principal’'s name.
callerKey = callerPrincipal.getName();

/I use callerKey as primary key to EmployeeRecord finder
EmployeeRecord myEmployeeRecord =
emplRecordHome.findByPrimaryKey(callerKey);

/[update phone number
myEmployeeRecord.changePhoneNumber(...);

In the previous example, the enterprise bean obtains the principal name of the current caller and uses it
as the primary key to locate &mployeeRecord Entity object. This example assumes that applica-

tion has been deployed such that the current caller principal contains the primary key used for the iden-
tification of employees (e.g. employee number).

15.2.5.2 Use oisCallerinRole(String roleName)

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Provider to code

the security checks that cannot be easily defined declaratively in the deployment descriptor using
method permissions. Such a check might impose a role-based limit on a request, or it might depend on
information stored in the database.

The enterprise bean code usesi@allerinRole(String roleName) method to test whether
the current caller has been assigned to a given security role. Security roles are defined by the Applica-
tion Assembler in the deployment descriptor (see Subsection 15.3.1), and are assigned to principals or

principal groups that exist in the operational environment by the Deployer.

5/7/99

224

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

The following code sample illustrates the use of ik€allerinRole(String roleName)
method.

public class PayrollBean ... {
EntityContext ejbContext;

public void updateEmployeelnfo(Emplinfo info) {
oldinfo = ... read from database;

/I The salary field can be changed only by caller's
/ who have the security role "payroll”
if (info.salary != oldInfo.salary &&
lejbContext.isCallerinRole("payroll")) {
throw new SecurityException(...);

}

15.2.5.3 Declaration of security roles referenced from the bean’s code

The Bean Provider is responsible for declaring ingkeurity-role-ref elements of the deploy-

ment descriptor all the security role names used in the enterprise bean code. This requirement allows the
Application Assembler or Deployer to link the names of the security roles used in the code to the roles
defined for an assembled application usingstaurity-role elements.

The Bean Provider must declare each security role referenced in the code usirsgcine
rity-role-ref element as follows:

* Declare the name of the security role using tble-name element. The nhame must be the
security role name that is used as a parameter tistballerinRole(String role-
Name) method.

* Optional: Provide a description of the security role indé@scription element.

225 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft Application Assembler’s responsibilities

The following example illustrates how an enterprise bean’s references to security roles are declared in
the deployment descriptor.

<enterprise-beans>

2entity>
<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayroliIBean</ejb-class>

<security-role-ref>
<description>
This security role should be assigned to the
employees of the payroll department who are
allowed to update employees’ salaries.
</description>
<role-name>payroll</role-name>
</security-role-ref>

</entit.y'>

</enterprise-beans>

The deployment descriptor above indicates that the enterprise AsadnwarkPayroll makes the
security check usingCallerinRole("payroll") in its business method.

15.3 Application Assembler’s responsibilities

The Application Assembler (which could be the same party as the Bean Provider) may dafmeity
view of the enterprise beans contained in the ejb-jar file. Providing the security view in the deployment
descriptor is optional for the Bean Provider and Application Assembler.

The main reason for the Application Assembler’s providing the security view of the enterprise beans is
to simplify the Deployer’s job. In the absence of a security view of an application, the Deployer needs
detailed knowledge of the application in order to deploy the application securely For example, the
Deployer would have to know what each business method does to determine which users can call it. The
security view defined by the Application Assembler presents a more consolidated view to the Deployer,
allowing the Deployer to be less familiar with the application.

The security view consists of a set gécurity roles A security role is a semantic grouping of permis-
sions that a given type of users of an application must have in order to successfully use the application.

The Applications Assembler definesethod permissiorfer each security role. A method permission is
a permission to invoke a specified group of methods of the enterprise beans’ home and remote inter-
faces.

It is important to keep in mind that the security roles are used to define the logical security view of an
application. They should not be confused with the user groups, users, principals, and other concepts
that exist in the target enterprise’s operational environment.

5/7/99 226

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

153.1

In special cases, a qualified Deployer may change the definition of the security roles for an application,
or completely ignore them and secure the application using a different mechanism that is specific to the
operational environment.

If the Bean Provider has declared any security roles references usiagdhety-role-ref ele-
ments, the Application Assembler must link the all the security role references listed geche
rity-role-ref elements to the security roles defined in gegurity-role elements. This is
described in more detail in subsection 15.3.3.

Security roles

The Application Assembler can define one or meeeurity rolesin the deployment descriptor. The
Application Assembler then assigns groups of methods of the enterprise beans’ home and remote inter-
faces to the security roles to define the security view of the application.

Because the Application Assembler does not, in general, know the security environment of the opera-
tional environment, the security roles are meant tddagcal roles. The Deployer maps the security
roles to the user groups and/or user accounts defined in the operational environment.
Defining the security roles in the deployment descriptor is optﬁﬂbior the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to pass
any client authorization instructions to the Deployer, or that the instructions are passed through some
other means. (For example, they may be included in a deployment manual.)
The Application Assembler is responsible for the following:

* Use asecurity-role element to define each security role.

* Use therole-name element to define the name of the security role.

* Optionally, use théescription element to provide a description of a security role.

[12] If the Application Assembler does not define security roles in the deployment descriptor, the Deployer will have to define security

roles at deployment time.

227 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft Application Assembler’s responsibilities

The following example illustrates a security role definition in a deployment descriptor.

<assembly-descriptor>
<security-role>
<description>
This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.
</description>
<role-name>employee</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.
</description>
<role-name>hr-department</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.
</description>
<role-name>payroll-department</role-name>
</security-role>

<security-role>
<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.
</description>
<role-name>admin</role-name>
</security-role>

</assé'rhbly—descriptor>

15.3.2 Method permissions

If the Application Assembler has defined security roles for the enterprise beans in the ejb-jar file, he or
she can also specify the methods of the remote and home interface that each security role is allowed to
invoke.

Method permissions are defined in the deployment descriptor as a binary relation from the set of secu-
rity roles to the set of methods of the home and remote interfaces of the enterprise beans, including their
superinterfaces. The method permissions relation includes thea®) {f and only if the security role

Ris allowed to invoke the methadd.

5/7/99 228

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

The Application Assembler defines the method permissions relation in the deployment descriptor using
themethod-permission elements as follows.

e Eachmethod-permission element includes a list of one or more security roles and a list
of one or more methods. All the listed security roles are allowed to invoke all the listed meth-
ods. Each security role in the list is identified by tide-name element, and each method
(or a set of methods, as described below) is identified bynmbthod element. An optional
description can be associated witlm@thod-permission element using theescrip-
tion element.

* The method permissions relation is defined as the union of all the method permissions defined
in the individualmethod-permission elements.

* A security role or a method may appear in multipkthod-permission elements.

The method permissions relation is not required to associate every method of the enterprise bean’s home
or remote interface with a security role. This happens, for example, if none of the security roles defined
in the deployment descriptor needs access to the methods. The Deployer should configure the enterprise
bean’s security such that all access to the methods that not associated with at least one security role is
denied.

This case can happen when a generic enterprise bean that implements broad functionality is used in an
application that uses only a subset of the beans’ methods. For example, an application that uses only the
getBalance() method of the Account bean would not need to define method permissions for the remain-
ing methods of the Account bean, especially for those with potential security ramifications (i.e. with-
drawFunds()).

The method element uses thejb-jar , method-name , andmethod-args elements to denote
one or more methods of an enterprise bean’s home and remote interfaces. There are three legal styles for
composing thenethod element:

Style 1:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name>*</method-name>
</method>

This style is used for referring to all of the remote and home interface methods of a specified
enterprise bean.

Style 2: :
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name> METHO&'method-name>
</method>

This style is used for referring to a specified method of the remote or home interface of the
specified enterprise bean. If there are multiple methods with the same overloaded name, this
style refers to all of the overloaded methods.

229 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft Application Assembler’s responsibilities

Style 3:
<method>
<ejb-name> EJBNAME]/ejb-name>
<method-name> METHOg&method-name>
<method-param> PARAMETER </method-param>

<method-param> PARAMETER $method-param>
</method>

This style is used to refer to a specified method within a set of methods with an overloaded
name. The method must be defined in the specified enterprise bean’s remote or home interface.

The optionaimethod-intf ~ element can be used to differentiate methods with the same name and sig-
nature that are defined in both the remote and home interfaces.

5/7/99 230

Sun Microsystem Inc

Application Assembler’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

The following example illustrates how security roles are assigned method permissions in the deploy-
ment descriptor:

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>
</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

231 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft Deployer’s responsibilities

15.3.3 Linking security r ole references to security oles

If the Application Assembler defines tisecurity-role elements in the deployment descriptor, he
or she is also responsible for linking all the security role references declared isethe
rity-role-ref elements to the security roles defined ingbeurity-role elements.

The Application Assembler links each security role reference to a security role usingeHak
element. The value of thr@le-link element must be the name of one of the security roles defined in
asecurity-role element.

The following deployment descriptor example shows how to link of the security role reference named
payroll to the security role namegxayroll-department

<enterprise-beans>

2entity>
<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayroliIBean</ejb-class>

<security-role-ref>
<description>
This role should be assigned to the
employees of the payroll department.
Members of this role have access to
anyone’s payroll record.

The role has been linked to the
payroll-department role.
</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>
</security-role-ref>

</entit§$

</enterprise-beans>

15.4 Deployer’s responsibilities

The Deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. This section defines the Deployer’s responsibility with
respect to EJB security management.

The Deployer uses deployment tools provided by the EJB Container Provider to read the security view
of the application supplied by the Application Assembler in the deployment descriptor. The Deployer’s

job is to map the security view that was specified by the Application Assembler to the mechanisms and
policies used by the security domain in the target operational environment. The output of the Deployer’s
work includes an application security policy descriptor that is specific to the operational environment.

The format of this descriptor and the information stored in the descriptor are specific to the EJB Con-
tainer.

5/7/99

232

Sun Microsystem Inc

Deployer’s responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

154.1

The following subsections describe the security related tasks performed by the Deployer.

Security domain and principal realm assignment

15.4.2

The Deployer is responsible for assigning the security domain and principal realm to an enterprise bean
application.

Multiple principal realms within the same security domain may exist, for example, to separate the

realms of employees, trading partners, and customers. Multiple security domains may exist, for exam-
ple, in application hosting scenarios.

Assignment of security bles

15.4.3

The Deployer must assign the security roles defined irsduairity-role elements of the deploy-
ment descriptor to the principals and/or groups of principals (such as individual users or user groups)
used for managing security in the operational environment.

Typically, the Deployer does not need to change the method permissions assigned to each security role
in the deployment descriptor.

The Application Assembler linked all the security role references used in the bean’s code to the security
roles defined in theecurity-role elements. The Deployer does not assign principals and/or prin-
cipal groups to the security role references—the principals and/or principals groups assigned to a secu-
rity role apply also to all the linked security role references. For example, the Deployer of the
AardvarkPayroll enterprise bean in subsection 15.3.3 would assign principals and/or principal
groups to the security-rolpayroll-department , and the assigned principals and/or principal
groups would be implicitly assigned also to the linked securitypayeoll

The EJB architecture does not specify how an enterprise should implement its security architecture.
Therefore, the process of assigning the logical security roles defined in the application’s deployment
descriptor to the operational environment’s security concepts is specific to that operational environ-
ment. Typically, the deployment process consists of assigning to each security role one or more user
groups (or individual users) defined in the operational environment. This assignment is done on a
per-application basis. (That is, if multiple independent ejb-jar files use the same security role name,
each may be assigned differently.)

Principal delegation

The Deployer is responsible for configuring the principal delegation for inter-component calls. The
Deployer must follow any instructions supplied by the Application Assembler (for example, provided in
thedescription elements of the deployment descriptor, or in a deployment manual).

The default mode is to propagate the caller principal from one component to another (i.e. the caller prin-
cipal of the first enterprise bean in a call-chain is passed to the enterprise beans down the chain). In the
absence of instructions from the Application Assembler, the Deployer should configure the enterprise
beans such that this “caller propagation” mode is used when one enterprise bean calls another. This
ensures that the returned valuegaftCallerPrincipal() will be the same for all the enterprise
beans involved in a call chain.

233 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft EJB Client Responsibilities

154.4

Security management of esouice access

15.4.5

The Deployer’s responsibilities with respect to securing resource managers access are defined in sub-
section 14.4.2.

General notes on deployment descriptor grcessing

15.5

The Deployer can use the security view defined in the deployment descriptor by the Bean Provider and
Application Assembler merely as “hints” and may change the information whenever necessary to adapt
the security policy to the operational environment.

Since providing the security information in the deployment descriptor is optional for the Application
Assembler, the Deployer is responsible for performing any tasks that have not been done by the Appli-
cation Assembler. (For example, if the definition of security roles and method permissions is missing in
the deployment descriptor, the Deployer must define the security roles and method permissions for the
application.) It is not required that the Deployer store the output of this activity in the standard ejb-jar
file format.

EJB Client Responsibilities

15.6

This section defines the rules that the EJB client program must follow to ensure that the security context
passed on the client calls, and possibly imported by the enterprise bean, do not conflict with the EJB
Server’s capabilities for association between a security context and transactions.

These rules are:

* A transactional client cannot change its principal association within a transaction. This rule
ensures that all calls from the client within a transaction are performed with the same security
context.

* A Session Bean’s client must not change its principal association for the duration of the com-
munication with the session object. This rule ensures that the server can associate a security
identity with the session instance at instance creation time, and never have to change the secu-
rity association during the session instance lifetime.

EJB Container Provider’s responsibilities

156.1

This section describes the responsibilities of the EJB Container and Server Provider.

Deployment tools

The EJB Container Provider is responsible for providing the deployment tools that the Deployer can use
to perform the tasks defined in Section 15.4.

5/7/99

234

Sun Microsystem Inc

EJB Container Provider's responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

The deployment tools read the information from the deployment descriptor and present the information

to the Deployer. The tools guide the Deployer through the deployment process, and present him or her
with choices for mapping the security information in the deployment descriptor to the security manage-

ment mechanisms and policies used in the target operational environment.

The deployment tools’ output is stored in an EJB Container specific manner, and is available at runtime
to the EJB Container.

15.6.2 Security domain(s)

The EJB Container provides a security domain and one or more principal realms to the enterprise beans.
The EJB architecture does not specify how an EJB Server should implement a security domain, and
does not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB Server. For example, the
EJB Server may store of X509 certificates or it might use an external security provider such as Ker-
beros.

The EJB specification does not define the scope of the security domain. For example, the scope may be
defined by the boundaries of the application, EJB Server, operating system, network, or enterprise.

The EJB Server can, but is not required to, provide support for multiple security domains, and/or multi-
ple principal realms.

The case of multiple domains on the same EJB Server can happen when a large server is used for appli-
cation hosting. Each hosted application can have its own security domain to ensure security and man-
agement isolation between applications owned by multiple organizations.

15.6.3 Security mechanisms

The EJB Container Provider must provide the security mechanisms necessary to enforce the security
policies set by the Deployer. The EJB specification does not specify the exact mechanisms that must be
implemented and supported by the EJB Server.

The typical security functions provided by the EJB Server include:
* Authentication of principals.
* Access authorization for EJB calls and resource access.

* Secure communication with remote clients (privacy, integrity, etc.).

15.6.4 Passing principals on EJB calls

The EJB Container Provider is responsible for providing the deployment tools that allow the Deployer
to configure the principal delegation for calls from one enterprise bean to another. The EJB Container is
responsible for performing the principal delegation as specified by the Deployer.

235 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft EJB Container Provider’s responsibilities

The minimal requirement is that the EJB Container must be capable of allowing the Deployer to specify
that the caller principal is propagated on calls from one enterprise bean to another (i.e. the multiple
beans in the call chain will see the same return value dgei@allerPrincipal()).

This requirement is necessary for applications that need a consistent return value of getCallerPrinci-
pal() across a chain of calls between enterprise beans.

The EJB Container must provide access to the caller’'s security context information from the enterprise
Name) methods. The EJB Container must provide this information during the execution of a business
The EJB specification does not specify the EJB Container behavior if the enterprise bean invokes the

getCallerPrincipal() or isCallerinRole(String roleName) method in an improper
context (e.g. from within theejpLoad() = method). The EJB Container can, for example, throw a

The EJB Container Provider is responsible for providing secure access to resource managers as

If the application requires that its clients are deployed in a different security domain, or if multiple
applications deployed across multiple security domains need to interoperate, the EJB Container Pro-
vider is responsible for the mechanism and tools that allow mapping of principals. The tools are used by

15.6.5 Security methods injavax.ejpEJBContext
beans’ instances via thgetCallerPrincipal() and isCallerInRole(String role-
method invoked via the enterprise bean’s remote or home interface.
java.lang.RuntimeException
15.6.6 Secume access togsouice managers
described in Subsection 14.4.3.
15.6.7 Principal mapping
the System Administrator to configure the security for the application’s environment.
15.6.8 System principal

The EJB 1.1 specification does not define the “system” principal under which the JVM running an
enterprise bean’s method executes.

Leaving the principal undefined makes it easier for the EJB Container vendors to provide the runtime
support for EJB on top of their existing server infrastructures. For example, while one EJB Container
implementation can execute all instances of all enterprise beans in a single JVM, another implementa-
tion can use a separate JVM per ejb-jar per client. Some EJB Containers may make the system princi-
pal the same as the application-level principal; Others may use different principals, potentially from
different principal realms and even security domains.

5/7/99

236

Sun Microsystem Inc

EJB Container Provider's responsibilities Enterprise JavaBeans 1.1, Public Draft Security management

15.6.9 Runtime security enbrcement

The EJB Container is responsible for enforcing the security policies defined by the Deployer. The
implementation of the enforcement mechanism is EJB Container implementation specific. The EJB
Container may, but does not have to, use the Java programming language security as the enforcement
mechanism.

For example, to isolate multiple executing enterprise bean instances, the EJB Container can load the
multiple instances into the same JVM and isolate them via using multiple class-loaders, or it can load
each instance into its own JVM and rely on the address space protection provided by the operation sys-

tem.

The general security enforcement requirements for the EJB Container follow:

The EJB Container must provide enforcement of the client access control per the policy
defined by the Deployer. A caller is allowed to invoke a method if, and only if, the caller prin-
cipal is assignedt least oneof the security roles that includes the method in its method per-
missions definition. (That is, it is not meant that the caller must be assiglhébde roles
associated with the method.) If the Container denies a client access to a business method, the
Container must throw thjava.rmi.RemoteExcetion to the client

The EJB Container must isolate an enterprise bean instance from other instances and other
application components running on the server. The EJB Container must ensure that other enter-
prise bean instances and other application components are allowed to access an enterprise bean
only via the enterprise bean’s remote and home interfaces.

The EJB Container must isolate an enterprise bean instance at runtime such that the instance
does not gain unauthorized access to privileged system information. Such information includes
the internal implementation classes of the container, the various runtime state and context
maintained by the container, object references of other enterprise bean instances, or resources
used by other enterprise bean instances. The EJB Container must ensure that the interactions
between the enterprise beans and the container are only through the EJB architected interfaces.

The EJB Container must ensure the security of the persistent state of the enterprise beans.

The EJB Container must manage the mapping of principals on calls to other enterprise beans
or on access to resource managers according to the security policy defined by the Deployer.

The Container must allow the same enterprise bean to be deployed independently multiple
times, each time with a different security pol[ﬂﬁ}. The Container must allow multi-
ple-deployed enterprise beans to co-exist at runtime.

15.6.10 Audit trail

The EJB Container may provide a security audit trail mechanism. A security audit trail mechanism typ-
ically logs alljava.security.Exceptian It also logs all denials of access to EJB Servers, EJB Container,
EJB remote interfaces, and EJB home interfaces.

[13] The enterprise bean is installed each time using a different JNDI name.

237 5/7/99

Sun Microsystems Inc.

Security management Enterprise JavaBeans 1.1, Public Draft System Administrator’s responsibilities

15.7

System Administrator’s responsibilities

15.7.1

This section defines the security-related responsibilities of the System Administrator. Note that some
responsibilities may be carried out by the Deployer instead, or may require cooperation of the Deployer
and the System Administrator.

Security domain administration

15.7.2

The System Administrator is responsible for the administration of principals. Security domain adminis-
tration is beyond the scope of the EJB specification.

Typically, the System Administrator is responsible for creating a new user account, adding a user to a
user group, removing a user from a user group, and removing or freezing a user account.

Principal mapping

15.7.3

If the client is in a different security domain than the target enterprise bean, the system administrator is
responsible for mapping the principals used by the client to the principals defined for the enterprise
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the EJB architecture.

Audit trail r eview

If the EJB Container provides an audit trail facility, the System Administrator is responsible for its man-
agement.

5/7/99

238

Sun Microsystem Inc

Overview

Chapter 16

16.1

Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

Deployment descriptor

This chapter defines the deployment descriptor that is part of the ejb-jar file. Section 16.1 provides an
overview of the deployment descriptor. Sections 16.2 through 16.5 describe the information in the
deployment descriptor from the perspective of the EJB Roles responsible for providing the information.
Section 16.6 defines the deployment descriptor's XML DTD. Section 16.7 provides a complete exam-
ple of a deployment descriptor of an assembled application.

Overview

The deployment descriptor is part of the contract between the ejb-jar file producer and consumer. This
contract covers both the passing of enterprise beans from the Bean Provider to Application Assembler,
and from the Application Assembler to the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans and typically does
not contain application assembly instructions. An ejb-jar file produced by an Application Assembler
contains one or more enterprise beans, plus application assembly information describing how the enter-
prise beans are combined into a single application deployment unit.

The J2EE specification defines how enterprise beans and other application components contained in
multiple ejb-jar files can be assembled into an application.

239 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

The role of the deployment descriptor is to capture the declarative information (i.e information that is
not included directly in the enterprise beans’ code) that is intended for the consumer of the ejb-jar file.

There are two basic kinds of information in the deployment descriptor:

* Enterprise beans’ structurdhformation. Structural information describes the structure of an
enterprise bean and declares an enterprise bean’s external dependencies. Providing structural
information in the deployment descriptor is mandatory for the ejb-jar file producer. The struc-
tural information cannot, in general, be changed because doing so could break the enterprise
bean’s function.

* Application assemblinformation. Application assembly information describes how the enter-
prise bean (or beans) in the ejb-jar file is composed into a larger application deployment unit.
Providing assembly information in the deployment descriptor is optional for the ejb-jar file
producer. Assembly level information can be changed without breaking the enterprise bean’s
function, although doing so may alter the behavior of an assembled application.

16.2 Bean Provider’s responsibilities

The Bean Provider is responsible for providing the structural information for each enterprise bean in the
deployment descriptor.

The Bean Provider must use tbaterprise-beans element to list all the enterprise beans in the
ejb-jar file.

The Bean Provider must provide the following information for each enterprise bean:

* Enterprise bean’s name The Bean Provider must assign a logical name to each enterprise
bean in the ejb-jar file. There is no architected relationship between this name, and the JNDI

5/7/99 240

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

name that the Deployer will assign to the enterprise bean. The Bean Provider specifies the
enterprise bean’s name in thfp-name element.

* Enterprise bean’s class The Bean Provider must specify the fully-qualified name of the Java
class that implements the enterprise bean’s business methods. The Bean Provider specifies the
enterprise bean’s class name indjteclass element.

* Enterprise bean’s home interfacesThe Bean Provider must specify the fully-qualified name
of the enterprise bean’s home interface inhtbme element.

* Enterprise bean’s remote interfaces The Bean Provider must specify the fully-qualified
name of the enterprise bean’s remote interface inctimete element.

* Enterprise bean’s type The enterprise beans types are: session, and entity. The Bean Provider
must use the appropriasession , orentity element to declare the enterprise bean’s struc-
tural information.

* Session bean’s state management typH the enterprise bean is a Session bean, the Bean
Provider must use theession-type element to declare whether the session bean is stateful
or stateless.

* Session bean’s transaction demarcation typdf the enterprise bean is a Session bean, the
Bean Provider must use thensaction-type element to declare whether transaction
demarcation is performed by the enterprise bean or by the Container.

* Entity bean’s persistence managementf the enterprise bean is an Entity bean, the Bean
Provider must use thgersistence-type element to declare whether persistence manage-
ment is performed by the enterprise bean or by the Container.

* Entity bean’s primary key class. If the enterprise bean is an Entity bean, the Bean Provider
specifies the fully-qualified name of the Entity bean’'s primary key class in the
primkey-class element. The Bean Providenustspecify the primary key class for an
Entity with bean-managed persistence, arad/(but is not required to) specify the primary key
class for an Entity with container-managed persistence.

* Container-managed fields If the enterprise bean is an Entity bean with container-managed
persistence, the Bean Provider must specify the container-managed fields using the
cmp-fields elements.

* Environment entries. The Bean Provider must declare all the enterprise bean’s environment
entries as specified in Subsection 14.2.1.

* Resource factory reference§he Bean Provider must declare all the enterprise bean’s
resource factory references as specified in Subsection 14.4.1.

* EJB references The Bean Provider must declare all the enterprise bean’s references to the
homes of other enterprise beans as specified in Subsection 14.3.1.

* Security role references The Bean Provider must declare all the enterprise bean’s references
to security roles as specified in Subsection 15.2.5.3.

241 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Application Assembler’s responsibility

16.3

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense, and
valid with respect to the DTD in Section 16.6. The content of the deployment descriptor must conform
to the semantics rules specified in the DTD comments and elsewhere in this specification. The deploy-
ment descriptor must refer to the DTD using the following statement:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//[DTD Enterprise
JavaBeans 1.1//EN">

Application Assembler’s responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Application
Assembler’s input is one or more ejb-jar files provided by one or more Bean Providers, and the output is
also one or more ejb-jar files. The Application Assembler can combine multiple input ejb-jar files into a
single output ejb-jar file, or split an input ejb-jar file into multiple output ejb-jar files. Each output
ejb-jar file is either a deployment unit intended for the Deployer, or a partially assembled application
that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a case,
the person or organization performs the responsibilities described both in this and the previous sec-
tions.

The Application Assembler may modify the following information that was specified by the Bean Pro-
vider:

* Enterprise bean’s name The Application Assembler may change the enterprise bean’s name
defined in theejb-name element.

* Values of environment entries The Application Assembler may change existing and/or
define new values of environment properties.

* Description fields The Application Assembler may change existing or create new
description elements.

The Application Assembler must not, in general, modify any other information listed in Section 16.2
that was provided in the input ejb-jar file.

5/7/99

242

Sun Microsystem Inc

Application Assembler’s responsibility Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

In addition, the Application Assembler may, but is not required to, specify any of the follaygplica-
tion assemblynformation:

Binding of enterprise bean referencesThe Application Assembler may link an enterprise
bean reference to another enterprise bean in the ejb-jar file. The Application Assembler creates
the link by adding thejb-link element to the referencing bean.

Security roles The Application Assembler may define one or more security roles. The secu-
rity roles define theecommendedecurity roles for the clients of the enterprise beans. The
Application Assembler defines the security roles usingdoarity-role elements.

Method permissions The Application Assembler may define method permissions. Method
permissions is a binary relation between the security roles and the methods of the remote and
home interfaces of the enterprise beans. The Application Assembler defines method permis-
sions using thenethod-permission elements.

Linking of security role references If the Application Assembler defines security roles in the
deployment descriptor, the Application Assembler must link the security role references
declared by the Bean Provider to the security roles. The Application Assembler defines these
links using theole-link element.

Transaction attributes. The Application Assembler may define the value of the transaction
attributes for the methods of the remote and home interfaces of the enterprise beans that
require container-managed transaction demarcation. All Entity beans and the Session beans
declared by the Bean Provider as transaction-{@patainer require container-managed
transaction demarcation. The Application Assembler usesdhginer-transaction

elements to declare the transaction attributes.

If an input ejb-jar file contains application assembly information, the Application Assembler is allowed
to change the application assembly information supplied in the input ejb-jar file. (This could happen
when the input ejb-jar file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense, and
valid with respect to the DTD in Section 16.6. The content of the deployment descriptor must conform
to the semantics rules specified in the DTD comments and elsewhere in this specification. The deploy-
ment descriptor must refer to the DTD using the following statement:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//[DTD Enterprise
JavaBeans 1.1//EN">

243 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployer’s responsibilities

16.4 Deployer’s responsibilities

16.5 Container Provider’s responsibilities

16.6 Deployment descriptor DTD

This section defines the XML DTD for the EJB 1.1 deployment descriptor. The comments in the DTD
specify additional requirements for the syntax and semantics that cannot be easily expressed by the
DTD mechanism.

5/7/99 244

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

We plan to provide an ejb-jar file verifier that can be used by the Bean Provider and Application Assem-
bler Roles to ensure that an ejb-jar is valid. The verifier would check all the requirements for the ejb-jar
file and the deployment descriptor stated by this specification.

<l--

This is the XML DTD for the EJB 1.1 deployment descriptor.
-->

<l--
The assembly-descriptor element contains application-assembly infor-
mation.

The application-assembly information consists of the following parts:
the definition of security roles, the definition of method permis-

sions, and the definition of transaction attributes for enterprise

beans with container-managed transactions.

All the parts are optional in the sense that they are omitted if the
lists represented by them are empty.

Providing an assembly-descriptor in the deployment descriptor is
optional for the ejb-jar file producer. Typically, only the ejb-jar

files that contain enterprise beans assembled into a larger applica-
tion unit will include an assembly-descriptor.

Used in: ejb-jar

->

<IELEMENT assembly-descriptor (security-role*, method-permission*,
container-transaction*)>

<I--

The container-transaction element specifies how the container must
manage transaction scopes for the enterprise bean’s method invoca-
tions. The element consists of an optional description, a list of
method elements, and a transaction attribute.The transaction
attribute is to be applied to all the specified methods.

Used in: assembly-descriptor

->

<IELEMENT container-transaction (description?, method+,
trans-attribute)>

<l--
The description element is used by the ejb-jar file producer to pro-
vide text describing the parent element.

The description element should include any information that the

ejb-jar file producer wants to provide to the consumer of the ejb-jar
file (i.e. to the Deployer). Typically, the tools used by the ejb-jar
file consumer will display the description when processing the parent
element.

Used in: container-transaction, ejb-jar, entity, env-entry, field,
method, method-permission, resource-ref, security-role, and session.
-->

<!IELEMENT description (#PCDATA)>

245 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor DTD

<I--
The display-name element contains a short name that is intended to be
display by tools.

Used in: ejb-jar, session, and entity

Example:

<display-name>Employee Self Service</display-name>
-->
<IELEMENT display-name (#PCDATA)>

<l--
The ejb-class element contains the fully-qualified name of the enter-
prise bean’s class.

Used in: entity and session

Example:
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

-->

<IELEMENT ejb-class (#PCDATA)>

<I--
The ejb-jar element is the root element of the EJB deployment descrip-
tor. It contains an optional description of the ejb-jar file, optional
display name, optional small icon file name, optional large icon file
name, mandatory structural information about all included enterprise
beans, and optional application-assembly descriptor.
-->
<IELEMENT ejb-jar (description?, display-name?, small-icon?,
large-icon?, enterprise-beans, assembly-descriptor?)>

<l--

The ejb-link element is used in the ejb-ref element to specify that an
EJB reference is linked to another enterprise bean in the ejb-jar

file.

The value of the ejb-link element must be the ejb-name of an enter-
prise bean in the same ejb-jar file, or in another ejb-jar file in the
same J2EE application unit.

Used in: ejb-ref

Example:
<ejb-link>EmployeeRecord</ejb-link>

>

<IELEMENT ejb-link (#PCDATA)>

<I--

The ejb-name element specifies an enterprise bean’s name. This name is
assigned by the ejb-jar file producer to name the enterprise bean in

the ejb-jar file’s deployment descriptor. The name must be unique

among the names of the enterprise beans in the same ejb-jar file.

The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without
breaking the enterprise bean’s function.

There is no architected relationship between the ejb-name in the

5/7/99 246

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

deployment descriptor and the JNDI name that the Deployer will assign
to the enterprise bean’s home.

The name must conform to the lexical rules for an NMTOKEN.
Used in: entity, method, and session

Example:
<ejb-name>EmployeeService</ejb-name>

-->

<IELEMENT ejb-name (#PCDATA)>

<I--

The ejb-ref element is used for the declaration of a reference to
another enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code of the
referencing enterprise bean; the expected type of the referenced
enterprise bean; the expected home and remote interfaces of the ref-
erenced enterprise bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced enter-
prise bean. It is used typically in ejb-jar files that contain an
assembled application.

Used in: entity and session

-->

<IELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-link?)>

<l--
The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the enterprise bean’s environment.

It is recommended that name is prefixed with "ejb/".
Used in: ejb-ref

Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

>

<IELEMENT ejb-ref-name (#PCDATA)>

<I--
The ejb-ref-type element contains the expected type of the referenced
enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref
>
<IELEMENT ejb-ref-type (#PCDATA)>

<l--

The enterprise-beans element contains the declarations of one or more
enterprise beans.

->

<IELEMENT enterprise-beans (session | entity)+>

247 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor DTD

<I--

The entity element declares an entity bean. The declaration consists

of: an optional description; optional display name; optional small

icon file name; optional large icon file name; a name assigned to the
enterprise bean in the deployment descriptor; the names of the entity
bean’s home and remote interfaces; the entity bean’s implementation
class; the entity bean’s persistence management type; the entity

bean’s primary key class name; an indication of the entity bean’s
reentrancy; an optional list of container-managed fields; an optional
specification of the primary key field; an optional declaration of the
bean’s environment entries; an optional declaration of the bean's EJB
references; an optional declaration of the security role references;

and an optional declaration of the bean’s resource references.

The optional primkey-field may be present in the descriptor if the
entity’s persistency-type is Container.

The other elements that are optional are “optional” in the sense that
they are omitted if the lists represented by them are empty.

At least one cmp-field element must be present in the descriptor if
the entity’s persistency-type is Container, and none must not be
present If the entity’s persistence-type is Bean.

Used in: enterprise-beans

-->

<IELEMENT entity (description?, display-name?, small-icon?,
large-icon?, ejb-name, home, remote, ejb-class,
persistence-type, primkey-class, reentrant,
cmp-field*, primkey-field?, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<I--

The env-entry element contains the declaration of an enterprise

bean’s environment entries. The declaration consists of an optional
description, the name of the environment entry, and an optional value.

Used in: entity and session

->

<IELEMENT env-entry (description?, env-entry-name, env-entry-type,
env-entry-value?)>

<l--
The env-entry-name element contains the name of an enterprise bean’s
environment entry.

Used in: env-entry

Example:
<env-entry-name>minAmount</env-entry-name>

>

<IELEMENT env-entry-name (#PCDATA)>

<I--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the enterprise bean’s
code.

5/7/99

248

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft

The following are the legal values of env-entry-type: java.lang.Bool-
ean, java.lang.String, java.lang.Integer, java.lang.Double, and
java.lang.Float.

Used in: env-entry

Example:
<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<IELEMENT env-entry-type (#PCDATA)>

<l--
The env-entry-value element contains the value of an enterprise
bean’s environment entry.

Used in: env-entry

Example:
<env-entry-value>100.00</env-entry-value>

-->

<IELEMENT env-entry-value (#PCDATA)>

<l--

The cmp-field element describes a container-managed field. The field
element includes an optional description of the field, and the name of
the field.

Used in: entity
-->

<IELEMENT cmp-field (description?, field-name)>

<l--

The field-name element specifies the name of a container managed

field. The name must be a public field of the enterprise bean class or
one of its superclasses.

Used in: field

Example:
<field-name>firstName</fiel[dName>

-->

<IELEMENT field-name (#PCDATA)>

<l--
The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref, entity, and session

Example:
<home>com.aardvark.payroll.PayrollHome</home>

-->

<IELEMENT home (#PCDATA)>

<I--

The large-icon element contains the name of a file containing a large
(32 x 32) icon image. The file name is relative path within the

ejb-jar file.

Deployment descriptor

249

5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor DTD

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.
The icon can be used by tools.

Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

>

<IELEMENT large-icon (#PCDATA)>

<I--

The method element is used to denote a method of an enterprise bean’s
home or remote interface, or a set of methods. The ejb-name element

must be the name of one of the enterprise beans in declared in the

deployment descriptor; the optional method-intf element allows to

distinguish between a method with the same signature that is defined

in both the home and remote interface; the method-name element speci-

fies the method name; and the optional method-param elements identify

a single method among multiple methods with an overloaded method name.

There are three possible styles of the method element syntax:
1. <ejb-name>EJBNAME</ejb-name><method-name>*</method-name>

This style is used to refer to all the methods of the specified
enterprise bean’s home and remote interfaces.

2. <ejb-name>EIBNAME</ejb-name><method-name>METHOD</method-name>

This style is used to refer to the specified method of the
specified enterprise bean. If there are multiple methods with
the same overloaded name, the element of this style refers to
all the methods with the overloaded name.

3. <ejb-name>EJBNAME</ejb-name>

<method-name>METHOD</method-name>
<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>

<meiHod—param>PARAM-n</method-param>

This style is used to refer to a single method within a set of

methods with an overloaded name. PARAM-1 through PARAM-n are the
fully-qualified Java types of the method’s input parameters. Arrays

are specified by the array element’s type, followed by one or more

pair of square brackets (e.qg. int[][]).

Used in: method-permission and container-transaction

Examples:

Style 1. The following method element refers to all the methods of
the EmployeeService bean’s home and remote interfaces:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>

5/7/99 250

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

Style 2: The following method element refers to all the create
methods of the EmployeeService bean’s home interface:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
</method>

Style 3: The following method element refers to the
create(String firstName, String LastName) method of the
EmployeeService bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method>

The following example illustrates a Style 3 element with
more complex parameter types. The method
foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
mypackage.MyClass[][] myclaar)
would be specified as:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>foobar</method-name>
<method-param>char</method-param>
<method-param>int</method-param>
<method-param>int[J</method-param>
<method-param>mypackage.MyClass</method-param>
<method-param>mypackage.MyClass[][]</method-param>

</method>

The optional method-intf element can be used when it becomes
necessary to differentiate between a method defined in the home
interface and a method with the same name and signature that is
defined in the remote interface.

For example, the method element

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Remote</method-intf>
<method-name>create</method-name>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method>

can be used to differentiate the create(String, String) method
defined in the remote interface from the create(String, String)
method defined in the home interface, which would be defined as

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf’>Home</method-intf>

251 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor DTD

<method-name>create</method-name>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>
</method>

-->
<IELEMENT method (description?, ejb-name, method-intf?, method-name,
method-param*)>

<l--

The method-intf element allows a method element to differentiate

between the methods with the same name and signature that are defined
in both the remote and home interfaces.

The method-intf element must be one of the following:
<method-intf’>Home</method-intf>
<method-intf>Remote</method-intf>

Used in: method
-->
<IELEMENT method-intf (#PCDATA)>

<l--

The method-name element contains a name of an enterprise bean method,
or the asterisk (*) character. The asterisk is used when the element

denotes all the methods of an enterprise bean’s remote and home inter-
faces.

Used in: method
-->

<IELEMENT method-name (#PCDATA)>

<l--
The method-param element contains the fully-qualified Java type name
of a method parameter.

Used in: method
-->

<IELEMENT method-param (#PCDATA)>

<I--

The method-permission element specifies that one or more security
roles are allowed to invoke one or more enterprise bean methods. The
method-permission element consists of an optional description, a list
of security role names, and a list of method elements.

The security roles used in the method-permission element must be
defined in the security-role element of the deployment descriptor,
and the methods must be methods defined in the enterprise bean’s
remote and/or home interfaces.

Used in: assembly-descriptor
-->

<IELEMENT method-permission (description?, role-name+, method+)>

<l--
The persistence-type element specifies an entity bean’s persistence
management type.

5/7/99

252

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

The persistence-type element must be one of the two following:
<persistence-type>Bean</persistence-type>
<persistence-type>Container</persistence-type>

Used in: entity
-->

<IELEMENT persistence-type (#PCDATA)>

<l--
The primkey-class element contains the fully-qualified name of an
entity bean’s primary key class.

If the definition of the primary key class is deferred to deployment
time, the primkey-class element should specify java.lang.Object.

Used in: entity

Examples:
<primkey-class>java.lang.String</primkey-class>
<primkey-class>com.wombat.empl.EmployeelD</primkey-class>
<primkey-class>java.lang.Object</primkey-class>

-->
<IELEMENT primkey-class (#PCDATA)>

<l--
The primkey-field element is used to specify the name of the primary
key field for an entity with container-managed persistence.

The primkey-field must be one of the fields declared in the cmp-field
element, and the type of the field must be the same as the primary key

type.

The primkey-field element is not used if the primary key maps to mul-
tiple container-managed fields (i.e. the key is a compound key). In
this case, the fields of the primary key class must be public, and

their names must correspond to the field names of the entity bean
class that comprise the key.

Used in: entity

Example:
<primkey-field>Employeeld</primkey-field>

->

<I[ELEMENT primkey-field (#PCDATA)>

<l--
The reentrant element specifies whether an entity bean is reentrant or
not.

The reentrant element must be one of the two following:
<reentrant>True</reentrant>
<reentrant>False</reentrant>

Used in: entity
-->
<!IELEMENT reentrant (#PCDATA)>

<l--

253 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor DTD

The remote element contains the fully-qualified name of the enter-
prise bean’s remote interface.

Used in: ejb-ref, entity, and session

Example:
<remote>com.wombat.empl.EmployeeService</remote>

-->

<I[ELEMENT remote (#PCDATA)>

<I--

The res-auth element specifies whether the enterprise bean code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource on behalf of the bean. In the latter

case, the Container uses information that is supplied by the Deployer.

The value of this element must be one of the two following:
<res-auth>Bean</res-auth>
<res-auth>Container</res-auth>

->

<I[ELEMENT res-auth (#PCDATA)>

<l--
The res-ref-name element specifies the name of a resource factory ref-
erence.

Used in: resource-ref
>
<IELEMENT res-ref-name (#PCDATA)>

<I--

The res-type element specifies the type of the data source. The type
is specified by the Java interface (or class) expected to be imple-
mented by the data source.

Used in: resource-ref
-->

<!IELEMENT res-type (#PCDATA)>

<I--

The resource-ref element contains a declaration of enterprise bean’s
reference to an external resource. It consists of an optional descrip-
tion, the resource reference name, the indication of the resource’s

data source type expected by the enterprise bean code, and the type of
authentication (bean or container).

Used in: entity and session

Example:
<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<res-type>javax.sgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
>
<IELEMENT resource-ref (description?, res-ref-name, res-type,
res-auth)>

<l--

5/7/99

254

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

The role-link element is used to link a security role reference to a
defined security role. The role-link element must contain the name of
one of the security roles defined in the security-role elements.

Used in: security-role-ref
-->

<IELEMENT role-link (#PCDATA)>

<l--
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: method-permission, security-role, and security-role-ref
-->

<IELEMENT role-name (#PCDATA)>

<l--

The security-role element contains the definition of a security role.
The definition consists of an optional description of the security

role, and the security role name.

Used in: assembly-descriptor

Example:
<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>employee</role-name>
</security-role>
-->
<IELEMENT security-role (description?, role-name)>

<l--

The security-role-ref element contains the declaration of a security
role reference in the enterprise bean’s code. The declaration con-
sists of an optional description, the security role name used in the
code, and an optional link to a defined security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerinRole(String roleName) method.

The value of the role-link element must be the name of one of the
security roles defined in the security-role elements.

Used in: entity and session

-->
<IELEMENT security-role-ref (description?, role-name, role-link?)>

<l--
The session-type element describes whether the session bean is a
stateful session, or stateless session.

The session-type element must be one of the two following:
<session-type>Stateful</session-type>
<session-type>Stateless</session-type>

255 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor DTD

->
<IELEMENT session-type (#PCDATA)>

<I--

The session element declares an session bean. The declaration con-
sists of: an optional description; optional display name; optional

small icon file name; optional large icon file name; a name assigned

to the enterprise bean in the deployment description; the names of the
session bean’s home and remote interfaces; the session bean’s imple-
mentation class; the session bean’s state management type; the ses-
sion bean’s transaction management type; an optional declaration of

the bean’s environment entries; an optional declaration of the bean’s
EJB references; an optional declaration of the security role refer-

ences; and an optional declaration of the bean’s resource references.

The elements that are optional are “optional” in the sense that they
are omitted when if lists represented by them are empty.

Used in: enterprise-beans

-->

<IELEMENT session (description?, display-name?, small-icon?,
large-icon?, ejb-name, home, remote, ejb-class,
session-type, transaction-type, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<I--

The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is relative path within the

ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:
<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<IELEMENT small-icon (#PCDATA)>

<l--
The transaction-type element specifies an enterprise bean’s transac-
tion management type.

The transaction-type element must be one of the two following:
<transaction-type>Bean</transaction-type>
<transaction-type>Container</transaction-type>

Used in: session
-->
<!IELEMENT transaction-type (#PCDATA)>

<l--

The trans-attribute element specifies how the container must manage
the transaction boundaries when delegating a method invocation to an
enterprise bean’s business method.

The value of trans-attribute must be one of the following:
<trans-attribute>NotSupported</trans-attribute>

5/7/99 256

Sun Microsystem Inc

Deployment descriptor DTD Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

<trans-attribute>Supports</trans-attribute>
<trans-attribute>Required</trans-attribute>
<trans-attribute>RequiresNew</trans-attribute>
<trans-attribute>Mandatory</trans-attribute>
<trans-attribute>Never</trans-attribute>

Used in: container-transaction
-->
<!IELEMENT trans-attribute (#PCDATA)>

257 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor example

16.7 Deployment descriptor example

The following example illustrates a sample deployment descriptor for the ejb-jar containing the
Wombat’'s assembled application described in Section 3.2.

<IDOCTYPE ejb-jar PUBLIC “-//Sun Microsystems Inc.//DTD Enterprise
JavaBeans 1.1//EN">
<ejb-jar>
<description>
This ejb-jar file contains assembled enterprise beans that
are part of employee self-service application.
</description>

<enterprise-beans>
<session>
<description>
The EmployeeService session bean implements a session
between an employee and the employee self-service
application.
</description>

<ejb-name>EmployeeService</ejb-name>
<home>com.wombat.empl.EmployeeServiceHome</home>
<remote>com.wombat.empl.EmployeeService</remote>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<env-entry>
<env-entry-name>envvarl</env-entry-name>
<env-entry-type>String</env-entry-type>
<env-entry-value>String</env-entry-value>

</env-entry>

<ejb-ref>
<ejb-ref-name>ejb/EmplRecords</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-link>AardvarkPayroll</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>
</ejb-ref>

5/7/99

258

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

<resource-ref>
<description>
This is a reference to a JDBC database.
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sgl.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

<session>
<description>
The EmployeeServiceAdmin session bean implements
the session used by the application’s administrator.
</description>

<ejb-name>EmployeeServiceAdmin</ejb-name>

<home>com.wombat.empl.EmployeeServiceAdminHome</home>

<remote>com.wombat.empl.EmployeeServiceAdmin</remote>

<ejb-class>com.wombat.empl.EmployeeServiceAdmin-
Bean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Bean</transaction-type>

<resource-ref>
<description>
This is a reference to a JDBC database.
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.
</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

<entity>

<description>
The EmployeeRecord entity bean encapsulates access
to the employee records.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
the employee records.

</description>

<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-class>com.wombat.empl.EmployeeRecordBean</ejb-class>
<persistence-type>Container</persistence-type>
<primkey-class>com.wombat.empl.EmployeelD</primkey-class>
<reentrant>True</reentrant>

259 5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor example

<cmp-field><field-name>employeelD</field-name></cmp-field>
<cmp-field><field-name>firstName</field-name></cmp-field>
<cmp-field><field-name>lastName</field-name></cmp-field>
<cmp-field><field-name>address1</field-name></cmp-field>
<cmp-field><field-name>address2</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<cmp-field><field-name>zip</field-name></cmp-field>
<cmp-field><field-name>homePhone</field-name></cmp-field>
<cmp-field><field-name>jobTitle</field-name></cmp-field>
<cmp-field><field-name>manager|D</field-name></cmp-field>
<cmp-field><field-name>jobTitleHis-
tory</field-name></cmp-field>
</entity>

<entity>

<description>
The Payroll entity bean encapsulates access
to the payroll system.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
payroll information.

</description>

<ejb-name>AaardvarkPayroll</ejb-name>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-class>com.aardvark.payroll.PayrollIBean</ejb-class>
<persistence-type>Bean</persistence-type>
<primkey-class>com.aardvark.payroll.Accoun-
tID</primkey-class>
<reentrant>False</reentrant>

<security-role-ref>
<role-name>payroll-org</role-name>
<role-link>payroll-department</role-link>
</security-role-ref>
</entity>
</enterprise-beans>

<assembly-descriptor>
<security-role>
<description>
This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.
</description>
<role-name>employee</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.
</description>

5/7/99 260

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans 1.1, Public Draft

<role-name>hr-department</role-name>
</security-role>

<security-role>
<description>
This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.
</description>
<role-name>payroll-department</role-name>
</security-role>

<security-role>
<description>
This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.
</description>
<role-name>admin</role-name>
</security-role>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>
</method>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>
</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>

Deployment descriptor

261

5/7/99

Sun Microsystems Inc.

Deployment descriptor

Enterprise JavaBeans 1.1, Public Draft Deployment descriptor example

<method-name>updateEmployeelnfo</method-name>
</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>

<role-name>hr-department</role-name>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>create</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>remove</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeManager</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeJobTitle</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>

</method>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>

</method>

</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
</method>
<method>

5/7/99

262

Sun Microsystem Inc

Deployment descriptor example Enterprise JavaBeans 1.1, Public Draft

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>
</method>
</method-permission>

<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Deployment descriptor

263

5/7/99

Sun Microsystems Inc.

Deployment descriptor Enterprise JavaBeans 1.1, Public Draft Deployment descriptor example

5/7/99 264

Sun Microsystem Inc

Overview Enterprise JavaBeans 1.1, Public Draft Ejb-jar file

camer s E2J0O-JAT fil€

The ejb-jar file is the standard format for packaging of enterprise Beans. The ejb-jar file format is used
to package un-assembled enterprise beans (the Bean Provider's output), and to package assembled
applications (the Application Assembler’s output).

17.1 Overview

The ejb-jar file format is the contract between the Bean Provider and Application Assembler, and
between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typically do
not contain application assembly instructions. An ejb-jar file produced by an Application Assembler
(which can be the same person or organization as the Bean Provider) contains one or more enterprise
beans, plus application assembly information describing how the enterprise beans are combined into a
single application deployment unit.

The current EJB specification does not specify the deployment descriptor support that would allow
enterprise beans contained multiple ejb-jar files to be assembled into a larger application deploy-
ment unit.

265 5/7/99

Sun Microsystems Inc.

Ejb-jar file

17.2

Enterprise JavaBeans 1.1, Public Draft Deployment descriptor

Deployment descriptor

17.3

The ejb-jar file must contain the deployment descriptor in the format defined in Chapter 16. The deploy-
ment descriptor must be stored with the nAnieT A-INF/ejb-jar.xml in the ejb-jar file.

Class files

17.4

For each enterprise bean, the ejb-jar file must include the class files of the following:
* The enterprise bean class.
* The enterprise bean home and remote interface.
* The primary key class if the bean is an entity bean.
The ejb-jar file must contain also the class files for all the classes and interfaces that the enterprise bean

class, and the remote and home interfaces depend on. This includes their superclasses and superinter-
faces, and the classes and interfaces used as method parameters, results, and exceptions.

Deprecated in EJB 1.1

174.1

This section describes the deployment information that was defined in EJB 1.0, and is deprecated in
EJB 1.1.

ejb-jar Manifest

17.4.2

The JAR Manifest file is not used by the EJB architecture.
EJB 1.0 used the Manifest file to identify the individual enterprise beans that were included in the

ejb-jar file. In EJB 1.1, the enterprise beans are identified in the deployment descriptor, so the informa-
tion in the Manifest is no longer needed.

Serialized deployment descriptor dvaBeans™ components

The mechanism of using serialized JavaBeans components as deployment descriptors has been replaced
by the XML-based deployment descriptor.

5/7/99

266

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Runtime environment

Chapter 18

18.1

Runtime environment

This chapter defines the application programming interfaces (APIs) that a compliant EJB Container
must make available to the enterprise bean instances at runtime. These APIs can be used by portable
enterprise beans because the APIs are guaranteed to be available in all EJB Containers.

The chapter also defines the restrictions that the EJB Container Provider can impose on the functionality

that it provides to the enterprise beans. These restrictions are necessary to enforce security and to allow
the Container to properly manage the runtime environment.

Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider.

267 5/7/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans 1.1, Public Draft Bean Provider’s responsibilities

18.1.1 APIs provided by Container
The EJB Provider can rely on the EJB Container Provider to provide the following APIs:

e JDK1.1.xorJava 2

* EJB 1.1 Standard Extension

* JDBC 2.0 Standard Extension

* JNDI 1.2 Standard Extension

e JTA 1.0 Standard Extension (tbiserTransaction interface only)

* JavaMail 1.1 Standard Extension (for sending mail only)
The Bean Provider must take into consideration that while some Containers will provide JDK 1.1.x
APIs, other Containers may provide the Java 2 (i.e. JDK 1.2) APIs. This means that the Bean Providers

that want to deploy their enterprise beans in all Containers must restrict the APIs used by the enterprise
beans to those that are available in JDK 1.1 and the above listed standard extensions.

18.1.2 Programming restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure that the
enterprise bean igortableand can be deployed in any compliant EJB Container. The restrictions apply
to the implementation of the business methods. Section 18.2, which describes the Container’s view of
these restrictions, defines the programming environment that all EJB Containers must provide.

* An enterprise Bean must not use read/write static fields. Using read-only static fields is
allowed. Therefore, it is recommended that all static fields in the enterprise bean class be
declared afinal

This rule is required to ensure consistent runtime semantics because while some EJB Containers may
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances across
multiple JVMs.

* An enterprise Bean must not use thread synchronization primitives to synchronize execution of
multiple instances.

Same reason as above. Synchronization would not work if the EJB Container distributed enterprise
bean’s instances across multiple JVMs.

* An enterprise Bean must not use the AWT functionality in attempt to output information to a
display, or to input information from a keyboard.

5/7/99 268

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Runtime environment

Most servers do not allow direct interaction between an application program and a keyboard/display
attached to the server system.

* An enterprise bean must not use fhea.io package to attempt to access files and directo-
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business components
should use a resource manager API, such as JDBC, to store data.

* An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or
use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it does not
allow it to be a network server. Allowing the instance to become a network server would conflict with
the basic function of the enterprise bean-- to serve the EJB clients.

* The enterprise bean must not attempt to query a class to obtain information about the declared
members that are not otherwise accessible to the enterprise bean because of the security rules
of the Java language. The enterprise bean must not attempt to use the Reflection API to access
information that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the classes in a
manner that is normally disallowed by the Java programming language could compromise security.

* The enterprise bean must not attempt to create a class loader; obtain the current class loader;
set the context class loader; set security manager; create a new security manager; stop the
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these functions
could compromise security and decrease the Container’s ability to properly manage the runtime envi-
ronment.

* The enterprise bean must not attempt to set the socket factory used by ServerSocket, Socket, or
the stream handler factory used by URL.

These networking functions are reserved for the EJB Container. Allowing the enterprise bean to use
these functions could compromise security and decrease the Container’s ability to properly manage the
runtime environment.

* The enterprise bean must not attempt to manage threads. The enterprise bean must not attempt
to start, stop, suspend, or resume a thread; or to change a thread’s priority or name. The enter-
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB Container. Allowing the enterprise bean to manage threads
would decrease the Container’s ability to properly manage the runtime environment.

* The enterprise bean must not attempt to directly read or write a file descriptor.

269 5/7/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans 1.1, Public Draft Container Provider’s responsibility

18.2

Allowing the enterprise bean to read and write file descriptors directly could compromise security.

* The enterprise bean must not attempt to obtain the security policy information for a particular
code source.

Allowing the enterprise bean to access the security policy information would create a security hole.
* The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB Container. Allowing the enterprise bean to load native code would
create a security hole.

* The enterprise bean must not attempt to gain access to packages and classes that the usual rules
of the Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this function
would create a security hole.

* The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this function
would create a security hole.

* The enterprise bean must not attempt to access or modify the security configuration objects
(Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these functions
could compromise security.

* The enterprise bean must not attempt to use the subclass and object substitution features of the
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.
To guarantee portability of the enterprise bean’s implementation across all compliant EJB Containers,
the Bean Provider should test the enterprise bean using a Container with the security settings defined in

Tables 10 and 11. The tables define the minimal functionality that a compliant EJB Container must pro-
vide to the enterprise bean instances at runtime.

Container Provider’s responsibility

This section defines the Container’s responsibilities for providing the runtime environment to the enter-
prise bean instances. The requirements described here are considered to be minimal requirement; a Con-
tainer may choose to provide additional functionality that is not required by the EJB specification.

5/7/99

270

Sun Microsystem Inc

Container Provider’s responsibility Enterprise JavaBeans 1.1, Public Draft Runtime environment

18.2.1 Java 2 based Container

A Java™ 2 based EJB Container must make the following APIs available to the enterprise bean
instances at runtime:

e Java 2 APlIs.

* EJB1l.1APIs.

e JINDI1.2

e JTA 1.0, theUserTransaction interface only
* JDBC™ 2.0 extension

e JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.

18.2.1.1 Java 2 APIs requirements

The Container must provide the full set of Java 2 APIs. The Container is not allowed to subset the Java
2 APIs.

The EJB Container is allowed to make certain Java 2 functionality unavailable to the enterprise bean
instances by using the Java 2 security policy mechanism. The primary reason for the Container to make
certain functions unavailable to enterprise bean instances is to protect the security and integrity of the
EJB Container environment, and to prevent the enterprise bean instances from interfering with the Con-
tainer’s functions.

The following table defines the Java 2 security permissions that the EJB Container must be able to grant
to the enterprise bean instances at runtime. The term “grant” means that the Container must be able to
grant the permission, the term “deny” means that the Container should deny the permission.

Table 10 Java 2 Security policy for a standard EJB Container
Permission name EJB Container policy
java.security.AllPermission deny
java.awt. AWTPermission deny
java.io.FilePermission deny
java.net.NetPermission deny
java.util.PropertyPermission deny
java.lang.reflect.ReflectPermission deny

271 5/7/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans 1.1, Public Draft Container Provider’s responsibility
Table 10 Java 2 Security policy for a standard EJB Container
Permission name EJB Container policy
java.lang.RuntimePermission grant “queuePrintJob”,
deny all other
java.lang.SecurityPermission deny
java.io.SerializablePermission deny
java.net.SocketPermission granbhnect”, “*” [Note A],
deny all other
Notes:
[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality of the

Java IDL and RMI-IIOP packages that are part of Java 2.

Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Table 10. Support for this is not required by the EJB specification. Enterprise
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

18.2.1.2 EJB 1.1 requirements
The container must implement the EJB 1.1 interfaces as defined in this documentation.

18.2.1.3 JNDI 1.2 requirements

At the minimum, the EJB Container must provide a JNDI name space to the enterprise bean instances.
The EJB Container must make the name space available to an instance when the instance invokes the
javax.naming.InitialContext default (no-arg) constructor.
The EJB Container must make available at least the following objects in the name space:

* The home interfaces of other enterprise beans.

* The resource factories of resources used by the enterprise beans.
The EJB specification does not require that all the enterprise beans deployed in a Container be presented

with the same JNDI name space. However, all the instances of the same enterprise bean must be pre-
sented with the same JNDI name space.

18.2.1.4 JTA 1.0 requirements

The EJB Container must include the JTA 1.0 extension, and it must providauhe.transac-
tion.UserTransaction interface to enterprise beans with bean-managed persistence via
javax.ejb.the EJBContext interface.

5/7/99 272

Sun Microsystem Inc

Container Provider’s responsibility Enterprise JavaBeans 1.1, Public Draft Runtime environment

The EJB Container is not required to implement the other interfaces defined in the JTA specification.
The other JTA interfaces are low-level transaction manager and resource manager integration interfaces,
and are not intended for direct use by enterprise beans.

18.2.1.5 JDBC™ 2.0 extension requirements

The EJB Container must include the JDBC 2.0 extension and provide its functionality to the enterprise
bean instances, with the exception of the low-level XA and connection pooling interfaces. These
low-level interfaces are intended for integration of a JDBC driver with an application server, not for
direct use by enterprise beans.

18.2.2 JDK™ 1.1 based Container

A JDK 1.1 based EJB Container must make the following APIs available to the enterprise bean
instances at runtime:

e JDK 1.1 or higher

* EJB1l.1APIs.

e JINDI1.2

e JTA 1.0, theUserTransaction interface only
* JDBC™ 2.0 extension

e JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.

18.2.2.1 JDK 1.1 APIs requirements

The Container must provide the full set of JDK 1.1 APIs. The Container is not allowed to subset the
JDK 1.1 APIs.

The EJB Container is allowed to make certain JDK 1.1 functionality unavailable to the enterprise bean
instances by using the JDK security manager mechanism. The primary reason for the Container to make
certain functions unavailable to enterprise bean instances is to protect the security and integrity of the
EJB Container environment, and to prevent the enterprise bean instances from interfering with the Con-
tainer’s functions.

273 5/7/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans 1.1, Public Draft Container Provider’s responsibility

The following table defines the JDK 1.1 security manager checks that the EJB Container must allow to
succeed when the check is invoked from an enterprise bean instance.

Table 11 JDK 1.1 Security manager checks for a standard EJB Container

Security manager check

EJB Container’s security manager policy

checkAccept(String, int)

throw SecurityException

checkAccess(Thread)

throw SecurityException

checkAccess(ThreadGroup)

throw SecurityException

checkAwtEventQueueuAccess()

throw SecurityException

checkConnect(String, int)

allow

checkConnect(String, int, Object)

allow

checkCreateClassLoader()

throw SecurityException

checkDelete(String) throw SecurityException
checkExec(String) throw SecurityException
checkExit(int) throw SecurityException

checkListen(int) throw SecurityException

checkMemberAccess(Class, int)

throw SecurityException

checkMulticast(InetAddress)

throw SecurityException

checkMulticast(InetAddress, byte)

throw SecurityException

checkPackageAccess(String)

throw SecurityException

checkPackageDefinition(String)

throw SecurityException

checkPrintJobAccess()

allow

checkPropertiesAccess()

throw SecurityException

checkPropertyAccess(String)

throw SecurityException

checkRead(FileDescriptor)

throw SecurityException

checkRead(String)

throw SecurityException

checkRead(String, Object)

throw SecurityException

checkSecurityAccess(String)

throw SecurityException

checkSetFactory()

throw SecurityException

checkSystemClipboardAccess()

throw SecurityException

274

Sun Microsystem Inc

Container Provider’s responsibility Enterprise JavaBeans 1.1, Public Draft Runtime environment
Table 11 JDK 1.1 Security manager checks for a standard EJB Container
Security manager check EJB Container’s security manager policy
checkTopLevelWindow(Object) throw SecurityException
checkWrite(FileDescriptor) throw SecurityException
checkWrite(String) throw SecurityException

Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Table 10. Support for this is not required by the EJB specification. Enterprise
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

18.2.2.2 EJB 1.1 requirements
The container must implement the EJB 1.1 interfaces as defined in this documentation.

18.2.2.3 JNDI 1.2 requirements

Same as defined in Subsection 18.2.1.3.
18.2.2.4 JTA 1.0 requirements

Same as defined in Subsection 18.2.1.4.
18.2.2.5 JDBC 2.0 extension requirements

Same as defined in Subsection 18.2.1.5, with the following exception: The EJB Container is not
required to provide the support for the RowSet functionality.

This exception was made because the RowSet functionality requires the Java 2 Collections.

18.2.3 Argument passing semantics

The enterprise bean’s home and remote interfaceseanete interface$or Java RMI. The Container
must ensure the semantics for passing arguments conform to Java RMI. Non-remote objects must be
passed by value.

Specifically, the EJB Container is not allowed to pass non-remote objects by reference on inter-EJB
invocations when the calling and called enterprise beans are collocated in the same JVM. Doing so
could result in the multiple beans sharing the state of a Java object, which would break the enterprise
bean’s semantics.

275 5/7/99

Sun Microsystems Inc.

Runtime environment Enterprise JavaBeans 1.1, Public Draft Container Provider’s responsibility

5/7/99 276

Sun Microsystem Inc

Bean Provider’s responsibilities Enterprise JavaBeans 1.1, Public Draft Responsibilities of EJB Roles

Responsibilities of EJB Roles

Chapter 19
This chapter provides the summary of the responsibilities of each EJB Role.
19.1 Bean Provider’s responsibilities

This section highlights the requirements for the Bean Provider. Meeting these requirements is necessary
to ensure that the enterprise beans developed by the Bean Provider can be deployed in all compliant EJB
Containers.

19.1.1 API requirements
The enterprise beans must meet all the API requirements defined in the individual chapters of this docu-
ment.

19.1.2 Packaging requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file in the format
described in Chapter 17.

277 5/7/99

Sun Microsystems Inc.

Responsibilities of EJB Roles Enterprise JavaBeans 1.1, Public Draft Application Assembler’s responsibilities

19.2

The deployment descriptor must include stricturalinformation described in Section 16.2.

The deployment descriptor may optionally include any of #pplication assemblynformation as
described in Section 16.3.

Application Assembler’s responsibilities

19.3

The requirements for the Application Assembler are in defined in Section 16.3.

EJB Container Provider’s responsibilities

19.4

The EJB Container Provider is responsible for providing the deployment tools used by the Deployer to
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment tools are
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts, and for pro-
viding all the runtime services described in the individual chapters of this document.

Deployer’s responsibilities

19.5

The Deployer uses the deployment tools provided by the EJB Container provider to deploy ejb-jar files
produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more detail.

System Administrator’s responsibilities

19.6

The System Administrator is responsible for configuring the EJB Container and server, setting up secu-
rity management, integrating resource managers with the EJB Container, and runtime monitoring of
deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administrator in
more detail.

Client Programmer’s responsibilities

The EJB client programmer writes applications that access enterprise beans via their home and remote
interfaces.

5/7/99

278

Sun Microsystem Inc

package javax.ejb

Chapter 20

Enterprise JavaBeans 1.1, Public Draft

Enterprise JavaBeans™ API| Reference

Enterprise JavaBeans™ API| Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejavax.ejb

Interfaces:

public interface EJBContext
public interface EJBHome
public interface EJBMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Handle

public interface HomeHandle
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization

279

5/7/99

Sun Microsystems Inc.

Enterprise JavaBeans™ API| Reference Enterprise JavaBeans 1.1, Public Draft package javax.ejb.deployment

Classes:

public class CreateException

public class DuplicateKeyException
public class EJBException

public class FinderException

public class ObjectNotFoundException
public class RemoveException

packagejavax.ejb.deployment

The javax.ejb.deployment package that was defined in the EJB 1.0 specification is deprecated
in EJB 1.1. The EJB 1.0 deployment descriptor format should not be used by ejb-jar file producer, and
the support for it is not required by EJB 1.1 compliant Containers.

We intend to a tool which will help convert an EJB 1.0 deployment descriptor to the EJB 1.1
XML-based format. Thgavax.ejb.deployment package will be provided only as part of this
tool.

The Javadoc specification of the EJB interface is included in a ZIP file distributed with
this document.

5/7/99

280

Sun Microsystem Inc

package javax.ejb.deployment Enterprise JavaBeans 1.1, Public Draft Related documents

Chapter 21

Related documents

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

JavaBeandittp://java.sun.com/beans

Java Naming and Directory Interface (JNDifp://java.sun.com/products/jndi

Java Remote Method Invocation (RMi}tp://java.sun.com/products/rmi.

Java Securityhttp://java.sun.com/security.

Java Transaction API (JTA)ttp://java.sun.com/products/jta

Java Transaction Service (JTBfp://java.sun.com/products/jts.

Java to IDL Mapping. OMG TC Document TC orbos/98-07-19.

Enterprise JavaBeans to CORBA Mappintgp://java.sun.com/products/ejb/docs.html.

OMG Object Transaction Servidettp://www.omg.org/corba/sectrans.htm#trans

281 5/7/99

Sun Microsystems Inc.

Related documents Enterprise JavaBeans 1.1, Public Draft package javax.ejb.deployment

5/7/99 282

Sun Microsystem Inc

package javax.ejb.deployment Enterprise JavaBeans 1.1, Public Draft Features deferred to future releases

wmenaxa FEAtUres deferred to future releases

We plan to provide an SPI-level interface for attaching a resource manager (such as a JDBC driver) to
the EJB Container as a separate Connector API.

We plan to enhance the support for Entities in the next major release (EJB 2.0). We are looking into the
area of using of UML for the design and analysis of enterprise beans applications.

We plan to provide integration of EJB with JMS as part of EJB 2.0.

283 5/7/99

Sun Microsystems Inc.

Features deferred to future releases Enterprise JavaBeans 1.1, Public Draft package javax.ejb.deployment

5/7/99 284

Sun Microsystem Inc

Client-demarcated transactions Enterprise JavaBeans 1.1, Public Draft Frequently asked questions

weaxe Frequently asked questions

This Appendix provides the answers to a number of frequently asked questions.

B.1 Client-demarcated transactions

The EJB 1.0 specification did not explain how a client other than another enterprise bean can obtain a
thejavax.transaction.UserTransaction interface.

The EJB 1.1 specification refers to the Java Transaction API (JTA) [5] which specifies how a client
obtains thgavax.transaction.UserTransaction interface.

285 5/7/99

Sun Microsystems Inc.

Frequently asked questions Enterprise JavaBeans 1.1, Public Draft Inheritance

B.2

The following is an example of how a Java application can obtaifjatree.transaction.User-
Transaction interface.

1

// Obtain the JNDI name using an application-type specific

/I configuration mechanism. (This example shows the use of

/I system properties which is applicable to stand-alone

/I applications, but the JTA specification does not prescribe

/I the use of System properties for application configuration)

1

String utxPropVal = System.getProperty(“jta.UserTransaction”);

1

/I Obtain the UserTransaction interface from JNDI. Note that

/l the InitialContext is created using the default (no-arg)

/I constructor.

1

Context ctx = new InitialContext();

UserTransaction utx = (UserTransaction)ctx.lookup(utsPropVal);

Il

/I Perform calls to enterprise beans in a transaction.
1

utx.begin();

... call one or more enterprise beans

utx.commit();

Inheritance

The current EJB specification does not specify the concepbwiponent inheritancel' here are com-

plex issues that would have to be addressed in order to define component inheritance (for example, the
issue of how the primary key of the derived class relates to the primary key of the parent class, and how
component inheritance affects the parent component’s persistence).

However, the Bean Provider can take advantage of the Java language support for inheritance as follows:

* Interface inheritancelt is possible to use the Java language interface inheritance mechanism
for inheritance of the home and remote interfaces. A component may derive its home and
remote interfaces from some “parent” home and remote interfaces; the component then can be
used anywhere where a component with the parent interfaces is expected. This is a Java lan-
guage feature, and its use is transparent to the EJB Container.

* Implementation class inheritanck is possible to take advantage of the Java class implemen-
tation inheritance mechanism for the enterprise bean class. For example, thereakm-
gAccountBean class can extend th&ccountBean class to inherit the implementation of
the business methods.

5/7/99

286

Sun Microsystem Inc

Entities and relationship Enterprise JavaBeans 1.1, Public Draft Frequently asked questions

B.3 Entities and relationship

The current EJB architecture does not specify how one Entity bean should store an object reference of
another Entity bean. The desirable strategy is application-dependent. The enterprise bean (if the bean
uses bean-managed persistence) or the Container (if the bean uses container-managed persistence) can
use any of the following strategies for maintaining persistently a relationship between entities (the list is
not inclusive of all possible strategies):

* Object’s primary key. This is applicable if the target object’s Home is known and fixed.

* Home name and object’s primary key.

* Home object reference and object’s primary key.

* Object’s handle.

We plan to describe these strategies in more detail in a future release of the specification.

B.4 Finder methods for entities with container-managed persistence

The EJB specification does not providéoamal mechanism for the Bean Provider of a bean with con-
tainer-managed persistence to specify the criteria for the finder methods.

The current mechanism is that Bean Provider describes the finders in a description of the Entity Bean.
The current EJB specification does not provide any syntax for describing the finders.

We plan to address this issue in a future release of the specification.

B.5 JDK 1.1 or Java 2

Chapter 18 describes the issue of using JDK 1.1 versus Java 2 in detail.
In summary, the Bean Provider can produce enterprise beans that will run in both JDK 1.1 and Java 2

based Containers. The Container Provider can use either JDK 1.1 or Java 2 as the basis for the imple-
mentation of the Container.

B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction

The correct spelling igvax.transaction.UserTransaction

The use ofavax.jts.UserTransaction is deprecated in EJB 1.1.

287 5/7/99

Sun Microsystems Inc.

Frequently asked questions Enterprise JavaBeans 1.1, Public Draft How to obtain database connections

B.7

How to obtain database connections

B.8

Section 14.4 specifies how an enterprise bean should obtain resources such as JDBC connections. The
resource acquisition protocol uses resource factory references that are part of the enterprise bean’s envi-
ronment.

The following is an example of how an enterprise bean obtains a JDBC connection:

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {

/I obtain the initial INDI context
Context initCtx = new InitialContext();

/I perform JNDI lookup to obtain resource factory
javax.sgl.DataSource ds = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbc/EmployeeAppDB");

/I Invoke factory to obtain a resource. The security

/I principal for the resource is not given, and therefore
/I it will be configured by the Deployer.
java.sgl.Connection con = ds.getConnection();

Session beans and primary key

B.9

The EJB 1.1 specification specifies the Container’'s behavior for the cases when a client attempts to
access the primary key of a session object. In summary, the Container must throw an exception on a cli-
ent's attempt to access the primary key of a session object.

Copying of parameters required for EJB calls within the same JVM

The enterprise bean’s home and remote interfacesearete interfacén the Java RMI sense. The Con-
tainer must ensure the Java RMI argument passing semantics. Non-remote objects must be passed by
value.

Specifically, the EJB Container is not allowed to pass non-remote objects by reference on inter-EJB
invocations when the calling and called enterprise beans are collocated in the same JVM. Doing so
could result in the multiple beans sharing the state of a Java object, which would break the enterprise
bean’s semantics.

5/7/99

288

Sun Microsystem Inc

Changes since Release 0.8 Enterprise JavaBeans 1.1, Public Draft Revision History

Appendix C

Revision History

C.1 Changes since Release 0.8

Removedava.ejb.BeanPermission from the API. This file was incorrectly included in the 0.8
specification.

Renamed packagesjeva.ejb andjavax.ejb.deployment . The Enterprise JavaBeans API is
packaged as a standard extension, and standard extensions should be prefixgdaxith Also
renamedava.jts tojavax.jts

Made clear that a container can support multiple EJB classes. We renamegdhejb.Con-

tainer to javax.ejb.EJBHome. Some reviewers pointed out that the use of the term “Con-
tainer” for the interface that describes the life cycle operations of an EJB class as seen by a client was
confusing.

Folded the factory and finder methods into the enterprise bban® interface This reduces the num-
ber of Java classes per EJB class and the number of round-trips between a client and the container
required to create or find an EJB object. It also simplifies the client-view API.

Removed the PINNED mode of a Session Bean. Many reviewers considered this mode to be “danger-
ous” since it could prevent the container from efficiently managing its memory resources.

289 5/7/99

Sun Microsystems Inc.

Revision History Enterprise JavaBeans 1.1, Public Draft Changes since Release 0.9

Clarified the life cycle of a stateless Session Bean.
Added a chapter with the specification for exception handling.

We have renamed the contract between a component and its contatoengonent contract The pre-
viously used terncontainer contract confused several reviewers.

Added description of finder methods.

Modified the entity create protocol by breaking #jgCreate method into twoejbCreate and
ejbPostCreate . This provides a cleaner separation of the discrete steps involved in creating an
entity in a database and its associated middle-tier object.

Added more clarification to the description of the entity component protocol.

Added more information about the responsibilities of the enterprise bean provider and container pro-

vider.
RenamedsessionSynchronization.beginTransaction() to SessionSynchroniza-
tion.afterBegin() to avoid confusion witlyserTransaction.begin()

Added the specification of isolation levels for container-managed Entity Beans.

C.2 Changes since Release 0.9

Renamedavax.ejb.InstanceContext to javax.ejb.EJBContext
Fixed bugs in the javadoc of tfevax.ejb.EntityContext interface.

Combined the state diagrams for non-transactional and transactional Session Beans into a single dia-
gram.

Added the definition of the restrictions on using transaction scopes with a Session Bean (a Session Bean
can be only in a single transaction at a time).

Allowed the enterprise bean’s class to implement the enterprise bean’s remote interface. This change
was requested by reviewers to facilitate migration of existing Java code to Enterprise JavaBeans.

Removed thgavax.ejb.EJBException from the specification, and replaced its use by the stan-
dardjava.rmi.RemoteException . This change was necessary because of the previous change
that allows the enterprise bean class to implement its remote interface.

Changed some rules regarding exception handling.

5/7/99 290

Sun Microsystem Inc

Changes since Release 0.95 Enterprise JavaBeans 1.1, Public Draft Revision History

C3

Renamed to thgvax.jts.CurrentTransaction interface tgavax.jts.UserTransac-

tion to avoid confusion with theorg.omg.CosTransactions.Current interface. The
javax.jts.UserTransaction interface defines the subset of operations that are “safe” to use at
the application-level, and can be supported by the majority of the transaction managers used by existing
platforms.

Added specification for TX_BEAN_MANAGED transactions.

Made the isolation levels supplied in the deployment descriptor applicable also to Session Beans and
entities with bean-managed persistence.

Renamed thelestroy() methods taremove() . This change was requested by several reviewers
who pointed out the potential for name space collisions in their implementations.

Added the create arguments to #jpPostCreate method. This simplifies the programming of an
Entity Bean that needs the create arguments inefbPostCreate method (previously, the bean
would have to save these arguments irejp€reate method).

Added restrictions on the use of per-method deployment attributes.

Added javax.ejb.EJBMetaData to the examples, and added the generation of the class that
implements this interface as a requirements for the container tools.

Added thegetRollbackOnly method to thgavax.ejb.EJBContext interface. This method

allows an instance to test if the current transaction has been marked for rollback. The test may help the
enterprise bean to avoid fruitless computation after it caught an exception.

We removed the placeholder Appendix for examples. We will provide examples on the Enterprise Java-
Beans Web site rather than in this document.

Changes since Release 0.95

Allowed a container-managed field to be of any Java Serializable type.

Clarified the bean provider responsibilities for tepFind<METHOD> methods Entity Beans with
container-managed persistence.

Added two rules to Subsection xxx on exception handling and transaction management. The new rules
are for the TX_BEAN_MANAGED beans.

Use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform the narrow
operations after a JNDI lookup in the code samples used in the specification. While some JNDI provid-
ers may return from thimokup(...) method the exact stub for the home interface making it possi-
ble to for the client application to use a Java cast, other providers may return a wider type that requires
an explicit narrow to the home interface type. Thaeax.rmi.PortableRemoteObject.nar-

row(...) method is the standard Java RMI way to perform the explicit narrow operation.

Changed several deployment descriptor method names.

291 5/7/99

Sun Microsystems Inc.

Revision History

C4

Enterprise JavaBeans 1.1, Public Draft Changes since 1.0

Changes since 1.0

This sections lists the changes since EJB 1.0.

Specified the behavior oEJBObject.getPrimaryKey(), EJBMetaData.getPrima-

ryKeyClass(), EJBHome.remove(Object primaryKey,) and isldenti-

cal(Object other) for Session Beans. As Session Bean do not have client-accessible primary
keys, these operations result in exceptions.

Disallowed TX_BEAN_MANAGED for Entity Beans.

Disallowed use oSessionSynchronization for TX_BEAN_MANAGEE2ssions.

Allowed using java.lang.String as a primary key type.

Allowed deferring the specification of the primary key class for entities with container-managed persis-
tence to the deployment time.

Clarified that a matching ejbPostCreateeiguired for each ejbCreate.
Added requirement for hashCode and equals for the primary key class.

Deprecated the packagmvax.ejb.deployment by replacing the JavaBeans-based deployment
descriptor with an XML-based deployment descriptor.

Improved the information in the deployment descriptor by clearly separating structural information
from application assembly information, and by removing support for information that should be sup-
plied by the Deployer rather than by the ejb-jar producer (i.e. ISV). The EJB 1.0 deployment descriptor
mixed all this information together, making it hard for people to understand the division of responsibil-
ity for setting the various values, and it was not clear what values can be changed at application assem-
bly and/or deployment.

Added the requirement for the Bean Provider to specify whether the enterprise bean uses a bean-man-
aged or container-managed transaction.

AddedNever the list of possible values of the transaction attributes to allow specification of the case in
which an enterprise bean must never be called from a transactional client.

Removed the Appendix describing tfevax.transaction package. Inclusion of this package in
the EJB document is no longer needed because the JTA documentation is publicly available.

Tightened the specification of the responsibilities for transaction management.

Tighten the rules for the runtime environment that the Bean Provider can expect and the EJB Container
Provider must provide. See Chapter 18.

5/7/99

292

Sun Microsystem Inc

Changes since 1.1 Draft 1 Enterprise JavaBeans 1.1, Public Draft Revision History

C.5

Changes since 1.1 Draft 1

C.6

This sections lists the changes since EJB 1.1 Draft 1.
Allow use of the Java java.util.Collection interfaces for the result of entity finder methods.
Defining the FinderException in the finder methods of the home interface is mandatory now.

Clean up of the exception specification, including minor changes from EJB 1.0 summarized in Section
12.6.

The scope of the EJB specification for managing transaction isolation levels was reduced to sessions
with bean-managed transactions. The current EJB specification does not have any API for managing
transaction isolation for beans using container-managed transactions (note that all Entity beans fall into
this category).

Eliminated thestateless-session element in the XML DTD. Now thesession element is
used to describe both the stateful and stateless session beans.

Added an optionadiescription element to thenethod element. The intention is to allow tools to
display the description of the method.

Clarified that the enterprise bean class may have superclasses, and that the business methods and the
various container callbacks can be implemented in the enterprise bean class, or in any of its super-
classes.

Fixed the example that illustrates the use of handles for session objects. Serialized handles are not guar-
anteed to be deserializable in a different system, and therefore they cannot be emailed.

Updated the Overview chapter.

Allowed deferring the specification of the primary key class for all entities (not only for those with con-
tainer-managed persistence as it was the case in Draft 1).

Allow enterprise beans to print. The Container must grant the permission to the enterprise beans to
gueue printer job.

ThesetRollbackOnly() andgetRollbackOnly() methods of th&JBContext object must

not be used by enterprise beans with bean-managed transactions. There is no need for these beans to use
these methods.

Changes since 1.1 Draft 2

Fix an error in the requirement for how a Container must deal with inter-EJB invocations when both the
calling and called bean are in the same JVM. The correct requirement is that the RMI semantics must be
ensured, and therefore the Container must not pass non-remote objects by reference.

293 5/7/99

Sun Microsystems Inc.

Revision History

Enterprise JavaBeans 1.1, Public Draft Changes since 1.1 Draft 2

Clarified the requirements for serialization of the session objects.

Specified that an EJB Compliant Container may always return a null from the deprgea@all-
erldentity() method.

Added a section on distributed transaction scenarios involving access to the same entity from multiple
clients in the same transaction.

Changed the specification of the return value type oEfb€reate(...) methods for entities with
container-managed persistence. The previous specification required tefi@meate methods are
defined as returning void. The new requirement is thaefb€reate methods be defined as return-

ing the primary key class type. The implementation oféfiCreate method should return null. This
change is to allow tools, if they wish, to create an entity bean with bean-managed persistence by sub-
classing an original entity bean with container-managed persistence.

For compatibility with EJB 1.0, added the support for jhga.rmi.RemoteException to be

thrown from the enterprise bean class methods. This is needed to allow an EJB 1.1 Container to support
enterprise beans written to the EJB 1.0 specification. The use faEuhgmi.RemoteException

in the enterprise bean class methods is deprecated, and new applications should throw the
javax.ejb.EJBEXxception instead.

Removed the deprecated packmeax.ejb.deployment from the EJB interfaces. The the depre-
cated packaggvax.ejb.deployment will be distributed only with the deployment descriptor
conversion tool.

Updated the examples in the transaction chapter by removirgetheitoCommit andsetTrans-
actionlsolation calls. These calls are not typically done by the enterprise bean.

Added the<method-intf> element to allow a method element to differentiate between a method
with same signature when defined in both the remote and home interfaces.

Specified the behavior of thgetUserTransaction() , setRollbackOnly() , andgetRoll-
backOnly() methods for the cases when the methods are invoked by beans that are not allowed to use
these methods. The Container will throw jdrea.lang.lllegalException in these situations.

Specified thaPortableRemoteObject.narrow(...) must be used by a client to convert the
result ofHandle.getEJBObject() to the remote interface type.

Required portable enterprise bean clients to usBdm@ableRemoteObject.narrow(...).
Clarified the minimal lifetime for handles.

Clarified that the caller must hawat least onesecurity role (notll) associated with the method permis-
sion in order to be allowed to invoke the method.

Support for entities has been made mandatory for the Container Provider.

Added a section to the Exception chapter dealing with the release of resources held by the instance
when the instance is being discarded because of a system exception.

5/7/99

294

Sun Microsystem Inc

Changes since EJB 1.1 Draft 3 Enterprise JavaBeans 1.1, Public Draft Revision History

C.7

Added theres-auth element to the deployment descriptor for the Bean Provider to indicate whether
the bean code performs an explicit sign-on to a resource manager, or whether the Bean relies on the
Container to perform sign-on based on the information supplied by Deployer.

Addedjava.io.Serializable as a superinterface gdvax.ejb.Handle . The EJB 1.0 spec
required that the implementation class implements j#va.io.Serializable interface, this
change expresses the requirement syntactically.

Added the interfacgvax.ejb.HomeHandle to provide support for handles for home objects.

Allowed a Session bean instance to be removed upon a timeout while the instance is in the passivated
state.

Add thejavax.ejb.NoSuchEntityException exception to the API. Added requirements for
throwing thejava.rmi.NoSuchObjectExcetion to the chapter on exceptions.

Changes since EJB 1.1 Draft 3

Replaced the support for environment properties with the JINDI-based environment entries. The EJB 1.0
style of environment properties access is deprecated in EJB 1.1.

Removed thdinalize() method from the state diagrams. Specified that an enterprise bean must not
define thdfinalize() method in the enterprise bean class. This is because it cannot be guaranteed
that the method is called at all in some Container implementations.

Made clear that the result of comparing two object reference using the Java "==" operator or the
equals() method is undefined.

Added Tables 2, 3, and 4 that specify which operations are allowed in the enterprise bean methods.
Clarified what “proper transaction context” means in the Chapter on entities.

Flattened the DTD hierarchy by removing the elements that grouped entries of the same type.

Relaxed the rules for the primary key class. An entity with bean-managed persistence can use any
RMI-1IOP Value Type as its primary key type; the primary key type of an entity with container-managed
persistence is more constrained.

Added thasStatelessSession() method to th&JBMetaData interface.

Updated the chapter in distribution to simply reference RMI-IIOP. The original chapter had been written
before RMI-IIOP was completed.

295 5/7/99

	Chapter 1 Introduction
	1.1 Target audience
	1.2 What is new in EJB 1.1
	1.3 Application compatibility and interoperability
	1.4 Acknowledgments
	1.5 Organization
	1.6 Document conventions

	Chapter 2 Goals
	2.1 Overall goals
	2.2 Goals for Release 1.0
	2.3 Goals for Release 1.1

	Chapter 3 EJB Roles and Scenarios
	3.1 EJB Roles
	3.1.1 Enterprise Bean Provider
	3.1.2 Application Assembler
	3.1.3 Deployer
	3.1.4 EJB Server Provider
	3.1.5 EJB Container Provider
	3.1.6 System administrator

	3.2 Scenario: Development, assembly, and deployment

	Chapter 4 Overview
	4.1 Enterprise Beans as components
	4.1.1 Component characteristics
	4.1.2 Flexible component model

	4.2 Enterprise JavaBeans contracts
	4.2.1 Client-view contract
	4.2.2 Component contract
	4.2.3 Ejb-jar file
	4.2.4 Contracts summary

	4.3 Session and entity objects
	4.3.1 Session objects
	4.3.2 Entity objects

	4.4 Standard mapping to CORBA protocols

	Chapter 5 Client View of a Session Bean
	5.1 Overview
	5.2 EJB Container
	5.2.1 Locating an enterprise Bean’s home interface
	5.2.2 What a container provides

	5.3 Home interface
	5.3.1 Creating an EJB object
	5.3.2 Removing an EJB object

	5.4 EJB object
	5.5 Session object identity
	5.6 Client view of session Bean’s life cycle
	5.7 Creating and using a session Bean
	5.8 Object identity
	5.8.1 Stateful Session Beans
	5.8.2 Stateless Session Beans
	5.8.3 getPrimaryKey()

	5.9 Type narrowing

	Chapter 6 Session Bean Component Contract
	6.1 Overview
	6.2 Goals
	6.3 A container’s management of its working set
	6.4 Conversational state
	6.4.1 Instance passivation and conversational state
	6.4.2 The effect of transaction rollback on conversational state

	6.5 The protocol between a session Bean and its container
	6.5.1 The required SessionBean interface
	6.5.2 The SessionContext interface
	6.5.3 The optional SessionSynchronization interface
	6.5.4 Business method delegation
	6.5.5 Session Bean’s ejbCreate(...) methods
	6.5.6 Serializing session Bean methods
	6.5.7 Transaction context of session Bean methods

	6.6 STATEFUL Session Bean State Diagram
	6.6.1 Operations allowed in the methods of a stateful session bean class
	6.6.2 Dealing with exceptions
	6.6.3 Missed ejbRemove() calls
	6.6.4 Restrictions for transactions

	6.7 Object interaction diagrams for a STATEFUL session Bean
	6.7.1 Notes
	6.7.2 Creating a session object
	6.7.3 Starting a transaction
	6.7.4 Committing a transaction
	6.7.5 Passivating and activating an instance between transactions
	6.7.6 Removing a session object

	6.8 Stateless session Beans
	6.8.1 Stateless session Bean state diagram
	6.8.2 Operations allowed in the methods of a stateless session bean class
	6.8.3 Dealing with exceptions

	6.9 Object interaction diagrams for a STATELESS session Bean
	6.9.1 Client-invoked create()
	6.9.2 Business method invocation
	6.9.3 Client-invoked remove()
	6.9.4 Adding instance to the pool

	6.10 The responsibilities of the enterprise Bean provider
	6.10.1 Classes and interfaces
	6.10.2 Enterprise Bean class
	6.10.3 ejbCreate methods
	6.10.4 Business methods
	6.10.5 Enterprise Bean’s remote interface
	6.10.6 Enterprise Bean’s home interface

	6.11 The responsibilities of the container provider
	6.11.1 Generation of implementation classes
	6.11.2 EJB Home class
	6.11.3 EJB Object class
	6.11.4 Handle class
	6.11.5 Meta-data class
	6.11.6 Non-reentrant instances
	6.11.7 Transaction scoping, security, exceptions

	Chapter 7 Example Session Scenario
	7.1 Overview
	7.2 Inheritance relationship
	7.2.1 What the session Bean provider is responsible for
	7.2.2 Classes supplied by container provider
	7.2.3 What the container provider is responsible for

	Chapter 8 Client View of an Entity
	8.1 Overview
	8.2 EJB Container
	8.2.1 Locating enterprise Bean’s home interface
	8.2.2 What a container provides

	8.3 Enterprise Bean’s home interface
	8.3.1 create methods
	8.3.2 finder methods
	8.3.3 remove methods

	8.4 Entity EJB object life cycle
	8.5 Primary key and object identity
	8.6 Entity Bean’s remote interface
	8.7 Entity Bean’s handle
	8.8 Entity Home handles
	8.9 Type narrowing

	Chapter 9 Entity Bean Component Contract
	9.1 Concepts
	9.1.1 The runtime execution model
	9.1.2 Granularity of entity objects
	9.1.3 Entity persistence (data access protocol)
	9.1.3.1 Bean-managed persistence
	9.1.3.2 Container-managed persistence

	9.1.4 Instance life cycle
	9.1.5 The Entity Bean component contract
	9.1.5.1 Enterprise Bean instance’s view:
	9.1.5.2 Container’s view:

	9.1.6 Operations allowed in the methods of the entity bean class
	9.1.7 Caching of entity state and the ejbLoad and ejbStore methods
	9.1.8 Finder method return type
	9.1.8.1 Single-object finder
	9.1.8.2 Multi-object finders

	9.1.9 Standard application exceptions for Entities
	9.1.9.1 CreateException
	9.1.9.2 DuplicateKeyException
	9.1.9.3 FinderException
	9.1.9.4 ObjectNotFoundException
	9.1.9.5 RemoveException

	9.1.10 Commit options
	9.1.11 Concurrent access from multiple transactions
	9.1.12 Non-reentrant and re-entrant instances
	9.1.13 Access from multiple clients in the same transaction context
	9.1.13.1 Transaction “diamond” topology scenario
	9.1.13.2 Container Provider’s responsibilities
	9.1.13.3 Bean Provider’s responsibilities
	9.1.13.4 Application Assembler and Deployer’s responsibilities

	9.2 Responsibilities of the Enterprise Bean Provider
	9.2.1 Classes and interfaces
	9.2.2 Enterprise Bean class
	9.2.3 ejbCreate methods
	9.2.4 ejbPostCreate methods
	9.2.5 ejbFind methods
	9.2.6 Business methods
	9.2.7 Enterprise Bean’s remote interface
	9.2.8 Enterprise Bean’s home interface
	9.2.9 Enterprise Bean’s primary key class

	9.3 The responsibilities of the container provider
	9.3.1 Generation of implementation classes
	9.3.2 EJB Home class
	9.3.3 EJB Object class
	9.3.4 Handle class
	9.3.5 Home Handle class
	9.3.6 Meta-data class
	9.3.7 Instance’s re-entrance
	9.3.8 Transaction scoping, security, exceptions

	9.4 Entity Beans with container-managed persistence
	9.4.1 Container-managed fields
	9.4.2 ejbCreate, ejbPostCreate
	9.4.3 ejbRemove
	9.4.4 ejbLoad
	9.4.5 ejbStore
	9.4.6 finder methods
	9.4.7 primary key type
	9.4.7.1 Primary key that maps to a single field in the entity bean class
	9.4.7.2 Primary key that maps to multiple fields in the entity bean class
	9.4.7.3 Special case: Unknown primary key class

	9.5 Object interaction diagrams
	9.5.1 Notes
	9.5.2 Creating an entity object
	9.5.3 Passivating and activating an instance in a transaction
	9.5.4 Committing a transaction
	9.5.5 Starting the next transaction
	9.5.6 Removing an entity object
	9.5.7 Finding an object
	9.5.8 Adding and removing instance from the pool

	Chapter 10 Example entity scenario
	10.1 Overview
	10.2 Inheritance relationship
	10.2.1 What the enterprise Bean provider is responsible for
	10.2.2 Classes supplied by container provider
	10.2.3 What the container provider is responsible for

	Chapter 11 Support for Transactions
	11.1 Overview
	11.1.1 Transactions
	11.1.2 Transaction model
	11.1.3 Relationship to JTA and JTS

	11.2 Scenarios
	11.2.1 Update of multiple databases
	11.2.2 Update of databases via multiple EJB Servers
	11.2.3 Client-managed demarcation
	11.2.4 Container-managed demarcation
	11.2.5 Bean-managed demarcation
	11.2.6 Interoperability with non-Java clients and servers

	11.3 Bean Provider’s responsibilities
	11.3.1 Bean-managed versus container-managed demarcation
	11.3.2 Local versus global transaction
	11.3.3 Isolation levels
	11.3.4 Enterprise beans using bean-managed transaction
	11.3.4.1 getRollbackOnly() and setRollbackOnly() method

	11.3.5 Enterprise beans using container-managed transaction
	11.3.5.1 javax.ejb.SessionSynchronization interface
	11.3.5.2 javax.ejb.EJBContext.setRollbackOnly() method
	11.3.5.3 javax.ejb.EJBContext.getRollbackOnly() method

	11.3.6 Declaration in deployment descriptor

	11.4 Application Assembler’s responsibilities
	11.4.1 Transaction attributes

	11.5 Deployer’s responsibilities
	11.6 Container Provider responsibilities
	11.6.1 Bean-managed transactions
	11.6.2 Container-managed transactions
	11.6.2.1 NotSupported
	11.6.2.2 Required
	11.6.2.3 Supports
	11.6.2.4 RequiresNew
	11.6.2.5 Mandatory
	11.6.2.6 Never
	11.6.2.7 Transaction attribute summary
	11.6.2.8 Handling of setRollbackOnly() method
	11.6.2.9 Handling of getUserTransaction() method
	11.6.2.10 javax.ejb.SessionSynchronization callbacks

	Chapter 12 Exception handling
	12.1 Overview and Concepts
	12.1.1 Application exceptions
	12.1.2 Goals for exception handling

	12.2 Bean Provider’s responsibilities
	12.2.1 Application exceptions
	12.2.2 System exceptions
	12.2.2.1 javax.ejb.NoSuchEntityException

	12.3 Container Provider responsibilities
	12.3.1 Exceptions from an enterprise bean’s business methods
	12.3.2 Exceptions from container-invoked callbacks
	12.3.3 javax.ejb.NoSuchEntityException
	12.3.4 Non-existing session object
	12.3.5 Exceptions from the management of container-managed transactions
	12.3.6 Release of resources
	12.3.7 Support for deprecated use of java.rmi.RemoteException

	12.4 Client’s view of exceptions
	12.4.1 Application exception
	12.4.2 java.rmi.RemoteException
	12.4.2.1 javax.transaction.TransactionRolledbackException
	12.4.2.2 javax.transaction.TransactionRequiredException
	12.4.2.3 java.rmi.NoSuchObjectException

	12.5 System Administrator’s responsibilities
	12.6 Differences from EJB 1.0

	Chapter 13 Support for Distribution
	13.1 Overview
	13.2 Client-side objects in distributed environment
	13.3 Standard distribution protocol

	Chapter 14 Enterprise bean environment
	14.1 Overview
	14.2 Enterprise bean’s environment as a JNDI naming context
	14.2.1 Bean Provider’s responsibilities
	14.2.1.1 Access to enterprise bean’s environment
	14.2.1.2 Declaration of environment entries

	14.2.2 Application Assembler’s responsibility
	14.2.3 Deployer’s responsibility
	14.2.4 Container Provider responsibility

	14.3 EJB references
	14.3.1 Bean Provider’s responsibilities
	14.3.1.1 EJB reference programming interfaces
	14.3.1.2 Declaration of EJB references in deployment descriptor

	14.3.2 Application Assembler’s responsibilities
	14.3.3 Deployer’s responsibility
	14.3.4 Container Provider’s responsibility

	14.4 Resource factory references
	14.4.1 Bean Provider’s responsibilities
	14.4.1.1 Programming interfaces for resource factory references
	14.4.1.2 Declaration of resource factory references in deployment descriptor
	14.4.1.3 Standard resource factory types

	14.4.2 Deployer’s responsibility
	14.4.3 Container provider responsibility
	14.4.4 System Administrator’s responsibility

	14.5 Deprecated EJBContext.getEnvironment() method

	Chapter 15 Security management
	15.1 Overview
	15.2 Bean Provider’s responsibilities
	15.2.1 Invocation of other enterprise beans
	15.2.2 Resource access
	15.2.3 Access of underlying OS resources
	15.2.4 Programming style recommendations
	15.2.5 Programmatic access to caller’s security context
	15.2.5.1 Use of getCallerPrincipal()
	15.2.5.2 Use of isCallerInRole(String roleName)
	15.2.5.3 Declaration of security roles referenced from the bean’s code

	15.3 Application Assembler’s responsibilities
	15.3.1 Security roles
	15.3.2 Method permissions
	15.3.3 Linking security role references to security roles

	15.4 Deployer’s responsibilities
	15.4.1 Security domain and principal realm assignment
	15.4.2 Assignment of security roles
	15.4.3 Principal delegation
	15.4.4 Security management of resource access
	15.4.5 General notes on deployment descriptor processing

	15.5 EJB Client Responsibilities
	15.6 EJB Container Provider’s responsibilities
	15.6.1 Deployment tools
	15.6.2 Security domain(s)
	15.6.3 Security mechanisms
	15.6.4 Passing principals on EJB calls
	15.6.5 Security methods in javax.ejbEJBContext
	15.6.6 Secure access to resource managers
	15.6.7 Principal mapping
	15.6.8 System principal
	15.6.9 Runtime security enforcement
	15.6.10 Audit trail

	15.7 System Administrator’s responsibilities
	15.7.1 Security domain administration
	15.7.2 Principal mapping
	15.7.3 Audit trail review

	Chapter 16 Deployment descriptor
	16.1 Overview
	16.2 Bean Provider’s responsibilities
	16.3 Application Assembler’s responsibility
	16.4 Deployer’s responsibilities
	16.5 Container Provider’s responsibilities
	16.6 Deployment descriptor DTD
	16.7 Deployment descriptor example

	Chapter 17 Ejb-jar file
	17.1 Overview
	17.2 Deployment descriptor
	17.3 Class files
	17.4 Deprecated in EJB 1.1
	17.4.1 ejb-jar Manifest
	17.4.2 Serialized deployment descriptor JavaBeans™ components

	Chapter 18 Runtime environment
	18.1 Bean Provider’s responsibilities
	18.1.1 APIs provided by Container
	18.1.2 Programming restrictions

	18.2 Container Provider’s responsibility
	18.2.1 Java 2 based Container
	18.2.1.1 Java 2 APIs requirements
	18.2.1.2 EJB 1.1 requirements
	18.2.1.3 JNDI 1.2 requirements
	18.2.1.4 JTA 1.0 requirements
	18.2.1.5 JDBC™ 2.0 extension requirements

	18.2.2 JDK™ 1.1 based Container
	18.2.2.1 JDK 1.1 APIs requirements
	18.2.2.2 EJB 1.1 requirements
	18.2.2.3 JNDI 1.2 requirements
	18.2.2.4 JTA 1.0 requirements
	18.2.2.5 JDBC 2.0 extension requirements

	18.2.3 Argument passing semantics

	Chapter 19 Responsibilities of EJB Roles
	19.1 Bean Provider’s responsibilities
	19.1.1 API requirements
	19.1.2 Packaging requirements

	19.2 Application Assembler’s responsibilities
	19.3 EJB Container Provider’s responsibilities
	19.4 Deployer’s responsibilities
	19.5 System Administrator’s responsibilities
	19.6 Client Programmer’s responsibilities

	Chapter 20 Enterprise JavaBeans™ API Reference
	package javax.ejb
	package javax.ejb.deployment

	Chapter 21 Related documents
	Appendix A Features deferred to future releases
	Appendix B Frequently asked questions
	B.1 Client-demarcated transactions
	B.2 Inheritance
	B.3 Entities and relationship
	B.4 Finder methods for entities with container-managed persistence
	B.5 JDK 1.1 or Java 2
	B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction
	B.7 How to obtain database connections
	B.8 Session beans and primary key
	B.9 Copying of parameters required for EJB calls within the same JVM

	Appendix C Revision History
	C.1 Changes since Release 0.8
	C.2 Changes since Release 0.9
	C.3 Changes since Release 0.95
	C.4 Changes since 1.0
	C.5 Changes since 1.1 Draft 1
	C.6 Changes since 1.1 Draft 2
	C.7 Changes since EJB 1.1 Draft 3

