
Jini™ Entry Specification
 to
ir
A Jini™ entry provides a way to store a collection of related objects in a way amenable
simple exact-match searches. This specification describes the types involved and the
operational semantics, including matching semantics
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Entry Specification—1.0

Contents
1. Entries and Templates . 1

1.1 Operations . 1

1.2 Entry . 2

1.3 Serializing Entry Objects . 2

1.4 UnusableEntryException . 3

1.5 Templates and Matching . 5

1.6 Serialized Form . 6
Page iii

Page iv Jini™ Entry Specification–1.0

Entries and Templates 1
Entries are designed to be used in distributed algorithms for which exact-

match lookup semantics are useful. An entry is a typed set of objects, each of

which may be tested for exact match with a template.

1.1 Operations
A service that uses entries will support methods that let you use entry objects.

In this document we will use the term “operation” for such methods. There are

three types of operations:

◆ Store Operations—operations that store one or more entries, usually for

future matches.

◆ Match Operations—operations that search for entries that match one or more

templates.

◆ Fetch Operations—operations that return one or more entries.

It is possible for a single method to provide more than one of the operation

types: for example, consider a method that returns an entry that matches a

given template. Such a method can be logically split into two operation types

(match and fetch), so any statements made in this specification about either

operation type would apply to the appropriate part of the method’s behavior.
Page 1

1

1.2 Entry

An entry is a typed group of object references represented by a class that

implements the marker interface net.jini.core.entry.Entry . Two

different entries have the same type if and only if they are of the same class.

package net.jini.core.entry;
public interface Entry extends java.io.Serializable { }

For the purpose of this specification, the term “field” when applied to an entry

will mean fields that are public, non-static, non-transient, and non-final. Other

fields of an entry are not affected by entry operations. In particular, when an

entry object is created and filled in by a fetch operation, only the public non-

static, non-transient, and non-final fields of the entry are set. Other fields are

not affected, except as set by the class’s no-arg constructor.

Each Entry class must provide a public no-arg constructor. Entries may not

have fields of primitive type (int , boolean , etc.), although the objects they

refer to may have primitive fields and non-public fields. For any type of

operation, an attempt to use a malformed entry type that has primitive fields

or does not have a no-arg constructor throws IllegalArgumentException .

1.3 Serializing Entry Objects
Entry objects are typically not stored directly by an entry-using service (one

that supports one or more entry operations). The client of the service will

typically turn an Entry into an implementation-specific representation that

includes a serialized form of the entry’s class and each of the entry’s fields.

(This transformation is typically not explicit, but done by a client-side proxy

object for the remote service.) It is these implementation-specific forms that are

typically stored and retrieved from the service. These forms are not directly

visible to the client, but their existence has important effects on the operational

contract. The semantics of this section apply to all operation types, whether the

above assumptions are true or not for a particular service.

Each entry has its fields serialized separately. In other words, if two fields of

the entry refer to the same object (directly or indirectly), the serialized form

that is compared for each field will have a separate copy of that object. This is

only true of different fields of an entry; if an object graph of a particular field

refers to the same object twice, the graph will be serialized and reconstituted

with a single copy of that object.
Page 2 Jini™ Entry Specification–1.0

1

A fetch operation returns an entry that has been created using the entry type’s

no-arg constructor, and whose fields have been filled in from such a serialized

form. Thus, if two fields, directly or indirectly, refer to the same underlying

object, the fetched entry will have independent copies of the original

underlying object.

This behavior, although not obvious, is both logically correct, and practically

advantageous. Logically, the fields can refer to object graphs, but the entry is

not itself a graph of objects, and so should not be reconstructed as one. An

entry (relative to the service) is a set of separate fields, not a unit of its own.

From a practical standpoint, viewing an entry as a single graph of objects

requires a matching service to parse and understand the serialized form,

because the ordering of objects in the written entry will be different from that

in a template that can match it.

The serialized form for each field is a java.rmi.MarshalledObject object

instance, which provides an equals method that conforms to the above

matching semantics for a field. MarshalledObject also attaches a codebase

to class descriptions in the serialized form, so classes written as part of an

entry can be downloaded by a client when they are retrieved from the service.

In a store operation, the class of the entry type itself is also written with a

MarshalledObject , ensuring that it, too, may be downloaded from a

codebase.

1.4 UnusableEntryException

A net.jini.core.entry.UnusableEntryException will be thrown if

the serialized fields of an entry being fetched cannot be deserialized for any

reason:

package net.jini.core.entry;
public class UnusableEntryException extends Exception {

public Entry partialEntry ;
public String[] unusableFields ;
public Throwable[] nestedExceptions ;
public UnusableEntryException(Entry partial,

String[] badFields, Throwable[] exceptions) {…}
public UnusableEntryException(Throwable e) {…}

}

The partialEntry field will refer to an entry of the type that would have

been fetched, with all the usable fields filled in. Fields whose deserialization

caused an exception will be null and have their names listed in the
Page 3

1

unusableFields string array. For each element in unusableFields , the

corresponding element of nestedExceptions will refer to the exception that

caused the field to fail deserialization.

If the retrieved entry is corrupt in such a way as to prevent even an attempt at

field deserialization (such as being unable to load the exact class for the entry),

partialEntry and unusableFields will both be null , and

nestedExceptions will be a single element array with the offending

exception.

The kinds of exceptions that can show up in nestedExceptions are:

◆ ClassNotFoundException : The class of an object that was serialized

cannot be found.

◆ InstantiationException : An object could not be created for a given

type.

◆ IllegalAccessException : The field in the entry was either inaccessible

or final .

◆ java.io.ObjectStreamException : The field could not be deserialized

because of object stream problems.

◆ java.rmi.RemoteException : When a RemoteException is the nested

exception of an UnusableEntryException , it means that a remote

reference in the entry’s state is no longer valid (more below). Remote errors

associated with a method that is a fetch operation (such as being unable to

contact a remote server) are not reflected by UnusableEntryException ,

but in some other way defined by the method (typically by the method

throwing RemoteException itself).

Generally speaking, storing a remote reference to a non-persistent remote

object in an entry is risky. Because entries are stored in serialized form, entries

stored in an entry-based service will typically not participate in the garbage

collection that keeps such references valid. However, if the reference is not

persistent because the referenced server does not export persistent references,

that garbage collection is the only way to ensure the ongoing validity of a

remote reference. If a field contains a reference to a non-persistent remote

object, either directly or indirectly, it is possible that the reference will no

longer be valid when it is deserialized. In such a case, the client code must

decide whether to remove the entry from the entry-fetching service, to store

the entry back into the service, or to leave the service as it is.
Page 4 Jini™ Entry Specification–1.0

1

In the 1.2 Java™ Development Kit (JDK) software, activatable object references

fit this need for persistent references. If you do not use a persistent type, you

will have to handle the above problems with remote references. You may

choose instead to have your entries store information sufficient to look up the

current reference rather than putting actual references into the entry.

1.5 Templates and Matching
Match operations use entry objects of a given type, whose fields can either

have values (references to objects) or wildcards (null references). When

considering a template T as a potential match against an entry E, fields with

values in T must be matched exactly by the value in the same field of E.

Wildcards in T match any value in the same field of E.

The type of E must be that of T, or be a subtype of the type of T, in which case

all fields added by the subtype are considered to be wildcards. This enables a

template to match entries of any of its subtypes. If the matching is coupled

with a fetch operation, the fetched entry must have the type of E.

The values of two fields match if MarshalledObject.equals returns true
for their MarshalledObject instances. This will happen if the bytes

generated by their serialized form match, ignoring differences of serialization

stream implementation (such as blocking factors for buffering). Class version

differences that change the bytes generated by serialization will cause objects

not to match. Neither entries nor their fields are matched using the

Object.equals method or any other form of type-specific value matching.

You can store an entry that has a null -valued field, but you cannot match

explicitly on a null value in that field, because null signals a wildcard field.

If you have a field in an entry that may be variously null or not, you can set

the field to null in your entry. If you need to write templates that distinguish

between set and un-set values for that field, you can (for example) add a

Boolean field that indicates whether the field is set, and use a Boolean value

for that field in templates.

An entry that has no wildcards is a valid template.
Page 5

1

1.6 Serialized Form
The serialVersionUID of UnusableEntryException is

-2199083666668626172L. The only serialized fields are the declared public

fields.
Page 6 Jini™ Entry Specification–1.0

	Jini™ Entry Specification
	A Jini™ entry provides a way to store a collection...
	Contents
	1. Entries and Templates 1
	1.1 Operations 1
	1.2 Entry 2
	1.3 Serializing Entry Objects 2
	1.4 UnusableEntryException 3
	1.5 Templates and Matching 5
	1.6 Serialized Form 6

	Entries and Templates
	1
	1.1 Operations
	1.2 Entry
	1.3 Serializing Entry Objects
	1.4 UnusableEntryException
	1.5 Templates and Matching
	1.6 Serialized Form

