
Jini™ Distributed Event
Specification
ed

st to
ns

rfaces
The Distributed Event and Notification system defines a set of interfaces and associat
conventions and protocols that allow objects in different JavaTM virtual machines, perhaps
located on different physical machines, to identify state changes that could be of intere
other objects, allow registration of interest in those state changes, and send notificatio
when those state changes occur to all who have registered interest. Along with the
interfaces and conventions are a set of classes that allow programmers to use the inte
to construct distributed programs using the event and notification model.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0

January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Distributed Event Specification—1.0

Contents
1. Introduction . 1

1.1 Distributed Events and Notifications. 1

1.2 Goals and Requirements . 2

1.3 Dependencies . 3

1.4 Comments . 3

2. The Basic Interfaces . 5

2.1 Entities Involved. 6

2.2 Overview of the Interfaces and Classes 7

2.3 Details of the Interfaces and Classes 9

2.4 Sequence Numbers, Leasing and Transactions 15

2.5 Serialized Forms . 16

3. Third-party objects . 19

3.1 Store-and-Forward agents . 20

3.2 Notification Filters . 22

3.3 Notification Mailboxes. 23
Page iii

3.4 Compositionality . 24

4. Integration with JavaBeans™ Components 27

4.1 Differences with the JavaBeans Component Event Model 28

4.2 Making a JavaBeans Component Event out of a Distributed

Event . 30
Page iv Jini™ Distributed Event Specification–1.0

Introduction 1
The purpose of the distributed event interfaces specified in this document is to

allow an object in one Java™ virtual machine (JVM) to register interest in the

occurrence of some event occurring in an object in some other JVM, perhaps

running on a different physical machine, and to receive a notification when an

event of that kind occurs.

1.1 Distributed Events and Notifications
Programs based on an object reacting to a change of state somewhere outside

the object are common in a single address space. Such programs are often used

for interactive applications in which user actions are modeled as events to

which other objects in the program react. Delivery of such local events can be

assumed to be well-ordered, very fast, predictable and reliable. Further, the

entity interested in the event can be assumed to always want to know about

the event as soon as the event has occurred.

The same style of programming is useful in distributed systems, where the

object reacting to an event is in a different JVM, perhaps on a different physical

machine, from the one on which the event occurred. Just as in the single-JVM

case, the logic of such programs is often reactive, with actions occurring in

response to some change in state that has occurred elsewhere.

A distributed event system has a different set of characteristics and

requirements than a single-address-space event system. Notifications of events

from remote objects may arrive in different orders on different clients, or may

not arrive at all. The time it takes for a notification to arrive may be long (in
Page 1

1

comparison to the time for computation at either the object that generated the

notification or the object interested in the notification). There may be occasions

in which the object wishing the event notification does not wish to have that

notification as soon as possible, but only on some schedule determined by the

recipient. There may even be times when the object that registered interest in

the event is not the object to which a notification of the event should be sent.

Unlike the single address space notion of an event, a distributed event cannot

be guaranteed to be delivered in a timely fashion. Because of the possibilities

of network delays or failures, the notification of an event may be delayed

indefinitely and even lost in the case of a distributed system.

Indeed, there are times in a distributed system where the object of a

notification may actively desire that the notification be delayed. In systems that

allow object activation (such as is allowed by Java Remote Method Invocation

(RMI) in the Java™ Development Kit, version 1.2 (JDK1.2), an object may wish

to be able to find out if an event occurred, but not want that notification to

cause an activation of the object if it is otherwise quiescent. In such cases, the

object receiving the event may wish the notification to be delayed until the

object requests notification delivery, or until the object has been activated for

some other reason.

Central to the notion of a distributed notification is the ability to place a third-

party object between the object that generates the notification and the party

that ultimately wishes to receive the notification. Such third parties, which can

be strung together in arbitrary ways, allow ways of off-loading notifications

from objects, implementing various delivery guarantees, storing of

notifications until needed or desired by a recipient, and the filtering and re-

routing of notifications. In a distributed system in which full applications are

made up of components assembled to produce an overall application, the third

party may be more than a filter or storage spot for a notification; in such

systems it is possible that the third party is the final intended destination of the

notification.

1.2 Goals and Requirements
The requirements of this set of interfaces are to:

◆ Specify an interface that can be used to send a notification of the occurrence

of the event

◆ Specify the information that must be contained in such a notification
Page 2 Jini™ Distributed Event Specification–1.0

1

In addition, the fact that the interfaces are designed to be used by objects in

different virtual machines, perhaps separated by a network, imposes other

requirements, including:

◆ Allowing various degrees of assurance on delivery of a notification

◆ Support for different policies of scheduling notification

◆ Explicitly allowing the interposition of objects that will collect, hold, filter,

and forward notifications

Notice that there is no requirement for a single interface that can be used to

register interest in a particular kind of event. Given the wide variety of kinds

of events, the way in which interest in such events can be indicated may vary

from object to object. This document will talk about a model that lies behind

the system’s notion of such a registration, but the interfaces used to accomplish

such a registration are not open to general description.

1.3 Dependencies
This document relies on the following other specifications:

• Java Remote Method Invocation Specification

• Jini™ Distributed Leasing Specification

1.4 Comments
Please direct comments to jini-comments@java.sun.com .
Page 3

1

Page 4 Jini™ Distributed Event Specification–1.0

The Basic Interfaces 2
The basic interfaces presented in this chapter define a protocol that can be used

by one object to register interest in a kind of state change in another object, and

to receive a notification of an occurrence of that kind of state change, either

directly or through some third-party, that is specified by the object at the time

of registration. The protocol is meant to be as simple as possible. No attempt is

made to indicate the reliability or the timeliness of the notifications; such

guarantees are not part of the protocol but instead are part of the

implementation of the various objects involved.

In particular, the purpose of these interfaces is:

◆ To show the information needed in any method that allows registration of

interest in the occurrence of a kind of event in an object

◆ To provide an example of an interface that allows the registration of interest

in such events

◆ To specify an interface that can be used to send a notification of the

occurrence of the event

Implicit in the event registration and notification is the idea that events can be

classified into kinds. Registration of interest indicates the kind of event that is

of interest, while a notification indicates that an instance of that kind of event

has occurred.
Page 5

2

2.1 Entities Involved
An event is something that happens in an object, corresponding to some change

in the abstract state of the object. Events are abstract occurrences that are not

directly observed outside of an object, and may not correspond to a change in

the actual state of the object that advertises the ability to register interest in the

event. However, an object may choose to export an identification of a kind of

event and allow other objects to indicate interest in the occurrence of events of

that kind; this indicates that the abstract state of the object includes the notion

of this state changing. The information concerning what kinds of events occur

within an object can be exported in a number of ways, including identifiers for

the various events or methods allowing registration of interest in that kind of

event.

An object is responsible for identifying the kinds of events that can occur

within that object, allowing other objects to register interest in the occurrence

of such events, and generating RemoteEvent objects that are sent as

notifications to the objects that have registered interest when such events occur.

Registration of interest is not temporally open ended, but is limited to a given

duration using the notion of a lease. Full specification of the way in which

leasing is used is contained in the Jini™ Distributed Leasing Specification.

The basic, concrete objects involved in a distributed event system are:

◆ The object that registers interest in an event

◆ The object in which an event occurs (referred to as the event generator)

◆ The recipient of event notifications (referred to as a remote event listener)

An event generator is an object that has some kinds of abstract state changes that

might be of interest to other objects, and allows other objects to register interest

in those events. This is the object that will generate notifications when events

of this kind occur, sending those notifications to the event listeners that were

indicated as targets in the calls that registered interest in that kind of event.

A remote event listener is an object that is interested in the occurrence of some

kinds of events in some other object. The major function of a remote event

listener is to receive notifications of the occurrence of an event in some other

object (or set of objects).
Page 6 Jini™ Distributed Event Specification–1.0

2

A remote event is an object that is passed from an event generator to a remote

event listener to indicate that an event of a particular kind has occurred. At a

minimum, a remote event contains information about the kind of event that

has occurred, a reference to the object in which the event occurred, and a

sequence number allowing identification of the particular instance of the event.

A notification will also include an object that was supplied by the object that

registered interest in the kind of event as part of the registration call.

2.2 Overview of the Interfaces and Classes
The event and notification interfaces introduced here define a single basic type

of entity, a set of requirements on the information that needs to be handed to

that entity, and some supporting interfaces and classes. All of the classes and

interfaces defined in this specification are in the net.jini.core.event
package.

The basic type is defined by the interface RemoteEventListener . This

interface requires certain information to be passed in during the registration of

interest in the kind of event that the notification is indicating; while there is no

single interface that defines how to register interest in such events the ways in

which such information could be communicated will be discussed.

The supporting interfaces and classes define a RemoteEvent object, an

EventRegistration object used as an identifier for registration, and a set of

exceptions that can be generated.

The RemoteEventListener is the receiver of RemoteEvent s, which signal

that a particular kind of event has occurred. A RemoteEventListener is

defined by an interface that contains a single method, notify , which informs

interested listeners that an event has occurred. This method returns no value,

and has parameters that contain enough information to allow the method call

to be idempotent. In addition, this method will return information that was

passed in during the registration of interest in the event, allowing the

registrant, the object that registered interest with the event generator, to

associate arbitrary information or actions with the notification.

The RemoteEventListener interface extends from the Remote interface, so

the methods defined in RemoteEventListener are remote methods and

objects supporting these interfaces will be passed by RMI, by reference. Other

objects defined by the system will be local objects, passed by value in the

remote calls.
Page 7

2

The first of these supporting classes is RemoteEvent , which is sent to indicate

that an event of interest has occurred in the event generator. The basic form of

a RemoteEvent contains:

◆ An identifier for the kind of event in which interest has been registered

◆ A reference to the object in which the event occurred

◆ A sequence number identifying the instance of the event type

◆ An object that was passed in, as part of the registration of interest in the

event by the registrant

These RemoteEvent notification objects are passed to a

RemoteEventListener as a parameter to the RemoteEventListener
notify method.

The EventRegistration class defines an object that returns the information

needed by the registrant, and is intended to be the return value of remote event

registration calls. Instances of the EventRegistration class contain an

identifier for the kind of event, the current sequence number of the kind of

event, and a Lease object for the registration of interest.

While there is no single interface that allows for the registration of event

notifications, there are a number of requirements that would be put on any

such interface if it wished to conform with the remote event registration model.

In particular, any such interface should reflect:

◆ Event registrations are bounded in time, in a way that allows those

registrations to be renewed when necessary. This can easily be reflected by

returning, as part of an event registration, a lease for that registration.

◆ Notifications need not be delivered to the entity that originally registered

interest in the event. The ability to have third-party filters greatly enhances

the functionality of the system. The easiest way to allow such functionality

is to allow the specification of the RemoteEventListener to receive the

notification as part of the original registration call.

◆ Notifications can contain a MarshalledObject supplied by the original

registrant, allowing the passing of arbitrary information (including a closure

that is to be run on notification) as part of the event notification; so the

registration call should include a MarshalledObject that is to be passed

as part of the RemoteEvent .
Page 8 Jini™ Distributed Event Specification–1.0

2

2.3 Details of the Interfaces and Classes

2.3.1 The RemoteEventListener Interface

The RemoteEventListener interface needs to be implemented by any object

that wants to receive a notification of a RemoteEvent from some other object.

The object supporting the RemoteEventListener interface does not have to

be the object that originally registered interest in the occurrence of an event. To

allow the notification of an event’s occurrence to be sent to an entity other than

the one that registered with the event generator, the registration call needs to

accept a destination parameter, that indicates the object to which the

notification should be sent. This destination must be an object which

implements the RemoteEventListener interface.

The RemoteEventListener interface extends the Remote interface

(indicating that it is an interface to a Remote object) and the

java.util.EventListener interface. This latter interface is used in the

Java Abstract Window Toolkit (AWT) and JavaBeans™ components to indicate

that an interface is the recipient of event notifications. The

RemoteEventListener interface consists of a single method, notify :

public interface RemoteEventListener extends Remote,
java.util.EventListener

{

 void notify(RemoteEvent theEvent)
throws UnknownEventException, RemoteException;

}

The notify method has a single parameter of type RemoteEvent that

encapsulates the information passed as part of a notification. The

RemoteEvent base class extends the class java.util.EventObject that is

used in both JavaBeans components and AWT components to propagate event

information.The notify method returns nothing, but can throw exceptions.
Page 9

2

2.3.2 The RemoteEvent Class

The public part of the RemoteEvent class is defined as:

public class RemoteEvent extends java.util.EventObject {
public RemoteEvent(Object source,

 long eventID,
 long seqNum,
 MarshalledObject handback)

public Object getSource();
public long getID();
public long getSequenceNumber();
public MarshalledObject getRegistrationObject();

}

The abstract state contained in a RemoteEvent object includes: a reference to

the object in which the event occurred, a long which identifies the kind of

event relative to the object in which the event occurred, a long which indicates

the sequence number of this instance of the event kind, and a

MarshalledObject that is to be handed back when the notification occurs.

The combination of the event identifier and the object reference of the event

generator obtained from the RemoteEvent object should uniquely identify the

event type. If this type is not one in which the RemoteEventListener has

registered interest (or in which someone else has registered interest on behalf

of the RemoteEventListener object), an UnknownEventException may be

generated as a return from the remote event listener’s notify method1.

On receipt of an UnknownEventException , the caller of the notify method

is allowed to cancel the lease for the combination of the

RemoteEventListener instance and the kind of event that was contained in

the notify call.

The sequence number obtained from the RemoteEvent object is an increasing

value that can act as a hint to the number of occurrences of this event relative

to some earlier sequence number. Any object that generates a RemoteEvent is

required to insure that for any two RemoteEvent objects with the same event

identifier, the sequence number of those events differ if and only if the

RemoteEvent objects are a response to different events. This guarantee is

required to allow notification calls to be idempotent. A further guarantee is

1. There are cases where the UnknownEventException may not be appropriate, even when the notification
is for a combination of an event and a source that is not expected by the recipient. Objects that act as event
mailboxes for other objects, for example, may be willing to accept any sort of notification from a particular
source until explicitly told otherwise.
Page 10 Jini™ Distributed Event Specification–1.0

2

that if two RemoteEvent s, a and b, come from the same source and have the

same event identifier, then a occurred before b if and only if the sequence

number of a is lower than the sequence number of b.

A stronger guarantee can be made by a service that generates RemoteEvent s,

in which sequence numbers are guaranteed to not only be unique but strictly

increasing. This guarantees that, if RemoteEvent a has sequence number m
and RemoteEvent b has sequence number m + 1 , with a and b coming from

the same source and having the same event identifier, then the receiver can be

assured that there was no event of the same type from that source that

occurred between the events that caused a and b. This guarantee is referred to

as “strict ordering of the sequence numbers”. Note that this guarantee does not

tell the receiver anything about the number of events that could have occurred

between the events that caused a and b if there is a gap of more than 1

between the sequence numbers.

An even stronger guarantee is possible for those generators of RemoteEvent s

that can support it. This guarantee states that not only do sequence numbers

increase, but they are not skipped. In such a case, if RemoteEvent a and b
have the same source and the same event identifier, and a has sequence

number m and b has sequence number n where m is not equal to n, then if m <
n there were exactly n-m-1 events of the same event type between the event

that triggered a and the event that triggered b. Such sequence numbers are said

to be “fully ordered”.

There are interactions between the generation of sequence numbers for a

RemoteEvent object and the ability to see events that occur within the scope

of a transaction. Those interactions are discussed later in section 2.5.

The common intent of a call to the notify method is to allow the recipient to

find out that an occurrence of a kind of event has taken place. The call to the

notify method is synchronous to allow the party making the call to know if

the call succeeded. However, it is not part of the semantics of the call that the

notification return can be delayed while the recipient of the call reacts to the

occurrence of the event. Simply put, the best strategy on the part of the

recipient is to note the occurrence in some way and then return from the

notify method as quickly as possible.
Page 11

2

2.3.3 The UnknownEventException

The UnknownEventException is thrown when the recipient of a

RemoteEvent does not recognize the combination of the event identified and

the source of the event as something in which it is interested. Throwing this

exception has the effect of asking the sender to not send further notifications of

this kind of event from this source in the future. This exception is defined as:

public class UnknownEventException extends Exception{
public UnknownEventException(){

super();
}
pubic UnknownEventException(String reason){

super(reason);
}

}

2.3.4 An Example EventGenerator Interface

Registering interest in an event can take place in a number of ways, depending

on how the event generator identifies its internal events. There is no single way

of identifying the events that are reasonable for all objects and all kinds of

events, and so there is no single way of registering interest in events. Because

of this, there is no single interface for registration of interest.

However, the interaction between the event generator and the remote event

listener does require that some initial information be passed from the registrant

to the object that will make the call to its notify method.

The EventGenerator interface is an example of the kind of interface that

could be used for registration of interest in events that can (logically) occur

within an object. This is a remote interface that contains one method.

public interface EventGenerator extends Remote
{
 public EventRegistration register(long evId,

 MarshalledObject handback,
 RemoteEventListener toInform,
 long leaseLength)

throws UnknownEventException, RemoteException;

}

Page 12 Jini™ Distributed Event Specification–1.0

2

The one method, register , allows registration of interest in the occurrence of

an event inside the object. The method takes an evID which is used to identify

the class of events, an object that is handed back as part of the notification, a

reference to an RemoteEventListener object, and a long integer indicating

the leasing period for the interest registration.

The evID is a long integer that is obtained by a means that is not specified

here. It may be returned by other interfaces or methods, or be defined by

constants associated with the class or some interface implemented by the class.

If an evID is supplied to this call that is not recognized by the

EventGenerator object, an UnknownEventException is thrown. The use of

an long to identify kinds of events is used only for illustrative purposes--

objects may identify events by any number of mechanisms, including

identifiers, using separate methods to allow registration in different events, or

allowing various sorts of pattern matching to determine what events are of

interest.

The second argument of the register method is a MarshalledObject that

is to be handed back as part of the notification generated when an event of the

appropriate type occurs. This object is known to the remote event listener, and

should contain any information that is needed by the listener to identify the

event and to react to the occurrence of that event. This object will be passed

back as part of the event object that is passed as an argument to the notify

method. By passing a MarshalledObject into the register method, the re-

creation of the object is postponed until the object is needed.

The ability to pass a MarshalledObject as part of the event registration

should be common to all event registration methods. While there is no single

method for identifying events in an object, the use of the pattern in which the

remote event listener passes in an object that is passed back as part of the

notification is central to the model of remote events presented here.

The third argument of the EventGenerator interface’s register method is

a RemoteEventListener implementation that is to receive event

notifications. The listener may be the object that is registering interest, or it

may be some other RemoteEventListener , such as a third-party event

handler or notification “mailbox.” The ability to specify some third party object

to handle the notification is also central to this model of event notification, and

the capability of specifying the recipient of the notification is also common to

all event registration interfaces.
Page 13

2

The final argument to the register method is a long indicating the requested

duration of the registration. This period is a request, and the period of interest

actually granted by the event generator may be different. The actual duration

of the registration lease is returned as part of the Lease object included in the

EventRegistration object.

The return value of the register method is an object of the

EventRegistration class. This object contains a long identifying the kind of

event in which interest was registered (relative to the object granting the

registration), a reference to the object granting the registration, and a Lease
object.

2.3.5 The EventRegistration Class

Objects of the class EventRegistration are meant to encapsulate the

information needed by the client to identify a notification as a response to a

registration request and to maintain that registration request. It is not

necessary for a method that allows event interest registration to return an

object of type EventRegistration . However, the class does show the kind

of information that needs to be returned in the event model.

The public parts of this class look like

public class EventRegistration implements java.io.Serializable {

 public EventRegistration(long eventID,
Object eventSource,
Lease eventLease,
long seqNum);

 public long getID();
 public Object getSource();
 public Lease getLease();
 public long getSequenceNumber();
}

The getID method returns the identifier of the event in which interest was

registered. This, combined with the return value returned by getSource , will

uniquely identify the kind of event. This information is needed to hand off to

third-party repositories to allow them to recognize the event and route it

correctly if they are to receive notifications of those events.
Page 14 Jini™ Distributed Event Specification–1.0

2

The result of the EventRegistration getID method should be the same as

the result of the RemoteEvent getID method, while the result of the

EventRegistration getSource method should be the same as the

RemoteEvent getSource method.

The getSource method returns a reference to the event generator, which is

used in combination with the result of the getID method to uniquely identify

an event.

The getLease returns the Lease object for this registration. It is used in lease

maintenance.

The getSequenceNumber method returns the value of the sequence number

on the event kind that was current when the registration was granted, allowing

comparison with the sequence number in any subsequent notifications.

2.4 Sequence Numbers, Leasing and Transactions
There are cases in which event registrations are allowed within the scope of a

transaction, in such a way that the notifications of these events can occur

within the scope of the transaction. This means that other participants in the

transaction may see some events whose visibility is hidden by the transaction

from entities outside of the transaction. This has an effect on the generation of

sequence numbers and the duration of an event registration lease.

An event registration that occurs within a transaction is considered to be

scoped by that transaction. This means that any occurrence of the kind of event

of interest that happens as part of the transaction will cause a notification to be

sent to the recipients indicated by the registration that occurred in the

transaction. Such events must have a separate event identification number (the

long returned in the RemoteEvent getID method) to allow third-party

store-and-forward entities to distinguish between an event that happens within

a transaction and those that happen outside of the transaction. Notifications of

these events will not be sent to entities that registered interest in this kind of

event outside the scope of the transaction until and unless the transaction is

committed.

Because of this isolation requirement of transactions, notifications sent from

inside a transaction will have a different sequence number than the

notifications of the same events would have outside of the transaction. Within

a transaction, all RemoteEvent objects for a given kind of event are given a

sequence number relative to the transaction, even if the event that triggered the
Page 15

2

RemoteEvent occurs outside of the scope of the transaction (but is visible

within the transaction). One counter-intuitive effect of this is that an object

could register for notification of some event, E, both outside a transaction and

within a transaction, and receive two distinct RemoteEvent objects with

different sequence numbers for the same event. One of the RemoteEvent
objects would contain the event with a sequence number relative to the

transaction, while the other would contain the event with a sequence number

relative to the source object.

The other effect of transactions on event registrations is to limit the duration of

a lease. A registration of interest in some kind of event that occurs within the

scope of a transaction should be leased in the same way as other event interest

registrations. However, the duration of the registration is the minimum of the

length of the lease and the duration of the transaction. Simply put, when the

transaction ends (either because of a commit or a rollback) the interest

registration also ends. This is true even if the lease for the event registration

has not expired and no call has been made to cancel the lease.

 It is still reasonable to lease event interest registrations, even in the scope of a

transaction, because the requested lease may be shorter than the transaction in

question. However, no such interest registration will survive the transaction in

which it occurs.

2.5 Serialized Forms
The serialVersionUID of RemoteEvent is 1777278867291906446. The

serialized fields are:

◆ Object source - the event source

◆ long eventID - the event id

◆ long seqNum - the event sequence number

◆ MarshalledObject handback - the registration object

The serialVersionUID of UnknownEventException is

5563758083292687048. There are no serialized fields.

The serialVersionUID of EventRegistration is 4055207527458053347.

The serialized fields are:

◆ Object source - the event source
Page 16 Jini™ Distributed Event Specification–1.0

2

◆ long eventID - the event id

◆ Lease lease - the granted lease

◆ long seqNum - the current event sequence number
Page 17

2

Page 18 Jini™ Distributed Event Specification–1.0

Third-party objects 3
One of the basic reasons for the design presented in the previous chapter was

to allow the production of third-party objects, or “agents”, that could be used

to enhance a system, built using distributed events and notifications. In this

chapter we will look at three examples of such agents, which allow various

forms of enhanced functionality without changing the basic interfaces. Each of

these agents may be thought of as distributed event adapters.

The first example we will look at is a store-and-forward agent. The purpose of

this object is to act on behalf of the event generator, allowing the event

generator to send the notification to one entity (the store-and-forward agent)

that will forward the notification to all of the event listeners, perhaps with a

particular policy that allows a failed delivery attempt to be re-tried at some

later date.

The second example, which we will call a notification filter, is an object that may

be local to either the event generator or the event listener. This agent gets the

notification, and spawns a thread that will respond to the notification, using a

method supplied by the object which originally registered interest in events of

that kind.

The final object is a notification mailbox. This mailbox will store notifications for

another object (a remote event listener) until the that object requests that the

notifications be delivered. This design allows the listener object that registered

interest in the event type to select the times at which a notification can be

delivered, without losing any notifications that would have otherwise have

been delivered.
Page 19

3

3.1 Store-and-Forward agents
A store-and-forward agent enables the object generating a notification to hand

off the actual notification of those who have registered interest to a separate

object.

This agent can implement various policies for reliability. For example, the

agent could try to deliver the notification once (or a small number of times)

and, if that call fails, not try again. Or the agent could try and, on notification

failure, try again at a pre-set or computed interval of time for some known

period of time. Either way, the object in which the event occurred could avoid

worrying about the delivery of notifications, only needing to notify the store-

and-forward agent (which might be on the same machine and hence more

reliably available).

From the point of view of the remote event listener, there is no difference

between the notification delivered by a store-and-forward agent and one

delivered directly from the object in which the event that generated the

original notification occurred. This transparency allows the decision to use a

store-and-forward agent to be made by the object generating the notification,

independent of the object receiving the notification. There is no need for

distributed agreement; all that is required is that the object using the agent

know about the agent.

A store-and-forward agent is used by an object that generates notifications.

When an object registers interest in receiving notifications of a particular event

type, the object receiving that registration will pass the registration along to the

store-and-forward agent. This agent will keep track of which objects need to be

notified of events that occur in the original object.

When an event of interest occurs in the original object, it need send only a

single notification to the store-and-forward agent. This notification can return

immediately, with processing further happening inside the store-and-forward

agent. The object in which the event of interest occurred will now be freed

from informing those who registered interest in the event.

Notification is taken over by the store-and-forward agent. This agent will now

consult the list of entities that have registered interest in the occurrence of an

event, and send a notification to those entities. Note that these might not be the

same as the objects that registered interest in the event; the object that should

receive the event notification is specified during the event interest registration.
Page 20 Jini™ Distributed Event Specification–1.0

3

The store-and-forward agent might be able to make use of network-level

multicast (assuming that the RemoteEvent object to be returned is identical

for multiple recipients of the notify call), or might send a separate

notification to each of the entities that have registered interest. Different store-

and-forward agents could implement different levels of service, from a simple

agent that sends a notification and doesn’t care if the notification is actually

delivered (for example, one that simply caught RemoteException s and

discards them) to agents that will repeatedly try to send the notification,

perhaps using different fall-back strategies, until the notification is known to

be successful or some number of tries have been attempted.

The store-and-forward agent does not need to know anything about the kinds

of events that are triggering the notifications that it stores and forwards. All

that is needed is that the agent implement the RemoteEventListener
interface and some interface that allows the object producing the initial

notification to register with the agent. This combination of interfaces allows

such a service to be offered to any number of different objects, without having

to know anything about the possible changes in abstract state that might be of

interest in those objects.

Note that the interface used by the object generating the original notifications

to register with the store-and-forward agent does not need to be standard.

Different qualities of service concerning the delivery of notifications may

require different registration protocols. Whether or not the relationship

between the notification originator and the store-and-forward agent is leased

or not is also up to the implementation of the agent. If the relationship is

leased, lease renewal requests would need to be forwarded to the agent.

In fact, an expected pattern of implementation would be to place a store-and-

forward agent on every machine on which objects were running that could

produce events. This agent, which could be running in a separate JVM (on

hardware that supported multiple processes) could off-load the notification-

generating objects from the need to send those notifications to all objects that

had registered interest. It would also allow for consistent handling of delivery

guarantees across all objects on a particular machine. Since the store-and-

forward agent is on the same machine as those objects using the agent, the

possibilities of partial failure brought about by network problems (which

wouldn’t effect communication between objects on the same machine) and

server machine failure (which would induce total, rather than partial, failure in
Page 21

3

this case) are limited. This allows the reliability of notifications to be off-loaded

to these agents instead of being a problem that needs to be solved by all of the

objects using the notification interfaces.

A store-and-forward agent does require an interface that allows the agent to

know what notifications it is supposed to send, the destinations of those

notifications, and on whose behalf those notifications are being sent. Since it is

the store-and-forward agent that is directing notification calls to the individual

recipients, the agent will also need to hold the Object (if any) that was passed

in during interest registration to be returned as part of the RemoteEvent
object.

In addition, the store-and-forward agent could be the issuer of Lease objects

to the object registering interest in some event. This could off-load any lease

renewal calls from the original recipient of the registration call, which would

only need to know when there were no more interest registrations of a

particular event kind remaining in the store-and-forward agent.

3.2 Notification Filters
Similar to a store-and-forward agent is a notification filter, which can be used

by either the generator of a notification or the recipient to intercept notification

calls, do processing on those calls, and act in accord with that processing

(perhaps forwarding the notification, or even generating new notifications).

Again, such filters are made possible because of the uniform signature of the

method used to send all notifications, and because of the ability of an object to

indicate the recipient of a notification when registering for a notification. This

uniformity and indirection allow the composition of third-party entities. A

filter could receive events from a store-and-forward agent without the client of

the original registration knowing about the store-and-forward agent or the

server in which the notifications are generated knowing about the filter. This

composition can be extended further; store-and-forward agents could use other

store-and-forward agents, and filters can themselves receive notifications from

other filters.

3.2.1 Notification Multiplexing

One example of such a filter is one that can be used to concentrate notifications

in a way to help minimize network traffic. If a number of different objects on a

single machine are all interested in some particular kind of event, it could
Page 22 Jini™ Distributed Event Specification–1.0

3

make sense to create a notification filter that would register interest in the

event. When a notification was received by the filter, it would forward the

notification to each of the (machine local) objects that had expressed interest.

3.2.2 Notification Demultiplexing

Another example of such a filter is an object that generates an event in

response to a series of events that it has received. There might be an object that

is only interested in some particular sequence of events in some other object or

group of objects. This object could register interest in all of the different kinds

of events, asking that the notifications be sent to a filter. The purpose of the

filter is to receive the notifications and, when the notifications fit the desired

pattern (as determined by some class passed in from the object that has asked

the notifications be sent to the filter), generate some new notification that is

delivered to the client object.

3.3 Notification Mailboxes
The purpose of a notification mailbox is to store the notifications sent to an

object until such time as the object for which the notifications were intended

desires delivery.

Such delivery can be in a single batch, with the mailbox storing any

notifications received after the last request for delivery until the next request is

received. Alternatively, a notification mailbox can be viewed as a faucet, with

notifications turned on (delivering any that have arrived since the notifications

were last turned off) and then delivering any subsequent notifications to an

object immediately, until told by that object to hold the notifications.

The ability to have notification mailboxes is important in a system that allows

objects to be deactivated (for example, to be saved to stable storage in such a

way that they are no longer taking up any computing resource) and re-

activated. The usual mechanism for activating an object is a method call. Such

activation can be expensive both in time and computing resources; it is often

too expensive to be justified for the receipt of what would otherwise be an

asynchronous event notification. An event mailbox can be used to insure that

an object will not be activated merely to handle an event notification.

Use of a mailbox is simple; the object registering interest in receiving an event

notification simply gives the mailbox as the place to send the notifications. The

mailbox can be made responsible for renewing leases while an object is
Page 23

3

inactive, and for storing all (or the most recent, or the most recent and the

count of other) notifications for each type of event of interest to the object.

When the object indicates that it wishes to receive any notifications from the

mailbox, those notifications can be delivered. Delivery can continue until the

object requests storage to occur again, or storage can resume automatically.

Such a mailbox is a type of filter. In this case, however, the mailbox filters over

time rather than over events. A pure mailbox need not be concerned with the

kinds of notifications that it stores. It simply holds the RemoteEvent objects

until they are wanted.

It is because of mailboxes and other client-side filters that the information

returned from an event registration needs to include a way of identifying the

event and the source of the event. Such client-side agents need a way of

distinguishing between the events they are expected to receive and those that

should generate an exception to the sender. This distinction cannot be made

without some simple way of identifying the event and the object of origin.

3.4 Compositionality
All of the above third-party entities work because of two simple features of the

RemoteEventListener interface:

• There is a single method, notify , that passes a single type of object,

RemoteEvent (or a subtype of that object) for all notifications

• There is a level of indirection in delivery allowed by the separate

specification of a recipient in the registration method that allows the

client of that call to specify a third-party object to contact for notifications

The first of these features allows the composition of notification handlers to be

“chained,” beginning with the object that generates the notification. Since the

ultimate recipient of the event is known to be expecting the event through a

call to the single notify method, other entities can be composed and

interposed in the call chain as long as they produce this call with the right

RemoteEvent object (which will include a field indicating the object at which

the notification originated). Because there is a single method call for all

notifications, third-party handlers can be produced to accept notifications of

events without having to know the kind of event that has occurred, or any

other detail of the event.
Page 24 Jini™ Distributed Event Specification–1.0

3

Compositionality in the other direction (driven by the recipient of the

notification) is enabled by allowing the object registering interest to indicate

the first in an arbitrary chain of third-parties to receive the notification. Thus

the recipient can build a chain of filters, mailboxes, and forwarding agents to

allow any sort of delivery policy that object desires, and then register interest

with an indication that all notifications should be delivered to the beginning of

that chain. From the point of view of the object in which the notification

originates, the series of objects the notification then goes through is unknown

and irrelevant.
Page 25

3

Page 26 Jini™ Distributed Event Specification–1.0

Integration with JavaBeans™
Components 4
As noted in the second chapter, distributed notification differs from local

notification (like the notification used in user interface programming) in a

number of ways. In particular, a distributed notification may be delayed,

dropped, or otherwise fail between the object in which the event occurred and

the object that is the ultimate recipient of the notification of that event.

Additionally, a distributed event notification may require handling by a

number of third-party objects between the object interested in the notification

and the object that generates the notification. These third-party objects need to

be able to handle arbitrary events, and so from the point of view of the type

system all of the events must be delivered in the same fashion.

While this model differs from the event model used for user interface tools

such as the AWT or Java™ Foundation Classes (JFC), such a difference in

model is to be expected. The event model for such user interface toolkits was

never meant to allow the components that communicate using these local

event notifications to be distributed across virtual or physical machines;

indeed, such systems assume that the event delivery will be fast, reliable, and

not open to the kinds of partial failures or delays that are common in the

distributed case.

In between the requirements of a local event model and the distributed event

model presented here is the event model used by software components to

communicate changes in state. The delegation event model, which is the event

model for JavaBeans™ components, written in the Java programming

language, is built as an extension of the event model used for AWT and JFC.

This is completely appropriate, as most JavaBeans components will be located
Page 27

4

in a single address space, and can assume the communication of events

between components will meet the reliability and promptness requirements of

that model.

However, it is also possible that JavaBeans components will be distributed

across virtual, and even physical, machines. In such a case, the assumption that

the event propagation will be either fast or reliable can lead to subtle program

errors that will not be found until the components are deployed (perhaps on a

slow or unreliable network). In such cases, an event and notification model

such as that found in this specification is more appropriate.

One approach would be to add a second event model to the JavaBeans

component specification, which dealt only with distributed events. While this

would have the advantage of exporting the difference between local and

remote components to the component builder, it would also complicate the

JavaBeans component model unnecessarily.

In this chapter, we show how the current distributed event model can be fit

into the existing Java platform’s event model. While the mapping is not perfect

(nor can it be, since there are essential differences between the two models), it

will allow the current tools used to assemble JavaBeans components to be used

when those components are distributed.

4.1 Differences with the JavaBeans Component Event Model
The JavaBeans component event model is derived from the event model used

in the AWT in JDK 1.2. The model is characterized by:

• Propagation of event notifications from sources to listeners by Java

technology method invocations on the target listener objects

• Identification of the kind of event notification by using a different

method in the listener being called for each kind of event

• Encapsulation of any state associated with an event notification in an

object that inherits from java.util.EventObject and which is passed

as the sole argument of the notification method

• Identification of event sources by the convention of those sources

defining registration methods, one for each kind of event in which

interest can be registered, that follow a particular design pattern
Page 28 Jini™ Distributed Event Specification–1.0

4

The distributed event and notification model we have defined is similar in a

number of ways:

• Distributed event propagation is accomplished by the use of Remote
methods

• State passed as part of the notification is encapsulated in an object that is

derived from java.util.EventObject and is passed as the sole

argument of the notification method

• The RemoteEventListener interface extends the more basic

java.util.EventListener interface

However, there are also differences between the JavaBeans component event

model and the distributed event model proposed here:

• Identification of the kind of event is accomplished by passing an

identifier from the source of the notification to the listener; the

combination of the object in which the event occurred and the identifier

uniquely identify the kind of event

• Notifications are accomplished through a single method, notify , defined

in the RemoteEventListener interface rather than by a different

method for each kind of event

• Registration of interest in a kind of event is for a (perhaps renewable)

period of time, rather than being for a period of time bound by the active

cancellation of interest

• Objects registering interest in an event can, as part of that registration,

include an object that will be passed back to the recipient of the

notification when an event of the appropriate type occurs

Most of these differences in the two models can be directly traced to the

distributed nature of the events and notifications defined in this specification.

For example, reliability and recovery of the distributed notification model is

based on the ability of creating third-party objects, such as those discussed in

the last chapter, which can provide those guarantees. However, for those third-

party objects to be able to work in general cases, the signature for a notification

must be the same for all of the event notifications that are to be handled by that

third-party. If we were to follow the JavaBeans component model of having a

different method for each kind of event notification, third party objects would

need to support every possible notification method including those that had

not yet been defined when the third-party object was implemented. This is

clearly impossible.
Page 29

4

Note that this is not a weakness in the JavaBeans component event model,

merely a difference required by the different environments in which the event

models are assumed to be used. The JavaBeans component event model, like

the AWT model on which it is based, assumes that the event notification is

being passed between objects in the same address space. Such notifications do

not need various delivery and reliability guarantees—delivery can be

considered to be (virtually) instantaneous, and can be assumed to be fully

reliable.

Being able to send event notifications through a single Remote method also

requires that the events be identified in some way other than the signature of

the notification delivery method. This leads to the inclusion of an event

identifier in the event object. Since the generation of these event identifiers

cannot be guaranteed to be globally unique across all of the objects in a

distributed system, they must be made relative to the object in which they are

generated, thus requiring the combination of the object of origin and the event

identifier to completely identify the kind of event.

The sequence number being included in the event object is also an outgrowth

of the distributed nature of the interfaces. Since no distributed mechanism can

guarantee reliability, there is always the possibility that a particular notification

will not be delivered, or could be delivered (by some notification agent) more

than once. This is not a problem in the single address-space environment of

AWT and JavaBeans components, but requires the inclusion of a sequence

number in the distributed case.

4.2 Making a JavaBeans Component Event out of a Distributed Event
To translate between the event models is fairly straightforward. All that is

required is:

• Allow an event listener to map from a distributed event listener to the

appropriate call to a notification method

• Allow creation of a RemoteEvent from the event object passed in the

JavaBeans component event notification method

• Allow creation of a JavaBeans component event object from a

RemoteEvent object without loss of information

Each of these is fairly straightforward, and can be accomplished in a number of

ways.
Page 30 Jini™ Distributed Event Specification–1.0

4

More complex matings of the two systems could be undertaken, including

third-party objects that kept track of the interest registrations made by remote

objects, and implemented the corresponding JavaBeans component event

notification methods by making the remote calls to the

RemoteEventListener notify method with properly constructed

RemoteEvent objects. Such objects would need to keep track of the event

sequence numbers, and would need to deal with the additional failure modes

that are inherent in distributed calls. However, their implementation would be

fairly straightforward, and would fit into the JavaBeans component model of

event adaptors.
Page 31

4

Page 32 Jini™ Distributed Event Specification–1.0

	Jini™ Distributed Event Specification
	The Distributed Event and Notification system defi...
	Contents
	1. Introduction 1
	1.1 Distributed Events and Notifications 1
	1.2 Goals and Requirements 2
	1.3 Dependencies 3
	1.4 Comments 3

	2. The Basic Interfaces 5
	2.1 Entities Involved 6
	2.2 Overview of the Interfaces and Classes 7
	2.3 Details of the Interfaces and Classes 9
	2.4 Sequence Numbers, Leasing and Transactions 15
	2.5 Serialized Forms 16

	3. Third-party objects 19
	3.1 Store-and-Forward agents 20
	3.2 Notification Filters 22
	3.3 Notification Mailboxes 23
	3.4 Compositionality 24

	4. Integration with JavaBeans™ Components 27
	4.1 Differences with the JavaBeans Component Event...
	4.2 Making a JavaBeans Component Event out of a Di...

	Introduction

	1.1 Distributed Events and Notifications
	1.2 Goals and Requirements
	1.3 Dependencies
	1.4 Comments
	The Basic Interfaces

	2.1 Entities Involved
	2.2 Overview of the Interfaces and Classes
	2.3 Details of the Interfaces and Classes
	2.3.1 The RemoteEventListener Interface
	2.3.2 The RemoteEvent Class
	2.3.3 The UnknownEventException
	2.3.4 An Example EventGenerator Interface
	2.3.5 The EventRegistration Class

	2.4 Sequence Numbers, Leasing and Transactions
	2.5 Serialized Forms
	Third-party objects

	3.1 Store-and-Forward agents
	3.2 Notification Filters
	3.2.1 Notification Multiplexing
	3.2.2 Notification Demultiplexing

	3.3 Notification Mailboxes
	3.4 Compositionality
	Integration with JavaBeans™ Components

	4.1 Differences with the JavaBeans Component Event...
	4.2 Making a JavaBeans Component Event out of a Di...

