
Jini™ Architecture Specification
s
ign of

r of a
the
A Jini™ system is a Java™ technology-centered, distributed system designed for
simplicity, flexibility, and federation. The Jini architecture provides mechanisms for
machines or programs to enter into a federation where each machine or program offer
resources to other members of the federation and uses resources as needed. The des
the Jini architecture exploits the ability to move Java programming language code from
machine to machine and unifies, under the notion of a service, everything from the use
Jini system to the software available on the machines to the hardware components of 
machines themselves.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300
fax 650 969-9131

Revision 1.0
January 25, 1999



Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR").  Your limited right to use this
Specification does not grant you any right or license to Sun IPR.  A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION.  SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION.  NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo,  Sun Microsystems, Jini, JavaSpaces,  JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Architecture Specification—1.0



Contents
1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Goals of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Environmental Assumptions . . . . . . . . . . . . . . . . . . . . . . . 3

2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Component Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Service Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Registering the Printer Service . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. For More Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Page iii



Page iv Jini™ Architecture Specification–1.0



Introduction 1
This document describes the high-level architecture of a Jini™ software system,

defines the different components that make up the system, characterizes the

use of those components, discusses some of the component interactions, and

gives an example. This document identifies those parts of the system that are

necessary infrastructure, those that are part of the programming model, and

those that are optional services which can live within the system.

1.1 Goals of the System
A Jini system is a distributed system based on the idea of federating groups of

users and the resources required by those users. The overall goal is to turn the

network into a flexible, easily-administered tool with which resources can be

found by human and computational clients. Resources can be implemented as

either hardware devices, software programs, or a combination of the two. The

focus of the system is to make the network a more dynamic entity that better

reflects the dynamic nature of the workgroup by enabling the ability to add

and delete services flexibly.

A Jini system consists of the following parts:

• A set of components that provides an infrastructure for federating services

in a distributed system

• A programming model that supports and encourages the production of reli-

able distributed services
Page 1



1

• Services that can be made part of a federated Jini system and which offer

functionality to any other member of the federation

While these pieces are separable and distinct, they are interrelated, which can

blur the distinction in practice. The components that make up the Jini technol-

ogy infrastructure make use of the Jini programming model; services that

reside within the infrastructure also use that model; and the programming

model is well supported by components in the infrastructure.

The end goals of the system span a number of different audiences; these goals

include the following:

• Enabling users to share services and resources over a network

• Providing users easy access to resources anywhere on the network while

allowing the network location of the user to change

• Simplifying the task of building, maintaining, and altering a network of

devices, software, and users

The Jini system extends the Java™ application environment from a single vir-

tual machine to a network of machines. The Java application environment pro-

vides a good computing platform for distributed computing because both code

and data can move from machine to machine. The environment has built-in

security that allows the confidence to run code downloaded from another

machine. Strong typing in the Java application environment enables identifying

the class of an object to be run on a virtual machine even when the object did

not originate on that machine. The result is a system in which the network sup-

ports a fluid configuration of objects which can move from place to place as

needed and can call any part of the network to perform operations.

The Jini architecture exploits these characteristics of the Java application envi-

ronment to simplify the construction of a distributed system. The Jini architec-

ture adds mechanisms that allow fluidity of all components in a distributed

system, extending the easy movement of objects to the entire networked sys-

tem.

The Jini technology infrastructure provides mechanisms for devices, services,

and users to join and detach from a network. Joining into and leaving a Jini

system is an easy and natural, often automatic, occurrence. Jini systems are far

more dynamic than is currently possible in networked groups where configur-

ing a network is a centralized function done by hand.
Page 2 Jini™ Architecture Specification–1.0



1

1.2 Environmental Assumptions
The Jini system federates computers and computing devices into what appears

to the user as a single system. It relies on the existence of a network of reason-

able speed connecting those computers and devices. Some devices require

much higher bandwidth and others can do with much less—displays and

printers are examples of extreme points. We assume the latency of the network

is reasonable.

We assume that each Jini technology-enabled device has some memory and

processing power. Devices without processing power or memory may be con-

nected to a Jini system, but those devices are controlled by another piece of

hardware and/or software, called a proxy, that presents the device to the Jini

system and which itself contains both processing power and memory. The

architecture for devices not equipped with a Java virtual machine (JVM) is dis-

cussed more fully in a separate document.

The Jini system is Java technology-centered. The Jini architecture gains much of

its simplicity from assuming that the Java programming language is the imple-

mentation language for components. The ability to dynamically download and

run code is central to a number of the features of the Jini architecture. How-

ever, the Java technology-centered nature of the Jini architecture depends on

the Java application environment rather than on the Java programming lan-

guage. Any programming language can be supported by a Jini system if it has

a compiler that produces compliant bytecodes for the Java programming lan-

guage.
Page 3



1

Page 4 Jini™ Architecture Specification–1.0



System Overview 2
2.1 Key Concepts
The purpose of the Jini architecture is to federate groups of devices and soft-

ware components into a single, dynamic distributed system. The resulting fed-

eration provides the simplicity of access, ease of administration, and support

for sharing that are provided by a large monolithic system while retaining the

flexibility, uniform response, and control provided by a personal computer or

workstation.

The architecture of a single Jini system is targeted to the workgroup. Members

of the federation are assumed to agree on basic notions of trust, administration,

identification, and policy. It is possible to federate Jini systems themselves for

larger organizations.

2.1.1 Services

The most important concept within the Jini architecture is that of a service. A

service is an entity that can be used by a person, a program, or another service.

A service may be a computation, storage, a communication channel to another

user, a software filter, a hardware device, or another user. Two examples of ser-

vices are printing a document and translating from one word-processor format

to some other.
Page 5



2

Members of a Jini system federate in order to share access to services. A Jini

system should not be thought of as sets of clients and servers, or users and pro-

grams, or even programs and files. Instead, a Jini system consists of services

that can be collected together for the performance of a particular task. Services

may make use of other services, and a client of one service may itself be a ser-

vice with clients of its own. The dynamic nature of a Jini system enables ser-

vices to be added or withdrawn from a federation at any time according to

demand, need, or the changing requirements of the workgroup using the sys-

tem.

Jini systems provide mechanisms for service construction, lookup, communica-

tion, and use in a distributed system. Examples of services include: devices

such as printers, displays, or disks; software such as applications or utilities;

information such as databases and files; and users of the system.

Services in a Jini system communicate with each other by using a service proto-
col, which is a set of interfaces written in the Java programming language. The

set of such protocols is open ended. The base Jini system defines a small num-

ber of such protocols which define critical service interactions.

2.1.2 Lookup Service

Services are found and resolved by a lookup service. The lookup service is the

central bootstrapping mechanism for the system and provides the major point

of contact between the system and users of the system. In precise terms, a

lookup service maps interfaces indicating the functionality provided by a ser-

vice to sets of objects that implement the service. In addition, descriptive

entries associated with a service allow more fine-grained selection of services

based on properties understandable to people.

Objects in a lookup service may include other lookup services; this provides

hierarchical lookup. Further, a lookup service may contain objects that encap-

sulate other naming or directory services, providing a way for bridges to be

built between a Jini Lookup service and other forms of lookup service. Of

course, references to a Jini Lookup service may be placed in these other naming

and directory services, providing a means for clients of those services to gain

access to a Jini system.

A service is added to a lookup service by a pair of protocols called discovery
and join—first the service locates an appropriate lookup service (by using the

discovery protocol), and then it joins it (by using the join protocol).
Page 6 Jini™ Architecture Specification–1.0



2

2.1.3 Java Remote Method Invocation (RMI)

Communication between services can be accomplished using Java Remote
Method Invocation (RMI). The infrastructure to support communication between

services is not itself a service that is discovered and used but is, rather, a part

of the Jini technology infrastructure. RMI provides mechanisms to find, acti-

vate, and garbage collect object groups.

Fundamentally, RMI is a Java-programming-language-enabled extension to tra-

ditional remote procedure call mechanisms. RMI allows not only data to be

passed from object to object around the network but full objects, including

code. Much of the simplicity of the Jini system is enabled by this ability to

move code around the network in a form that is encapsulated as an object.

2.1.4 Security

The design of the security model for Jini technology is built on the twin notions

of a principal and an access control list. Jini services are accessed on behalf of

some entity—the principal— which generally traces back to a particular user of

the system. Services themselves may request access to other services based on

the identity of the object that implements the service. Whether access to a ser-

vice is allowed depends on the contents of an access control list that is associ-

ated with the object.

2.1.5 Leasing

Access to many of the services in the Jini system environment is lease based. A

lease is a grant of guaranteed access over a time period. Each lease is negoti-

ated between the user of the service and the provider of the service as part of

the service protocol: A service is requested for some period; access is granted

for some period, presumably taking the request period into account. If a lease

is not renewed before it is freed—either because the resource is no longer

needed, the client or network fails, or the lease is not permitted to be

renewed—then both the user and the provider of the resource may conclude

the resource can be freed.

Leases are either exclusive or non-exclusive. Exclusive leases insure that no one

else may take a lease on the resource during the period of the lease; non-exclu-

sive leases allow multiple users to share a resource.
Page 7



2

2.1.6 Transactions

A series of operations, either within a single service or spanning multiple ser-

vices, can be wrapped in a transaction. The Jini Transaction interfaces supply a

service protocol needed to coordinate a two-phase commit. How transactions are

implemented—and indeed, the very semantics of the notion of a transac-

tion—is left up to the service using those interfaces.

2.1.7 Events

The Jini architecture supports distributed events. An object may allow other

objects to register interest in events in the object and receive a notification of

the occurrence of such an event. This enables distributed event-based pro-

grams to be written with a variety of reliability and scalability guarantees.

2.2 Component Overview
The components of the Jini system can be segmented into three categories:

infrastructure, programming model, and services. The infrastructure is the set of

components that enables building a federated Jini system, while the services

are the entities within the federation. The programming model is a set of inter-

faces that enables the construction of reliable services, including those that are

part of the infrastructure and those that join into the federation.

These three categories, though distinct and separable, are entangled to such an

extent that the distinction between them can seem blurred. Moreover, it is pos-

sible to build systems that have some of the functionality of the Jini system

with variants on the categories or without all three of them. But a Jini system

gains its full power because it is a system built with the particular infrastruc-

ture and programming models described, based on the notion of a service.

Decoupling the segments within the architecture allows legacy code to be

changed minimally to take part in a Jini system. Nevertheless, the full power of

a Jini system will be available only to new services that are constructed using

the integrated model.

A Jini system can be seen as a network extension of the infrastructure, pro-

gramming model, and services that made Java technology successful in the sin-

gle-machine case. These categories along with the corresponding components

in the familiar Java application environment are shown in Figure 1.
Page 8 Jini™ Architecture Specification–1.0



2

Figure 1: Jini Architecture Segmentation

2.2.1 Infrastructure

The Jini technology infrastructure defines the minimal Jini technology core.

The infrastructure includes the following:

• A distributed security system, integrated into RMI, which extends the Java

platform’s security model to the world of distributed systems

• The discovery and join protocols, service protocols that allow services (both

hardware and software) to discover, become part of, and advertise supplied

services to the other members of the federation

• The lookup service, which serves as a repository of services. Entries in the

lookup service are objects written in the Java programming language; these

objects can be downloaded as part of a lookup operation and act as local

proxies to the service that placed the code into the lookup service

The discovery and join protocols define the way a service of any kind becomes

part of a Jini system; RMI defines the base language within which the Jini ser-

vices communicate; the distributed security model and its implementation

define how entities are identified and how they get the rights to perform

actions on their own behalf and on the behalf of others; and the lookup service

reflects the current members of the federation and acts as the central market-

place for offering and finding services by members of the federation.

Infrastructure Programming Model Services

Java VM
RMI
Java Security

Java APIs
JavaBeans

JNDI
Enterprise Beans
JTS
...

...

Base
Java

Java
 +

Jini

Discovery/Join
Distributed Security
Lookup

Leasing
Transactions
Events

Printing
Transaction Manager

...
JavaSpaces™ Service
Page 9



2

2.2.2 Programming Model

The infrastructure both enables the programming model and makes use of it.

Entries in the lookup service are leased, allowing the lookup service to reflect

accurately the set of currently available services. When services join or leave a

lookup service, events are signaled, and objects that have registered interest in

such events get notifications when new services become available or old ser-

vices cease to be active. The programming model rests on the ability to move

code, which is supported by the base infrastructure.

Both the infrastructure and the services that use that infrastructure are compu-

tational entities that exist in the physical environment of the Jini system. How-

ever, services also constitute a set of interfaces which define communication

protocols that can be used by the services and the infrastructure to communi-

cate between themselves.

These interfaces, taken together, make up the distributed extension of the stan-

dard Java programming language model that constitutes the Jini programming

model. Among the interfaces that make up the Jini programming model are the

following:

• The leasing interface, which defines a way of allocating and freeing

resources using a renewable, duration-based model

• The event and notification interfaces, which are an extension of the event

model used by JavaBeans™ components to the distributed environment,

enable event-based communication between Jini services

• The transaction interfaces, which enable entities to cooperate in such a way

that either all of the changes made to the group occur atomically or none of

them occur

The lease interface extends the Java programming language model by adding

time to the notion of holding a reference to a resource, enabling references to

be reclaimed safely in the face of network failures.

The event and notification interfaces extend the standard event models used by

JavaBeans™ components and the Java application environment to the distrib-

uted case, enabling events to be handled by third-party objects while making

various delivery and timeliness guarantees. The model also recognizes that the

delivery of a distributed notification may be delayed.
Page 10 Jini™ Architecture Specification–1.0



2

The transaction interfaces introduce a light-weight, object-oriented protocol

enabling Jini applications to coordinate state changes. The transaction protocol

provides two steps to coordinate the actions of a group of distributed objects.

The first step is called the voting phase in which each object “votes” whether it

has completed its portion of the task and is ready to commit any changes it

made. In the second step, a coordinator issues a “commit” request to each

object.

The Jini Transaction protocol differs from most transaction interfaces in that it

does not assume that the transactions occur in a transaction processing system.

Such systems define mechanisms and programming requirements that guaran-

tee the correct implementation of a particular transaction semantics. The Jini

Transaction protocol takes a more traditional object-oriented view, leaving the

correct implementation of the desired transaction semantics up to the imple-

mentor of the particular objects that are involved in the transaction. The goal of

the transaction protocol is to define the interactions that such objects must

have to coordinate such groups of operations.

The interfaces that define the Jini programming model are used by the infra-

structure components where appropriate and by the initial Jini services. For

example, the lookup service makes use of the leasing and event interfaces: leas-

ing insures that services registered continue to be available, and events help

administrators discover problems and devices needing configuration. The Jav-

aSpaces™ service, one example of a Jini service, utilizes leasing and events,

and also supports the Jini Transaction protocol. The transaction manager can

be used to coordinate the voting phase of a transaction for those objects that

support transaction protocol.

It is not required that the implementation of a service use the Jini program-

ming model, but such services need to use that model for their interaction with

the Jini technology infrastructure. For example, every service interacts with the

Jini Lookup service by using the programming model; and whether a service

offers resources on a leased basis or not, the service’s registration with the

lookup service will be leased and will need to be periodically renewed.

The binding of the programming model to the services and the infrastructure is

what makes such a federation a Jini system as opposed to a collection of ser-

vices and protocols. The combination of infrastructure, service, and program-

ming model, all designed to work together and constructed using each other,

simplifies the overall system and unifies it in a way that makes it easier to

understand.
Page 11



2

2.2.3 Services

The Jini technology infrastructure and programming model are built to enable

services to be offered and found in the network federation. These services

make use of the infrastructure to make calls to each other, to discover each

other, and to announce their presence to other services and users.

Services appear programmatically as objects written in the Java programming

language, perhaps made up of other objects. A service has an interface which

defines the operations that can be requested of that service. Some of these

interfaces are intended to be used by programs, while others are intended to be

run by the receiver so that the service can interact with a user. The type of the

service determines the interfaces that make up that service and also define the

set of methods that can be used to access the service. A single service may be

implemented by using other services.

Example Jini services include the following:

• A printing service, which can print from Java applications and legacy appli-

cations

• A JavaSpaces™ service, which can be used for simple communication and

for storage of related groups of objects written in the Java programming lan-

guage

• A transaction manager, which enables groups of objects to participate in the

Jini Transaction protocol defined by the programming model

2.3 Service Architecture
Services form the interactive basis for a Jini system, both at the programming

and user interface levels. The details of the service architecture are best under-

stood once the Jini Discovery and Jini Lookup protocols are presented.

2.3.1 Discovery and Lookup Protocols

The heart of the Jini system is a trio of protocols called discovery, join, and

lookup. A pair of these protocols—discovery and join—occur when a device is

plugged in. Discovery occurs when a service is looking for a lookup service

with which to register. Join occurs when a service has located a lookup service
Page 12 Jini™ Architecture Specification–1.0



2

and wishes to join it. Lookup occurs when a client or user needs to locate and

invoke a service described by its interface type (written in the Java program-

ming language) and possibly, other attributes. The following diagram outlines

the discovery process.

Discovery/Join is the process of adding a service to a Jini system. A service

provider is the originator of the service—a device or software, for example.

First, the service provider locates a lookup service by multicasting a request on

the local network for any lookup services to identify themselves (discovery,

Figure 2). Then, a service object for the service is loaded into the lookup service

(join, Figure 3). This service object contains the Java programming language

interface for the service including the methods that users and applications will

invoke to execute the service, along with any other descriptive attributes.

Service
Provider

Client

Figure 2: Discovery

A service provider seeks a
lookup service

Lookup
Service

Service Attributes

Service Object

Service
Provider

Client

Figure 3: Join

A service provider registers a
Service Object and its Service
Attributes with the lookup service

Lookup
Service

Service Attributes

Service Object

Service Attributes

Service Object
Page 13



2

Services must be able to find a lookup service; however, a service may delegate

the task of finding a lookup service to a third party. The service is now ready to

be looked up and used, as shown in the following diagram (Figure 4).

A client locates an appropriate service by its type—that is, by its interface writ-

ten in the Java programming language—along with descriptive attributes

which are used in a user interface for the lookup service. The service object is

loaded into the client.

The final stage is to invoke the service, as shown in the following diagram (Fig-

ure 5).

The service object’s methods may implement a private protocol between itself

and the original service provider. Different implementations of the same ser-

vice interface can use completely different interaction protocols.

Service
Provider

Client

Figure 4: Lookup

Lookup
Service

Service Attributes

Service Object

A client requests a service by
Java type and, perhaps, other
service attributes. A copy of the
service object is moved to the
client and used by the client to
talk to the service

Service Object

Service
Provider

Client

Figure 5: Lookup

Lookup
Service

Service Attributes

Service Object

Service Object

The client interacts directly with
the Service Provider via the Ser-
vice Object
Page 14 Jini™ Architecture Specification–1.0



2

The ability to move objects and code from the service provider to the lookup

service and from there to the client of the service gives the service provider

great freedom in the communication patterns between the service and its cli-

ents. This code movement also ensures that the service object held by the client

and the service for which it is a proxy are always synchronized, because the

service object is supplied by the service itself. The client only knows that it is

dealing with an implementation of an interface written in the Java program-

ming language, so the code that implements the interface can do whatever is

needed to provide the service. Because this code came originally from the ser-

vice itself, the code can take advantage of implementation details of the service

known only to the code.

The client interacts with a service via a set of interfaces written in the Java pro-

gramming language. These interfaces define the set of methods that can be

used to interact with the service. Programmatic interfaces are identified by the

type system of the Java programming language, and services can be found in a

lookup service by asking for those that support a particular interface. Finding

a service this way ensures that the program looking for the service will know

how to use that service, because that use is defined by the set of methods that

are defined by the type.

Programmatic interfaces may be implemented either as RMI references to the

remote object that implements the service, as a local computation that provide

all of the service locally, or as some combination. Such combinations, called

smart proxies, implement some of the functions of a service locally and the

remainder through remote calls to a centralized implementation of the service.

A user interface can also be stored in the lookup service as an attribute of a

registered service. A user interface stored in the lookup service by a Jini service

is an implementation that allows the service to be directly manipulated by a

user of the system.

In effect, a user interface for a service is a specialized form of the service inter-

face that enables a program, such as a browser, to step out of the way and let

the human user interact directly with a service.

In situations where no lookup service can be found, a client could use a tech-

nique called peer lookup instead. In such situations, the client can send out the

same identification packet used by a lookup service to request service provid-

ers to register. Service providers will then attempt to register with the client as
Page 15



2

though it were a lookup service. The client can select those services it needs

from the registration requests it receives in response and drop or refuse the

rest.

2.3.2 Service Implementation

Objects that implement a service may be designed to run in a single address

space with other, helper, objects especially when there are certain location or

security-based requirements. Such objects make up an object group. An object

group is guaranteed to always reside in a single address space or virtual

machine when those objects are running. Objects that are not in the same object

group are isolated from each other, typically by running them in a different vir-

tual machine or address space.

A service may be implemented directly or indirectly by specialized hardware.

Such devices can be contacted by the code associated with the interface for the

service.

From the service client’s point of view, there is no distinction between services

that are implemented by objects on a different machine, services that are down-

loaded into the local address space, and services that are implemented in hard-

ware. All of these services will appear to be available on the network, will

appear to be objects written in the Java programming language, and, only as

far as correct functioning is concerned, one kind of implementation could be

replaced by another kind of implementation without change or knowledge by

the client (note that security permissions must be properly granted).
Page 16 Jini™ Architecture Specification–1.0



An Example 3
This example shows how a Jini printing service might be used by a digital

camera to print a high-resolution color image. It will start with the printer join-

ing an existing Jini system, being configured, and end with printing the image.

3.1 Registering the Printer Service
A printer that is either freshly connected to a Jini system or is powered up once

it has been connected to a Jini system grouping needs to discover the appropri-

ate lookup service and register with it. This is the discovery and join phase.

3.1.1 Discovering the Lookup Service

The basic operations of discovering the lookup service are implemented by a

Jini software class. An instance of this class acts as a mediator between devices

and services on one hand and the lookup service on the other. In this example

the printer first registers itself with a local instance of this class. This instance

then multicasts a request on the local network for any lookup services to iden-

tify themselves. The instance listens for replies and if there are any, passes to

the printer an array of objects that are proxies for the discovered lookup ser-

vices.
Page 17



3

3.1.2 Joining the Lookup Service

In order to register itself with the lookup service the printer needs first to cre-

ate a service object of the correct type for printing services. This object provides

the methods that users and applications will invoke to print documents. Also

needed is an array of LookupEntry  instances to specify the attributes that

describe the printer, such as that it can print in color or black & white, what

document formats it can print, possible paper sizes, and printing resolution.

The printer then calls the register  method of the lookup service object it

received during the discovery phase, passing it the printer service object and

the array of attributes. The printing service is now registered with the lookup

service.

3.1.3 Optional Configuration

At this point the printing service can be used, but the local system administra-

tor might want to add additional information about the printer in the form of

additional attributes, such as a local name for the service, information about its

physical location, and a list of who may access the service. The system admin-

istrator may also want to register with the device to receive notifications for

any errors that arise, such as when the printer is out of paper.

One way the system administrator could do this would be to use a special util-

ity program to pass this additional information to the service. In fact this pro-

gram might have received notification from the lookup service that a new

service was being added and then alerted the system administrator.

3.1.4 Staying Alive

When the printer registers with the Jini Lookup service it receives a lease. Peri-

odically the printer will need to renew this lease with the lookup service. If the

printer fails to renew the lease, then when the lease expires, the lookup service

will remove the entry for it, and the printer service will no longer be available.

3.2 Printing
Some services provide a user interface for interaction with them and others

rely on an application to mediate such interaction. This example assumes a

person has a digital camera that has taken a picture that they want to print on
Page 18 Jini™ Architecture Specification–1.0



3

a high-resolution printer. The first thing that the camera needs to do after it is

connected to the network is locate a Jini printing service. Once a printing ser-

vice has been located and selected, the camera can invoke methods to print the

image.

3.2.1 Locate the Lookup Service

Before the camera can use a Jini service it must first locate the Jini Lookup ser-

vice, just as the print service needed to in order to register itself. The camera

registers itself with a local instance of the Jini software class, LookupDiscov-
ery , which will notify the camera of all discovered lookup services.

3.2.2 Search for Printing Services

Finding an appropriate service requires passing a template that is used to

match and filter the set of existing services. The template specifies both the

type of the required service, which is the first filter on possible services, and a

set of attributes which is used to reduce the number of matching services if

there are several of the right type. In this example, the camera supplies a tem-

plate specifying the printer type and an array of attribute objects. The type of

each object specifies the attribute type and its fields specify values to be

matched. For each attribute, fields that should be matched, such as color print-

ing, are filled in; ones that don’t matter are left null. The Jini Lookup service is

passed this template and returns an array of all of the printing services that

match it. If there are several matching services, the camera may further filter

them—in this case perhaps to ensure high print resolution—and present the

user with the list of possible printers for choice. The final result is a single ser-

vice object for the printing service.

At this point the printing service has been selected, and the camera and the

printer service communicate directly with each other; the lookup service is no

longer involved.

3.2.3 Configuring the Printer

Before printing the image, the user may wish to configure the printer. This

might be done directly by the camera invoking the service object’s configure
method; this method may display a dialog box on the camera’s display with

which the user may specify printer settings. When the image is printed, the

service object sends the configuration information to the printer service.
Page 19



3

3.2.4 Requesting the Image be Printed

To print the image the camera calls the print method of the service object, pass-

ing it the image as an argument. The service object performs any necessary

preprocessing and sends the image to the printer service to be printed.

3.2.5 Registering for Notification

If the user wishes to be notified when the image has been printed, the camera

needs to register itself with the printer service using the service object. The

camera may also wish to register to be notified if the printer encounters any

errors.

3.2.6 Receiving Notification

When the printer has finished printing the image or encounters an error, it sig-

nals an event to the camera. When the camera receives the event it may notify

the user that the image has been printed or that an error has occurred.
Page 20 Jini™ Architecture Specification–1.0



For More Information 4
This document does not provide a full specification of Jini technology. Each of

the Jini technology components is specified in a companion document. In par-

ticular, the reader is directed to the following documents:

• The Java™ Remote Method Invocation Specification

• The Java™ Object Serialization Specification

• The Jini™ Discovery and Join Specification

• The Jini™ Device Architecture Specification

• The Jini™ Distributed Events Specification

• The Jini™ Distributed Leasing Specification

• The Jini™ Lookup Service Specification

• The Jini™ Lookup Attribute Schema Specification

• The Jini™ Entry Specification

• The Jini™ Transaction Specification
Page 21



4

Page 22 Jini™ Architecture Specification–1.0


	Jini™ Architecture Specification
	A Jini™ system is a Java™ technology-centered, dis...
	Contents
	1. Introduction 1
	1.1 Goals of the System 1
	1.2 Environmental Assumptions 3

	2. System Overview 5
	2.1 Key Concepts 5
	2.2 Component Overview 8
	2.3 Service Architecture 12

	3. An Example 17
	3.1 Registering the Printer Service 17
	3.2 Printing 18

	4. For More Information 21

	Introduction
	1.1 Goals of the System
	1.2 Environmental Assumptions
	System Overview

	2.1 Key Concepts
	2.1.1 Services
	2.1.2 Lookup Service
	2.1.3 Java Remote Method Invocation (RMI)
	2.1.4 Security
	2.1.5 Leasing
	2.1.6 Transactions
	2.1.7 Events

	2.2 Component Overview
	2.2.1 Infrastructure
	2.2.2 Programming Model
	2.2.3 Services

	2.3 Service Architecture
	2.3.1 Discovery and Lookup Protocols
	2.3.2 Service Implementation
	An Example


	3.1 Registering the Printer Service
	3.1.1 Discovering the Lookup Service
	3.1.2 Joining the Lookup Service
	3.1.3 Optional Configuration
	3.1.4 Staying Alive

	3.2 Printing
	3.2.1 Locate the Lookup Service
	3.2.2 Search for Printing Services
	3.2.3 Configuring the Printer
	3.2.4 Requesting the Image be Printed
	3.2.5 Registering for Notification
	3.2.6 Receiving Notification
	For More Information




