g ricrosy sleTmes

Sun Microsystems Inc.
Java Transaction Service (JTS)

This is a draft specification for Java Transaction Service (JTS). JTS specifies the
implementation of a transaction manager which supports the JTA specification [1] at
the high-level and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 Specification at the low-level.

JTS uses the CORBA OTS interfaces for interoperability and portability, which defines
a standard mechanism for any implementation that utilizes [IOP (Internet InterORB
Protocol) to generate and propagate transaction context between JTS Transaction
Managers.

Please send technical comments on this specification to:

its-spec@eng.sun.com

Copyright © 1997-1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

Susan Cheung
Version 0.95 March 01, 1999

Java Transaction Service

Copyright 1997-1999 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
perpetual, worldwide, limited license (without the right to sublicense) under SUN's intellectual property
rights that are essential to practice this specification for the limited purpose of creating and distributing
implementations of this specification, provided however, that such implementations do not derive from
any SUN source code or binary materials and do not include any SUN binary materials without an
appropriate and separate license from SUN. Other than this limited license, you acquire no right, title or
interest in or to this specification or any other SUN intellectual property. No right, title, or interest in or
to any trademarks, service marks, or trade names of SUN or SUN’s licensors is granted hereunder.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

This specification contains the proprietary information of SUN and may only be used in accordance with
the license terms set forth above.

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY

YOUAS ARESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION ORITS
DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Java, Enterprise JavaBeans, JDBC, and JDK are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Sun Microsystems Inc. 2 March 1, 1999

Java Transaction Service

Table of Contents

R 11 Yo [T £ P UUPRR 3
1.1 BACKGIrOUNGovviiiiiiiiiiiieiicee ettt 3
1.2 Target AUIENCEcoeeiiiiieeeeee et e e e e e e eeees 4

2. Transaction Manager FUNCHONAIILYccoooviiiiiiiiiiiiie e 5
2.1 Transaction MOAEloooiiiiiiiiii e 5
2.2 TranSaCtON CONEXEuuuiiiiiiiiiiiiiieiee e e e e e e e e e e e 5
2.3 Transaction Terminationccuvveveieiiiiuniiiirase e e e e e e e e e s 5
2.4 Transaction INtEGIILY........oeiiiieiiiiiiie e e 6

3. Transaction Manager Implementationcoooeviiiiiiiiiiiiin e 7
3.1 SUPPOIE FOr JTA e e e e e e 8
3.2 Java Mapping of CORBA Object Transaction Service (OTS) 8
3.3 Support for pre-JTA Resource Managerscccceeeeeeeeeeeeeeeeeeeeeeeeennnnnnns 9
3.4 Support for CORBA APPIICALIONSuvviiiiiiiiiiiiiieeeeeeeeeeeeeeee 10
3.5 Transaction Manager Interoperabilityoooeeiiiiiiiiiiiii 10
3.6 ORB 1dentifiCatiONccoeiiiiiiiiiiiii et 10

3.6.1 TransactionService INterfacecccceeeviiiieeeeeeeeieeeeeee 11

4. Related DOCUMENTS........uuiiiiiiiiiiei e e e e e e e e e e ee e ettt s s e e e e e e e e e e e e e eeeeeensssnnnn s 13

ApPPeNdiX A - Change HISTONYouiiiiiiiiiiiiii e 14

Sun Microsystems Inc. 3 March 1, 1999

Java Transaction Service

1 Introduction

This is the Java Transaction Service (JTS) Specification. JTS specifies the
implementation of a transaction manager which supports the JTA specification [1] at
the high-level and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 Specification at the low-level.

JTS uses the CORBA OTS interfaces for interoperability and portability (that is,
CosTransactions and CosTSPortability). These interfaces define a standard mechanism
for any implementation that utilizes IIOP (Internet InterORB Protocol) to generate and
propagate transaction context between JTS Transaction Managers. Note, this also
permits the use of other API over the IIOP transport mechanism to be used; for
example, RMI over IIOP is allowed.

1.1 Background

Distributed transaction services in Enterprise Java middleware involve five players: the
transaction manager, the application server, the resource manager, the application
program, and the communication resource manager. Each player contributes to the
distributed transaction processing system by implementing different sets of transaction
APIs and functionalities.

» A transaction manager provides the services and management functions
required to support transaction demarcation, transactional resource
management, synchronization, and transaction context propagation.

» An application server (or TP monitor) provides the infrastructure required to
support the application run-time environment which includes transaction state
management. An example of such an application server is an EJB [5] server.

« A resource manager (through a resource addmesvides the application
access to resources. The resource manager implements a transaction resource
interface that is used by the transaction manager to communicate transaction
association, transaction completion, and recovery work. An example of such a
resource manager is a relational database server.

» A component-based transactional application that operates in a modern
application server environment relies on the application server to provide
transaction management support through declarative transaction attribute
settings—for example, an application developed using the industry standard
Enterprise JavaBeans (EJB) component architecture. In addition, other stand-

1.A Resource Adapter is a system level software library that is used by an application server or client to
connect to a Resource Manager. A Resource Adapter is typically specific to a Resource Manager. It is avail-
able as a library and is used within the address space of the client using it. Examples of Resource adapters
are: JDBC driver to connect to relational databases, ODMG driver to connect to an object database, JRFC
library to connect to SAP R/3 system. A resource adapter may provide additional services besides the con-
nection API.

Sun Microsystems Inc. 4 March 1, 1999

Java Transaction Service

alone Java client programs may wish to control their transaction boundaries
using a high-level interface provided by the application server or the transaction
manager.

* A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests. The JTS document does not specify requirements pertaining to
communication. We assume the CRM is present to support transaction
propagation as defined in the CORBA OTS and GIOP specifications.

From the transaction manager’s perspective, the actual implementation of the
transaction services does not need to be exposed; only high-level interfaces need to be
defined to allow transaction demarcation, resource enlistment, synchronization, and
recovery process to be driven by the users of the transaction services.

The diagram below shows the high-level API exposed from the transaction manager
that implements the JTS specification. The dotted-line in the Transaction Manager box
illustrates the private interface within the TM to allow the JTA support module to
interact with the low-level OTS implementation. Section 2 specifies the Transaction
Manager external functionality. Section 3 specifies the Transaction Manager
implementation requirements and considerations.

javax.transaction.
TransactionManager

EJB

Application JDBC, JMS

Server

Resource
Manager

Application

Transaction

P Manager AN
ijxva#transa?lon. Transaction \ javax.transaction.xa.
serTransaction Service XAResource
Implementation
(0TS 1.1)
A
Inbound tx Outbound tx
1IOP Communication Resource IIOP >
Manager (CRM)

Sun Microsystems Inc. 5 March 1, 1999

Java Transaction Service
1.2 Target Audience

This document is intended for implementors of Transaction Managers and application
servers written in the Jaaprogramming language.

Sun Microsystems Inc. 6 March 1, 1999

Java Transaction Service

2

Transaction Manager Functionality

This section describes the transaction manager functionality through support of the
Java Transaction API (JTA). The implementation of the Java mapping of OMG OTS
1.1 interfaces are not exposed to the clients of the Transaction Manager. The clients of
the Transaction Manager are those who use the JTA interfaces to access the Transaction
Manager functionality.

The Transaction Manager provides the following services:

» Provides applications and application servers the ability to control the scope and
duration of a transaction.

 Allows multiple application components to perform work that is part of a single,
atomic transaction.

* Provides the ability to associate global transactions with work performed by
transactional resources.

» Coordinates the completion of global transactions across multiple resource
managers.

» Supports transaction synchronization.

» Provides the ability to interoperate with other Transaction Manager
implementations using the CORBA ORB/TS standard interfaces. (This is
transparent to clients of the Transaction Manager.)

2.1 Transaction Model

The Transaction Manager is required to support distributed flat transactions. A flat
transaction cannot have a child transaction. Flat transactions are also known as top-
level transactions in OTS terminology. A Transaction is started by issuing a request to
begin a transaction.

Support for nested transactions is not required.

2.2 Transaction Context

The Transaction Manager maintains the association of a thread’s transaction context
with a transaction. A thread’s transaction context is eith#ror refers to a specific

global transaction. The Transaction Manager allows multiple threads to be associated
with the same transaction concurrently, in the same JVM or in multiple JVMs.

Transaction context is implicitly transmitted by the implementation of the transaction
service at the ORB and wire-protocol level. The transaction context propagation is
performed transparent to the Transaction Manager clients (application and application
server).

2.3 Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transaction.
Typically, a transaction is terminated by the client originating the transaction. In the

Sun Microsystems Inc. 7 March 1, 1999

Java Transaction Service

EJB component model environment, the Transaction Manager must allow transactions
to be terminated by any thread within the same JVM of the transaction originator.

Application components that rely on an application server to manage their transaction
states are not allowed to terminate transactions. An application server can force the
transaction to be rolled back after the application encounters an unexpected error
condition in the form of a Java exception. The Transaction Manager is not required to
monitor the failures of the resource managers participating in the transaction.

2.4 Transaction Integrity

The Transaction Manager is required to guarantee data integrity equivalent to that
provided by the interfaces which support the X/Open DTP transaction model. The
Transaction Manager must guarantee the checked transaction behavior—a transaction
cannot be committed until all computations acting on behalf of the transaction have
completed.

Sun Microsystems Inc. 8 March 1, 1999

Java Transaction Service

3 Transaction Manager Implementation

This section describes the implementation choices from a Transaction Manager
implementor’s view. As shown in the diagram below, the Transaction Manager must
implement the JTA interfaces to support the application server and the resource
managers. Support for JDBC 1.0 driver and non-JTA aware resource managers is
optional. Support for direct CORBA clients, such as recoverable servers and

transactional objects, is also optional.

i E—
Resource| | |Resourcy | ¢———
Managef [] Adapter javax.transaction.x. ITA < |
- XAResource org.omg. Java
CosTransactign.
Java Resource Mapping
Appli Application € . Support
ppii- javax.transaction. ¢
cations Server | TransactionManagdr 0
CORBA
custom e _ 0TS 1.1
JDBC-ODB(Q | Native | (Optional)
RDBMS Native o — _ e
driver (Optional) | nterfaces
C-XA ' org.omg.
Resourcg _ — — — }
M DB Native C-XA |Su ortl CosTransaction. Impl
anage -
g Plugin | pp | Resource
L — — 1
non-XA |l¢& — — — — L _ __ __ __ __ __ _
org.omg.
Resource CosTransaction.
Manager| Resource

JTS Transaction Manager

3.1 Support For JTA

The Transaction Manager provides complete support of the Java Transaction API

(JTA) Specification [1].

3.1.1

Transaction Demarcation

T

(another)
JTS

(or OTS-based

Transaction

Manager

T

org.omg.CosTransactions
org.omg.CosTSPortability

The Transaction Manager implements the following JTA interfaces to allow

application servers and stand-alone Java client applications to control transaction
boundary demarcation and perform transaction operations.

Sun Microsystems Inc.

March 1, 1999

Java Transaction Service

* javax.transaction.TransactionManager
* javax.transaction.Transaction

 javax.transaction.UserTransaction

3.1.2 Transaction Synchronization

The Transaction Manager supports transaction synchronization by allowing
Synchronization callback objects to be registered by the application server. The
Transaction Manager invokes the Synchronization methods before and after transaction
completion. Synchronization registration is available via the
javax.transaction.Transaction.registerSynchronization method.

3.1.3 Transaction and Resource Association

The Transaction Manager supports transactional resource enlistment via the
enlistResource anddelistResource methods defined in the
javax.transaction. Transaction interface.

The Transaction Manager associates resources with transactions and coordinates
transaction completion using tla@ax.transaction.xa.XAResource interface as
defined in JTA.

3.1.4 Transaction Recovery

The Transaction Manager uses ith@ver andforget methods in the
javax.transaction.xa.XAResource interface to recover transactions that are in
prepared or heuristically completed states.

3.2 Java Mapping of CORBA Object Transaction Service (OTS)

The Transaction Manager implements the Java Mapping of the CORBA Object
Transaction Service 1.1 Specification [2]. In particular, the Transaction Manager
implements the following Java packagesy.omg.CosTransactiorand
org.omg.CosTSPortability

The Transaction Manager is not required to support nested transactions.

The Transaction Manager is not required to expose its OTS implementation to those
users who are accessing the Transaction Manager through the
javax.transaction. TransactionManager interface as defined in JTA.

3.3 Support for Pre-JTA Resource Managers

The Transaction Manager may optionally support pre-JTA resource managers.
Specifically, the Transaction Manager may implement a native C-XA support module
to provide transaction coordination using the native C-XA procedural interfaces as
defined in the X/Open XA Specification [4].

As shown in the previous diagram, to support existing relational database servers that
implement the C-XA procedural interface, the Transaction Manager implements a
native C-XA support module which uses th&Transactions.Resource interface

Sun Microsystems Inc. 10 March 1, 1999

Java Transaction Service

to interact with the transaction service module. External to the Transaction Manager, a
custom JDBC driver will need to be implemented with a native-XA library built
specific to each database server.

3.4 Support for CORBA Applications

The Transaction Manager may optionally support the following CORBA application
entities as defined in the Object Transaction Specification: Transactional Client,
Transactional Objects, Recoverable Objects, Transactional Servers, and Recoverable
Servers. These application entities access the Transaction Manager using the interfaces
defined in theCosTransactionsnodule as specified in the OTS 1.1 Specification.

3.5 Transaction Managers Interoperability

The Transaction Manager is required to support distributed transactions that involve
multiple resource managers in a single ORB execution environment.

If the Transaction Manager implementation supports inter-ORB interoperability, it
must implement the implicit transaction context propagation that conforms to the
CosTransactions.PropagationContext structure; this allows the Transaction
Manager to support inter-ORB transaction context propagation as defined by the
CORBA OTS 1.1 Specification.

To provide interaction between the ORB and the Transaction Manager, the Transaction
Manager is required to

* Implement thecosTSPortability module’sSender andReceiver interfaces
as callback objects to allow the ORB to notify the TM whenever a transaction
request is sent or received by the ORB.

* Invoke theTsSlIdentification interface methods to pass thender and
Receiver 0Objects to the ORB, prior to handling the first transactional request.

How the ORB and the Transaction Manager locate each other’s objects is discussed in
section 3.6 below. The wire protocol message format for transmitting the transaction
context is defined in the CORBA General Inter-ORB Protocol specification.

3.6 ORSB Identification

3.6.1

The CORBA OTS 1.1 Specification does not define how the ORB and Transaction
Manager identify each other. In order for different ORB instances and the Transaction
Manager to interoperate and locate each other, JTS defines a simple
TransactionService interface to facilitate the identification of the ORB to the
Transaction Manager.

TransactionService Interface

The JTS Transaction Manager implementgdbe.jts. TransactionService
interface to allow an ORB to identify itself to the Transaction Manager.

The ORB calls th@ransactionService.identifyORB method during its
initialization procedure and prior to handling any user request.

Sun Microsystems Inc. 11 March 1, 1999

Java Transaction Service

Typically, the following operations occur:
1. The application server creates tinsactionService object

2. The application server binds thensactionService object to the JNDI
naming directory.

3. The application server initializes an ORB instance.

The ORB, during its initialization, create3Sdentification object and
uses JNDI to lookup theransactionService object reference.
5. The ORB then invokes theansactionService.identiffORB method and

supplies the following three parameters:

* An ORB object that identifies the ORB instance.
» A TSldentification object implemented by the ORB.
* A properties list for custom configuration information.

6. The Transaction Manager, while executingitleetifyORB method, invokes
the TSldentification.identify _sender and
TSldentification.identify_receiver methods to pass tlsender and
Receiver callback objects to the ORB.

Application ™ ORB JNDI
Server TransactionService ORB TSldentification Context
' new I ! ! :
| ;I | | |
| bind I I | ‘I
| | | I 'l
| I I |

init | R |
| ' >l new I |
——————»
| I I
lookup | N |
| I - >
| identifyORB | |
I ‘ _ | ' I
identify_sender	‘
identify_receiver	I
	'l
! | | |
I | I

Sun Microsystems Inc. 12 March 1, 1999

Java Transaction Service

Interface TransactionService

interface javax.jts. TransactionService {
public void identifyORB (org.omg.CORBA.ORB orb,
org.omg.TSldentification tsi, Properties prop);

}

Thejavax.jts.TransactionService interface is implemented by the JTS Transaction Manager to

allow the ORB to identify itself to the Transaction Manager and for the Transaction Manager to pass the Sender
and Receiver callback objects to the ORB. The Sender and Receiver objects are used by the ORB to deliver the
user request’s transaction context to the Transaction Manager.

Methods

* identifyORB

public abstract void identifyORB(org.omg.CORBA.ORB orb,
org.omg.CORBA.TSldentification tsi,
java.util.Properties prop);

)

The identifyORB method is called by the ORB as part of its initialization procedure.

Parameters:
orb
The ORB instance
tsi
The TSldentification object for the TM to identify its Sender and Receiver callback objects.
prop
The properties list for any customed information to the TM.

Sun Microsystems Inc. 13 March 1, 1999

Java Transaction Service

4 Related Documents

[1] Java Transaction API (JTA) Specificatidnttp://java.sun.com/products/jta
[2] OMG Object Transaction Servicatfp://www.omg.org/corba/sectrans.html#trans
[3] ORB Portability Submission, OMG document orbos/97-04-14.

[4] X/Open CAE Specification — Distributed Transaction Processing: The XA Specifi-
cation, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[5] Enterprise JavaBealé Specification littp://java.sun.com/products/gjb

[6] IDBC™ 2.0 Standard Extension API Specificatituttyf://java.sun.com/products/
jdbc)

[7] Java Message Service Specificatibtif://java.sun.com/products/jms)

Sun Microsystems Inc. 14 March 1, 1999

Java Transaction Service

Appendix A: Change History

A.1 Changes from 0.8 t0 0.9
JTS revision 0.9 incorporated the following changes:
* Modified the diagram in Section 3 to include interoperability with another TM.

» Added section 3.6 to specify theansactionService interface which allows
the ORB and the TM to locate each other.

A.2 Changes from 0.9 to 0.95
» Added Copyright statement

* Minor editorial changes

Sun Microsystems Inc. 15 March 1, 1999

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Target Audience

	2 Transaction Manager Functionality
	2.1 Transaction Model
	2.2 Transaction Context
	2.3 Transaction Termination
	2.4 Transaction Integrity

	3 Transaction Manager Implementation
	3.1 Support For JTA
	3.1.1 Transaction Demarcation
	3.1.2 Transaction Synchronization
	3.1.3 Transaction and Resource Association
	3.1.4 Transaction Recovery

	3.2 Java Mapping of CORBA Object Transaction Service (OTS)
	3.3 Support for Pre-JTA Resource Managers
	3.4 Support for CORBA Applications
	3.5 Transaction Managers Interoperability
	3.6 ORB Identification
	3.6.1 TransactionService Interface
	1. The application server creates the TransactionService object
	2. The application server binds the TransactionService object to the JNDI naming directory.
	3. The application server initializes an ORB instance.
	4. The ORB, during its initialization, creates a TSIdentification object and uses JNDI to lookup ...
	5. The ORB then invokes the TransactionService.identifyORB method and supplies the following thre...
	6. The Transaction Manager, while executing the identifyORB method, invokes the TSIdentification....

	Interface TransactionService
	Methods
	• identifyORB

	4 Related Documents
	[1] Java Transaction API (JTA) Specification (http://java.sun.com/products/jta)
	[2] OMG Object Transaction Service (http://www.omg.org/corba/sectrans.html#trans)
	[3] ORB Portability Submission, OMG document orbos/97-04-14.
	[4] X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open D...
	[5] Enterprise JavaBeansTM Specification (http://java.sun.com/products/ejb)
	[6] JDBCTM 2.0 Standard Extension API Specification (http://java.sun.com/products/ jdbc)
	[7] Java Message Service Specification (http://java.sun.com/products/jms)

	Appendix A: Change History
	A.1 Changes from 0.8 to 0.9
	A.2 Changes from 0.9 to 0.95

