
] at

nes
B
n

This is a draft specification for Java Transaction Service (JTS). JTS specifies the
implementation of a transaction manager which supports the JTA specification [1
the high-level and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 Specification at the low-level.

JTS uses the CORBA OTS interfaces for interoperability and portability, which defi
a standard mechanism for any implementation that utilizes IIOP (Internet InterOR
Protocol) to generate and propagate transaction context between JTS Transactio
Managers.

Please send technical comments on this specification to:

jts-spec@eng.sun.com

Copyright © 1997-1999 by Sun Microsystems Inc.
901 San Antonio Road, Palo Alto, CA 94303.
All rights reserved.

Susan Cheung
Version 0.95 March 01, 1999

Sun Microsystems Inc.

Java Transaction Service (JTS)

Java Transaction Service

e,
erty
uting
from
n
itle or

or
er.

(a).

with

arks or
Copyright 1997-1999 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved. Copyright in this document is owned by Sun Microsystems Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferabl
perpetual, worldwide, limited license (without the right to sublicense) under SUN's intellectual prop
rights that are essential to practice this specification for the limited purpose of creating and distrib
implementations of this specification, provided however, that such implementations do not derive
any SUN source code or binary materials and do not include any SUN binary materials without a
appropriate and separate license from SUN. Other than this limited license, you acquire no right, t
interest in or to this specification or any other SUN intellectual property. No right, title, or interest in
to any trademarks, service marks, or trade names of SUN or SUN’s licensors is granted hereund

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1

This specification contains the proprietary information of SUN and may only be used in accordance
the license terms set forth above.

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
YOU AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION OR ITS
DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Java, Enterprise JavaBeans, JDBC, and JDK are tradem
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
Sun Microsystems Inc. 2 March 1, 1999

Java Transaction Service

3

Table of Contents

1. Introduction ... 3

1.1 Background .. 3
1.2 Target Audience ... 4

2. Transaction Manager Functionality .. 5

2.1 Transaction Model .. 5
2.2 Transaction Context ... 5
2.3 Transaction Termination ...5
2.4 Transaction Integrity..6

3. Transaction Manager Implementation .. 7

3.1 Support for JTA ... 8

3.2 Java Mapping of CORBA Object Transaction Service (OTS) 8
3.3 Support for pre-JTA Resource Managers ... 9
3.4 Support for CORBA Applications .. 10
3.5 Transaction Manager Interoperability .. 10
3.6 ORB Identification ... 10

3.6.1 TransactionService Interface .. 11

4. Related Documents.. 1

Appendix A - Change History ... 14
Sun Microsystems Inc. 3 March 1, 1999

Java Transaction Service

] at

anism
and
so

: the
on
the
ction

ce

-

ail-
ers
C
n-
1 Introduction

This is the Java Transaction Service (JTS) Specification. JTS specifies the
implementation of a transaction manager which supports the JTA specification [1
the high-level and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 Specification at the low-level.

JTS uses the CORBA OTS interfaces for interoperability and portability (that is,
CosTransactions and CosTSPortability). These interfaces define a standard mech
for any implementation that utilizes IIOP (Internet InterORB Protocol) to generate
propagate transaction context between JTS Transaction Managers. Note, this al
permits the use of other API over the IIOP transport mechanism to be used; for
example, RMI over IIOP is allowed.

1.1 Background

Distributed transaction services in Enterprise Java middleware involve five players
transaction manager, the application server, the resource manager, the applicati
program, and the communication resource manager. Each player contributes to
distributed transaction processing system by implementing different sets of transa
APIs and functionalities.

• A transaction manager provides the services and management functions
required to support transaction demarcation, transactional resource
management, synchronization, and transaction context propagation.

• An application server (or TP monitor) provides the infrastructure required to
support the application run-time environment which includes transaction state
management. An example of such an application server is an EJB [5] server.

• A resource manager (through a resource adapter1) provides the application
access to resources. The resource manager implements a transaction resour
interface that is used by the transaction manager to communicate transaction
association, transaction completion, and recovery work. An example of such a
resource manager is a relational database server.

• A component-based transactional application that operates in a modern
application server environment relies on the application server to provide
transaction management support through declarative transaction attribute
settings—for example, an application developed using the industry standard
Enterprise JavaBeans (EJB) component architecture. In addition, other stand

1.A Resource Adapter is a system level software library that is used by an application server or client to
connect to a Resource Manager. A Resource Adapter is typically specific to a Resource Manager. It is av
able as a library and is used within the address space of the client using it. Examples of Resource adapt
are: JDBC driver to connect to relational databases, ODMG driver to connect to an object database, JRF
library to connect to SAP R/3 system. A resource adapter may provide additional services besides the co
nection API.
Sun Microsystems Inc. 4 March 1, 1999

Java Transaction Service

to be
nd

ger
box

ion
alone Java client programs may wish to control their transaction boundaries
using a high-level interface provided by the application server or the transaction
manager.

• A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests. The JTS document does not specify requirements pertaining to
communication. We assume the CRM is present to support transaction
propagation as defined in the CORBA OTS and GIOP specifications.

From the transaction manager’s perspective, the actual implementation of the
transaction services does not need to be exposed; only high-level interfaces need
defined to allow transaction demarcation, resource enlistment, synchronization, a
recovery process to be driven by the users of the transaction services.

The diagram below shows the high-level API exposed from the transaction mana
that implements the JTS specification. The dotted-line in the Transaction Manager
illustrates the private interface within the TM to allow the JTA support module to
interact with the low-level OTS implementation. Section 2 specifies the Transact
Manager external functionality. Section 3 specifies the Transaction Manager
implementation requirements and considerations.

Communication Resource
Manager (CRM)

Application

 Application
Server

Resource
ManagerTransaction

Manager

Service

Implementation

Transaction

EJB
JDBC, JMS

javax.transaction.xa.
UserTransaction XAResource

Inbound tx Outbound tx

(OTS 1.1)

IIOPIIOP

javax.transaction.

javax.transaction.
TransactionManager
Sun Microsystems Inc. 5 March 1, 1999

Java Transaction Service

tion
1.2 Target Audience

This document is intended for implementors of Transaction Managers and applica

servers written in the Javatm programming language.
Sun Microsystems Inc. 6 March 1, 1999

Java Transaction Service

he
TS
ts of
action

d

at
top-
st to

text

iated

tion
is
ation

tion.
he
2 Transaction Manager Functionality

This section describes the transaction manager functionality through support of t
Java Transaction API (JTA). The implementation of the Java mapping of OMG O
1.1 interfaces are not exposed to the clients of the Transaction Manager. The clien
the Transaction Manager are those who use the JTA interfaces to access the Trans
Manager functionality.

The Transaction Manager provides the following services:

• Provides applications and application servers the ability to control the scope an
duration of a transaction.

• Allows multiple application components to perform work that is part of a single,
atomic transaction.

• Provides the ability to associate global transactions with work performed by
transactional resources.

• Coordinates the completion of global transactions across multiple resource
managers.

• Supports transaction synchronization.

• Provides the ability to interoperate with other Transaction Manager
implementations using the CORBA ORB/TS standard interfaces. (This is
transparent to clients of the Transaction Manager.)

2.1 Transaction Model

The Transaction Manager is required to support distributed flat transactions. A fl
transaction cannot have a child transaction. Flat transactions are also known as
level transactions in OTS terminology. A Transaction is started by issuing a reque
begin a transaction.

Support for nested transactions is not required.

2.2 Transaction Context

The Transaction Manager maintains the association of a thread’s transaction con
with a transaction. A thread’s transaction context is eithernull or refers to a specific
global transaction. The Transaction Manager allows multiple threads to be assoc
with the same transaction concurrently, in the same JVM or in multiple JVMs.

Transaction context is implicitly transmitted by the implementation of the transac
service at the ORB and wire-protocol level. The transaction context propagation
performed transparent to the Transaction Manager clients (application and applic
server).

2.3 Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transac
Typically, a transaction is terminated by the client originating the transaction. In t
Sun Microsystems Inc. 7 March 1, 1999

Java Transaction Service

tions
.

ction
the
r
d to

at
e
action
ve
EJB component model environment, the Transaction Manager must allow transac
to be terminated by any thread within the same JVM of the transaction originator

Application components that rely on an application server to manage their transa
states are not allowed to terminate transactions. An application server can force
transaction to be rolled back after the application encounters an unexpected erro
condition in the form of a Java exception. The Transaction Manager is not require
monitor the failures of the resource managers participating in the transaction.

2.4 Transaction Integrity

The Transaction Manager is required to guarantee data integrity equivalent to th
provided by the interfaces which support the X/Open DTP transaction model. Th
Transaction Manager must guarantee the checked transaction behavior—a trans
cannot be committed until all computations acting on behalf of the transaction ha
completed.
Sun Microsystems Inc. 8 March 1, 1999

Java Transaction Service

ust

is

I

n

3 Transaction Manager Implementation

This section describes the implementation choices from a Transaction Manager
implementor’s view. As shown in the diagram below, the Transaction Manager m
implement the JTA interfaces to support the application server and the resource
managers. Support for JDBC 1.0 driver and non-JTA aware resource managers
optional. Support for direct CORBA clients, such as recoverable servers and
transactional objects, is also optional.

3.1 Support For JTA

The Transaction Manager provides complete support of the Java Transaction AP
(JTA) Specification [1].

3.1.1 Transaction Demarcation

The Transaction Manager implements the following JTA interfaces to allow
application servers and stand-alone Java client applications to control transactio
boundary demarcation and perform transaction operations.

Native

CORBA

Interfaces

OTS-based
non-XA
Resource

Manager

org.omg.

Resource

Application

DB

custom

driver

NativeC-XA

JTS Transaction Manager

Plugin

CosTransaction.
Resource

OTS 1.1

JTA

Support

Adapter

Server
javax.transaction.

TransactionManager

javax.transaction.xa.
XAResource Java

Mapping

of

Support

C-XA
CosTransaction.

org.omg.

Resource

JDBC-ODBC

org.omg.

(Optional)

(Optional)

CosTransaction.
Resource

Resource

Manager

Resource

Manager

RDBMS

Java
Appli-
cations

(Optional)

Impl.

JTS

Transaction

Manager

org.omg.CosTransactions

org.omg.CosTSPortability

(another)

(or OTS-based)
Sun Microsystems Inc. 9 March 1, 1999

Java Transaction Service

ction

s

ose

ule
s

s that
a

• javax.transaction.TransactionManager

• javax.transaction.Transaction

• javax.transaction.UserTransaction

3.1.2 Transaction Synchronization

The Transaction Manager supports transaction synchronization by allowing
Synchronization callback objects to be registered by the application server. The
Transaction Manager invokes the Synchronization methods before and after transa
completion. Synchronization registration is available via the
javax.transaction.Transaction.registerSynchronization method.

3.1.3 Transaction and Resource Association

The Transaction Manager supports transactional resource enlistment via the
enlistResource anddelistResource methods defined in the
javax.transaction.Transaction interface.

The Transaction Manager associates resources with transactions and coordinate
transaction completion using thejavax.transaction.xa.XAResource interface as
defined in JTA.

3.1.4 Transaction Recovery

The Transaction Manager uses therecover andforget methods in the
javax.transaction.xa.XAResource interface to recover transactions that are in
prepared or heuristically completed states.

3.2 Java Mapping of CORBA Object Transaction Service (OTS)

The Transaction Manager implements the Java Mapping of the CORBA Object
Transaction Service 1.1 Specification [2]. In particular, the Transaction Manager
implements the following Java packages:org.omg.CosTransactions and
org.omg.CosTSPortability.

The Transaction Manager is not required to support nested transactions.

The Transaction Manager is not required to expose its OTS implementation to th
users who are accessing the Transaction Manager through the
javax.transaction.TransactionManager interface as defined in JTA.

3.3 Support for Pre-JTA Resource Managers

The Transaction Manager may optionally support pre-JTA resource managers.
Specifically, the Transaction Manager may implement a native C-XA support mod
to provide transaction coordination using the native C-XA procedural interfaces a
defined in the X/Open XA Specification [4].

As shown in the previous diagram, to support existing relational database server
implement the C-XA procedural interface, the Transaction Manager implements
native C-XA support module which uses theCosTransactions.Resource interface
Sun Microsystems Inc. 10 March 1, 1999

Java Transaction Service

er, a

on

rable
rfaces

lve

t

ction

ed in
tion

n
tion
to interact with the transaction service module. External to the Transaction Manag
custom JDBC driver will need to be implemented with a native-XA library built
specific to each database server.

3.4 Support for CORBA Applications

The Transaction Manager may optionally support the following CORBA applicati
entities as defined in the Object Transaction Specification: Transactional Client,
Transactional Objects, Recoverable Objects, Transactional Servers, and Recove
Servers. These application entities access the Transaction Manager using the inte
defined in theCosTransactions module as specified in the OTS 1.1 Specification.

3.5 Transaction Managers Interoperability

The Transaction Manager is required to support distributed transactions that invo
multiple resource managers in a single ORB execution environment.

If the Transaction Manager implementation supports inter-ORB interoperability, i
must implement the implicit transaction context propagation that conforms to the
CosTransactions.PropagationContext structure; this allows the Transaction
Manager to support inter-ORB transaction context propagation as defined by the
CORBA OTS 1.1 Specification.

To provide interaction between the ORB and the Transaction Manager, the Transa
Manager is required to

• Implement theCosTSPortability module’sSender andReceiver interfaces
as callback objects to allow the ORB to notify the TM whenever a transaction
request is sent or received by the ORB.

• Invoke theTSIdentification interface methods to pass theSender and
Receiver objects to the ORB, prior to handling the first transactional request.

How the ORB and the Transaction Manager locate each other’s objects is discuss
section 3.6 below. The wire protocol message format for transmitting the transac
context is defined in the CORBA General Inter-ORB Protocol specification.

3.6 ORB Identification

The CORBA OTS 1.1 Specification does not define how the ORB and Transactio
Manager identify each other. In order for different ORB instances and the Transac
Manager to interoperate and locate each other, JTS defines a simple
TransactionService interface to facilitate the identification of the ORB to the
Transaction Manager.

3.6.1 TransactionService Interface

The JTS Transaction Manager implements thejavax.jts.TransactionService

interface to allow an ORB to identify itself to the Transaction Manager.

The ORB calls theTransactionService.identifyORB method during its
initialization procedure and prior to handling any user request.
Sun Microsystems Inc. 11 March 1, 1999

Java Transaction Service
Typically, the following operations occur:

1. The application server creates theTransactionService object

2. The application server binds theTransactionService object to the JNDI
naming directory.

3. The application server initializes an ORB instance.

4. The ORB, during its initialization, creates aTSIdentification object and
uses JNDI to lookup theTransactionService object reference.

5. The ORB then invokes theTransactionService.identifyORB method and
supplies the following three parameters:

• An ORB object that identifies the ORB instance.
• A TSIdentification object implemented by the ORB.
• A properties list for custom configuration information.

6. The Transaction Manager, while executing theidentifyORB method, invokes
theTSIdentification.identify_sender and
TSIdentification.identify_receiver methods to pass theSender and
Receiver callback objects to the ORB.

Application
Server TransactionService ORB TSIdentification

JNDI
Context

TM ORB

new

bind

init

lookup

identifyORB

identify_sender

identify_receiver

new
Sun Microsystems Inc. 12 March 1, 1999

Java Transaction Service

Sender
iver the

ts.
Interface TransactionService

interface javax.jts. TransactionService {
public void identifyORB (org.omg.CORBA.ORB orb,

org.omg.TSIdentification tsi, Properties prop);
}

The javax.jts.TransactionService interface is implemented by the JTS Transaction Manager to
allow the ORB to identify itself to the Transaction Manager and for the Transaction Manager to pass the
and Receiver callback objects to the ORB. The Sender and Receiver objects are used by the ORB to del
user request’s transaction context to the Transaction Manager.

Methods

• identifyORB

public abstract void identifyORB(org.omg.CORBA.ORB orb,
org.omg.CORBA.TSIdentification tsi,
java.util.Properties prop);

)

The identifyORB method is called by the ORB as part of its initialization procedure.

Parameters:
orb

The ORB instance
tsi

The TSIdentification object for the TM to identify its Sender and Receiver callback objec
prop

The properties list for any customed information to the TM.
Sun Microsystems Inc. 13 March 1, 1999

Java Transaction Service

ifi-
4 Related Documents

[1] Java Transaction API (JTA) Specification (http://java.sun.com/products/jta)

[2] OMG Object Transaction Service (http://www.omg.org/corba/sectrans.html#trans)

[3] ORB Portability Submission, OMG document orbos/97-04-14.

[4] X/Open CAE Specification – Distributed Transaction Processing: The XA Spec
cation, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[5] Enterprise JavaBeansTM Specification (http://java.sun.com/products/ejb)

[6] JDBCTM 2.0 Standard Extension API Specification (http://java.sun.com/products/
jdbc)

[7] Java Message Service Specification (http://java.sun.com/products/jms)
Sun Microsystems Inc. 14 March 1, 1999

Java Transaction Service
Appendix A: Change History

A.1 Changes from 0.8 to 0.9

JTS revision 0.9 incorporated the following changes:

• Modified the diagram in Section 3 to include interoperability with another TM.

• Added section 3.6 to specify theTransactionService interface which allows
the ORB and the TM to locate each other.

A.2 Changes from 0.9 to 0.95

• Added Copyright statement

• Minor editorial changes
Sun Microsystems Inc. 15 March 1, 1999

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Target Audience

	2 Transaction Manager Functionality
	2.1 Transaction Model
	2.2 Transaction Context
	2.3 Transaction Termination
	2.4 Transaction Integrity

	3 Transaction Manager Implementation
	3.1 Support For JTA
	3.1.1 Transaction Demarcation
	3.1.2 Transaction Synchronization
	3.1.3 Transaction and Resource Association
	3.1.4 Transaction Recovery

	3.2 Java Mapping of CORBA Object Transaction Service (OTS)
	3.3 Support for Pre-JTA Resource Managers
	3.4 Support for CORBA Applications
	3.5 Transaction Managers Interoperability
	3.6 ORB Identification
	3.6.1 TransactionService Interface
	1. The application server creates the TransactionService object
	2. The application server binds the TransactionService object to the JNDI naming directory.
	3. The application server initializes an ORB instance.
	4. The ORB, during its initialization, creates a TSIdentification object and uses JNDI to lookup ...
	5. The ORB then invokes the TransactionService.identifyORB method and supplies the following thre...
	6. The Transaction Manager, while executing the identifyORB method, invokes the TSIdentification....

	Interface TransactionService
	Methods
	• identifyORB

	4 Related Documents
	[1] Java Transaction API (JTA) Specification (http://java.sun.com/products/jta)
	[2] OMG Object Transaction Service (http://www.omg.org/corba/sectrans.html#trans)
	[3] ORB Portability Submission, OMG document orbos/97-04-14.
	[4] X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open D...
	[5] Enterprise JavaBeansTM Specification (http://java.sun.com/products/ejb)
	[6] JDBCTM 2.0 Standard Extension API Specification (http://java.sun.com/products/ jdbc)
	[7] Java Message Service Specification (http://java.sun.com/products/jms)

	Appendix A: Change History
	A.1 Changes from 0.8 to 0.9
	A.2 Changes from 0.9 to 0.95

