
Jini ™ Distributed Leasing
Specification
ntions

ay of
The Distributed Leasing specification defines a set of interfaces and associated conve
and protocols that allow objects in different JavaTM virtual machines, perhaps located on
different physical machines, to negotiate and establish leases for resources of various
kinds. Along with the interfaces and conventions are a set of classes that allow
programmers to use the interfaces to construct distributed programs using the leasing
model. Leasing is not a stand-alone service or interface, but rather a component in a w
designing interfaces and interactions that are reliable and fault-tolerant in a distributed
system.
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini ™ Distributed Leasing Specification—1.0

Contents
1. Introduction . 1

1.1 Leasing and Distributed Systems 2

1.2 Goals and Requirements . 4

1.3 Dependencies . 4

1.4 Comments . 5

2. Basic Leasing Interfaces . 7

2.1 Characteristics of a Lease . 8

2.2 Basic Operations . 9

2.3 Leasing and Time . 14

2.4 Serialized Forms . 15

3. Example Supporting Classes . 17

3.1 A Renewal Class . 17

3.2 A Renewal Service . 19
Page iii

Page iv Jini ™ Distributed Leasing Specification–1.0

Introduction 1
The purpose of the leasing interfaces defined in this document is to simplify

and unify a particular style of programming for distributed systems and

applications. This style, in which a resource offered by one object in a

distributed system and used by a second object in that system, is based on a

notion of granting a use to the resource for a certain period of time, negotiated

by the two objects when access to the resource is first requested and given.

Such a grant is known as a lease, and is meant to be similar to the notion of a

lease used in everyday life. As in everyday life, the negotiation of a lease

entails responsibilities and duties for both the grantor of the lease and the

holder of the lease. Part of this specification is a detailing of these

responsibilities and duties, as well as a discussion of when it is appropriate to

use a lease in offering a distributed service.

There is no requirement that the leasing notions defined in this document be

the only time-based mechanism used in software. Leases are a part of the

programmer’s arsenal, and other time-based techniques such as time-to-live,

ping intervals, and keep-alives can be useful in particular situations. Leasing is

not meant to replace these other techniques, but rather to enhance the set of

tools available to the programmer of distributed systems.
Page 1

1

1.1 Leasing and Distributed Systems
Distributed systems differ fundamentally from non-distributed systems in that

there are situations where different parts of a cooperating group are unable to

communicate, either because one of the members of the group has crashed or

because the connection between the members in the group has failed. This

partial failure can happen at any time, and can be intermittent or long-lasting.

The possibility of partial failure greatly complicates the construction of

distributed systems in which components of the system that are not co-located

provide resources or other services to each other. The programming model

used most often in non-distributed computing, in which resources and services

are granted until explicitly freed or given up, is open to failures caused by the

inability to successfully make the explicit calls that cancel the use of the

resource or system. Failure of this sort of system can result in resources never

being freed, in services being delivered long after the recipient of the service

has forgotten that the service was requested, and resource consumption that

can grow without bounds.

To avoid these problems, we introduce the notion of a lease. Rather than

granting services or resources until that grant has been explicitly cancelled by

the party to whom the grant was made, a leased resource or service grant is

time based. When the time for the lease has expired, the service ends or the

resource is freed. The time period for the lease is determined when the lease is

first granted, using a request/response form of negotiation between the party

wanting the lease and the lease grantor. Leases may be renewed or cancelled

before they expire by the holder of the lease, but in the case of no action (or in

the case of a network or participant failure) the lease simply expires. When a

lease expires, both the holder of the lease and the grantor of the lease know

that the service or resource has been reclaimed.

While the notion of a lease was originally brought into the system as a way of

dealing with partial failure, the technique is also useful for dealing with

another problem faced by distributed systems. Distributed systems tend to be

long-lived. In addition, since distributed systems are often providing resources

that are shared by numerous clients in an uncoordinated fashion, such systems

are much more difficult to “shut down” for maintenance purposes than

systems which reside on a single machine.

As a consequence of this, distributed systems, especially those with persistent

state, are prone to accumulations of outdated and unwanted information.

While the accumulation of such information, which can include objects stored
Page 2 Jini ™ Distributed Leasing Specification–1.0

1

for future use and subsequently forgotten, may be slow, the trend is always

upward. Over the (comparatively) long life of a distributed system, such

unwanted information can grow without upper bound, taking up resources

and compromising the performance of the overall system.

A standard way of dealing with these problems is to consider the cleanup of

unused resources to be system administration task. When such resources begin

to get scarce, a human administrator is given the task of finding those

resources that are no longer needed and deleting them. This solution, however,

is error prone (since the administrator is often required to judge the use of a

resource with no actual evidence concerning whether or not the resource is

being used) and tends to happen only when resource consumption has gotten

out of hand.

When such resources are leased, however, this accumulation of out-of-date

information does not occur and resorting to manual cleanup methods is not

needed. Information or resources that are leased remain in the system only as

long as the lease for that information or resource is renewed. Thus information

that is forgotten (either through program error, inadvertence, or system crash)

will be deleted after some finite time. Note that this is not the same as garbage

collection (although it is related in that it has to do with freeing up resources)

since the information that is leased is not of the sort that would generally have

any active reference to it. Rather, this is information that is stored for (possible)

later retrieval which is no longer of any interest to the party that originally

stored the information.

This model of persistence is one that requires renewed proof of interest to

maintain the persistence. Information is kept (and resources used) only as long

as that information is claimed to be of interest by someone (a claim that is

shown by the act of renewing the lease). The interval for which the resource

may be consumed without a proof of interest can vary, and is subject to

negotiation by the party storing the information (which has expectations for

how long it will be interested in the information) and the party in which the

information is stored (which has requirements on how long it is willing to store

something without proof that some party is interested).

The notion of persistence of information is not one of storing the information

on stable storage (although it encompasses that notion). Persistent information,

in this case, includes any information that has a lifetime longer than the

lifetime of the process in which the request for storage originates.
Page 3

1

Leasing also allows a form of programming in which the entity that reserves

the information or resource is not the same as the entity that makes use of the

information or resource. On such a model, a resource can be reserved (leased)

by an entity on the expectation that some other entity will use the resource

over some period of time. Rather than having to check back to see if the

resource is used (or freed), a leased version of such a reservation allows the

entity granted the lease to forget about the resource. Whether used or not, the

resource will be freed when the lease has expired.

Leasing such information storage introduces a programming paradigm that is

an extension of the model used by most programmers today. The current

model is essentially one of infinite leasing, with information only being

removed from persistent stores by the active deletion of such information.

Databases and filesystems are perhaps the best known exemplars of such

stores, with both holding any information placed in them until the information

is explicitly deleted by some user or program.

1.2 Goals and Requirements
The requirements of this set of interfaces are

◆ to provide a simple way of indicating time-based resource allocation or

reservation;

◆ to provide a uniform way of renewing and cancelling leases; and

◆ to show common patterns of use for interfaces using this set of interfaces.

The goals of this document are

◆ to describe the notion of a lease, and show some of the applications of that

notion in distributed computing;

◆ to show the way in which this notion is used in a distributed system; and

◆ to indicate appropriate uses of the notion in applications built to run in a

distributed environment.

1.3 Dependencies
This document relies on the following specifications:

• Java Remote Method Invocation Specification
Page 4 Jini ™ Distributed Leasing Specification–1.0

1

1.4 Comments
Please direct comments to jini-comments@java.sun.com .
Page 5

1

Page 6 Jini ™ Distributed Leasing Specification–1.0

 Basic Leasing Interfaces 2
The basic concept of leasing is that access to a resource or the request for some

action is not open-ended with respect to time, but only granted for some

particular interval. In general (although not always) this interval is determined

by some negotiation between the object asking for the leased resource (which

we will call the lease holder) and the object granting access for some period

(which we will call the lease grantor).

In its most general form, a lease is used to associate a mutually agreed upon

time interval with an agreement reached by two objects. The kinds of

agreements that can be leased are varied, and can include such things as

agreements on access to an object (references), agreements for taking future

action (event notifications), agreements to supplying persistent storage (file

systems, JavaSpaces systems), or agreements to advertise availability (naming

or directory services).

While it is possible that a lease can be given which provides exclusive access to

some resource, this is not required with the notion of leasing being offered

here. Agreements that provide access to resources that are intrinsically sharable

can have multiple concurrent leaseholders. Other resources may decide to only

grant exclusive leases, combining the notion of leasing with a concurrency

control mechanism.
Page 7

2

2.1 Characteristics of a Lease
There are a number of characteristics of a lease that are important for

understanding what a lease is and when it is appropriate to use a lease. Among

these characteristics are

◆ A lease is a time period during which the grantor of the lease insures (to the

best of the grantor’s abilities) that the holder of the lease will have access to

some resource. The time period of the lease can be determined solely by the

lease grantor, or can be a period of time that is negotiated between the

holder of the lease and the grantor of the lease. Duration negotiation need

not be multi-round; it often suffices for the requestor to indicate the time

desired and the grantor to return the actual time of grant.

◆ During the period of a lease, a lease can be cancelled by the entity holding

the lease. Such a cancellation allows the grantor of the lease to clean up any

resources associated with the lease, and obliges the grantor of the lease to

not take any action involving the leaseholder that was part of the agreement

that was the subject of the lease.

◆ A leaseholder can request that a lease be renewed. The renewal period can

be for a different time than the original lease, and is also subject to

negotiation with the grantor of the lease. The grantor may renew the lease

for the requested period or a shorter period, or refuse to renew the lease at

all. A renewed lease is just like any other lease, and is itself subject to

renewal.

◆ A lease can expire. If a lease period has elapsed with no renewals, the

lease expires and any resources associated with the lease may be freed by

the lease grantor. Both the grantor and the holder are obliged to act as

though the leased agreement is no longer in force. The expiration of a lease

is similar to the cancellation of a lease, except that no communication is

necessary between the leaseholder and the lease grantor.

Leasing is part of a programming model for building reliable distributed

applications. In particular, leasing is a way of insuring that a uniform response

to failure, forgetting, or disinterest is guaranteed; allowing agreements to be

made that can then be forgotten without the possibility of unbounded resource

consumption; and providing a flexible mechanism for duration based

agreement.
Page 8 Jini ™ Distributed Leasing Specification–1.0

2

2.2 Basic Operations
The Lease interface defines a type of object that is returned to the lease holder

and issued by the lease grantor. The basic interface may be extended in ways

that offer more functionality, but the basic interface is

package net.jini.core.lease;
import java.rmi.RemoteException;

public interface Lease {

 long FOREVER = Long.MAX_VALUE;

 long ANY = -1;

int DURATION = 1;
int ABSOLUTE = 2;

 long getExpiration();

 void cancel() throws UnknownLeaseException, RemoteException;

 void renew(long duration)
throws LeaseDeniedException,

 UnknownLeaseException,
 RemoteException;

 void setSerialFormat(int format);

 int getSerialFormat();

 LeaseMap createLeaseMap(long duration);

 boolean canBatch(Lease lease);
}

Particular instances of the Lease type will be created by the grantors of a

lease, and returned to the holder of the lease as part of the return value from a

call that allocates a leased resource. The actual implementation of the object,

including the way (if any) in which the Lease object communicates with the

grantor of the lease, is determined by the lease grantor and is hidden from the

lease holder.

The interface defines two constants that can be used when requesting a lease.

The first, FOREVER, can be used to request a lease that never expires. When

granted such a lease, the leaseholder is responsible for insuring that the

resource leased is freed when no longer needed. The second constant, ANY, is
Page 9

2

used by the requestor to indicate that there is no particular lease time desired,

and that the grantor of the lease should supply a time that is most convenient

for the grantor.

If the request is for a particular duration, the lease grantor is required to grant

a lease of no more than the requested period of time. A lease may be granted

for a period of time shorter than that requested.

A second pair of constants is used to determine the format used in the

serialized form for a Lease object; in particular, the serialized form used to

represent the time at which the lease expires. If the serialized format is set to

the value DURATION, the serialized form will convert the time of lease

expiration into a duration (in milliseconds) from the time of serialization. This

form is best used when transmitting a Lease object from one address space to

another (via an RMI call) where it cannot be assumed that the address spaces

have synchronized clocks. If the serialized format is set to ABSOLUTE, the time

of expiration will be stored as an absolute time, calculated in terms of

milliseconds since the beginning of the epoch.

The first method in the Lease interface, getExpiration() , returns a long
that indicates the time, relative to the current clock, that the lease will expire.

Following the usual convention in the Java™ programming language, this time

is represented as milliseconds from the beginning of the epoch, and can be

used to compare the expiration time of the lease with the result of a call to

obtain the current time, java.lang.System.currentTimeMillis().

The second method, cancel() , can be used by the leaseholder to indicate that

it is no longer interested in the resource or information held by the lease. If the

leased information or resource could cause a callback to the lease holder (or

some other object on behalf of the lease holder), the lease grantor should not

issue such a callback after the lease has been cancelled. The overall effect of a

cancel() call is the same as lease expiration, but instead of happening at the

end of a pre-agreed duration it happens immediately. If the lease being

cancelled is unknown to the lease grantor, an UnknownLeaseException is

thrown. The method can also throw a RemoteException if the

implementation of the method requires calling a remote object which is the

lease holder.

The third method, renew() , is used to renew a lease for an additional period

of time. The length of the desired renewal is given, in milliseconds, in the

parameter to the call. This duration is not added to the original lease, but is

used to determine a new expiration time for the existing lease. This method
Page 10 Jini ™ Distributed Leasing Specification–1.0

2

has no return value; if the renewal is granted, this is reflected in the lease

object on which the call was made. If the lease grantor is unable or unwilling to

renew the lease, a RenewFailedException is thrown. If a renewal fails, the

lease is left intact for the same duration that was in force prior to the call to

renew() . If the lease being renewed is unknown to the lease grantor, an

UnknownLeaseException is thrown. The method can also throw a

RemoteException if the implementation of the method requires calling a

remote object which is the lease holder.

Two methods are concerned with the serialized format of a Lease object. The

first, setSerialFormat() , takes an integer that indicates the appropriate

format to use when serializing the format. The current supported formats are a

duration format that stores the length of time (from the time of serialization)

before the lease expires; and an absolute format, which stores the time (relative

to the current clock) that the lease will expire. The durational format should be

used when serializing a Lease object for transmission from one machine to

another; the durational format should be used when storing a Lease object on

stable store that will be read back later by the same process or machine. The

default serialization format is durational. The second method,

getSerialForm() , returns an integer indicating the format that will be used

to serialize the Lease object.

The last two methods are used to aid in the batch renewal or cancellation of a

group of Lease objects. The first of these, createLeaseMap(long
duration) creates a Map object that can contain leases whose renewal or

cancellation can be batched, and adds the current lease to that map. The

current lease will be renewed for the duration indicated by the argument to the

method when all of the leases in the LeaseMap are renewed. The second

method, batchWith(Lease lease) , returns a boolean value indicating

whether or not the lease given as an argument to the method can be batched

(in renew() and cancel() calls) with the current lease. Whether or not two

Lease objects can be batched is an implementation detail determined by the

objects.

There are three types of Exception objects associated with the basic lease

interface. All of these are used in the Lease interface itself, and two can be

used by methods that grant access to a leased resource.
Page 11

2

The RemoteException is imported from the package java.rmi . This

exception is used to indicate a problem with any communication that might

occur between the lease holder and the lease grantor if those objects are in

separate virtual machines. The full specification of this exception can be found

in the Javatm Remote Method Invocation (RMI) specification.

The UnknownLeaseException is used to indicate that the Lease object called

is not known to the grantor of the lease. This can occur when a lease expires, or

when a copy of a lease has been cancelled by some other leaseholder. This

exception is defined as

package net.jini.core.lease;

public class UnknownLeaseException extends LeaseException
{

public UnknownLeaseException(){
super();

}
public UnknownLeaseException(String reason){

super(reason);
}

}

The final exception defined is the LeaseDeniedException , which can be

thrown either by a call to renew() or a call to an interface that grants access to

a leased resource. This exception indicates that the requested lease has been

denied by the resource holder. The exception is defined as

package net.jini.core.lease;

public class LeaseDeniedException extends LeaseException
{

public LeaseDeniedException(){
super();

}
public LeaseDeniedException(String reason){

super(reason);
}

}

The LeaseException superclass is defined as

package net.jini.core.lease;

public class LeaseException extends Exception
{

public LeaseException(){
Page 12 Jini ™ Distributed Leasing Specification–1.0

2

super();
}
public LeaseException(String reason){

super(reason);
}

}

The final basic interface defined for leasing is that of a LeaseMap , which

allows groups of Lease objects to be renewed or cancelled using a single

operation. The LeaseMap interface is

package net.jini.core.lease;

import java.rmi.RemoteException;

public interface LeaseMap extends java.util.Map {

 boolean canContainKey(Object key);

 void renewAll() throws LeaseMapException, RemoteException;

 void cancelAll() throws LeaseMapException, RemoteException;

}

A LeaseMap is an extension of the java.util.Map class that associates a

Lease object with a Long . The Long is the duration for which the lease should

be renewed whenever it is renewed. Lease objects and associated renewal

durations can be entered and removed from a LeaseMap using the usual Map
methods. An attempt to add a Lease object to a map containing other Lease
objects for which Lease.canBatch() would return false will cause an

IllegalArgumentException to be thrown, as will attempts to add a key

that is not a Lease object or a value which is not a Long .

The first method defined in the LeaseMap interface, canContainKey() , takes

a Lease object as an argument and returns true if that Lease object can be

added to the Map and false otherwise. A Lease object can be added to a Map
if that Lease object can be renewed in a batch with the other objects in the

LeaseMap . The requirements for this are dependent on the implementation of

the Lease object.

The second method, renewAll() , will attempt to renew all of the Lease
objects in the LeaseMap for the duration associated with the Lease object. If

all of the Lease objects are successfully renewed, the method will return
Page 13

2

nothing. If some Lease objects fail to renew, those objects will be removed

from the LeaseMap and will be contained in the thrown

LeaseMapException .

The second method, cancelAll() , cancels all the Lease objects in the

LeaseMap . If all cancels are successful, the method returns normally and

leaves all leases in the map. If any of the Lease objects cannot be cancelled,

they are removed from the LeaseMap and the operation throws a

LeaseMapException .

The LeaseMapException class is defined as

package net.jini.core.lease;

import java.util.Map;

public class LeaseMapException extends LeaseException {

 public Map exceptionMap;

 public LeaseMapException(String s, Map exceptionMap) {
super(s);
this.exceptionMap = exceptionMap;

 }

}

Objects of type LeaseMapException contain a Map object which maps Lease
objects (the keys) to Exception objects (the values). The Lease objects are the

ones which could not be renewed or cancelled, and the Exception objects

reflect the individual failures. For example, if a LeaseMap.renew() call fails

because one of the leases has already expired, that lease would be taken out of

the original LeaseMap and placed in the Map returned as part of the

LeaseMapException object with an UnknownLeaseException object as the

corresponding value.

2.3 Leasing and Time
The duration of a lease is determined when the lease is granted (or renewed).

A lease is granted for a duration, rather than until some particular moment of

time, since such a grant does not require that the clocks used by the client and

the server be synchronized.

The difficulty of synchronizing clocks in a distributed system is well known.

The problem is somewhat more tractable in the case of leases, which are

expected to be for periods of minutes to months, as the accuracy of
Page 14 Jini ™ Distributed Leasing Specification–1.0

2

synchronization required is expected to be in terms of minutes rather than

nanoseconds. Over a particular local group of machines, a time service could

be used that would allow this level of synchronization.

However, leasing is expected to be used by clients and servers who are widely

distributed and might not share a particular time service. In such a case, clock

drift of many minutes is a common occurrence. Because of this, the leasing

specification has chosen to use durations rather than absolute time.

The reasoning behind such a choice is based on the observation that the

accuracy of the clocks used in the machines that make up a distributed system

is matched much more closely than the clocks on those systems. While there

may be minutes of difference in the notion of the absolute time had by widely

separated systems, there is much less likelihood of a significant difference over

the rate of change of time in those systems. While there is clearly some

difference in the notion of duration between systems (if there were not,

synchronization for absolute time would be much easier), that difference is not

cumulative in the way errors in absolute time are.

This decision does mean that holders of leases and grantors of leases need to

be aware of some of the consequences of the use of durations. In particular, the

amount of time needed to communicate between the lease holder and the lease

grantor, which may vary from call to call, needs to be taken into account when

renewing a lease. If a lease holder is calculating the absolute time (relative to

the lease holder’s clock) at which to ask for a renewal, that time should be

based on the sum of the duration of the lease and the time at which the lease

holder requested the lease, not on the duration and the time that the lease

holder received the lease.

2.4 Serialized Forms
The serialVersionUID of LeaseException is -7902272546257490469.

There are no serialized fields.

The serialVersionUID of UnknownLeaseException is

-2921099330511429288. There are no serialized fields.

The serialVersionUID of LeaseDeniedException is

5704943735577343495. There are no serialized fields.

The serialVersionUID of LeaseMapException is -4854893779678486122.

The single serialized field is the declared public field.
Page 15

2

Page 16 Jini ™ Distributed Leasing Specification–1.0

Example Supporting Classes 3
The basic Lease interface defined in the previous chapter allows leases to be

granted by one object and handed to another as the result of a call that creates

or provides access to some leased resource. The goal of the interface is to allow

as much freedom as possible in implementation, both on the part of the party

that is granting the lease (and thus is giving out the implementation that

supports the Lease interface) and the party that receives the lease.

However, there are a number of classes that can be supplied that can simplify

the handling of leases in some common cases. In this section, we will describe

examples of these supporting classes, and show how these classes can be used

with leased resources.

3.1 A Renewal Class
One of the common patterns with leasing is for the lease holder to request a

lease with the intention of renewing the lease until finished with the resource.

The period of time during which the resource is needed is unknown at the time

of requesting the lease, so the requestor desires that the lease be renewed until

an undetermined time in the future. Alternatively, the lease requestor may

know how long the lease needs to be held, but the lease holder is unwilling to

grant a lease for the full period of time. Again, the pattern will be to renew the

lease for some period of time.
Page 17

3

If the lease continues to be renewed, the lease holder doesn’t want to be

bothered with knowing about it, but if the lease is not renewed for some reason

the leaseholder wants to be notified. Such a notification can be done using the

usual inter-address space mechanisms for event notifications, by registering a

listener of the appropriate type.

This functionality can be supplied by a class with an interface like the

following

class LeaseRenew
{

LeaseRenew(Lease toRenew,
long renewTil,
LeaseExpireListener listener);

void addRenew(Lease toRenew,
 long renewTil,
 LeaseExpireListener listener);

long getExpiration(Lease forLease)
throws UnknownLeaseException;

void setExpiration(Lease forLease,long toExpire)
throws UnknownLeaseException;

void cancel(Lease toCancel)
throws UnknownLeaseException;

void setLeaseExpireListener(Lease forLease,
 LeaseExpireListener listener)

throws UnknownLeaseException;
void removeLeaseExpireListener(Lease forLease)

throws UnknownLeaseException;
}

The constructor of this class takes a Lease object, presumably returned from

some call that reserved a leased resource; an initial time indicating when the

lease should be renewed until, and an object that is to be notified if a renewal

fails before the time indicated in renewTil . This returns a LeaseRenew
object, which will have it’s own thread of control that will do the lease

renewals.

Once a LeaseRenew object has been created, other leases can be added to the

set that are renewed by that object using the addRenew() call. This call takes

a Lease object, an expiration time or overall duration, and a listener to be

informed if the lease cannot be renewed prior to the time requested. Internally

to the LeaseRenew object, leases that can be batched can be placed into a

LeaseMap .
Page 18 Jini ™ Distributed Leasing Specification–1.0

3

The duration of a particular lease can be queried by a call to the method

getExpiration() . This method takes a Lease object and returns the time at

which that lease will be allowed to expire by the LeaseRenew object. Note that

this is different from the Lease.getExpiration() method, which tells the

time at which the lease will expire if not renewed. If there is no Lease object

corresponding to the argument for this call being handled by the LeaseRenew
object, a UnknownLeaseException will be thrown. This can happen either

when no such Lease has ever been given to the LeaseRenew object, or when

a Lease object that has been held has already expired or been cancelled.

Notice that since this object is assumed to be in the same address space as the

object that acquired the lease, we can assume that it shares the same clock with

that object, and hence can use absolute time rather than a duration based

system.

The setExpiration() method allows the caller to adjust the expiration time

of any Lease object held by the LeaseRenew object. This method takes as

arguments the Lease whose time of expiration is to be adjusted and the new

expiration time. If no lease is held by the LeaseRenew object corresponding to

the first argument, an UnknownLeaseException will be thrown.

A call to cancel() will result in the cancellation of the indicated Lease held

by the LeaseRenew object. Again, if the lease has already expired on that

object, an UnknownLeaseException will be thrown. It is expected that a call

to this method will be made if the leased resource is no longer needed, rather

than just dropping all references to the LeaseRenew object.

The final two methods, setLeaseExpireListener() and

removeLeaseExpireListener() , allow setting and unsetting the

destination of an event handler associated with a particular Lease object held

by the LeaseRenew object. The handler will be called if the Lease object

expires before the desired duration period has completed. Note that one of the

properties of the example given here is that only one LeaseExpireListener
can be associated with each Lease .

3.2 A Renewal Service
Objects that hold a lease that needs to be renewed may themselves be

activatable, and thus unable to insure that they will be capable of renewing a

lease at some particular time in the future (since they may not be active at that
Page 19

3

time). For such objects, it might make sense to hand the lease renewal duty off

to a service that could take care of lease renewal for the object, allowing that

object to be deactivated without fear of losing its lease on some other resource.

The most straightforward way of accomplishing this is to hand the Lease
object off to some object whose job it is to renew leases on behalf of others.

This object will be remote to the objects to which it offers its service (otherwise

it would be inactive when the others become inactive) but might be local to the

machine; there could even be such services that are located on other machines.

The interface to such an object might look something like

interface LeaseRenewService extends Remote
{

EventRegistration renew(Lease toRenew,
 long renewTil,
 RemoteEventListenter notifyBeforeDrop,
 MarshalledObject returnOnNotify)

throws RemoteException;
void onRenewFailure(Lease toRenew,

 RemoteEventListenter toNotify,
 MarshalledObject returnOnNotify)

throws RemoteException, UnknownLeaseException;
}

The first method, renew() , is the request to the object to renew a particular

lease on behalf of the caller. The Lease object to be renewed is passed to the

LeaseRenewService object, along with the length of time for which the lease

is to be renewed. Since we are assuming that this service may not be on the

same machine as the object that acquired the original lease, we return to a

duration-based time system, since we cannot assume that the two systems

have synchronized clocks.

Requests to renew a Lease are themselves leased. The duration of the lease is

requested in the duration argument to the renew() method, and the actual

time of the lease is returned as part of the EventRegistration return value.

While it may seem odd to lease the service of renewing other leases, this does

not cause an infinite regress. It is assumed that the LeaseRenewService will

grant leases that are longer (perhaps significantly longer) than those in the

leases that it is renewing. In this fashion, the LeaseRenewService can act as

a concentrator for lease renewal messages.
Page 20 Jini ™ Distributed Leasing Specification–1.0

3

The renew() method also takes a RemoteEventListener and a

MarshalledObject to be passed to that RemoteEventListener . This is

because part of the semantics of the renew() call is to register interest in an

event that can occur within the LeaseRenewService object. The registration

is actually for a notification before the lease granted by the renewal service is

dropped. This event notification can be directed back to the object that is the

client of the renewal service, and will (if so directed) cause the object to be

activated (if it is not already active). This gives the object a chance to renew the

lease with the LeaseRenewService object before that lease is dropped.

The second method, onRenewFailure() , allows the client to register interest

in the LeaseRenewService being unable to renew the Lease supplied as an

argument to the call. This call also takes an RemoteEventListener object

which is the target of the notification, and a MarshalledObject that will be

passed as part of the notification. This allows the client to be informed if the

LeaseRenewService is denied a lease renewal during the lease period

offered to the client for such renewal. This call does not take a time period for

the event registration, but instead will have the same duration as the leased

renewal associated with the Lease object passed into the call, which should be

the same as the Lease object supplied in a previous call to renew() . If the

Lease is not one that is known to the LeaseRenewService object, an

UnknownLeaseException will be thrown.

There is no need for a method allowing the cancellation of a lease renewal

request. Since these requests are themselves leased, cancelling the lease with

the LeaseRenewService will cancel both the renewing of the lease and any

event registrations associated with that lease.
Page 21

3

Page 22 Jini ™ Distributed Leasing Specification–1.0

	Jini ™ Distributed Leasing Specification
	The Distributed Leasing specification defines a se...
	Contents
	1. Introduction 1
	1.1 Leasing and Distributed Systems 2
	1.2 Goals and Requirements 4
	1.3 Dependencies 4
	1.4 Comments 5

	2. Basic Leasing Interfaces 7
	2.1 Characteristics of a Lease 8
	2.2 Basic Operations 9
	2.3 Leasing and Time 14
	2.4 Serialized Forms 15

	3. Example Supporting Classes 17
	3.1 A Renewal Class 17
	3.2 A Renewal Service 19

	Introduction

	1.1 Leasing and Distributed Systems
	1.2 Goals and Requirements
	1.3 Dependencies
	1.4 Comments
	Basic Leasing Interfaces

	2.1 Characteristics of a Lease
	2.2 Basic Operations
	2.3 Leasing and Time
	2.4 Serialized Forms
	Example Supporting Classes

	3.1 A Renewal Class
	3.2 A Renewal Service

