
Jini™ Lookup Service Specification
l

ces
djinn.
The Jini™ system is a Java™ platform-centric distributed system designed around the
goals of simplicity, flexibility, and federation. The Jini Lookup service provides a centra
registry of services available within a djinn. The lookup service is a primary means for
programs to find services within a djinn, and is the foundation for providing user interfa
through which users and administrators can discover and interact with services in the
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
fax 415 969-9131

Revision 1.0
January 25, 1999

Copyright © 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. has patent and other intellectual property rights relating to implementations
of the technology described in this Specification ("Sun IPR"). Your limited right to use this
Specification does not grant you any right or license to Sun IPR. A limited license to Sun IPR is
available from Sun under a separate Community Source License.

THIS SPECIFICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY YOU AS A RESULT OF
USING THE SPECIFICATION.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE SPECIFICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
SPECIFICATIONS AT ANY TIME, IN ITS SOLE DISCRETION. SUN IS UNDER NO OBLIGATION
TO PRODUCE FURTHER VERSIONS OF THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY BASED UPON THE SPECIFICATION. NOR IS SUN UNDER ANY OBLIGATION
TO LICENSE THE SPECIFICATION OR ANY ASSOCIATED TECHNOLOGY, NOW OR IN THE
FUTURE, FOR PRODUCTIVE OR OTHER USE.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Jini, JavaSpaces, JavaSoft, JavaBeans, JDK, Java, HotJava,
HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS,
EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore,
SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,
Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop,
the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
Page ii Jini™ Lookup Service Specification—1.0

Contents
1. Introduction . 1

1.1 Overview . 1

1.2 The Lookup Service Model . 1

1.3 Attributes . 2

1.4 Dependencies . 3

1.5 Comments . 3

2. The ServiceRegistrar . 5

2.1 ServiceID . 5

2.2 ServiceItem . 7

2.3 ServiceTemplate and Item Matching 8

2.4 Other Supporting Types . 8

2.5 ServiceRegistrar . 9

2.6 ServiceRegistration . 14

2.7 Serialized Forms . 15
Page iii

Page iv Jini™ Lookup Service Specification–1.0

Introduction 1
1.1 Overview
The Jini™ Lookup service is a fundamental part of the federation infrastructure

for a djinn, the group of devices, resources, and users joined by the Jini

software infrastructure. The lookup service provides a central registry of services

available within the djinn. This lookup service is a primary means for

programs to find services within the djinn, and is the foundation for providing

user interfaces through which users and administrators can discover and

interact with services in the djinn.

Although the primary purpose of this specification is to define the interface to

the djinn’s central service registry, the interfaces defined here can readily be

used in other service registries.

1.2 The Lookup Service Model
The lookup service maintains a flat collection of service items. Each service item

represents an instance of a service available within the djinn. The item contains

the RMI stub (if the service is implemented as a remote object) or other object

(if the service makes use of a local proxy) that programs use to access the

service, and an extensible collection of attributes that describe the service or

provide secondary interfaces to the service.

When a new service is created (for example, when a new device is added to the

djinn), the service registers itself with the djinn’s lookup service, providing an

initial collection of attributes. For example, a printer might include attributes
Page 1

1

indicating speed (in pages per minute), resolution (in dots per inch) and

whether duplex printing is supported. Among the attributes might be an

indicator that the service is new and needs to be configured.

An administrator uses the event mechanism of the lookup service to receive

notifications as new services are registered. To configure the service, the

administrator might look for an attribute that provides an applet for this

purpose. The administrator might also use an applet to add new attributes,

such as the physical location of the service and a common name for it; the

service would receive these attribute change requests from the applet, and

respond by making the changes at the lookup service.

Programs (including other services) that need a particular type of service can

use the lookup service to find an instance. A match can be made based on the

specific data types for the Java™ programming language implemented by the

service as well as the specific attributes attached to the service. For example, a

program that needs to make use of transactions might look for a service that

supports the type

net.jini.core.transaction.server.TransactionManager , and

might further qualify the match by desired location.

Although the collection of service items is flat, a wide variety of hierarchical

views can be imposed on the collection by aggregating items according to

service types and attributes. The lookup service provides a set of methods to

enable incremental exploration of the collection, and a variety of user interfaces

can be built using these methods, allowing users and administrators to browse.

Once an appropriate service is found, the user might interact with the service

by loading a user interface applet, attached as another attribute on the item.

If a service encounters some problem that needs administrative attention, such

as a printer running out of toner, the service can add an attribute that indicates

what the problem is. Administrators again use the event mechanism to receive

notification of such problems.

1.3 Attributes
The attributes of a service item are represented as a set of attribute sets. An

individual attribute set is represented as an instance of some class for the Java

platform, each attribute being a public field of that class. The class provides

strong typing of both the set and the individual attributes. A service item can

contain multiple instances of the same class with different attribute values, as
Page 2 Jini™ Lookup Service Specification–1.0

1

well as multiple instances of different classes. For example, an item might have

multiple instances of a Name class, each giving the common name of the

service in a different language, plus an instance of a Location class, an Owner
class, and various service-specific classes. The schema used for attributes is not

constrained by this specification, but a standard foundation schema for Jini

systems is defined in the Jini Lookup Attribute Schema Specification.

Concretely, a set of attributes is implemented with a class that correctly

implements the interface net.jini.core.entry.Entry , as described in the

Jini™ Entry Specification. Operations on the lookup service are defined in terms

of template matching, using the same semantics as in the Jini™ Entry
Specification, but the definition is augmented to deal with sets of entries and

sets of templates. A set of entries matches a set of templates if there is at least

one matching entry for every template (with every entry usable as the match

for more than one template).

1.4 Dependencies
This specification relies on the following other specifications:

◆ Java Remote Method Invocation Specification

◆ Java Object Serialization Specification

◆ Jini™ Entry Specification

◆ Jini™ Distributed Event Specification

◆ Jini™ Distributed Leasing Specification

◆ Jini™ Discovery and Join Specification

1.5 Comments
Please direct comments to jini-comments@java.sun.com .
Page 3

1

Page 4 Jini™ Lookup Service Specification–1.0

The ServiceRegistrar 2
The types defined in this specification are in the net.jini.core.lookup
package. The following types are imported from other packages, and are

referenced in unqualified form in the rest of this specification:

java.rmi.MarshalledObject
java.rmi.RemoteException
java.rmi.UnmarshalException
java.io.Serializable
java.io.DataInput
java.io.DataOutput
java.io.IOException
net.jini.core.discovery.LookupLocator
net.jini.core.entry.Entry
net.jini.core.lease.Lease
net.jini.core.event.RemoteEvent
net.jini.core.event.EventRegistration
net.jini.core.event.RemoteEventListener

2.1 ServiceID
Every service is assigned a universally unique identifier (UUID), represented

as an instance of the ServiceID class.
Page 5

2

public final class ServiceID implements Serializable {
 public ServiceID(long mostSig, long leastSig);
 public ServiceID(DataInput in) throws IOException;

 public void writeBytes(DataOutput out) throws IOException;
 public long getMostSignificantBits();
 public long getLeastSignificantBits();
}

A service id is a 128-bit value. Service ids are equal (using the equals method)

if they represent the same 128-bit value. For simplicity and reliability, service

ids are intended to be generated only by lookup services, not by clients. As

such, the ServiceID constructor merely takes 128 bits of data, to be computed

in an implementation-dependent manner by the lookup service. The

writeBytes method writes out 16 bytes in standard network byte order. The

second constructor reads in 16 bytes in standard network byte order.

The most significant long can be decomposed into the following unsigned

fields:

0xFFFFFFFF00000000 time_low

0x00000000FFFF0000 time_mid

0x000000000000F000 version

0x0000000000000FFF time_hi

The least significant long can be decomposed into the following unsigned

fields:

0xC000000000000000 variant

0x3FFF000000000000 clock_seq

0x0000FFFFFFFFFFFF node

The variant field must be 0x2. The version field must be either 0x1 or 0x4.

If the version field is 0x4, then the most significant bit of the node field must

be set to 1, and the remaining fields are set to values produced by a

cryptographically strong pseudo-random number generator. If the version
field is 0x1, then the node field is set to an IEEE 802 address, the clock_seq
field is set to a 14-bit random number, and the time_low , time_mid , and

time_hi fields are set to the least, middle and most significant bits

(respectively) of a 60-bit timestamp measured in 100-nanosecond units since

midnight, October 15, 1582 UTC.
Page 6 Jini™ Lookup Service Specification–1.0

2

The toString method returns a 36-character string of six fields separated by

hyphens, with each field represented in lowercase hexadecimal with the same

number of digits as in the field. The order of fields is: time_low , time_mid ,

version and time_hi treated as a single field, variant and clock_seq
treated as a single field, and node .

2.2 ServiceItem
Items are stored in the lookup service using instances of the ServiceItem
class.

public class ServiceItem implements Serializable {
 public ServiceItem(ServiceID serviceID,
 Object service,
 Entry[] attributeSets);
 public ServiceID serviceID;
 public Object service;
 public Entry[] attributeSets;
}

The constructor simply assigns each parameter to the corresponding field.

Each Entry represents an attribute set. The class must have a public no-arg

constructor, and all non-static, non-final, non-transient public fields must be

declared with reference types, holding serializable objects. Each such field is

serialized separately as a MarshalledObject , and field equality is defined by

MarshalledObject.equals . The only relationship constraint on attribute

sets within an item is that exact duplicates are eliminated; other than that,

multiple attribute sets of the same type are permitted, multiple attribute set

types can have a common superclass, etc.

The net.jini.core.entry.UnusableEntryException is not used in the

lookup service; alternate semantics are defined for individual operations

further below.
Page 7

2

2.3 ServiceTemplate and Item Matching
Items in the lookup service are matched using instances of the

ServiceTemplate class.

public class ServiceTemplate implements Serializable {
 public ServiceTemplate(ServiceID serviceID,
 Class[] serviceTypes,
 Entry[] attributeSetTemplates);
 public ServiceID serviceID;
 public Class[] serviceTypes;
 public Entry[] attributeSetTemplates;
}

The constructor simply assigns each parameter to the corresponding field.

A service item (item) matches a service template (tmpl) if:

• item.serviceID equals tmpl.serviceID (or if tmpl.serviceID is

null), and

• item.service is an instance of every type in tmpl.serviceTypes , and

• item.attributeSets contains at least one matching entry for each entry

template in tmpl.attributeSetTemplates

An entry matches an entry template if the class of the template is the same as,

or a superclass of, the class of the entry, and every non-null field in the

template equals the corresponding field of the entry. Every entry can be used

to match more than one template. For both service types and entry classes,

type matching is based simply on fully-qualified class names. Note that in a

service template, for serviceTypes and attributeSetTemplates , a null

field is equivalent to an empty array; both represent a wildcard.

2.4 Other Supporting Types
The ServiceMatches class is used for the return value when looking up

multiple items.

public class ServiceMatches implements Serializable {
 public ServiceMatches(ServiceItem[] items, int totalMatches);
 public ServiceItem[] items;
 public int totalMatches;
}

Page 8 Jini™ Lookup Service Specification–1.0

2

The constructor simply assigns each parameter to the corresponding field.

A ServiceEvent extends RemoteEvent with methods to obtain the service

id of the matched item, the transition that triggered the event, and the new

state of the matched item.

public abstract class ServiceEvent extends RemoteEvent {
 public ServiceEvent(Object source,
 long eventID,
 long seqNum,
 MarshalledObject handback,
 ServiceID serviceID,
 int transition);
 public ServiceID getServiceID();
 public int getTransition();
 public abstract ServceItem getServiceItem();
}

The getServiceID and getTransition methods return the value of the

corresponding constructor parameter. The remaining constructor parameters

are the same as in the RemoteEvent constructor.

The rest of the semantics of both these classes is explained in the next section.

2.5 ServiceRegistrar
The ServiceRegistrar defines the interface to the lookup service. The

interface is not a remote interface; each implementation of the lookup service

exports proxy objects that implement the ServiceRegistrar interface local

to the client, using an implementation-specific protocol to communicate with

the actual remote server. All of the proxy methods obey normal RMI remote

interface semantics except where explicitly noted. Two proxy objects are equal

(using the equals method) if they are proxies for the same lookup service.

Methods are provided to register service items, find items that match a

template, receive event notifications when items are modified, and

incrementally explore the collection of items along the three major axes: entry

class, attribute value, and service type.
Page 9

2

public interface ServiceRegistrar {

 ServiceRegistration register(ServiceItem item,
 long leaseDuration)

throws RemoteException;

 Object lookup(ServiceTemplate tmpl)
throws RemoteException;

 ServiceMatches lookup(ServiceTemplate tmpl, int maxMatches)
throws RemoteException;

 int TRANSITION_MATCH_NOMATCH = 1 << 0;
 int TRANSITION_NOMATCH_MATCH = 1 << 1;
 int TRANSITION_MATCH_MATCH = 1 << 2;

 EventRegistration notify(ServiceTemplate tmpl,
 int transitions,
 RemoteEventListener listener,
 MarshalledObject handback,
 long leaseDuration)

throws RemoteException;

 Class[] getEntryClasses(ServiceTemplate tmpl)
throws RemoteException;

 Object[] getFieldValues(ServiceTemplate tmpl,
 int setIndex,
 String field)

throws NoSuchFieldException, RemoteException;

 Class[] getServiceTypes(ServiceTemplate tmpl,
 String prefix)

throws RemoteException;

 ServiceID getServiceID();

 LookupLocator getLocator() throws RemoteException;

 String[] getGroups() throws RemoteException;
}

Page 10 Jini™ Lookup Service Specification–1.0

2

Every method invocation (on both ServiceRegistrar and

ServiceRegistration) is atomic with respect to other invocations.

The register method is used to register a new service and to re-register an

existing service. The method is defined so that it can be used in an idempotent

fashion. Specifically, if a call to register results in a RemoteException (in

which case the item might or might not have been registered), the caller can

simply repeat the call to register with the same parameters, until it

succeeds.

To register a new service, item.serviceID should be null. In that case, if

item.service does not equal (using MarshalledObject.equals) any

existing item’s service object, then a new service id will be assigned and

included in the returned ServiceRegistration (described in the next

section). The service id is unique over time and space with respect to all other

service ids generated by all lookup services. If item.service does equal an

existing item’s service object, the existing item is first deleted from the lookup

service (even if it has different attributes) and its lease is cancelled, but that

item’s service id is reused for the newly registered item.

To re-register an existing service, or to register the service in any other lookup

service, item.serviceID should be set to the same service id that was

returned by the initial registration. If an item is already registered under the

same service id, the existing item is first deleted (even if it has different

attributes or a different service instance) and its lease is cancelled by the

lookup service. Note that service object equality is not checked in this case, to

allow for reasonable evolution of the service (e.g., the serialized form of the

stub changes, or the service implements a new interface).

Any duplicate attribute sets included in a service item are eliminated in the

stored representation of the item. The lease duration request (specified in

milliseconds) is not exact; the returned lease is allowed to have a shorter (but

not longer) duration than what was requested. The registration is persistent

across restarts (crashes) of the lookup service until the lease expires or is

cancelled.

The single-parameter form of lookup returns the service object (i.e., just

ServiceItem.service) from an item matching the template, or null if there

is no match. If multiple items match the template, it is arbitrary as to which

service object is returned. If the returned object cannot be deserialized, an

UnmarshalException is thrown with the standard RMI semantics.
Page 11

2

The two-parameter form of lookup returns at most maxMatches items

matching the template, plus the total number of items that match the template.

The return value is never null, and the returned items array is only null if

maxMatches is zero. For each returned item, if the service object cannot be

deserialized, the service field of the item is set to null and no exception is

thrown. Similarly, if an attribute set cannot be deserialized, that element of the

attributeSets array is set to null and no exception is thrown.

The notify method is used to register for event notification. The registration

is leased; the lease duration request (specified in milliseconds) is not exact. The

registration is persistent across restarts (crashes) of the lookup service until the

lease expires or is cancelled. The event id in the returned

EventRegistration is unique at least with respect to all other active event

registrations at this lookup service with different service templates or

transitions.

While the event registration is in effect, a ServiceEvent is sent to the

specified listener whenever a register , lease cancellation or expiration, or

attribute change operation results in an item changing state in a way that

satisfies the template and transition combination. The transitions
parameter is the bitwise OR of any non-empty set of transition values:

◆ TRANSITION_MATCH_NOMATCH: an event is sent when the changed item

matches the template before the operation, but doesn’t match the template

after the operation (this includes deletion of the item).

◆ TRANSITION_NOMATCH_MATCH: an event is sent when the changed item

doesn’t match the template before the operation (this includes not existing),

but does match the template after the operation.

◆ TRANSITION_MATCH_MATCH: an event is sent when the changed item

matches the template both before and after the operation.

The getTransition method of ServiceEvent returns the singleton

transition value that triggered the match.

The getServiceItem method of ServiceEvent returns the new state of the

item (the state after the operation), or null if the item was deleted by the

operation. Note that this method is declared abstract ; a lookup service uses

a subclass of ServiceEvent to transmit the new state of the item however it

chooses.
Page 12 Jini™ Lookup Service Specification–1.0

2

Sequence numbers for a given event id are strictly increasing. If there is no gap

between two sequence numbers, no events have been missed; if there is a gap,

events might (but might not) have been missed. For example, a gap might

occur if the lookup service crashes, even if no events are lost due to the crash.

As mentioned earlier, users are allowed to explore a collection of items down

each of the major axes: entry class, attribute value, and service type.

The getEntryClasses method looks at all service items that match the

specified template, finds every entry (among those service items) that either

doesn’t match any entry templates or is a subclass of at least one matching

entry template, and returns the set of the (most specific) classes of those

entries. Duplicate classes are eliminated, and the order of classes within the

returned array is arbitrary. Null (not an empty array) is returned if there are no

such entries or no matching items. If a returned class cannot be deserialized,

that element of the returned array is set to null and no exception is thrown.

The getFieldValues method looks at all service items that match the

specified template, finds every entry (among those service items) that matches

tmpl.attributeSetTemplates[setIndex] , and returns the set of values

of the specified field of those entries. Duplicate values are eliminated, and the

order of values within the returned array is arbitrary. Null (not an empty

array) is returned if there are no matching items. If a returned value cannot be

deserialized, that element of the returned array is set to null and no exception

is thrown. NoSuchFieldException is thrown if field does not name a field

of the entry template.

The getServiceTypes method looks at all service items that match the

specified template, and for every service item finds the most specific type (class

or interface) or types the service item is an instance of that are neither equal to,

nor a superclass of, any of the service types in the template and that have

names that start with the specified prefix, and returns the set of all such types.

Duplicate types are eliminated, and the order of types within the returned

array is arbitrary. Null (not an empty array) is returned if there are no such

types. If a returned type cannot be deserialized, that element of the returned

array is set to null and no exception is thrown.

Every lookup service assigns itself a service id when it is first created; this

service id is returned by the getServiceID method. (Note that this does not

make a remote call.) A lookup service is always registered with itself under

this service id, and if a lookup service is configured to register itself with other

lookup services, it will register with all of them using this same service id.
Page 13

2

The getLocator method returns a LookupLocator that can be used if

necessary for unchaste discovery of the lookup service. The definition of this

class is given in the Jini™ Technology Discovery and Join Specification.

The getGroups method returns the set of groups that this lookup service is

currently a member of. The semantics of these groups is defined in the Jini
Technology Discovery and Join Specification.

2.6 ServiceRegistration
A registered service item is manipulated using a ServiceRegistration
instance.

public interface ServiceRegistration {

 ServiceID getServiceID();

 Lease getLease();

 void addAttributes(Entry[] attrSets)
 throws UnknownLeaseException, RemoteException;

 void modifyAttributes(Entry[] attrSetTemplates,
 Entry[] attrSets)
 throws UnknownLeaseException, RemoteException;

 void setAttributes(Entry[] attrSets)
 throws UnknownLeaseException, RemoteException;
}

Like ServiceRegistrar , this is not a remote interface; each implementation

of the lookup service exports proxy objects that implement this interface local

the client. The proxy methods obey normal RMI remote interface semantics.

The getServiceID method returns the service id for this service. (Note that

this does not make a remote call.)

The getLease method returns the lease that controls the service registration,

allowing the lease to be renewed or cancelled. (Note that getLease does not

make a remote call.)
Page 14 Jini™ Lookup Service Specification–1.0

2

The addAttributes method adds the specified attribute sets (those that

aren’t duplicates of existing attribute sets) to the registered service item. Note

that this operation has no effect on existing attribute sets of the service item,

and can be repeated in an idempotent fashion. UnknownLeaseException is

thrown if the registration lease has expired or been cancelled.

The modifyAttributes method is used to modify existing attribute sets. The

lengths of attrSetTemplates and attrSets must be equal, or

IllegalArgumentException is thrown. The service item’s attribute sets are

modified as follows. For each array index i: if attrSets[i] is null, then every

entry that matches attrSetTemplates[i] is deleted; otherwise, for every

non-null field in attrSets[i] , the value of that field is stored into the

corresponding field of every entry that matches attrSetTemplates[i] . The

class of attrSets[i] must be the same as, or a superclass of, the class of

attrSetTemplates[i] , or IllegalArgumentException is thrown. If the

modifications result in duplicate entries within the service item, the duplicates

are eliminated. UnknownLeaseException is thrown if the registration lease

has expired or been cancelled.

Note that it is possible to use modifyAttributes in ways that are not

idempotent. The attribute schema should be designed in such a way that all

intended uses of this method can be performed in an idempotent fashion. Also

note that modifyAttributes does not provide a means for setting a field to

null; it is assumed that the attribute schema is designed in such a way that this

is not necessary.

The setAttributes method deletes all of the service item’s existing

attributes, and replaces them with the specified attribute sets. Any duplicate

attribute sets are eliminated in the stored representation of the item.

UnknownLeaseException is thrown if the registration lease has expired or

been cancelled.

2.7 Serialized Forms
The serialVersionUID of ServiceID is -7803375959559762239. The

serialized fields are:

◆ long mostSig — the most significant bits

◆ long leastSig — the least significant bits
Page 15

2

The serialVersionUID of ServiceItem is 717395451032330758. The

serialized fields are the declared public fields.

The serialVersionUID of ServiceTemplate is 7854483807886483216. The

serialized fields are the declared public fields.

The serialVersionUID of ServiceMatches is -5518280843537399398. The

serialized fields are the declared public fields.

The serialVersionUID of ServiceEvent is 1304997274096842701. The

serialized fields are:

◆ ServiceID serviceID — the service ID

◆ int transition — the transition
Page 16 Jini™ Lookup Service Specification–1.0

	Jini™ Lookup Service Specification
	The Jini™ system is a Java™ platform-centric distr...
	Contents
	1. Introduction 1
	1.1 Overview 1
	1.2 The Lookup Service Model 1
	1.3 Attributes 2
	1.4 Dependencies 3
	1.5 Comments 3

	2. The ServiceRegistrar 5
	2.1 ServiceID 5
	2.2 ServiceItem 7
	2.3 ServiceTemplate and Item Matching 8
	2.4 Other Supporting Types 8
	2.5 ServiceRegistrar 9
	2.6 ServiceRegistration 14
	2.7 Serialized Forms 15

	Introduction

	1.1 Overview
	1.2 The Lookup Service Model
	1.3 Attributes
	1.4 Dependencies
	1.5 Comments
	The ServiceRegistrar

	2.1 ServiceID
	2.2 ServiceItem
	2.3 ServiceTemplate and Item Matching
	2.4 Other Supporting Types
	2.5 ServiceRegistrar
	2.6 ServiceRegistration
	2.7 Serialized Forms

