
XML DIF Experiment

David Rosenbaum
david.rosenbaum@gtri.gatech.edu

Georgia Tech Research Institute

Information Technology & Telecommunications Laboratory

Distributed Simulation Systems Group

December 9, 1998

Home of the 1996 Olympic Village

Computer Science and Information Technology Division
Information Technology and Telecommunications Laboratory

Goals of the experiment
• Create a program (“FEDDIFWriter”) that reads an

XML OMT document and writes the
corresponding FED DIF file

• Thereby:
– Gain programming experience

• Tools

• Techniques

• Level of effort

– Verify practicability of extracting FED information
from an OMT document

Useful XML resources
• The XML Handbook

– Prentice Hall: ISBN 0-13-081152-1

– Good technical overview (Chapter 3)

– Good, relatively in-depth technical introduction (Part Five)

– Good free software list (Chapter 30)

– Lots of material on use cases and general-interest tools

– CD-ROM full of resources and resource pointers

• http://www.xml.org
– The Annotated XML Specification

– Large set of resource pointers

Parser API standards (1 of 2)
• DOM: Document Object Model

– Conceptually, all XML documents are trees of elements that can contain:
• Child elements

• Text

• Attributes

– Many XML parsers operate by creating a corresponding in-memory tree
and providing access to this tree

– DOM is an API for in-memory document tree access and manipulation
• W3C Recommendation

• Language-neutral

• Supports user subclassing of tree nodes

• Does not include a parser initiation interface - used after parsing is complete

• Memory usage is roughly proportional to document size

Parser API standards (2 of 2)
• SAX: Simple API for XML

– The recognition of a document feature during parsing can be thought of as
an “event”

• e.g. beginning of document, end of document, beginning of element, end of
element, availability of character data

– SAX is an API for delivery of parsing events to an application program
• De facto standard developed by members of the xml-dev mailing list

• Currently supports Java; IDL later

• Callbacks include startDocument(), endDocument(), startElement(),
endElement(), and characters()

• Includes a parser initiation interface

• Minimal memory usage

Parsers (1 of 2)
• IBM XML Parser for Java (XML4J)

– Supports validation

– Actively maintained

– Committed to tracking standards, including DOM and SAX

– Supports unparsing

– Exposes DTD information

• Microsoft XML Parser in Java
– Supports validation

– Proprietary in-memory tree access API

– SAX driver is available

– Microsoft has discontinued improvements; attention is now
focused on the Microsoft-Data Channel XML Java parser

Parsers (2 of 2)
• Sun Java Project X: Java Services for XML

Technology
– Current release is Early Access 2

– Supports validation

– Supports DOM and SAX

• Several more Java parsers

• Parsers also available for C++, C, Python, Tcl, and
Perl

Implementation overview
• Used IBM XML4J

– Wanted to use a high-profile tool

– MS: too proprietary, no longer under active
development

– Sun: wasn’t released until after implementation had
begun

• Subclassed DOM Element class

• Implemented writeFEDDIFV13() methods

• Also implemented writeOMTDIFV13() methods
to create incomplete OMT DIF writer

DOM subclassing (1 of 4)
– Memory demands of tree structure not an issue

– Tried alternate implementation based on XML4J’s
built-in Visitor pattern support, which proved too
cumbersome

– Wasn’t worried about portability; used some of
XML4J’s extensions

– Used sed and some scripting to generate trivial Element
subclass implementations for each of the element types.

• e.g. Element_interactionClass, Element_parameter

– Overrode default factory to create Element subclasses

DOM subclassing (2 of 4)
• Example of trivial Element subclass
//

// Element_updateReflectTag.java

//

package gtri.xml.omt;

public class Element_updateReflectTag extends OMTElement

{

 // Methods

 public Element_updateReflectTag(String aName)

 {

 super(aName);

 }

}

DOM subclassing (3 of 4)
• Fragment of overriden class factory
...

public class OMTDocument extends TXDocument

{

 // Methods

 // Factory method for elements

 public Element createElement(String aName)

 {

 TXElement lElement;

 if (aName.equals("omt"))

 {

 lElement = new Element_omt(aName);

 }

 else if (aName.equals("identification"))

 {

 lElement = new Element_identification(aName);

 }

...

DOM subclassing (4 of 4)
• Fragment of non-trivial Element subclass
...

public class Element_interactionClass extends OMTElement

{

...

 public void writeFEDDIFV13(Indenter aIndenter)

 {

 aIndenter.println("(class " +

 FEDDIFWriter.ToNameString(getAttribute("name"))+ " " +

 FEDDIFWriter.ToFEDTransport(getAttribute("transport")) + " " +

 FEDDIFWriter.ToFEDOrder(getAttribute("order")) + " " +

 FEDDIFWriter.ToNameString(getAttribute("routeSpace")));

 aIndenter.indent();

 writeFEDDIFV13ForChildren(aIndenter);

 aIndenter.outdent();

 aIndenter.println(")");

 }

...

}

Conclusions
• With XML you get:

– Resources

– Tools (including parsers)

– Commitment of heavyweight companies like IBM, Sun,
and Microsoft

• It’s easy to make use of XML data in your
program

