University Outreach: RTI Software

Richard Fujimoto

College of Computing Georgia Institute of Technology fujimoto@cc.gatech.edu

Outline

- Goals and Objectives
- Federated Simulation Development Kit (FDK)
 - RTI-Kit
 - Jane interface software
- Plans and Schedule

HLA Outreach to the University Community

Goals

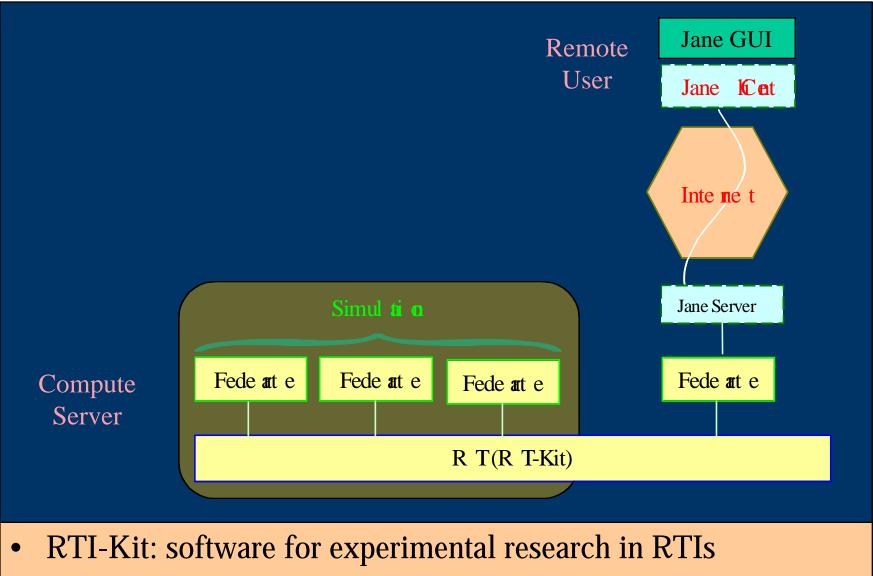
- Support increased research in HLA and HLA-like systems
 - Substantial technical expertise in distributed simulation systems and related technologies in the university community
 - RTI source code is needed to foster research that can be directly applied to the HLA
- Support university laboratory experiences in RTI development
 - Existing RTIs provide experience in developing federations, but not for experimenting with RTI internals
 - Current RTIs not readily accessible: source code generally not available, internals may not be extensively documented

Approach: develop and distribute RTI software to "jump start" HLA research and education

RTI Research Software: Requirements

Support research and education in HLA RTIs

- Support experimentation with RTI internals
 - Modify, experiment, modify life cycle
 - Focus on time management and data distribution management (initially)
- Must be modular with clearly defined interfaces and replaceable parts
- Must be simple!
 - Large effort to understand and realize an HLA RTI
 - Complete HLA RTI implementation typically not needed (nor necessarily desirable!) for academic research
- Source code and documentation essential

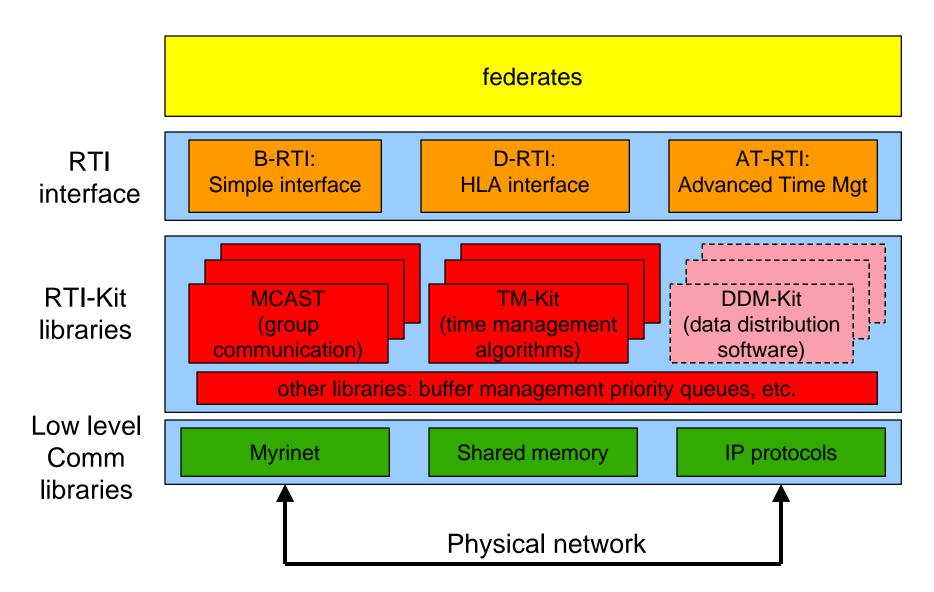

Typical Usage Scenarios

- Experiment with time management algorithms & approaches
 - TM algorithms optimized for shared memory machines
 - Apples-to-apples comparison of TM algorithms
 - Novel approaches to time management
- Experiment with new approaches to DDM
 - Time synchronized DDM
 - Efficient implementation approaches
- Class projects "dissecting" and modifying an HLA RTI
 - Alternate communication support
 - Improved time management algorithms
 - Specialized RTIs for different applications (e.g., network simulations)

Outline

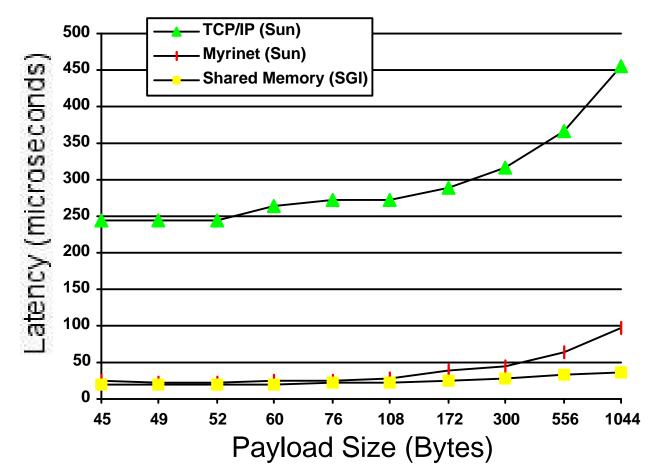
- Goals and Objectives
- Federated Simulation Development Kit (FDK)
 - RTI-Kit
 - Jane interface software
- Plans and Schedule

Federated Simulations Development Kit (FDK)

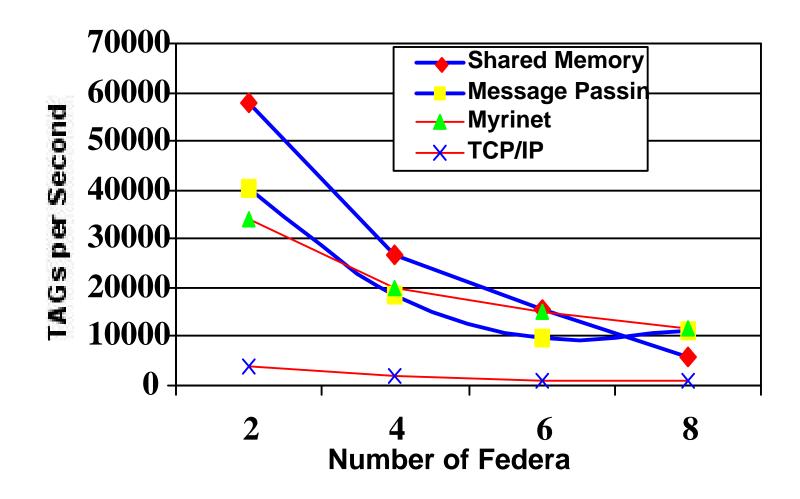


• Jane: interactive simulation monitoring and control

RTI-Kit


- collection of libraries; enhance existing RTIs / develop new ones
- each library can be used separately, or with other RTI-Kit libraries
- implemented over multiple platforms: compute clusters (Myrinet), shared memory multiprocessors (SGI), IP networks
- current libraries
 - MCAST: group communication software
 - distributed group management, name server functions
 - current implementation built over unicast
 - application-defined buffer allocation to minimize data copying
 - TM-Kit: algorithms for implementing time management
 - fast distributed snapshot algorithm
 - scalable (O(log N) time for global reduction operations
 - buffer management, priority queues, random number libraries
- RTIs using RTI-Kit
 - UK-RTI (DERA)
 - B-RTI, D-RTI, AT-RTI (Georgia Tech)

RTI-Kit Software


Update Attribute Value Latency Benchmark

Federate to federate latency using RTI-Kit sending N byte payload

Myrinet and Shared Memory similar performance Mryinet and Shared Memory about 4 to 9 times faster than TCP/IP

Time Advance Grant Benchmark

* Blue line indicates experiment performed on SGI Origin 2000

* Red line indicates experiment performed on on network of UltraSparc workstations

Jane Client-Server Architecture

support interactive monitoring & management of simulation executions

- Graphical interface displays (e.g., performance stats) & control
 - Default views and controls, user-extendable
- Remote interaction over the Internet (e.g., via laptops)
- Collaborative interaction
- Scripting
- Simulation *gateway* to larger design/decision tools
- Pre- & post-simulation analysis
- Plug-N-Play interface to different simulators

Software Components

- Server written in C
 - tested on Sparc & SGI
- Client written in Java
 - tested on Sparc, SGI, Windows
- Simulators
 - RTIs based on Georgia Tech RTI-Kit
 - GTW, GTW++, TeD
- Model instrumentation API in C/C++
 - at the simulation
- Model view extension API
 - at the client

Sample Jane Session

Sample Collaborative Session

Sample User-defined View

Summary

- RTI-Kit Software
 - Provides software for HLA RTI research and education to the research community
 - Software base for research in distributed simulation systems at Georgia Tech
- Jane interactive simulation environment
 - Performance monitoring and execution control tool
 - Remote access to parallel/distributed simulations via the Internet
 - Support for user collaborations
 - Extensible for application specific interfaces and displays

additional information:

- R. Fujimoto and P. Hoare, "HLA RTI Performance in High Speed LAN Environments," *1998 Fall Simulation Interoperability Workshop*, September 1998.
- S. Ferenci and R. Fujimoto, "RTI Performance on Shared Memory and Message Passing Architectures," *1999 Spring Simulation Interoperability Workshop*, March 1999.
- K. Perumalla and R. Fujimoto, "Jane: An Architecture for Interactive Parallel Simulation," *WEBSIM '99*, January 1999.

FDK Milestones and Schedule

- Used in Georgia Tech course (Jan-Mar 99)
- FDK Pre-release (Feb 99)
 - UCLA, Dartmouth, University of Exeter (UK), National Univ. of Singapore
- HLA tutorial, broad FDK 1.0 release at PADS 99 (May 99)
- RTI-Kit software distribution (FDK 1.0)
 - Modules (libraries) w/ algorithms implementing key functions
 - Time management
 - Group communication
 - Sample, simplified RTI (using RTI-Kit libraries), test federates
 - Limit set of services (federation, declaration, object, time management)
 - Source code, documentation provided
 - Free for use in academic or industrial research
 - Platforms
 - Sparc (Solaris 2.5 and 2.7)
 - SGI Origin, O2 (Irix 6.2, 6.3, 6.4)
 - Intel (Solaris 2.5.1, RedHat Linux 2.0.36)

Future Plans

- Periodic upgrades and new releases
 - Bug fixes, new platforms and OS versions (as needed)
 - Additional HLA services
- DDM software release
- Continued use in research at Georgia Tech
 - Advanced time management techniques and time managed DDM
 - High performance simulation on cluster computers
 - Interactive parallel/distributed simulation systems
 - Modeling telecommunication networks
 - Missile defense applications