Transaction Service Specification 10

This chapter provides the following information about the Transaction Service:

» A description of the service, which explains the functional, desigd,
performance requirements that are satisfied by this specification.

» An overview of the Transaction Service tlatroduces the concepts used
throughout his chapter.

» A description of the Transaction Service's architecture and a detailedtidefiof
the Transaction Service, including definitionsitsfinterfacesand operations.

» A user’s view of the Tragaction Service as seen by the application programmer,
including clientand object implementer.

» An implementer’'sview of the Transaction Service, which wiititerest
Transaction Service and ORB providers.

This chapter also contains anpagndix that explains theelationship between the
Transaction Service and TP standards, andppendix that contains transaction terms.

Contents

This chapter contains thfellowing sections.

Section Title Page
“Service Desdption” 10-2
“Service Archtiecture” 10-12
“Transaction Service Interfaces” 10-17
“The User’sView” 10-34
“The Implementers’ View” 0-48

Transaction Services1.1 Novembd97 10-1

10

Section Title Page
“The CosTramactions Modul™: 10-69
Appendix A ‘Relationship of Trasaction Service to TP | 10-74
Standard”;

Appendix B ‘Transaction Service Gloss"ry 10-85

10.1 Service Description

The concept of transactions is an important programming paradigm for simplifying the
construction of reliabland available applications, especially those that require
concurrent access to shared data. The transaction concept was firgedeplo
commercial operational applications where it was used to protect data in centralized
databases. More recently, the transaction concepbdes extended to the broader
context of distributed computation. Today it is widely accepted that transactions are
the key to constructingeliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developing reliable distributed applitgtiand the object
paradigm, key to produetty and quality in application development, together to
address the business problems of commercial transaction pro.essing

10.1.1 Oveniew of Transactions

The Transaction Service supports the concepttransactio. A transaction is a unit
of work that has the followin(ACID) characteristics:

® A transaction isatomic; if interrupted by failure, all effects are done (rolled
back).

® A transaction produceconsisten results; the effects of a transaction preserve
invariant properties.

® A transaction idisolatec; its intermediate states are not visible to other transactions.
Transactions appear to execsatgially, even if they are performed concurrently.

® A transaction idurable; the effects of a completed transaction are persistent; they
are never lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed or
rolled back. When a transactiondemmitted, all cahnges made by the associated
requests are made permanent. When a transaction is rolledalachanges made by
the associated requests are undone.

The Transaction Service defines interfaces that allow multiple, distributed objects to
cooperate to provide atomicity. These interfaces enable the objects to either commit all
changes together or to rollback all changes together, even in the presence of
(noncatastrophicailure. Norequirements are placed on the objects other than those
defined by the Transaction Service interfaces.

10-2 Transaction Servicez1.1 Nvember 1997 Service Descriptio

10

Transaction semantics can be defined as part of any object that provides ACID
properties. Examples aODBMSs ind persistent objects. The value of a separate
transaction service is that it allows:

® Transactions to include multiplegparately defined, ACID objects.

® The possibility of transactions which include objeatsd resources from the non-
object world.

10.1.2 Transactional Applications

The Transaction Service provides transaction synchronization across the elements of a
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scope of
a transaction is defined bytransaction conte that is shared by the participating
objects The Transaction Service places no constraints on the number of objects
involved, the topology of the application or the way in which the application is
distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an
object defined by the Transaction Servicehick establishes a transaction context
associated with the clienttread. The client then issues requests. These requests are
implicitly associated witlihe client's transaction; they share the client’s transaction
context. Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a consequence of the
client’s requests would then lmemmitted;otherwise, the changes would tmdled

back.

In this scenario, the transaction context is transmimplicitly to the objects, without
direct client intervention—Se"Application Programming Mode” on page 10-3.-

The Transaction Service also supports scenarios where the client directly controls the
propagation of the transaction context. For example, a client can pass the transaction
context to an object as an explicit parameter in a request. An implementation of the
Transaction Service mightiit the client’s ability toexplicitly propagate the

transaction context, in order to guarantee transaction intg&etg”“ Application
Programming Mode” on page 10-3, Subsection Direct Context Management:

Explicit Propagatio™).

The Transaction Service does not require #hlatequests be performed within the
scope of a tragaction. A request issued outside the scope of a transaetiono
associated transactimontext. It is up to each object to determitsebehavior vinen
invoked outside the scope of a tsation; an object that requires a transaction context
can raise a standard exception.

10.1.3 Definitions

Applications supported by the Treaction Service consist of the followimgtities:
» Transactional Client (TC)
e Transactional Objects (TO)

Transaction Servicez1.1 Nvember 1997 Service Descriptio 10-3

10

» Recoverable Objects
* Transactional Servers
* Recoverable Servers

The following figure shows a simple application which includes these basic elements.

Distributed
Client/ServerApplication

Transactional Recoverable :
Server Server i
Transactional 5
Client '

Recoverap

Transactiona
Object

Transa
Operz

Transactional

Operation

Participates in
transaction cmpletion

begin or not involyed in registers resource in
end transactipn completion, transaction completion,
transaction may force rollback may force rollback

y Y

transaction

Transaction Service context

Figure 10-1 Application Including Basic Elements

Transactional Client

A transactional clienis an arbitrary program thaan invoke oprations of many
transactional objects in a single transaction.

The program that begins a transactioratied thetransaction originator

Transactional Object

We use the terrtransactional objec to refer to an object whose behavior is affected
by being invoked within the scope otransaction. A transactional object typically
contains or indirectly refers to persistent data that can be modified by requests.

10-4 Transaction Servicez1.1 Nvember 1997 Service Descriptio

10

The Trarsaction Serviceloes not require that all requests have transactional behavior,
even when issued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requests
but not others.

We use the terrnontransactional obje to refer to an object none of whose operations
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the changes
produced by the request might not survive a failure and the changes will not be undone
if the transaction associated with the request is rolled back.

An object can also choose to support transactional behavior for some requests but not
others. This choice can be exercised by both the client and the server of the request.

The Transaction Service permits an interfachaee both transactional and
nontransactionadimplemenations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional befaewios
a quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:
» Transactional Server
» Recoverable Server

Recoverable Objects and Resource Objects

To implement transactiondkehavior, an object musgtrticipate in certain protocols
defined by the Transaction Service. These protocols are used to ensure that all
participants in the transaction agree on the outcome (commit or rollaadkp
recover fromfailures.

To be more precise, an object is required to participate in these protocols only if it
directly manages data whose state is subject to change within a transaction. An object
whose data is affected mpmmitting or rollingback a transaction isalled a

recoverable obje.t

A recoverable object is by definition a transactional object. However, an object can be
transactional but not recoverable by implementtegstateusing some other

(recoverable) object. A client is concerned only that an object is transactional; a client
cannottell whether a transactional object is onist a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It does so
by registering an object callecResourc with the Transaction Service. The

Transaction Service drives the caib protocol by issuing requests to the resources
registered for a transaction.

A recoverable object typically involves itself in a transachienause it is required to
retain in stable storage certain informatiorcitical times in itsprocessing. When a
recoverable object restarts after a failure, it participates in a recovery protocol based on
the contents (or lack of contents) of its stable storage.

Transaction Servicez1.1 Nvember 1997 Service Descriptio 10-5

10

A transaction can be used to coordinate non-durattieities which do not require
permanent changes to storage.

Transactional Server

A transactional server is a collection of one or more objects whose behavior is affected
by the transaction, bwhich have no recoverable states of their own. ladjet

implements transactionahanges using other recoverable objects. A transactional
server does nqgiarticipate in the completion of the transaction, but it can force the
transaction to be rolled back.

Recoverable Server
A recoverable server is a collection of objects, at least one of which is recoverable.

A recoverable server participates in the protocols by registeriegor moreResource
objectiwith the Transaction Service. The Teattion Service drives trmmmit
protocol by issuing requests to the resources registered for a transaction.

10.1.4 Transaction Service Functionality

The Transaction Service provides operations to:

Control the scope andudation of a transaction

Allow multiple objects to be involved in a single, atomic transaction
Allow objects to associate changes in their integtate vith a transaction
Coordinate the completion of transactions

Transaction Models

The Transaction Service supports tdistributed transaction modelflat transactions
and nested transactions. An implementation of the Transaction Service is not required
to support nested transactions.

Flat Transactions

The Transaction Service defines support for a flat transaction middetiefinition of
the function provided, and thmmmitment protocolsised, is modelled on ttX/Open
DTP transaction model definitich.

A flat transaction is considered to be a top-level transaction—see the next
section—that cannot havechild transaction.

1. SeeDistributed Transaction Processing: The XpeSification X/Open Document C193. X/Open
Company Ltd., Readingl.K., ISBN 1-85912-057-1.

10-6 Transaction Servicez1.1 Nvember 1997 Service Descriptio

10

Nested Transactions

The Transaction Service also defines a nested transaction model. Nestadtinais
provide for a finer granularity of recovery thflat transactions. The effect &dilures

that require rolllack can be limited so that unaffected parts of the transaction need not
rollback.

Nested transactions allow an application to create a transaction #émabéxided in an
existing transaction. The existing transaction is calle(paren of the subtransaction;
the subtransaction is callecchild of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The children
of one parent are callesiblings.

Subtransactions can be embedded in other subtransactions to any leestirnf. The
ancestor of a transaction are the parent of the subtransaatidn(recursively) the
parents of its ancestors. Tdescendant of a transaction are the children of the
transaction and (recursively) tlohildren of itsdescendants.

A top-leve transaction is one with no parent. A top-level transaction and all of its
descendants alealled atransactionfamily.

A subtransaction is similar to a top-level transaction in that theggsamade on
behalf of a subtransaction are either committed in their entirety or rodiekl
However,when a sulsansaction is committed, thehanges remain contingent upon
commitment ofall of the transaction’s ancestors.

Subtransactions aréristly nested. A transaction cannot cmih unless all of its
children have completed. When a transaction is rolled bedckf its children are
rolled back.

Objects that participate in transactions must supisolafon of transactions. The
concept of isolation applies to subtransactions as well as to top level transactions.
When a transaction hasultiple childrenthe children appear to other transactions to
executeserially,even if they are performed concurrently.

Subtransactics can be used to isolate failures. If an operation performed within a
subtransaction fails,rmy the subtransaction is rolled back. The parent transaction has
the opportunity to correct or compensate for the problem and conifslefgeration.
Subtransactions can also be used to perform suboperations ofactran in parallel,
without the risk of inconsistent results.

Transaction Termination

A transaction igernminated by issuing a request to commit or rollback the transaction.
Typically, a transaction is terminated by the client that originated the transaction—the
transaction originator. Some implementations of the Transaction Service may allow
transactions to bterminated byTransaction Service clients other than ¢me which
created the transaction.

Transaction Servicez1.1 Nvember 1997 Service Descriptio 10-7

10

Any participant in a transaction can force the transaction to be rolled back (eventually).
If a transaction is rollethack, allparticipants rollback theichanges. Tpically, a
participant may request the rollback of the current transaction after encountering a
failure. It is implementation-specific whether the Transaction Seride#f monitors

the participants in a transaction for failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints usetloé the

Transaction Service interfaces in order to guarantee integrity equivalent to that

provided by the interfaces which support X/Oper DTP transaction model. This is
called checke transaction behavior.

For example, allowing a transactiondommitbefore all computations acting on
behalf of the transaction have completed can lead to a loss oihteedaity. Checked
implementations of the Transaction Service will prevent premamemitment of a
transaction.

Other implementé&ins of the Transaction Service may rely completely on the
application to provide transaction integrity. This is caunchecke transaction
behavior.

Transaction Context

As part of the environment of each BRware thread, the ORB maintains a
transaction context. The transaction context associated with a thread is either null
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environmenmaitiple
execution environments.

The transaction context can be implicitly transmitted to transactional objects as part of
a transactional operation invation. The TransactioBervice also allows pgrammers
to pass a transaction context as an explicit parameter of a request.

Synchronizatin

The Transaction Service defines support for a synchronization interface. This provides
a protocol by which an object may be notified prior to the start of the two-phase
commit protocol within the coordinator with which it is registered. Wplementation

of the Trarsaction Service is not required to suppmymchraization.

10.1.5 Principles of Function, Design, and Performance

The Transaction Service defined in this specificafidfills a number offunctional,
design, anperformance equirements.

10-8 Transaction Servicez1.1 Nvember 1997 Service Descriptio

10

FunctionalRequirements

The Transaction Service definin this specification addresses the following
functional requirements:

Support for multiple transaction models. The flat transaction model, which is widely
supported in the industry today, is a mandatory component of this specification. The
nested transaction modelhich providediner granularity isolation anthcilitates

object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is the ability

to “wrapper” existing programs (coarse grain objects) to allow these functions to serve
as building blocks for new business applications. This technique has been successfully
used to marry object-oriented end-user interfaces @dgthmercial business logic
implemented using classical procedural techeg

It cansimilarly be used to encapsulate the labgely ofexisting business software on
legacy environments and leverage that in building new business applicatoss:ill
allow customers to gradually deploy object technology into their existing
environments, without having t@implement all existing business functions.

Model Interoperability. Customers desire the capabilityadd object
implementations to existing procedural applications and to augment object
implementationsvith code that uses the procedural paradigm. To do so in a transaction
environment requires that a single transaction be shared by both theastject
procedural code. This includes the following:
* A single transaction which includes ORB anohrORBapplicationsand
resources.
* Interoperability between the object transaction service model a X/Open
Distributed Transaction Pressing (DTP) model.
» Access to existing (non-object) programs iresource managers by obje cts
» Access to objects by existing programs and resource managers.
» Coordination by a single transaction servicethe activities olboth objec end
non-objec resource managers.
» The network case: A singtransaction, distributedetween an object and non-
object system, each of which has its cTransactio ‘Service.

The Transaction Service accommodates this requirement for implementations where
interoperability with X/GQoen DTRcompliant transactional applications is necessary.

Network Interoperability . Customers require the ability to interoperétween
systems offered by multipkeendors:

 Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate wiihelf using a single ORB.

» Multiple transadbn services, single ORB - It must be possible for one transaction
service to interoperate withcooperatingransaction service using a single ORB.

 Single transaction servicmultiple ORBs - It must be possible for a single
transaction service to interoperate wiiself using different ORBs.

Transaction Servicez1.1 Nvember 1997 Service Descriptio 10-9

10

10-10

» Multiple transaction servicesultiple ORBs - It mist be possible for one
transaction service to interoperate witicooperatingransaction service using
different ORBs.

The Transaction Service specifies all required interactimween coperating
Transaction Service implementations necessary to support a single ORB. The
Transaction Servicdepends on ORB interoperabil(as defined by the CORBA
specification) to provide cooperatiigansaction Services acrogi$ferent ORB:3

Flexible transaction propagation control. Both client and objectplementations
can control transaction propagation:
A client controls whether or not its transaction is propagated with an operation.

» A client can invoke operations objectswith transactional behavior and objects
without transactional behaviorithin the scope of a single traaction.

» An objectcanspeciy transactioal behavior fa its interfacs.

The Transaction Service supports both igip(system-managedjropagationand
explicit (application-managed) propagation. With impljgibpagation, transactional
behavior is not specified in the operation’s signature. Withiekgropagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors. Customers need object technology to buildsion-critical
applications. These applications are deployed on commercial transaction processing
systems where a TP Monitor provides both efficient schedalimythesharing of
resources by a large number of users. It must be possible to impkhmdansaction
Service in a TP monitor environment. This includes:

» The ability toexecute multiple transactions concurrently.

» The ability toexecute clientsservers, nd transaction services in separate
processes.

The Transaction Service is usable in a TP Monitor environment.

Design Requirements
The Transaction Service supports the following design requirements:

Exploitation of OO Technology. This specification permits a wide variety of ORB
and Transaction Service implementations and uses objects to enable ORB-based,
secure implementation¥he Transaction Service provides fm@grammer with easy
to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applicatiocen be constructed usinmgterfaces that
are as simple or simpler than thphocedural equivalents.

Low Implementation Cost. The Transaction Service esgification considers cost from
the perspective of three users of the service - clients, ORB implementers, and
Transaction Service providers.

Transaction Servicez1.1 Nvember 1997 Service Descriptio

10

 For clients, it allows a range ohplementaibns which are compliant with the
proposed architecture. Many ORB implementations will exist in client
workstations which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platforms
that implement transactions.

» The specification provides for minimal impact to the ORB. Where feasible,
function is assigned to an object service implementation to permit the ORB to
continue to provide high performance object access when transactions are not
used.

* Since this Transaction Service wbe supported by existing (procedural)
transaction managers, the specificaallows implementations that reuse existing
procedural Transaction Manas.2r

Portability . The Transaction Service specification provides for portability of
applications. It also defines an interfdmetween the ORB and thednsaction Service
that enables individual Transaction Service implementations to be ported between
different CRB implementations.

Avoidance of OMG IDL interface variants. The Traasaction Service allows a single
interface to be supported by both transactional and nosacdional implementains.
This approach avoids a potential “combinatorial explosion” of interface variants that
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threaded andmulti-threa ded implementations.The

Transaction Service defines a flexible model that supports a variety of programming
styles. For example, a client with an active transaction can make requests for the same
transaction omultiple threads. Shilarly, an objecttan suppormultiple transactions

in parallel by using multiple threads.

A wide spectrum of implementation choice. The Transaction Service allows
implementations teahoose the degree of checking provided to guarantee legal behavior
of its users. This permits both robust implementations which provide strong assurances
for transaction integrity and lightweight implementations where such checks are not
warranted.

Performance Requirements

The Transaction Servicis expected to be implemented on a wide randeaafware
and software platforms raimg from desktop computers to massively pataderver
and n networks ranging in size from a single LAN to woridesnetworks. To me =t
this wide range of requirements, consideration must be given to algorithms which
scale, efficient communicans, and the number and size of accesses to permanent
storage Much of this is implementatiorgnd therefore notisible to the user of the
service. Nevertheless he expected performance of the Transaction Sewas:
comparecto its procedural equivalent, trX/Open DTP model in the following areas:

* The number of network messages required.
» The number of disk accesses required.
e The amount of data logged.

Transaction Servicez1.1 Nvember 1997 Service Descriptio 10-11

10

The objective of the specification was to achieve parity with thepEfOmodel for
equivalent functio, where technically feasit.e

10.2 Service Architecture

Figure :)-iillustrates the major components and interfaces defined by the Transaction
Service The transaction originator is an arbitrary program that begins a transaction.
The recoverable server implements an object with recovesthte that is moked

within the scope of the transaction, either directly by the transaction originator or
indirectly through one or more transactional objects.

The transaction originator creates a transaction usTransactionFactor; a Contro

is returned that provides access tTerminato and aCoordinatol. The transaction
originator uses thTermnator to commit or rollback the transaction. TCoordinato!

is made available to recoverable servers, either explicitignplicitly (by implicitly
propagating a transaction context with a request). A recoverable server registers a
Resourcewith the Coordinator. TheResourc implements the two-phase commit
protocol which is driven by the Transaction Service. A recoverable server msieregi
a Synchronizatiorwith theCoordinatol. The Synchronizatioimplements a dependent
object protocol driven by the Transactioervice. A recoverable server can also
register a specialized resource calleSubtransactionAwareResou to track the
completion of subtransactions.Resourc uses éRecoveryCoordinatc in certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most applicationsise theCurren pseudo object, which provides
access to amiplicit per-thread transaction context.

(transmitted with request)

transaction

transaction originator context recoverable server

TransactionFactory A Control
Control i
] Coordinator
Current Terminator Resource Current RecoveryCoordinator

SubtransactionAwareResourge
Synchronization

Transaction Service

transaction
context

transaction
context

(associated with thread) (associated with thread)

Figure 10-2 Major Components and Interfaces of the Transaction Service

10-12 Transaction Servicerl.1 Nvember 1997 Service Architectur

10

10.2.1 Typical Usage

A typical transaction originator uses tCurreni object to begin a transaction, which
becomes associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve
transactional objects. When a request is issued to a transactional object, the transactior
context associated with the invoking thread is automatically propagated to the thread
executing the method of the target object. No explicit operation parameter or context
declaration is required to transmit the transaction conBnpagation of the

transaction context can extend to multiple levels if a transactional object issues a
request to a transactional object.

Using theCurren object, the transactional objecin unilaterally rollback the
transaction and can inquire about the current state of the transaction. UsCurrent
object, the transactional object also can obti Coordinatorfor the current
transaction. Using thCoordinatol, a transactional object can determine the
relationship between two transactionsjmplementisolation amongnultiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object has
persistent data that must benaged as part of the transaction. A recoverable object
uses theCoordinatoi to register éResourc object as a participant in the transaction.
The resource represents the recoverable object’s participation in the transadton; e
resource is implicitly associated with a single transacfiéne Coordinatoruses the
resource to perform the two-phasemmit protocol on the recoverable object’s data.

After the computations involved in the transacti@mve been completed, the
transaction originator uses tCurren' object to request that the changes be committed.
The TransactiorService commits the transaan using a two-phaseommit protocol
wherein a series of requests are issued to the registeragaeso

10.2.2 Transaction Context

The transaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted formultiple threads to be associated with the same transaction at the same
time.

When a thread in an object server is used by an object adapter to perform a request on
a transactional object, the object adajptéializes the transaction context associated

with that thread by effectively copying the transaction context of the thread that issued
the request. An implementation of the Transaction Serviceresyict the capabilities

of the new transaction context. For example, an implementation of the Transaction
Service might not perit the object server thread to request commitment of the
transaction.

The object adapter is not requiredindtialize the transaction context of every request
handler. It is required to initialize the transaction context only if the interface
supported by the target object is derived fromTransactionalObjer:interface.
Otherwise, thenitial transaction context of the thread is undefined.

Transaction Servicerl.1 Nvember 1997 Service Architectur 10-13

10

When a threadetrievesthe response to a deferred synchronous request, an exception
may be raised if the thread is no longer associated with the transaction that it was
associated with hen the deferred synchronous request was i. (See*Exception”

on page 10-1, subsection “WRONG_TRANSACTIOIException”for a more precise
definition.)

Whennested transactions are used, the transaction caet@embers the stack of

nested transactions started within a particular execution environment (e.g., process) so
that when a subtransaction ends, thedaation context of the thread is restored to the
context in effect when the subtransaction wasube§Vhen the context is tnaferred
between execution environments, the received context refers only twacticilar
transaction, not a stack of transactions.

10.2.3 Context Management

The Transaction Service supports management and propagation of transaction context
using objects provided by the TeattionService. Using this approach, the transaction
originator issues a request t(TransactiorFactory to begin a new top-level

transactionThe factory returns i«Control object specific to the new transaction that
allows an application to terminate the transaction orettoine a participant in the
transaction (by registeringResourc). An application can propagate a tsaction

context by passing trControl as an explicit request parameter.

The Control does not directly support management of the transaction. Instead, it
supports oprations that return two other objectsTerminator and aCoordinatol. The
Terminato is used tacommit or rollback the transaction. TCoordinato! is used to
enable transactional objects to participate in the transaditmse two objects can be
propagated independently, allowirigdr granularity control over propagation.

An implementation of the Transaction Service mestrict the ability for some or all
of these objects to be transmitted to or used in other execution environments, to enable
it to guarantee transaction integrity.

An application can also use tCurreni object operationget _control , suspend ,
andresume to obtain or change theplicit transaction ontext associated with its
thread.

When nested trssactions are used.Control can include a stack of nested transactions
begun in the same execution environment. WhControl is transferred between
execution environments, the recei\Control refers only to one particular transaction,
not a stack of transactions

10-14 Transaction Servicerl.1 Nvember 1997 Service Architectur

10

10.2.4 Datatypes

The CosTransactions

module defines th&llowing datatypes:

enum Status {

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

k

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

k

10.2.5 Structures

TheCosTransactions ~ module defines the following structures:

b

h

struct otid_t {

long formatlID; /*format identifier. 0 is OSI TP */
long bqual _length;
sequence <octet> tid;

struct Transldentity {

Coordinator coord;
Terminator term;
otid_t otid;

struct PropagationContext {

unsigned long timeout;
Transldentity current;

sequence <Transldentity> parents;
any implementation_specific_data;

Transaction Servicerl.1 Nvember 1997 Service Architectur

10-15

10

10.2.6 Exceptions

Standard Exceptions

The CosTransactions module adds new standard exceptions to CORBA for
TRANSACTION_REQUIRE, TRANSACTION_ROLLEDBAC and
INVALID_TRANSACTION. These exceptions are definedGhapter 3, Sen 3.15 of
the Common Object Request Broker: Architecture and Specification.

Heuristic Exceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updatghout first obtaining theconsensus

outcome determined by the TrattionService. Heuristic decisions are normally made
only in unusual circumstances, such as communication failures, that prevent normal
processing. When a heuristic decision is taken, there is a risk that the decision will
differ from the consensus outcome, resulting in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting
incorrect heuristic decisions or the possibility of incorrect heuristic decisions:

exception HeuristicRollback &
exception HeuristicCommit &
exception HeuristicMixed &
exception HeuristicHazard {&;

HeuristicRollback Excepion

Thecommit operation orResourc raises theHeuristicRollback exception to
report that a heuristic decisiavas made and that all relevant updates have tmkeal
back.

HeuristicCommit Excefion

Therollback operation orResourc raises theHeuristicCommit exception to
report that a heuristic decision was made anddhatlevant updatesave been
committed.

HeuristicMixed Exception

A request raises tfHeuristicMixed exception to report that a heuristic decision was
made and that some relevant updates have beemittt andothers have been rolled
back.

10-16 Transaction Servicerl.1 Nvember 1997 Service Architectur

10

HeuristicHazard Exception

A request raises thHeuristicHazard exception to report that a heuristic decision
may have been made, the disposition of all relevant updates knowh, andfor
those updates whosksposition is known, either aflave beertommitted or alhave
been rolled back. (In other words, tHeuristicMixed exception takes priority over
the HeuristicHazard exception.)

WRONG_TRANSACTION Exception

The CosTransactior module adds the WRONG_TRANSACTION exception that can

be raised by the ORB when returning the response to a deferred synchronous request.
This exception is defined i@hapter 4 othe Common ObjecRequest Broker:

Architecture and Specification.

Other Exceptions

The CosTransactions module defines fibl®wing additional exceptior:s

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

exception SynchronizationUnavailable {};

These exceptions ¢ described below along with the operatidhat raise them.

10.3 Transaction Serviclnterfaces

The interfaces defined by tligansaction Serviceeside inthe CosTransactions
module. (OMG IDL for theCosTransactions module is shown ii“The
CosTransactions Modl” on page 10-6.) The interfaces for the Transaction Service
are as follows:

e Current

» TransactionFactory

» Terminator

» Coordinator

» RecoveryCoordinator

* Resoure

e Synchronization

» Subtransaction Aware Resource

» Transactional Object

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-17

10

10-18

No operations are defined in these interfaces for destroying objects. No application
actions are required to destroy objects that support the Transaction Service because the
Transaction Service destroys its own objext®nthey are no longer needed.

10.3.1 Current Interface

The Curreni interface defines operations that allow a client of the Transaction Service
to explicitly manage the associatibetween threads and transactions. Current

interface also defines operations that simplify the use of the Transaction Service for
most applicationsThese operations can be used to begin and end transactions and to
obtain informationabout the current transaction.

The Curreni interface is designed to be supported by a pseudo object whose behavior
depends upon and maytalthe transaction context associated with thekimg

thread. It may be shared with other object services (e.g., seaniyijs obtained by

using a resolvénitial references(“TransactionCurrent”) operation on CORBA::ORE
interface.Curren supports the following operatisn

interface Current : CORBA::Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)
raises(InvalidControl);

Note —In order to pass the transaction from one thread to another, a program should
not use the Current object. It should pass the Control object to the other thread.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

begin

A new transaction is created. Ttransaction context of the client thread is modified so
that the thread is associated with the new transaction. If the client thread is currently
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otherwise, the new transaction tispalevel transaction.

The SubtransactionsUnavailable exception is raised if the client thread already
has an associated transactand the Transaction Servigaplementationdoes not
support nested transactions.

commit

If there is no transaction associated with the client threactNoTransaction
exception is raised. If the client thread does not hmarenission to commit the
transaction, the standard exceptNO_PERMISSIOI is raised. (Th«commit operation
may be restricted to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effect of
this request is equivalent to performing commit operation on the corresponding
Terminato object (se¢Terminator Interfac” on page 10-2); see”“Terminator

Interface’ and“Exception” on page 10-1 for a description of the exceptions that may

be raised.

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invokirbegin) in the same execution environment, then the
thread’s transaction context is restored to its state prior thegin request.
Otherwise, the thread’s transaction context is set to null.

rollback

If there is no transaction associated with the client threactNoTransaction
exception is raised. If the client thread does not hparenission to rollback the
transaction, the standard exceptNO_PERMISSIOI is raised. Therollback
operation may be restricted to ttransaction originator in some implementations;
however, therollback_only operation, described below, igalable to all
transaction participants.)

Otherwise, the transaction associated with the client thread is rolled back. The effect of
this request is equivalent to performing rollback operation on the corresponding
Terminato object (see“Terminator Interfac” on page 10-2).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invokirbegin) in the same execution environment, then the
thread’s transaction context is restored to its state prior thegin request.
Otherwise, the thread’s transaction context is set to null.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-19

10

10-20

rollback_only

If there is no transaction associated with the client threactNoTransaction
exception is raised. Otherwise, the transaction associated withehetbtead is
modified so that the only possible outcome is to rollback the transattiereffect of
this request is equivalent to performing rollback_only operation on the
correspondin¢Coordinatol object (se€‘Coordinator Interfac” on page 10-2).

get_status

If there is no transaction associated with the client threa(StatusNoTransaction

value is returned. Otherwisthis operation returns thstatus ofthe transaction
associated with the clietiiread. The effect of this request is equivalent to performing
theget_status operation on the correspding Coordinatoi object (se¢ Coordinator
Interface’ on page 10-2).

get_transaction_name

If there is no transaction associated with the client thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the transaction. The
returned string is intended to support debugging. The effetifequest is

equivalent to performing thget_transaction_name operation on the corresponding
Coordinatol object (se¢ Coordinator Interfac” on page 10-2).

set_timeout

This operation modifies a state variable associated with the target object that affects
the time-out period associated with top-level transactions created by subsequent
invocations of thebegin operation. If the parameter has a nonzero vn, then top-

level transactions created by subsequent invocatiobegin will be subject to being
rolled back if they do not complete befin seconds after their creation. If the
parameter is zero, then no application specified time-out is established.

get_control

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, Control object is returned that represents the transaction context
currently associated with the client thread. This object can be given resume

operation to reestablish this context in the same thread or a different thread. The scope
within which this object is valid is implementatiadlependent; at minimum, it must

be usable by the client thread. This operation is not dependent on the state of the
transaction; in particular, it does not raise TRANSACTION_ROLLEDBA(exception.

suspend

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that representransaction context
currently associated with the client thread. This object can be given resume

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

operation to reestablish this context in the same thread or a different thread. The scope
within which this object is valid is implementatidlependent; at mminimum, it must

be usable by the client thread. In addition, the client thread becomes associated with no
transaction. This operation is not dependent on the state of tlsadtam; in

particular, it does not raise tITRANSACTION_ROLLEDBA(exception.

resume

If the parameter is a null object refece, the client thread becomes associated with no
transaction. Otherwise, if the @ameter is valid in the current execution environment,
the client thread becomes associated with that transaction (in place of any previous
transaction). Otherwise, ttinvalidControl exception is raised. S¢Control

Interface’ on page 10-2 for a discussion of restrictions on the scope Control. This
operation is not épendent on the state of the transaction; in particular, it does not raise
the TRANSACTION_ROLLEDBA exception.

10.3.2 TransactiolFactory Interface

The TransactionFactor interface is provided to allow the transaction originator to
begin a transaction. This interface defines two opearsfcreate andrecreate
which create a new representation of a top-level transactiTransactionFactor is
located using thiFactoryFinde interface of the life cycle serviand not by the
resolve_initial_reference operation on thiORE interface defined in “Example
Object Adapters” in Chapter 2 of tiCommon ObjecRequest Broker: kehitecture
and Specificatiol.

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

create

A new top-level transaction is created anControl object is returnedThe Contro
object can be used to manage or to contrdi@pation in the new transaction. An
implementation of the Transaction Service mestrict the ability for th«Control
object to be transmitted to or used in otheeaition environments; at a minimum, it
can be used by the client thread.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-21

10

If the parameter has a nonzero vén, then the new transaction will be subject to being
rolled back if itdoes not complete befin seconds have elapsed. If the parameter is zero,
then no application specified time-out is establic.hed

recreate

A new representation is created for an existing transaction defined by the
PropagationConte: and aControl object is returad. TheControl object can be used
to manage or to contrglarticipation in the transaction. An implementation of the
Transaction Service whicsupports interposition (se«ORB/TS Implementation
Consideratior” on page 10-60) userecreate to create a new representation of the
transaction being imported, subordinate to the representatctx . Therecreate
operationcan also be used to import a transaction which originated outside of the
Transaction Service.

10.3.3 Control Interface

TheControl interface allows a program to explicitty manage or propagtransaction
context. An object supporting tiControl interface ismplicitly associated with one
specific transaction.

interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);

The Control interface defines two operatiorget_terminator and

get_coordinator . The get_terminator operation returns Terminator object,

which supports operations to end the s@ction. Theget coordinator operation

returns eCoordinatol object, which supportsperationsneeded by resources to
participate in the transaction. The two objesupport operations that are typically
performed by different parties. Providing two objects allows each set of operations to
be made available only to the parties that require those operations.

A Control object for atransaction is obtained using toperatiots defined by the
TransactionFactonjinterface or thecreate_subtransaction operation defined by
the Coordinatol interface. It is possible to obtainControl object for the current
transaction (associatedttv a thread) using thget_control or suspend operations
defined by theCurrent interface (seCurrent Interfac” on page 10-1). (These two
operations return a null object reference if there is no current transaction.)

An implementation of the Transaction Service mastrict the ability for th«Control
object to be transmitted to or used in othge@ition environments; at a minimum, it
can be used within a single thread.

10-22 Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

get_terminator

An object is returned that supports Terminato interface. Theobject can be used to
rollback or commit the transaction associated withControl. The Unavailable
exception may be raised if tiControl cannot provide the requested object. An
implementation of the Transaction Service mestrict the ability for th{Terminator
object to be transmitted to or used in othge@ution environments; at a minimum, it
can be used within the client thread.

get_coordinator

An object is returned that supports ‘Coordinatol interface.The object can be used
to register resources for the transaction associated wiControl. The Unavailable
exception may be raised if tiControl cannot provide the requested object. An
implementation of the Transaction Service megtrict the ability for the«Coordinatol
object to be transmitted to or used in othee@ition environments; at a minimum, it
can be used within the client thread.

10.3.4 Terminator Interface

The Terminato interface supports operations to commitaliback atransaction.
Typically, these operations are used by transaction originator.

interface Terminator {
void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
);

void rollback();

An implementation of the Transaction Service mestrict thescope in which a
Terminato can be used; at a minimum, it can be used within a single thread.

cammit

If the transaction has ndeen markedollback only, and all of thearticipants in the
transaction agree tbommit, the transaction is committed and the operation terminates
normally. Otherwise, the transactionraled back (as éscribecbelow) and the
TRANSACTION_ROLLEDBA! standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report
inconsistent or possibly inconsistent outcomes usin¢HeuristicMixed and
HeuristicHazard exceptions (define in “Exception” on page 10-1). A
Transaction Service implementation may optionally useEent Service to report
heuristic decisions.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-23

10

10-24

Thecommit operation may rollback the transaction if there are subtransactions of the
transaction that have nttemselveveencommitted or rolledback or if there are
existing or potential activities associated with the transactiorhthag not completed.

The nature and extent of such error checking is implementation-dependent.

When a top-level trasaction is committed, all ctanges tcrecoverable bjects made in

the scope of this transaction are made permaarghtvisible to othetransactions or

clients. When a subtransactioncemmitted, thechanges are madasible to other

related transactions as appropriate to the degree of isolation enforced by the resources

rollback
The transaction is rolled back.

When a trasaction is rolled back, all changesrecoverable bjects made in the scope
of this transaction (including chges made by descendant transactions) are rolled
back. All resources locked by ttieansaction are made available to other transactions
as appropriate to the degree of isolation enforced by the resources.

10.3.5 Coordinator Interface

The Coordinatol interface provides operations that are used by participants in a
transaction. Thesparticipants are typically either recoverable objectagants of
recoverable objects, such as subordinate coordinators. Each objecttsgpthe
Coordinatol interface is implicitly associated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive)

PropagationContext get_txcontext ()
raises(Unavailable);

An implementation of the Transaction Service mestrict thescope in which a
Coordinatol can be used; at a minimum, it can be used within a single thread.

get_status

This operation returns the status of the transaction associated with the target object:

® StatusActive - A transaction is associated with the target object and it is in the
active state. An implementation returns this status after a transhetoneen
started and prior to a coordinator issuing any prepares unless it has been marked for
rollback.

® StatusMarkedRollback - A transaction is associated with the target object and
has been marked for rollback, perhaps as the resulrollback_only operation.

® StatusPrepared - A transaction is associated with the target object and has been
prepared (i.e., all subordinateave respondeVoteCommit) . The target object
may be waitingor a superior’s instructions as to how to proceed.

® StatusCommitted - A transaction is associated with the target object and it has
completed commitment. It is likely that heuristics existsierwise, the transaction
would have been destroyed aStatusNoTransaction returned.

® StatusRolledBack - A transaction is associated with the target object and the
outcome has been determinedreldoack. It is likely that heustics exists,
otherwise the transaction wouhdve beerdestryed andStatusNoTransaction
returned.

® StatusUnknown - A transaction is associated with the target object, but the
Transaction Service canndétermine its current status. This is a transient
condition, and a subsequent invocation witimately return a differenstatus.

® StatusNoTransaction - No transaction is currently associated with the target
object. This will occur after a transaction has completed.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-25

10

10-26

® StatusPreparing - A transaction is associated with the target object and it is the
process of preparing. An implementation returns this status if isthaed
preparing, but has not yet completed the process, probably becausaiiirig for
responses to prepare from one or more resources.

® StatusCommitting - A transaction is associated with the target object and is in
the process of committing. An implementation returns this status if it has decided to
commit, buthas not yet completed the process, probably because it is waiting for
responses from one or more resources.

® StatusRollingBack - A transaction is associated with the target object and it is in
the process offolling back. An implementation returtisis status if it has decided
to rollback, but has not yet completed the process, probably because it is waiting for
responses from one or more resources.

get_parent_status

If the transaction associated with the target object is a top-level transaction, then this
operation is equivalent to ttget_status operation. Otherwise, this operation returns
the status of the parent of the transaction associated with the target object.

get_top_level atus

This operation returns the status of the top-level ancestor of the transaction associated
with the target object. If the transaction is a top-level transaction, then this operation is
equivalent to thqget_status operation.

IS_same_transaction

This operation returntrue if, and onlif, the target object a1 the parameter object
both refer to the same transaction.

iIS_ancestor_transaction

This operation returns true if, and orifythe transaction associated wthe target
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction Badf only if T1 is the same as T2 or
T1 is an ancestor of the parent of T2.

is_descendant_transaction

This operation returns true if, and onfythe transaction associated with the target
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if, and only if, T2ancestor of
T1 (see above).

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

is_related_transaction

This operation returns true if, and orifythe transaction associated with the target
object is related to the transaction associated with the parameter object. A transaction
T1 is related to a transaction T2 if, and only if, there exists a traon T3 such that

T3 is an ancestor of T1 and T3 is an ancestor of T2.

is_top_level transaction

This operation returns true if, and ornfythe transaction associatecth the target
object is a top-level transaction. A transaction is a top-level transaction if it has no
parent.

hash_transaction

This operation returns a hash code for the transaction associated with the target object.
Each transaction has a single hash cHash codes for transactions should be
uniformly distributed.

hash_top_level tran

This operation returns the hash code for the top-level ancestor trattsaction
associated with the targebject. This operation is equivalent to the

hash_transaction operation when the transaction associated with the target object
is a top-level transaction.

register_resource

This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transactitarignated, the resource will
receive requests to commit or rollback the updates performed as part of the transaction.
These requests are described in the description (Resourc interface. The

Inactive exception is raised if the transaction has already been pregéed.

standard exceptioTRANSACTION_ROLLEDBA(may be raised if the transaction has

been marked rollback only.

If the resource is a subtransaction aware resqiitrseipports the
SubtransactionAwareResou interface) and the transaction associated with the target
object is a subtransaction, then this operatigisters the specified resource with the
subtransactioand indirectly with the top-level transaction when the subtransaction’s
ancestors have completed. Otherwise, the resource is registergarisipant in the
current transaction. If the current transaction is a subtransaction, the resource will not
receive prepare or commit requests until the top-level ancestomates.

This operation returns RecoveryCoordinat(that can be used by this resource during
recovery.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-27

10

register_synchronization

This operation registers the specif Synchraizatior object such that it will be

notified to perform necessary processing prior to prepare being driven to resources
registered with thiCoordinato.. These requests are described in the description of the
Synchronizatio interface.The Inactive ~ exception is raised if the transaction has
already been prepared. TSynchronizationUnavailable exception is raised if the
Coordinatol does not support synchronization. The standard exception
TRANSACTION_ROLLEDBA(may be raised if the transaction has been marked rollback
only.

register_subtran_aware

This operation registers the specified subtransacti@yeresource such that it will be
notified when the subtransaction fasmmitted orolled back. These requests are
described in the description of tSubtransactionAwareResou interface.

Note that this operation registers the specified resocambewith the subtransaction.
This operation cannot be usedragister the resource as a participant in the
transaction.

The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. Thinactive exception is raised if the subtransaction (or any
ancestor) has already been terminated. The standard exception
TRANSACTION_ROLLEDBA(may be raised if the subtransaction (or any ancestor) has
been marked rollback only.

rollback_only

The transaction associated with the target object is modified so thatlthpossible
outcome is to rollback the transaction. Tinactive ~ exception is raised if the
transaction has already been prepared.

get_transaction_name

This operation returns a printaldéring describing the transaction associated with the
target object. The returned string is intended to supebtigging.

create_subtransaction

A new subtransaction is created whose parent is the transaction associated with the
target object. Thinactive exception is raised if the target transaction has already
been prepared. An implementation of the Transaction Service is not required to support
nested transactions. If nested saations are not gported, the exception
SubtransactionsUnavailable is raised.

10-28 Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

The create_subtransaction operation returns Control object, which enables the
subtransaction to be terminated and allows recoverable objects to participate in the
subtransaction. An implementation of the Transaction Servicerasigct the ability

for theContro object to be transmitted to or used in other execution environments.

get_txcontext

Theget_txcontext operation returns PropagationConte: object, which is ged by

one Transaction Service domain to export the current transaction to a new Transaction
Service domain. An implementation of the Transaction Service may also use the
PropagationConte; to assist in the implementation of tis_same_transaction

operation vhen the inpuCoordinatol has been generated by a different Bestion
Serviceimplemenation.

The Unavailable exception is raised if the Transaction Service implementation
chooses to restrict the aladility of the PropagationConte:. t

10.3.6 RecoveryCoordinator Interface

A recoverable object usesRecoveryCoordinat(to drive the recovery process in
certain situationsThe dject referace for an object supporting the
RecoveryCoordinatc interface, as returned by tiregister_resource operation, is
implicitly associated with a sgie resource registration requestd may only be used
by that reource.

interface RecoveryCoordinator {
Status replay_completion(in Resource r)
raises(NotPrepared);

replay_completion

This operation can be invoked at amnye after the associated resoe has been
prepared. ThiResourc must be passed as the parameter. Performing this operation
provides a hint to thCoordinatoi that thecommit or rollback operationshave not
been performed on the resource. This hint may be required in certain failure cases.
This non-blocking opration returns the current ste of the transaction. The
NotPrepared exception is raised if the resource has lmexn prepared.

10.3.7 Resource Interface

The Transaction Service uses a two-pham@mitment protocol to complete a top-
level transaction with each registered resoufi¢te Resourc interface defines the
operations invoked by the transaction serviceach resource. Each object supporting
the Resourceinterface is implicitly associatedithr a single top-level transaction. Note

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-29

10

10-30

that in the case of failure, the completsequence will continue after the failure is
repaired. A resource should be prepared to receive duplicate requestscommit
or rollback operationand to respond consistently.

interface Resource {
Vote prepare()
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard
);
void commit()
raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void commit_one_phase()
raises(
HeuristicHazard
);
void forget();

prepare

This operation is invoked to begin the two-phase commit protocol on the resource. The
resource can respd in several ways, represented by Vote result.

If no persistent data associated with the resourcdéasmodified by the transaction,
the resource can retuvoteReadOnly . After receiving this response, the Transaction
Service is not required to perform aaglditional operations on this resource.
Furthermore, the resource can forget all knowledge of theardion.

If the resource is able to write (or has already writedh}he dataneeded taommit
the transaction to stable storage, as well as an indication that it has prepared the
transaction, it can retuivoteCommit . After receiving this response, the Transaction
Service is required to eventually perform eithercommit or therollback operation
on this object. To support recovery, the resource should stoRecoveryCoordinator
object referace in stable storage.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

The resource can retuVoteRollback under any circumstances, including not having

any knowledge about the trsaction (which might happeaifter a crash). If this

response is returned, the transaction must be rolled back. Furthermore, the Transactior
Service is not required to perform aaglditional operations on this resource. After
returning this response, the resource can fatiddnowledge of the transaction.

The resource reports inconsistent outcomes usinHeuristicMixed and
HeuristicHazard exceptions (described irException” on page 10-16). Euristic
outcomes occuwhen aresource acts as a sub-coordinator and at taesbf its
resources takes a heuristic decision aftvVoteCommit return.

rollback

If necessary, the resource shouddlbackall changes made as part of the transaction.
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (describe*Exception” on page 10-1) are used

to report heuristic decisions related to the resource. If a heuristic outcome exception is
raised, the resource must remember this outcome untforget operation is

performed so that it can return the same outcome inrollback is performed

again. Otherwise, the resource can immediately forget all knowledge of the transaction.

commit

If necessary, the resource should commit all changes made as part of the transaction. If
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (describe*Exception” on page 10-1) are used

to report heuristic decisions related to the resource. If a heuristic outcome exception is
raised, the resource must remember this outcome unfforget operation is

performed so that it can return the same outcome incommit is performed again.
Otherwise, the resource can imaigtely forget allknowledge of the transaction.

TheNotPrepared exception is raised if thcommit operation is performed without
first performing theprepare operation.

commit_one_phase

If possible, the resource showddmmit all cranges made as part of the transaction. If
it cannot, it should raise ttTRANSACTION_ROLLEDBA:' standard exception.

If a failure occurs durincommit_one_phase , it must be reted when the failure is
repaired. Since their can only be a single resourceHeuristicHazard exception is
used to report heuristic decisions related to that resource. If a heexisgigtion is
raised, the resource must remember this outcome untforget operation is
performed so that it can return the same outcome incommit_one_phase is
performed again. Otherwise, the resource can imatelgiforget all knowledge of the
transaction.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-31

10

10-32

forget

This operation is performed only if the resource raised a heuristic outcome exception
to rollback , commit , or commit_one_phase . Once the coordinator has determined
that the heuristic situation has been addressed, it shouldforget on the resourc 2.

The resource can forget all knowledge of the seantion.

10.3.8 Synchronization Interface

The Transaction Service provides a synchronization protocol which enables an object
with transient stateata that relies on an Xfi@én XA corformantResource Manager

for ensuring that data is made persistent, to be notified before the start of the two-
phasecommitmentprotocol, and after its completion. An object with transient state
data that relies on Resourc object for ensuring that data is made persistantalso

make use of this protocol, provided that both objects are registered with the same
Coordinatol. Each object supporting ttSynchronizatio interface is implicitly

associated with a single top-level transaction.

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

b

before_completion

This operation is invoked prior to the start of the two-phase commit protocol within the
coordinator theSynchronizatio has registered with. This operation will therefore be
invoked prior toprepare being issued tResourc objects or X/Open Resource
Managers registered with that same coordindtbe Synchronizatio object must

ensure that angtate @ta it has that needs to be made persistent is made available to
the resource.

Only standard exceptions may be raised. Unless there is a defined recovery procedure
for the exception raised, the transaction should be marked rollback only.

after_completion

This operation is invoked after all commit or rollbaelsponses have been received by
this coordinator. The current status of the transaction (as determineget_status
on theCoordinatol) is provided as input.

Only standard exceptions may tesed and thefave no effect on the outcome of the
commitmentprocess.

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac

10

10.3.9 Subtransaction Aware Resource Interface

Recoverable objects thahplement nested transaction behavior may support a
specialization of thiResourc interface called thSubtransactionAwareResou ce
interface. A recoverable object can be notified of thegletion of a subtransaction by
registering a specialized resource object that offer'SubtransactionAwareResou ce
interface with the Transaction Service. This ségition is done bysing the

register _resource Or theregister_subtran_aware operation of the current
Coordinatol object. A recoverable object generally usesregister_resource

operation to register a resource that will participate in the completion of the top-level
transaction and thregister_subtran_aware operation to be notified of the
completion of a subtransaction.

Certain recoverable objects may want a finer control over thstration inthe

completion of a subtransaction. These recoverable objects will use the

register _resource operation to ensure patrticipation in the completion of the top-
level transaction and they will use tregister_subtran_aware operation to be

notified of the completion of a particular subtransaction. For example, a recoverable
object can use thregister_subtran_aware operation to establish a “committed

with respect to” relationship between transactions; that is, the recoverable object wants
to be informed wen aparticular subtransaction is committadd then perform certain
operations on the transactions tdapend on that traaction’s completion. This

technique could be used to implement lock inheritance, for example.

The Transaction Service uses SubtransactionAwareResou interface on each
Resourc object registered with a subtransaction. Each object suppohiminterface
is implicitly associated ith a single subtransaction.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

commit_subtransaction

This operation is invoked only if the resource has been registered with a subtransaction
and the subtransactidras beerrommitted. TheResourc object is provided with a
Coordinatol that represents the parent transaction. This operation may raise a standard
exception such eTRANSACTION_ROLLEDBA.>K

Note that the results of a committed subtransaction are relatitie tompletion of its
ancestor transactions, that is, these results camdiene if any ancésr transactioris
rollec back.

rollback subtransaction

This operation is invoked only if the resource has been registered with a subtransaction
and notifies the resource that the subtransaction has tigd

Transaction Servicerl.1 Nvember 1997 Transaction Service Interfac 10-33

10

10.3.10 TransactionalObject Interface

The TransactionalObjec interface isused by an object to indicate that it is
transactional. By supporting tiTransactionalObjecinterface, an object indicates that
it wants the transaction context associated with the client threadassociated with
all operations on its interface.

interface TransactionalObject {

h

The TransactionalObje interface defines no operations. It is simply a marker.

10.4 The User’s View

10-34

The audience for thisection is object and client implementers; it describes application
use of the Transaction Service functions.

10.4.1 Application Programming Models

A client application program may udireci or indireci context management to manage
a transaction.

® With indirect context management, an application ithe:Curren' abject provided
by the Transaction Service, to associate the transaction context with the application
thread of contro .

® In direct context management, an application manipulateControl object and
the other objects associated with the transaction.

Propagation is the act of associating a client’s transaction context with operations on a
target object. An object may require transactions to be either explicitly or implicitly
propagated oits operations.

Implicit propagatior means that requests aneplicitly associated with the client’s
transaction; they share the client’s transaction context. It is transmitted impliditlg to
objects, without direct client intervention. Ingt propagationdepends on indirect
context management, since it propagates the transaction context associated with the
Current object. Explicit propagation mean: thar an application propagates a

transaction context by passing objects defined byTthesaction Service as explicit
parameters.

An object that supportinplicit propagation would not typically expect to receive any
Transaction Service object as an explicit parameter.

A client may useone or both forms of context management, and ctagmunicate
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects. They are describetbw.

Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

Direct Context Management: Explicit Propagation

The client application directly accesses Control object, and the other objects which
describe the state of the transaction.pfopagate the transaction to an object, the
client must include thappropriate Transaction Service object as an explicit parameter
of an operation.

Indirect Context Management: Implicit Propagation

The client application uses operations onCurreni object to create and control its
transactions. When it issues requests on transactibjedts, the transaction context
associated with the current thread is implicitly pagated to the object.

Indirect Context Management: Explicit Propagation

For an implicit model application to use explipiopagation, it can get access to the
Control using theget_control operation orCurren. It can then use a Transaction
Service object as an explicit parameter to a transactional objastisTexplcit
propagation.

Direct Context Management: Implicit Propagation

A client that accesses the Teattion Service objects directtyan use thresume
operation orCurren to set themplicit transaction context associated with its thread.
This allows the client to invoke operations of an object that requirpkcit
propagation of the transaction context.

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-35

10

10.4.2 Interfaces

Table 10-1Use of Transaction Service Functionality

Context management

Function Used by Direct Indirect®
Create a transaction Transaction TransactionFactory::create begin,set_timeout
originator Control::get_terminator
Control::get_coordinator
Terminate a transaction Transaction originator-implicit Terminator::commit commit
All—explicit Terminator::rollback rollback
Rollback a transaction Server Terminator::rollback_only rollback_only
Control prpagdion Server Declaration of method parameter TransactionalObject
of transaction to a server interface
Control by client All Request parameters get_control
of transaction suspend
propagation resume
to a server
Become a participant Recoverable Server Coordinator::register_resource Not applicable
in a transaction
Miscellaneous All Coordinator:get_status get_status
Coordinator::get_transaction_name get_transaction_name
Coordinator:is_same_transaction Not applicable
Coordinator::hash_transaction Not applicable

1. All Indirect context management operations are orCurreniobject interface

Note —For clarity, subtrasaction operationare not shown.

10.4.3 Checked TransactioBehavior

Some Trasaction Service implementations will enforcieecked behavior for the
transactions they support, to provide an extra level os&etion integrity. The
purpose of the checks is to ensure that all transactional requests made by the
applicationhave @mpleted their processing before the transaction isvutted. A
checked Transaction Service guaranteesdbatmit will notsucceed unlessll
transactional objects involved in the transaction have completed tbesgiog of their
transactional requests.

There are many possible implementations of checking in a Transaction Service. One
provides equivalent function to that prded by the request/response inter-process
communication models defined by X/Open.

The X/Open Transaction Service model of checking is particularly important because it
is widely implemented. It describes the transaction integrity guaranteesigady

many existing transaction system#$iebe transaction systems will provide the same
level of transaction integrity for object-based applications by providing a Transaction
Service interface thamplements the X/@en checks.

10-36 Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

10.4.4 X/Open Checkediransactions

In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing the
X/Open model of checking provides equivalent function to that provided by the

XATMI and TxRPC interfaces defined by X/Open for transactional applications.
X/Open DTP Transaction Managers are examples of transaction management functions
thatimplement checked transaction behavior.

This implementation of checked behavitepends ommplicit transaction propagation.
Whenimplicit propagation is used, the objects involved in a transaction at any given
time may be represented as a tree, the request tree for the tranS&wideginner of

the transaction is the root of the tree. Requestsnadés to the tree, replies remove

the replying node from the tree. Synchronous requests, or the checks deleldved

for deferredsynchronous requests, ensure that the tree collapses to a single node before
commit isissued.

If a transaction uses expligitopagatio, the Transaction Service canriatow which

objects areor will be involved in the transactic; that is,a request tree cannot be
constructed or assured. Therefore, the use of explicit propagation is not permitted by a
Transaction Service implementatithatenforces X/Ope-style checked behavior.

Applications that use synchronous requesiglicitly exhibit checked behavior. For
applications that use deferreginchronous requests, in a transaction whdrelients
and objects are in the domain of a checking Sa@tionService, the Transaction
Service can enforce this property bypapng a replycheck and aommitcheck.

The Transaction Service must also apply a resume check to ensure thatsaetivan
is only resumed by application programs in the correct part of the request tree.

ReplyCheck

Before allowing an object to reply to a transactional request, a check is made to ensure
that the object has received repliesatbits deferredsynchronous requests that
propagated the traaction in the original request. If this condition is not met, an
exception is raised and the transaction is marked as rollbackthat is,it cannot be
successfully committed.

A Transaction Service may check that a reply is issued within the context of the
transaction associated with the request.

CommiiCheck
Before allowingcommit toproceed, a check is made to ensina:

1. The commit request for the transactionbising issued from the same execution
environment that created the transaction.

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-37

10

10-38

2. The clientissuing commit has received replies to all the defesygathronous
requests it made that caused the propagation of the transaction.

ResumCheck

Before allowing a client or object to associate a transaction context with its thread of
control, a check is made to ensure that this transaction comdsxpreviously

associated with thexecution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

10.4.5 Implementing & ransactional Client: Heuristic Completions

Thecommit operationtakes the booleareport_heuristics as inpu. If the
report_heuristics argument isfalse , commit can complete as soon as froot
coordinator has made its decision to commit or rollback the transaction. The
application is not required to wait for the coordinator to complete the commit protocol
by informing all the participants of the outcome of the transaction. dadris

significantly reduce the elapsed time for the commit operation, especiadisew
participantResourc objects are located on remote network nodes. However, no
heurisic conditions can be reported to the application in this case.

Using th¢ report_heuristics option guarantees that tcommit operation will not
complete until the coordinator has completed thera@mrotocol with all resources
involved in the transaction. This guarantees that the application will be informed of
any non-atomic outcomes of the transaction vii HeuristicMixed or

HeuristicHazard exceptions, but increases the application-perceiveasedtime

for the commit operation.

10.4.6 Implementing a Recoxable Server

A Recoverable Server includeslaastonerecoverabl object and oniResourc 2
object. The responsibilities of each of these objectexplained in the following
sections.

Recoverable Object

The responsibilities of the recoverable object arenfplement the object’s operations,
and to register Resourc object with theCoordinatol so commitment of the
recoverable object’s resources, including any necessary recovery, can be completed.

TheResourc object identifies the involvement of the recoverable object in a particular
transaction. This meansResourc object may only be registered in one transaction at
a time. A differeniResourc object must be registered for each transaction in which a
recoverable object is concurrently involved.

Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

A recoverable object may receiweultiple requests within the scope of a single
transaction. It only needs to register its involvement in the transamtion The

is_same_transaction operation allows the recoverable object to determine if the
transaction associated with the requesinis in which the recoverable object is already
registered.

Thehash_transaction operations allow the recoverable object to reduce the number
of transaction comparisonshias to make. All coordinators for the same s$etion

return the same hash codéeis_same_transaction operation need only be done
on coordinators which have the same hash code as the coordinator of the current
request.

Resource Object

The responsibilities of Resourc object are to participate in the completion of the
transaction, to update the Recoverable Server’s resources in accordance with the
transaction outcome, and ensure termination of the transaction, including across
failures. The protocols that ttResourc object must follow are described in
“Transaction Service Protoc” on page 10-4.

Reliable Servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server can use
the same interface as @&€dverable Server to ensure application integrity for objects
that do not have recoveraldéate. Inthe case of a Reliable Server, the recoverable
object can register Resourc object that replieVoteReadOnly to prepare if its

integrity constraints are satisfied (¢, all debits have a correspding credit), or
repliesVoteRollback if there is a problem. This approach allows the server to apply
integrity constraints which apply to the transaction as a whole, rather than to individual
requests to the server.

10.4.7 Application Portability

This section considers application portability across the broadest range of Transaction
Serviceimplemenations.

Flat Transactions

There is one optional function of the Transaction Service, support for nested
transactions. For an application to be portable acrossmplementations of the
Transaction Service, it should be designed to use the flat transaction model. The
Transaction Service specification treats flat transactions as top-level nested
transactions.

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-39

10

10-40

X/Open ecked Tranactions

Transaction Service implementations may implement checked becked behavior.
The transaction integrity checks implemented by a JaationService need not be the
same as those defined by X/Open. However, neisting transaction management
systems have implemented the X/Open model of interpramamunication, and will
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.

Applications written to conform to the transaction integrity constraints of X/Open will
be portable across all implementations of an pé@ checked Transaction Service, as
well as allTransaction Service implementations whistipport unchecked behavior.

10.4.8 Distributed Transactions

The Transaction Service can be implementedniitiple commnents located across a
network. Thedifferentcomponents can be based on the same or on different
implementations of the Transaction Service.

A single transaction can involve clients angexts supported by more thane
instance of the Transaction Service. The number of Transaction Service instances
involved in the transaction is not visible to the application implememtere is no
change in the function provided.

10.4.9 Applications Using Both Checked and UWecked Services

A single transaction can include objects supported by both checked and unchecked
Transaction Service implementations. Cked transaction behavior cannot be applied
to the transaction as a whole.

It is possible to provide useful, limited forms of checked behavior for those subsets of
the transaction’s resources in the domain ohacked Transaction Service.

® First, a transactional or recoverable objedipge resources are managed by a

checked Transaction Service, may be accessed by unchecked clients. The checked

Transaction Service can ensure,rbgistering itself in the transaction, that the
transaction will not comit before all the integrity constraints associataththe
request have been satisfied.

® Second, arapplication whose resources are managed by a checked Transaction
Service may act as a client of unchecked objects, and preserve its checked
semantics.

10.4.10 Examples

Note —All the examples are written in pseudo code based on Cipartitular they do
not include implicit parametersuch as thiORB::Environment , which should appear
in all requests. Also, they do not handle the exceptions that might be returned with
each request.

Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

A Transaction Originator: Indirect and Implicit

In the code fragments below, a transaction originator uses indirect context management
and implicittransaction propagatiotxn_crt is en example of anbject supporting

the Current interface the client uses the begin operation to start the transacticahw
becomesmplicitly associated with the originator's thread of control:

t xn_crt.begin();
/I should test the exceptions that might be raised

/I the client issues requests, some of which involve
/I transactional objects;
BankAccount1->makeDeposit(deposit);

The progranmcommit s the transaction associated with the client thré&ae.
report_heuristics argument is set tfalse so no report will be made by the
Transaction Service about possible heuristic decisions.

txn_crt.commit(false);

Transaction Originator: Direct and Explicit

In the following example, a transaction originator uses direct context management and
explicit transaction propagatioithe client uses &actory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction and
uses the returneControl object to retrievehe Terminator andCoordinatol objects.

CosTransactions::Control c;
CosTransactions:: Terminator t;
CosTransactions::Coordinator co;

¢ = TFactory->create(0);
t = c->get_terminator();

The client issues requests, some of which involve transactional objects, in this case
explicit propagation of the context is u. The Control object reference is passed as
an explicit parameter of the reqy; it is declare 'in the OMG IDL of the interfac2

transactional_object->do_operation(arg, c);

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-41

10

The transaction originator uses fTerminato object to commit the transaction; the
report_heuristics argument is set tfalse : so no report will be made by the
Transaction Service about possible heuristic decisions.

t->commit(false);

Example of a Recoverable Server

BankAccount is an object with internal resources. It inherits from both the
TransactionalObjec and theResourc interfaces:

interface BankAccount1:

CosTransactions::TransactionalObject,CosTransactions::Resource

{

void makeDeposit (in float amt);
I

class BankAccountl

{

public:

void makeDeposit(float amt);

Upon entering, the context of the transaction is implicitly associated with the object's
thread. The pseudo object gguting theCurreni interface is used teetrievethe
Coordinatoi object associated with the transaction.

void makeDeposit (float amt)

{

CosTransactions::Control c;
CosTransactions::Coordinator co;

¢ = txn_crt.get_control();
co = c->get_coordinator();

Before registering thResource the object must check whether it has alrebdgn
registered for the same transaction. This is done usinhash_transaction and
is_same_transaction operations on the curreCoordinatol to compare a list of
saved coordinators representing currently active transactiotisislaxample, the
object registers itself asResourc. This rewires the object to durably record its

10-42 Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

registration before issuinregister_resource to handle potential failures and
imposes the restriction that the object may onlyrvelved in one transaction at a
time.

If more parallelism is required, separResourc objectscan te registered foeach
transactio the object is involved in.

RecoveryCoordinator r;
r = co->register_resource (this);

/I performs some transactional activity locally
balance = balance + f;
num_transactions++;

/I end of transactional operation

h

Example of a Transactional Object

BankAccount is an object with external resources that inherits from the
TransactionalObjec interface:

interface BankAccount2: CosTransactions::TransactionalObject

{

void makeDeposit(in float amt);
3

class BankAccount2
{
public:

void makeDeposit(f loat amt);

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-43

10

10-44

Upon entering, the context of the transaction is implicitly associated with the object's
thread. ThemakeDeposit operation performs some transactional requests on external,
recoverable server3he dojectsresl andres2 are recoverable objectShe current
transaction context ignplicitly propagated to these objects.

void makeDeposit(float amt)

{
balance =resl->get_balance(@mt);
balance = balance + amt;
resl->set_balance(balance);

res2->increment_num_transactions();
} // end of transactional operation

10.4.11 Model Interoperability

The Transaction Service supports interopéitgbbetween Tansaction Service

applications usingmplicit contextpropagation and procedural applications using the
X/Open DTP model. A single transaction management component may act as both the
Transaction Servicand an X/Open Transaction Manager.

Interoperability is provided in two ways:
 Importing transactions from the X/Open domain to the Transaction Service
domain.
e Exporting transactions from the Transaction Service domain to the X/Open
domain.

Importing Transactions

X/Open applications can access transactional objects. This means that an existing
application, written to use X/@en interfaces, can be extended to invokesaational
operatims. This causes the X/Open transaction to be imported into the domain of the
Transaction Service.

Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

The X/Open application may be a client or a server.

Existing Application New Application (Objects)
X/Open Transactional Transt?ctional
Client Originator Object
5 ORB !
TX L iccmmmmmmmmmmmmmmmmmmmmmmmmmfem e

transactional operation

Transaction Transaction

Manager Service

Figure 10-3 X/Open Client

Existing Application New Application (Objects)
X/Open X/Open Transactional Transactional
client Server Originator jec
A I N S SR
5 ORB |
""" ¥ansactional operation T[T
\J '
Transaction Transaction
Manager Service

Figure 10-4 X/Open Server

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-45

10

10-46

Exporting Transactions

Transactional objects can use X/Open communications and resource manager
interfaces, and include the resources managed by these components in a transaction
managed by the TraactionService. This causes the Transaction Service transaction
to be exported into the domain of the X/Open transaction manager.

New Application (Objects)

X/Open
Resource
Transactional Transa}ctional
Client Object A X/Open
_—————> server
CM API
N I A ! A
. | ORB | propagation !
177777 transactional operation
, v \J
Transaction Transaction

Service

Manager

Figure 10-5 Sample Transaction Managed by the Transaction Service

Programming Rules

Model interoperability results in application programs that use both X/Open and
Transaction Service interfaces.

A transaction originator may use tX/Open TX interface or the Traaction Service
interfaces to creatandterminate a transactio®@nly onestyle may be used in one
originator.

A single application may inherit a transaction with an application request either by
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of botheR/O
resource manager interfaces and transactional object interfaces.

An X/Openclient or server may invoke operations of transactional objects. The
X/Open transaction is imported into the Transaction Service domain using the
recreate operation orTransactionFactor.y

Transaction Servicerl.1 Nvember 1997 The User’s Vie'

10

A transactional object with Curreni object that associates a transaction context with
a thread of control, can call Xf@@n Resource Managers. How requests to the X/Open
Resource managers become associated with the transaction contexCurrent

object is implementation-dependent.

10.4.12 Failure Models

The Transaction Service provides atomic outcomes for transactions in the presence of
application, system or communication failures. This section describdeltia®ior of
applicationentities when failures occur. The protocols used to achthiebehavior

are described i“Transaction Service Protoc” on page 10-42

From the viewpoint of each user object role, two typefaitire are relevant: a failure
affecting the objecitself (local failur¢) and a failure external to the object (external
failure), such adailure of another object or failure in the communication with that
object.

Transaction Originator

Local Failure

A failure of a transaction originator prior to the originator isstcommit will cause

the transaction to be rolldshck. Afailure of the originator after issuircommit and

before the outcome is reported may result in eitherncitment or rolllack of the
transaction depending on timing; in this case completion of the transaction takes place
without regard to the failure of the originator.

External Failure

Any externalfailure affectingthe transaction prior to the originator issucommit
will cause the transaction to be rolled back; the standard exception
TRANSACTION_ROLLEDBA will be raised in the originator when it isstcommit .

A failure after commitand before the outcome has been reported will mean that the
client may not be informed of the transaction outcome, depending on the nature of the
failure, and the use of ttreport_heuristics option ofcommit . For example, the
transaction outcome will not be reported to the client if communicatitween the

client and the coordinatdails.

A client may useget_status on theCoordinatol to determine the transaction
outcomt. However this is not reliablebecauseéhe statuNoTransaction is
ambiguou: it could mean that the transaction committend has beeforgotten, or
that the transactiorolled back and has bednrgotten.

If an originator needs to know the transaction outcome, including in the case of
external failures, then either the originator’'s implementation must inchResourc 2
object so that it will participate in the two-phase commit proceduregayndecovery),
or the originator and coordinator must be located in the same failure domain (for
example, the same execution environment).

Transaction Servicerl.1 Nvember 1997 The User’s Vie' 10-47

10

Transactional Server

Local Failure

If the Transactional Servéails thenoptional checks by a Traaction Service
implementation may cause the transaction to be rddéek; without such checks,
whether the transacticis rolled back depends on whether tbemmit decisiorhas
already been made (this would be the case where an unchecked client commit
before receiving all replies from servers).

External Failure

Any externalfailure affectingthe transaction during the execution of a Transactional
Server will cause the transaction to ioded back. If this occurs while the

transactional object’s method is executing, the failure has no effect on the execution of
this method. The method may terminate normally, returning the reply to its client.
Eventually theTRANSACTION_ROLLEDBA(exception will be returned to a client
issuingcommit .

Recoverable Server

Behavior of a recoverable server wifailures occur is determined by th&o phase
commitprotocol between the coordinator and the recoverable seResourc2
object(s). This protocol, including the locatd external failure models and the
required behavior of the Resource, is describe* Transaction Service Protoc” on
page 10-49.

10.5 The Impeémenters’ View
This section contains three major categories of information.

1. “Transaction Service Protoc” on page 10-4 defines in more detail the protocols
of the Transaction Service for ensuring atomicity of transacteve) in the
presence of failure.

This section isnot a formal part of the specification but is providedassist in
building valid implementations of the specificatidrhese protocols affect
implementations of Recoverable Servers and the Transaction Service.

2. "ORBI/TS Implementation Considerati¢’ on page 10-6 provides additional
information for implementers of ORBs and Transaction Services in those areas
where cooperation between the two is necessargatize theTransaction Service
function.

Thefollowing aspects of ORB and Transaction Servinplementation are covered:
* transaction propagation.
* interoperatiorbetween different transaction serviceplementations.

* ORB changes necessary to support pditghif transaction service
implementations.

10-48 Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

3. “Model Interoperabilit” on page 10-6 describes how an implementation achieves
interoperatiorbetween the Transaction Service and procedural transaction
managers.

10.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols be followietptement the
atomicity property.These protocols affect thmplementation of recoverable servers,
(recoverable objects that register for participation in the two-pbasenit process)

and the coordinators that are created by a transaction factoege Tesponisilities

ensure the execution of the two-phasenmit protocoland includemaintaining state
information in stable storage, so that transactions can be completed in case of failures.

General Principles

The first coordinator created for a specific transaction is responsible for driving the
two-phasecommit potocol. In the literature, this is referred to asroot Transaction
Coordinatol or simply root coordinator. Any coordinator that is subssly created

for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a coordinator is referred tsubordinate

Transaction Coordiator or simply subordinate coordinator and tegistering a

resource becomes a transaction participant. Recoverable servers are always transactiol
participants.The root coordiator initiates the two-phase commit protocol; participants
respond to the operations thahplement the protocol. The specification is based on

the following rules for commitmenénd recovery:

1. The protocol defined bthis specification is a two-phas@emmit with presumed
rollback.

This permits efficient implementations to be realized since the root coordinator does
not need to log anything before themmit decisiorand theparticipants (e.,
Resourc objects) do not need to log anything before they prepare.

2. Resourc objects—including subordinate coordinators—do not start commitment by
themselves, but wait fcprepare to be invoked.

3. The prepare operation is issued at most oncesch resource.

4. Participants must remember heuristic decisions until the coordinator or some
management application instructs thenforget that decision.

5. A coordinator knows whiclResourc objects are registered in a transaction and so
is aware of resources that have completedrneibment.

In general, the coordinator must remember this information if a transaction commits
in order to ensure proper completion of the transaction. Resources can be forgotten
early if they do not vote toommit the transaction.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-49

10

6. A participant should be able to request the outcome of a transaction at any time,
including after failures occurring subsequent tcResourc object being prepared.

7. Participants should be able to report the completion of the transaction (including
any heuristic condition).

The recording of information relating to the transaction which is required for recovery
is described as if it were a log file for clarity of description; an implementation may
use anysuitable persistent storage mechanism.

Normal Transaction Completion

Transaction completion can occur in two wayspasg of the normal execution of the
Current::commit or Terminator::commit operations or independent of these
operations if a failure should occur before normal execugoncomplete. This section
describes the norm@ho failure) caseFailures and Recove” on page 10-57
describes the failure cases.

Coordinator Role

The root coordinatoimplements théollowing protocol:

* When the client asks icommit the transactionand no pior attempt to rollback
the transaction has been made, the coordinator issubefore_completion
request to all registered synchronizations.

e When all registered synchronizations have responded, the coordinator issues the
prepare request to all registered resources.

« If all registered resources re VoteReadOnly , then the root coordinator replies
to the client that the transaction committed (assuming that the clestill be
reached).

Before doing so, however, iir$t issuesafter_completion to any registered
synchronizations and, aftafl responses are received, replies to the clieimtre
is no requirement for the coordinator to log in this case.

* If any registered resource repliVoteRollback or cannot be reached then the
coordinator will decide to rollbacknd will soinform those registered resources
which already replie(VoteCommit.

» Once aVoteRollback reply is received, a coordinator need not sprepare
to the remaining resourc Rollback will be subsequently sent to resources that
repliedVvoteCommit .

If the report_heuristics parameter was specified commit , the client will
be informed of the rollback outcome when any heuristic reports have been
collected (and logged if required).

» Once afeastoneregistered resource has replvVoteCommit and all others have
repliedVoteCommit or VoteReadOnly , a root coordinator may decide to commit
the transaction.

» Before issuinccommit operations on those registered resources which replied
VoteCommit , the coordinator must ensure that the commit decision and the list of
registered resources—those that repVoteCommit —is stored in stable storage.

10-50 Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

« If the coordinator receiveVoteCommit or VoteReadOnly responsefrom each
registered resource, it issues commit request to each registered resource that

respondevoteCommit .
 After having received acommit orrollback responses, if synchronizations
exist, the root coordinator issuafter_completion to each of them passing the

transaction outcome a&satusbefore responding to the client.

» The rootcoordinator ssuesforget to aresource after it receives a heuristic
exception.

 This responsibility is not affected by failure of the coordinatshen receiving
commit replies containing heuristic inforr@t, a coordinator constructs a
composite for the transaction.

» The root coordinator forgets the transaction after having logged its heuristic status
if heuristics reporting was requested by the originator.

e The root coordinator can now trigger the sending of the reply todhmanit
operation if heuristic reporting is required. If no heuristic outcomes were
recorded, the coordinator can be destroyed.

One Phase Commit

If a coordinator has only a single registered resource, it can perform the
commit_one_phase operation on the resource instead of perfornprepare and
thencommit orrollback . If a synchronization existbefore_completion is issued
prior to commit_one_phase andafter_completion is issued when the response to
commit_one_phase has been received. Iffailure occurs, the coordinator will not be
informed of the transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction coordmagirnotify any
registered subtransaction aware resources of the subtransaction’st @ymollback
status using thcommit_subtransaction or rollback_subtransaction

operations of thSubtransactionAwareResou interface.

A transaction service implementation determines how it chooses to respond when a
resource responds commit_subtransaction with a system exception. The service
may choose toollback the subtrasaction or it may ignore thexceptional condition.

The SubtransactionAwareResou operations are used to notify the resources of a
subtransaction hien the subtransacticmommits in thecase where the resource needs
to keep track of theommit status of itencestors. They are not used to direct the
resources to commit oollback any state. The operationstbé Resourc interface are
used to comnit or rollback subtransaction resources registered using the
register_resource operation of theCoordinatol interface.

When the subtmsaction is committedndafter all of the registered subtransaction
aware resources have been notified of the commitment, the subtransaction registers any
resources registered usiregister_resource with its parenCoordinato or it may
register a subordinate coordinator to relay any future requests to the resources.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-51

10

10-52

From the application programmer pointwaéw, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The
report_heuristics parameter oicommit is ignored since heuristics are not
produced when subtransactions acenmitted.

Recoverable Seer Role

A recoverable server includes at least one recoverable object alResourc object.
The recoverable object has state that destrates at least ttatomicity property. The
Resourc object implements thtwo-phasecommit protocol as a participe on behalf
of the recoverable obje. The responbilities of each of these objects i€stribed
below.

Synchronization Registration

A recoverable server may need to stgi aSynchronizatio object to ensure that
object state data which is persistently managed by a resource is returned to the
resource prior tetartingthe conmitmentprotocol.

Top-Level Registration

A recoverable object registersResourc object with theCoordinatol so commitment
of the transaction including any necessary recovery can be completed.

A recoverable object uses tis_same_transaction operation to determine whether
it is already registered in this transactioncdh also ushash_transaction to
reduce the number of comparisons. This relies ord#fimition of the

hash_transaction operation to return the same value forcabrdinators in the
same transaction even if they are generated HjipteuTransaction Service
implementations.

Onceregistered, a recoverable server assumes the responsibilities of a transaction
participant.

Subtransaction Registration

A Recoverable Server registers for subtransaction completion only if it needs to take
specific actions at the time a subtransaction commits. An exanauil e to change
ownership of locks acquired by this subtransactioitstparent.

A recoverable object uses tis_same_transaction operation to determine whether
it is already registered in this subtransaction. It can alsthash_transaction to
reduce the number of comparisons.

Top Level Synchronization

Synchronizatio objects ensure that persistent state data is returned to the recoverable
object managed by a resource or to the underlying database manager. To do so they
implement a protocol which moves the data prior to the prepare phdsgoes

necessary processing after the outcome is complete.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

Top-Level Conpletion

Resourc objects implement a recoverable object’s involvement in transaction
completion. To do so, they must follow the two-phase ro@rprotocolinitiated by
their coordinatoland maintain certain elements of thgtiate in stable storage. The
responsibilities of (Resourc object with regard to a particular transactaepend on
how it will vote:

1. ReturningVoteCommit to prepare

Before aResourc object repliesvoteCommit to aprepare operation, it must
implement the following:

* make persistent the recoverable state ofet®verable object.

The method by which this is accomplished is implementatependent. If a
recoverable object has only transistdte, itneed not be made persistent.

» ensure that its object reference is recorded in stable storage to allow it to
participate in recovery in thevent offailure.

How object references are made persistent then regeneratedtexf a failure is
outside the scope of this specificatidrhe Persistent Object Service or some
other mechanism may be used. HasvgistenResourc objects get restarted after
a failure is also outside the scope of this specification.

« record theRecoveryCoordinatc object reference so that it can initiate recovery of
the transaction later if necessary.

» the Resourc then waits for the coordinator to invocommit or rollback

» A Resourc with a heuristic outcome must not discard that information until it
receives dorget from its coordinator or some administratigemponent.

2. ReturningVoteRollback to prepare

A Resourc which repliesvoteRollback has no requirement to log. Once having
replied,the Resourc can return recoverable resources to their prior stadeforget
the transaction.

3. ReturningVoteReadOnly to prepare

A Resourc which repliesvVoteReadOnly has no requirement to log. Once having
replied, theResourc can release its resources and forget the transact

Subtransaction Completion

The role of the subtransaction aware resource at subtransaction completion are defined
by the subtransaction aware resource itself. The coordinator only requires that it
respond tocommit_subtransaction or rollback_subtransaction

All resources need to beotified when a transaction commits or is rolleath. But

some resources need to know when subtransactionsit am thatthey can update

local data structures and track the completion status of ancestors. The resource may
have rules that are specific to ancestry and must perform some work as all or some
ancestors complete. The nested semantics and effort required Resourc object

are defined by the object and not the Transaction Service.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-53

10

10-54

Once the resource has been told to prepare, the resource's obligations are exactly the
same as a top-level resource.

For example, in the Concurrency Control Service, a resource in a nested transaction
might want to know \wen the subtrasaction commits écause another subtransaction
may be waiting for a lock held by that subtransact©nce thatsubtransaction

commits, others may be granted the lotkere is no requirement to make lock
ownership persistent untilprepare message is received.

For the Persistent ObjeBervice, it is important to keep separate upd#@mation
associated with gubtransaction. When that subtransactommits, the Persistent
Object Service may need to reorganizeirifermation (such as undo information) in
case the parent subtransaction chooses to rollback. Againetbietéht Object Service
resource need not make updates permametilta prepare message is received. At
that point, it has the same responsibilities as a top-level resource.

Subordinate Coordingéor Role

An implementabn of the Transaction Service may interpose subordinate coordinators
to optimize the commit tree for completing the transaction. Such coordirpetbase

as transaction participants to their superiors and as coordinators to their resources or
inferior coordinators.

Synchronization

A subordinate coordinator may registeSynchronizatio object with its superior
coordinator if it needs to perform processing before its prepare phase begins.

Registration

A subordinate coordinator registersResourc with its superiorcoordinator. Once
registered, a subordinate coordinator assumes the responsibilities of a transaction
participant and implements thehavior of a recoverable server.

Subtransaction Registration

If any of the resources registered with the subordinate coordinator support the
SubtransactionAwareResou interface, the subordinate coordinator must register a
subtransaction aware resource with its parent coordinatanylof the resources
registered with the subordinate using register_resource operation, the
subordinate must registerResourc with its superior. If both types of resources were
registered with the subordinate, the subordinate only needs to register asadiioan
aware resource with its superior.

Top-level Completion
A subordinate coordinator implements the completion behavior of a recoverable server.

Subtransaction Completion

A subordinate coordinator implements the sulsteantion completion behavior of a
recoverable server.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

Subordinate Coordinator

A subordinate coordinator does not make them@trdecision but simply relays the
decision of its superior (mich may also be a subordinate coordinator) to resources
registered with it. A subordinate coordinator acts as a recoverable server as described
previously, interms ofsaving itsstate in stablstorage. A subordinate coordinator (or
indeed any resource) may log themmitdecision once it iknown (as an

optimization) but this is not essential.

® A subordinate coordinator issues before_completion operation to any
synchronizationsvhen it receiveprepare from its superior.

® Whenall responses tbefore_completion have been received, a subordinate
coordinator issues trprepare operation to its registered resources.

® |f all registerecresource reply VoteReadOnly , then the subordinacoordinator
will decide to epy VoteReadOnly .

Before doing so, however, fitrst issuesafter_completion to any registered
synchronizations and, aftall responses are received, repVoteReadOnly to its
superior. There is no requirement for the subordinate coordinator to log in this case;
the subordinate coordinator takes no further part in thedctionand can be
destroyed.

® |f any registerewesourc repliesVoteRollback or cannot be reached then the
subordinatecoordinator vill decide torollback and will so inform thoseegistered
resource which already replieivoteCommit.

Once avoteRollback reply is received, the subordinate coordinator need not send
prepare to the remaining resources. The subordinate coordinator issues
after_completion to any synchronizations andfter all responsesave been
received, repiesVoteRollback to its superior.

® Once at leasbne registereresourc has repliecvoteCommit and all others have
replied VoteCommit or VoteReadOnly , a subordinatcoordinator ray decide to
reply VoteCommit .

The subordinate ardinator must record the prepared state, the referenitg of
superiorRecoveryCoordiator and itslist of resources that respondvoteCommit
in stable storage before respondingprepare

® A subordinatecoordinator ssues thccommit operation to its registereresources
which replied VoteCommit when it receives commit request from its superior.

® If any resourc reports a heuristic outcome, the subordircoordinator musrepor
a heuristic outcome to its superior.

Before doing so, however, fitrst issuesafter_completion to any registered
synchronizations and, after all responses are received, reportsutligtib outcome

to its superior. The specific outcome reported depends on the othesticeuri
outcomes received. The subordinate coordinator must record the heuristic outcome
in stable storage.

® After having received acommit replies, a subordinacoordinator ogsits
heuristic status (if any).

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-55

10

® The subordinatcoordinator theneplies 10 the commit from its superior
coordinator.

Before doing so, it issueafter_completion to any registered synchronizations
and, after all responsésve been received, it then rigglto its superior. If no
heuristic reportvas sent theCoordinato! is destroyed.

® A subordinatecoordinator erforms therollback operation on its registered
resource when it receives rollback request from its superior.

If any resource reports a heuristic outcome,sihieordinate coordinator records the
appropriate heuristic outcome in stable storage and will report this outcome to its
superior. Before doing so, however, it issafter_completion to any registered
synchronizations and, after receiving all the responses, reports th&tibeur
outcome to its superior.

® The subordinate ardinator then replies to ttrollback from its superior
coordinator.

Before doing so, it issueafter_completion to any registered synchronizations
and, after all responsésve been received, it then riggl to its superior. If no
heuristic reportvas sent theCoordinato! is destroyed.

® If a subordinate coordinator receivecommit_one_phase request, and it has a
single registered resource, it can simply performcommit_one_phase request
on its resourceBefore doing so, if a synchronization exists, it issues
before_completion to the synchronization, then, after receiving the
commit_one_phase response, issueafter_completion to the synchronization.

If it has multiple registered resources, it behaves like a superior coordinator, issuing
before_completion to any synchronizations andfter receiving the responses,
issuingprepare to each resource to determine the outcome, then iscommit

or rollback requests, followed bafter_completion requests if

synchronizations exist.

® A subordinatecoordinator erforms theforget operation on those registered
resource that reported a heuristic outcome when it receivforget request from
its superior.

Subtransactions

A subordinate coordinator for a subtransaction recommit_subtransaction and
rollback_subtransaction requests to any subtransaction aware resources
registered with it. In addition, it performs the same roles as a top-level subordinate
coordinator when the top-level trsaction commits. It must releprepare and

commit requests to each of the resources thgistered with it using the
register_resource operation.

10-56 Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

Failures and Recovery

The previous descriptions dealt with the protocols associated with the Transaction
Service when a traaction completes without failure. To ensatomicity and

durability in the presence of failure, the transaction service defines additional protocols
to ensure that transactions, once begun, alwaysplete.

Failure Processing

The unit of failure is termed the failure dom. It may consist of the coordinator and
some local resources registered with it, or the coordiraatdrthe resources may each
be in its own failure domain.

Local Failure

Any failure in the transaction during the exion of a coordinator prior to the commit
decisionbeing made will cause the transaction torbked back.

A coordinator is restarted only if it has lpgd thecommit decision.

* If the coordinator only contains heuristic informatiomthing is done.

« If the transaction is marked rollback only, a coordinator can rollback to
its resources and inferior coordinators.

« If the transaction outcome is commit, the coordinator scommit to prepared
registered resourceand the reglar commitmenprocedure istarted.

« If any registered resources exist but cannot be reached, then the coordinator must
try again later.

If registered resources no longer exist, then this means that they completed
commitmentbefore the coordinator failed and have no fsierinformation.

« If a subordinate coordinator is prepared, then it must contact its superior
coordinator to determine the transaction outcome.

« If the superior coordinator exists but cannot be reached, then the subordinate must
retry recovery later.

* If the superior coordinator no longer exists, then the outcome of the transaction
can be presumed to be rollback.

The subordinate will inform its registered resources.

External Failure

Any failure in the transaction during the exion of a coordinator prior to the commit
decisionbeing made will cause the transaction torbked back.

Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point where the
failure occurred. That means that the coordinator will usually have the responsibility
for sending thecommit decision to its registeredsmurces. €rtain failire conditions

will require that the resource initiate the recovery procedure—recall that the resource
might also be a subordinate coordinator. These are described in mordoeletail

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-57

10

10-58

Resources

A resource represents some collection of recoverable data associated with a
transaction. It supports ttResourc interface described i“Resourcdnterface’ on
page 10-2. When recovering from failure aftés changes have been prepared, a
resource uses ttreplay_completion operation on thiRecoveryCoordinat: to
determine the outcome of the transactiomd continue completion.

Heuristic Reporting

If the coordinator does not complete the two-phasamit in a timely manner, a
subordinate (i.e., a resource or a subordinate coordinator) in tlsadt@m may elect

to commit or rollack the resources registered with it in a prepared transaction (take a
heuristic decisiol). When the coordinator eventually sends the outcome, the outcome
may differ from that heuristic decisiofihe result iseferred to aHeuristicMixed

or HeuristicHazard. The result is reported by the root coordinator to the client only
when thereport_heuristics option oncommit is selected. In these circumstances,
the participant (subordinate) and th@ordinator must obey set of rules that define

what they report.

Coordinator Role

A root coordinator that fails prior to logging tkemmit decisiorcan unilaterally
rollback the transaction. If its resourdesve also rolled back because they were not
prepared, the transaction is returnedtsgorior state of consistew. If any resources
are prepared, they are requiredritiate the recovery process defined below.

® A root coordinator that hasa@mmittedoutcome will continue the completion
protocol by sendincommit .

® A root coordinator that has a rolled back outcome will continue the completion
protocol by sendingollback

Synchronizations

Synchronizatio objects are not persistent so they are not restarted after failure and, as
a result, their operations are rinvoked during failure processing.

Subtransactions

Subtransactions are not durable, so there is no completion after faiawewveét, once
the top-level coordinator issuprepare , a subtransaction subordinate coordinator has
the same responsibilities as a top-level subordinate coordinator.

Recoverable Seer role

The Transaction Service imposes certain requirements on the recoverable objects
participating in a transaction. These requirements include an obligation to retain
certain information at certain times in stable storage (storage not likely to be damaged
as the result of failure). When a recoverable ohjestarts after a failure, it

participates in a recovery protocol based on the contents (or lack of conteids) of
stable storage.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

Once having replieVoteCommit , the resource remains responsible for discovering the
outcome of the transaction (i.e., whether to ootror rollback). If the resource
subsequently makes a htic decision, thigloes not change its resgsibilities to
discover the outcome.

If No Heuristic Decision is Made

A resource that is prepared is responsiblerdrating recovery. It does so by issuing
replay_completion to theRecoveryCoordinat. The reply tells the resource the
outcome of the transaction. The coordinator can continue the completion protocol
allowing the resource to eitheommit orrollback. Theresource can resend
replay_completion if the completion protocol is not continued.

« If the resource having replievoteCommit initiates recovenand receives
StExcep::OBJECT_NOT_EXIST , it will know thatthe Coordinatol no longer
exists and therefore the outcomas to rolback (presumed rollback).

* If the resource having replievoteCommit initiates recovenand receives
StExcep::COMM_FAILURE , it will know only thatthe Coordinatol may or may
not exist. Inthis case, the resource retains responsibilityifidiating recovery
again at a later time.

When a Heuristic Decision is Made
Before acting on a heuristic decision, it must record the decision in stable storage.

« If the heuristic decision turns out to be consistent with the outcome, then all is
well and the transaction can be compledged theheuristic decision can be
forgotten.

« If the heuristic decision turns out to xeong, theheuristic damage is recorded in
stable storage and one of the heuristic outcome exceptions
(HeuristicCommit,HeuristicRollback,HeuristicMixed, or
HeuristicHazard) is returned wherompletion continues.

The heuristic outcome details must be retained persistently until the resource is
instructed to forget. In this case, the resource remains persistent urforget is
received.

Subordinate Coordingor Role
The behavior of a subordinate coordinator after a failuiescfuperior coordinator is
implementatiom-depenént; however, it does follow the following protocols:

 Since it appears as a resource to its superior coordinator, the protocol defined for
recoverable servers applies to subordinate coordinators.

» Since it is also a subordinate coordinatorifsrown registered resowgs, it is
permitted tosend duplicattccommit , rollback , andforget requests to its
registered resources.

* Itis required to (eventually) perform eithrcommit orrollback on any resource
to which it has received VoteCommit response tprepare .

« 1t? is required to (eventually) perform tforget operation on any resource that
reported a heuristic outcome.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-59

10

10-60

Since subtransactions are not durable, it has no responsibility in this area for failure
recovery.

10.5.2 ORB/TSImplemeantation Considerations

The Transaction Service and the ORB must cooperate to realtaincBransaction
Service function. This is discussed in greater detail in the following sections.

Transaction Propagation

The transaction is represented to the application b‘Control object. Within the
Transaction Service, implicit contextis maintained for all threads associated with a
transaction. Although there is somemmon information, thamplicit context isnot

the same as ttControl object defined in this specification anddsstinct from the

ORB Context defineloy CORBA. It is the implicit context that must be transferred
between execution environments to supjtransaction propagati. n

The objects using a particular Transaction Service implementation in a dgstera

Transaction Service domi. Within the domain, the structure and meaning of the

implicit context informationcan be private to thienplementation. When leaving the
domain, this information must be translated to ammm form if it is to be unerstood
by the target Transaction Service domain, even across a single ORB. Whapltbi¢ i
context is transferred, it is represented {PropagationConte..t

No OMG IDL declaration is required to cause propagation ofitgicit context with

a request. The minimum amount ofarmation thatcould serve asn implicit context

is the object reference of tiCoordinatol. However, an identifier (g., an X/Open
XID) is also required to allow efficient (local) execution of the

is_same_transaction andhash_transaction operations when interposition is
done. Implementations may choose to also includéeTerminato object reference if
they support thability for ending the transaction other execution environments than
the originator’s. Transferring the impliatbntext requires interaction between the
Transaction Servicand the ORB to add or extract timplicit context from ORB
messages. This interaction is also used to implement the checking functions described
in “X/Open Checked Traaction” on page 10-3.7

When theControl object is passed as an operation argument (expfiggiagation), no
special transfer mechanism is required.

Interposition

When a transaction is propagated, ith@licit context isexported and can be used by
the importing Transaction Servicmplemenéation to create a neControl object
which refers to a new (locaCoordinatol. This techniqueinterpositior, allows a

2.or some “agent” acting on its behalf: for example a system management application.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

surrogate to handle the functions of a coordinator in the importing doifiaése
coordinators act esubordinate coordinatc. When interposition is performed, a single
transaction is represented by multiCoordinato! objects.

Interposition allows cooperating Transaction Services to share the resfignfabi
completing a transaction and can be used to minimize the number of network messages
sent during the completion process. Interposition is required for a Transaction Service
implementation to implement ttis_same_transaction andhash_transaction

operations as local method invocations, thus improvirgyallvsystems performance.

An interposed coordinator registers as a participant in the transaction with the
Coordinatol identified in thePropagationConte: of the received requesThe
relationships between coordinators in the $etion form a tree. The root coordinator
is responsible for completing the transaction.

Many implementaons of the Transaction Service will want to perform inbsifion
and thus creatContro! objects and subsequenCoordinatoil objects for each
execution environment participating in the transaction. To create a new Control,
an importing Transaction Service uses the information in the propa ccntextto
recreate a Control object using {TransactionFactor. Interposition must be
complete before tt get_control operation can complete in the target object. An
object adaptor is one possible place to implement interposition.

Subordinate Coordingor Synchronization

A subordinate coordinator may register with its superior coordinator to ensure that any
local state data maintained by the subordinate coordinator is returned to the underlying
resource prior to the subordinate coordinator’s assocResourc seeingprepare .

Subordinate Coordingor Registraion

A subordinate coordinator must register with its superior coordinator to orchestrate
transaction completion for its local resources. register_resource operation of

the Coordinatol can be used to perform this function. The subordinate coordinator can
either support thResourc interface itself oprovide anotheResourc object which

will support transaction completion. Some implementations of thes@icdion Service
may wish to perform this function as a by-product of invoking the fpstation on an
object in a new domain as is done with the pé@ model. This requires that the
information necessary to perform registration bdestto the reply message of that

first operation.

Transaction Service Interoperation

The Transaction Service can be implementedniojtiple components at different
locations. Thedifferentcomponents can be based on the same or different
implementations of the Transaction Service.séated in“Principles ofFunction,
Design, and Brformanc” on page 10-, it is a requirement that multiple Transaction
Services interoperate across the same ORB and different ORBs.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-61

10

Transaction Service interoperation is specified by defining the data structures exported
betweendifferent implementations of th€ransaction Service. When tiraplicit

context is propagated with a request, the destination uses it to locate the superior
coordinator. That coordinator may be implemented by a foreign Transaction Service.
By registering a resource with that coordinator, the destination arranges to receive two-
phasecommit requests from the (possibly foreigimtansaction Service.

The Transaction Service permits many configurations; no particular configuration is
mandated. Typically, each program will be directly associated with a single
Transaction Service. Howeverhen requests ateansmitted bet@en programs in
different Transaction Service domaitmth Transaction Services must understand the
shared data structures to interoperate.

An interfacebetween the ORB and the Transaction Service is defined that arranges for
the implicit context to be carried on messages that represent methazhtiorss made
within the scope of a transaction.

Structure of the Propagation Cotext

The PropagationContexstructure is defined inStructure” on page 10-15. For the
functions defined within the base section of the propagation context, it is necessary
only to send it with requests. Implementations may use the vendor spexctiin for
additional functions (for example, to register an interposed coordinator with its
superior), which may require the propagation context to be returned. Whether it is
returned or not, is implementation specific.

otid_t

Theotid_t structure is a more efficient OMG IDL version of the X&h defined
transaction identifier (XID). Thotid_t can be transformed to an X/Open XID and
vice versa.

Transldentity

A structure that defines information for a single transaction. It consistcoord , an
optionalterm , and anotid

coord
The Coordinatol for this transaction in the exporting Transaction Service domain.

term

The Terminato for this transaction in the exportirfigansaction Service domain.
Transaction Services that do not alleavirination by other than the originator will set
this field to a null referenceOBJECT_NIL).

10-62 Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

otid

An identifier specific to the current transactionsubtransaction. This value is
intended to supposfficient (local) execution othe is_same_transaction and
hash_transaction operations when the importing Transaction Serdoes
interposition.

timeout

The timeout value associated with the transaction in the relset_timeout
operation (or the default timeout).

<Transldentity> parents

A sequence oTransldentity structures representing the parent(s) of the current
transaction. The ordering of the sequence starts at the parent of the current transaction
and includes all ancestors up to the top-level transaction. An implementation that does
not support nestetlansactions would send an empty sequence. This allows a non-
nested transaction implementationkttow when a n&ted transaction is being

imported. It also supports efficient (local) execution of Coordinatol operations

which test parentagehen the importing Transaction Service does interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed back
with the rest of the context if the transaction is re-imported into that implementation.

Appearance of the Propagation Contextinddsages

The appearance of ttPropagationConte: in messages is defined by the CORBA
interoperability specification (see the Generaétr®RB Protocol chapter of the
Common ObjecRequest Broker: Architecture ar&pecificatiol). The Transaction
Service passes the PropagationContext to the ORB viTSPortability interface
defined in The Transaction Service Callba” on page 10-65.

®* When eyorting a transaction, the ORB sets the PropagationContext into the
ServiceContext::context_data field and marshals the PropagationContext as
defined by the GIOP message formmatd marshalling rules.

® When importing a transaction, the ORB demarshalls the
ServiceContext::context_data according to the GIORormatting rulesand
extracts the ProggtionContext to be presentedttoe Transaction Service.

For more information, see the General Inter-ORB Protocol chapter Common
Object Request Broker: Architecture andeSilicatior.

Transaction Service Portability

This section describes the way in which the ORB and the Transaction Service
cooperate to enable tIPropagationConte: to be passed and any X/Open-style
checking to be performed on transactional requests.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-63

10

10-64

Because it is recognized that other object services and future extensions to the CORBA
specification may require similar mechani:, this component is specified separately

from the mainbody of the Tramaction Service to allow it to be revised or replaced by

a mechanism common to several servioeependently of any future Traaction

Service revisions.

To enable a single Transaction Service to work with multiple ORBs, it is necessary to
define a specific interface between the ORB and the Transaction Service, which
conforming ORB implementations will provide, and demanding 3aation Service
implementationgan rely on. Theemainder of this section describes these interfaces.
There are two elements of the required interfaces:

1. An additional ORB interface that allows the TsactionService to identify itself to
the ORB when present in order to be involved intthasmission of transactional
requests.

2. A collection of Transaction Servic operations (thTransaction Servic callbacks)
that the ORB invokes when a transactional request is sent and received.

These interfaces are defined aepdo-IDL to allow them to be implemented as
procedure calls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to the
ORB within itsdomain to establish the transacticallbacks to be used for
transactional requests and riepl

The Transaction Service identifies itself to the ORB using the following interface.

i nterface TSldentification {// PIDL
exception NotAvailable {};
exception Alreadyldentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, Alreadyldentified);
void identify_receiver(in CosTSPortability::Receiver receiver)

raises (NotAvailable, Alreadyldentified);
b

The callback routines identified in this operation alays in the same addressing
domain aghe ORB. On most machine architectures, there are a unique set of callbacks
per address space. Since invocation is via a procedure cajhendent failures cannot
occur.

NotAvailable

TheNotAvailable ~ exception is raised if the ORB implementation does not support
the CosTSPortabity module.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

Alreadyldentified

The Alreadyldentified exception is raised if thidentify_sender or
identify_receiver operation had previousigentified calltacks to the ORB for
this addressing domain.

identify _sender

Theidentify_sender operation provides the interface that defines the callbacks to
be invoked by the ORB when a transactional request is sent and its reply received.

identify_receiver

Theidentify_receiver operation provides the interface that definesaakbacks
to be invoked by the ORB when a tsactional request is receivaddits reply sent.

The Transaction Service must identify itself to the ORB at leasé per Transaction
Service domain. &ding and receiving traactional requests are separately identified.
If the callback interfaces are different for different processes within a Transaction
Service domain, they are identified to the ORB on a per process basisor@nly
Transaction Service implementation per addressing docaairidentifyitself to the
ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requests can identify only the receiver callbacks.

The Transaction Service Callbacks

The CosTSPortabilit module defines two interées. Bothinterfaces are defined as
PIDL. TheSende interface defines a pair of operatiombich are called by the ORB
sending the request before it is sent and after its reply is recfikeReceiver
interface defines a pair of operations which are called by the ORB receiving the
request when the request is received and before its reply is s¢iminBrfaces use the
PropagationConte; structure defined i“Structure” on page 10-15.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-65

10

10-66

module CosTSPortability { // PIDL
typedef long Reqld;

interface Sender {
void sending_request(in Reqld id,
out CosTransactions::PropagationContext ct X);
void received_reply(in Reqld id,
in CosTransactions::PropagationContext ctx,
in CORBA::Environment env)

h

interface Receiver {
void received_request(in Reqld id,
in CosTransactions::PropagationContext ctx);
void sending_reply(in Reqld id,
out CosTransactions::PropagationContext ctx);

Reqld
TheReqld is an unique idntifier generated by the OREhich lasts for the duration of

the processing of the request and its associated reply to allow the Transaction Service
to correlate callback requests and replies.

Sender::sending_equest

A request is about to be seiithe Transaction Service returnPropagationConte: to

be delivered to the Transaction Service at the server managing the target object. The
TRANSACTION_REQUIRE standard exception is raised when invoked outside the scope
of a transaction.

Sender::received_reply

A reply has been receivetdlhe PropagationConte> from the server is passed to the
Transaction Service along with the returned environment. The Transaction Service
examines th€Environment to determine whether the request was successfully
performed. If th Environment indicates the request was unsuccessful, the
TRANSACTION_ROLLEDBA! standard exception is raised.

Receiver::received_request

A request has been received. TPropagationConte) defines the transaction making
the requesit is associated with the target object only if the target object inherits from
the Transactional®jec interface.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

Receiver::sending_reply

A reply is about to be sent. A checking transaction service determimether there

are outstanding deferred requestssubtransactionand raises a system exception

using the normal mechanisms. The exception data from the callback operation needs to
be re-raised by the calling ORB.

Behavior of the Callback Interfaces
The following sections describe the protocols associated withalimck interfaces:

Requirements on the ORB

The ORB will invoke the sender callbacks only when adaational operation is
issued for an object in a different process. Objects within the same pnoq@isstly
share the same transaction context. The receiver callbacks akednwben the ORB
receives a transactional request from a different process.

The ORB must generate a request identifierefach outgoing request and be able to
associate the identifier with the rephhen it is returned. Fatdeferred synchronous
invocations, this allows the Transaction Service to correlate the reply with the request
to implement checked behavior. The requesnhidier is passed on sghronous
invocations to permithe same interface to be used.

The callbacks are invoked in line with the processing of requests and replies. This
means that the callbacks will be executed on the same thread that issued or processe
the actual request or reply. When the DIl is usedreceived_reply callback must

be invoked on the same thread that will subsequently process the response.

Requirements on the Transaction Service

Within a single process, the transaction context is part of the thread specific state.
Multiple threads executing on behalf of the same transaction will share the same
transaction context since a thread can only execute on behalf of a single transaction at
a time. Since the callbacks are defined as PIDL (procedure calls), they atedrom

the client’'s thread when sending and the server’s thread when receiving. This enables
the Transaction Service to locate the proper transaction context when sending and
associate theeceived transaction context with the thread that will process the
transactional operation. The callback interfaces may only raise standeaftiersand

may not make additional object invocations using the ORB.

10.5.3 Model Interoperability

The indirect context management programming model of thes@ciion Service is
designed to be compatible with the X/Open DTP standard, and implementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associated
with athread of contro. Some X/Open Transaction Managers support a single thread
of control in aproces, others allow multiple threads of control per process.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie 10-67

10

10-68

Model interoperability is possible because the Seartion Service design is
compatible with the X/Open DTP model of a Transaction Manager. X/Open associates
an implicit current transaction witkach thread of control.

This means that a single transaction management service can provinterfaces
defined for he Transaction Servi and also provide the TX and XA interfaces of
X/Open DTP. This is illustrated iRigure 10-6.

New Application (Objects) SQL Data Base

Transactional Transactional SQL DB
. Object Resource
Client Manager
_______________________________________ A
i | ORB [propagation |
""""" transactional operation XA
' v
Transaction Transaction
Service Manager

Figure 10-6 Model Interoperability Example

The transactional object making the SQL call, and the 8@$ource manager, are
both executincon the same thread of control. The transaction manager is able to
recognize the relationship between the transaction context of the abjddthe
transaction associated with the SQL DB.

The Curreni andCoordinatol interfaces of the Transaction Service implement two-
phase commit for the objects in the transaction. The Resournagdawill participate
in the two-phaseommitment process via the Xp@n XA interfac.

Transaction Servicez1.1 Nvember 1997 The Implementers’ Vie

10

10.6 The CosTransactiododule

#include <Corba.idl>

module CosTransactions {

/I DATATYPES

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

k

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

k

/I Structure definitions
struct otid_t {
long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;
3
struct Transldentity {
Coordinator coord;
Terminator term;
otid_t otid;
3
struct PropagationContext {
unsigned long timeout;
Transldentity current;
sequence <Transldentity> parents;
any implementation_specific_data;

b

/I Forward references for interfaces defined later in module
interface Current;

interface TransactionFactory;

interface Control,

interface Terminator;

interface Coordinator;

Transaction Servicerl.1 Nvember 1997 The CosTransactions Modi

)

10-69

10

10-70

interface RecoveryCoordinator;

interface Resource;

interface Synchronization;

interface SubtransactionAwareResource;
interface TransactionalObject;

/I Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

/I Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

exception SynchronizationUnavailable {};

/I Current transaction
interface Current : CORBA::Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);

Status get_status();

string get_transaction_name();

void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)
raises(InvalidControl);

Transaction Servicerl.1 Nvember 1997 The CosTransactions Modi

)

10

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

h

interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);

b

interface Terminator {
void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback();

|3
interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();
Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

Transaction Servicerl.1

Nvember 1997 The CosTransactions Modi

)

10-71

10

PropagationContext get_txcontext ()
raises(Unavailable);

h

interface RecoveryCoordinator {
Status replay_completion(in Resourcer)
raises(NotPrepared);

h

interface Resource {
Vote prepare()
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard
);
void commit()
raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void commit_one_phase()
raises(
HeuristicHazard
);
void forget();
k

interface TransactionalObject {

h

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

b

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

b

}; /1 End of CosTransactions Module

10-72 Transaction Servicerl.1 Nvember 1997 The CosTransactions Modi

10

10.6.1 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long Reqld;

interface Sender {
void sending_request(in Reqld id,
out CosTransactions::PropagationContext ctx);
void received_reply(in Reqld id,
in CosTransactions::PropagationContext ctx,
in CORBA::Environment env) ;

h

interface Receiver {
void received_request(in Reqld id,
in CosTransactions::PropagationContext ctx);
void sending_reply(in Reqld id,
out CosTransactions::PropagationContext ctx);

Transaction Servicerl.1 Nvember 1997 The CosTransactions Modi 10-73

10

Appendix A Relationship of Transaction Service to TP Standards

This appendix discusses thedationshipand possiblénteractions with the following
related standards:

® X/Open TX interface
® X/Open XAinterface
® OSI TP protocol
® LU 6.2 protocol
® ODMG standard

A.1 Support of X/Open TX Interface

10-74

A.1l.1 Requirements

The X/Open DTP mod? is now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-defined
interface to delineate transaci® to interact with a Transaction Manager. (The
Transaction Manager is the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence between the TX interfacmipvies and the Transaction Service
operations Current interface) are as follows:

Table 10-2TX mappings

TX inte rface Current interface
tx_open() no equivalent
tx_close() no equivalent
tx_begin() Current::begin()
tx_rollback() Current::rollback() or
Current::rollback_only()
tx_commit() Current::commit()
tx_set_commit_return() report_heuristics parameter of

Current::commit()

tx_set_transaction_control() no equivalent
(chained transactions not supported)

tx_set_transaction_timeout() Current::set_timeout()

3.See “Distributed Transaction Processing: The XA Specification, X/Open Doc@h@8t” X/Open
Company Ltd., ReadingJ.K., ISBN 1-85912-057-1.

Support of X/Open TX Interfe November 1997

10

Table 10-2TX mappings

TX interface Current interface
tx_info() - XID Coordinator::get_txcontext()
Current::get_name() 1
tx_info() - COMMIT_RETURN no equivalent
tx_info() - TRANSACTION_TIME_OUT no equivalent
tx_info() - TRANSACTION_STATE Current::get_status()

1.A printable string is output: not guaranteed to be the XID in all implementations.

tx_open

tx_open() provides a way to open, in a given execution environment, the Transaction
Manager and the set of Resource Managers that are linked to it. Such an opeegion
not exist in the Transaction Service; siprocessing may beriplicitly executed when
thefirst operaion of the Transaction Service is executed in the execution environment.

This processing is also related to a future Initializat@mvice.

tx_close

tx_close() provides away to close, in @iven execution environment, the
Transaction Manager and tlset of Resource Managers that are linked t8uth an
operationdoes not exist in the Transactiorr8ice.

tx_begin

tx_begin() corresponds * Current::begin () orta

TransactionFactory::create 0.

tx_rollback

tx_rollback() corresponds * Current::rollback(),

Terminator::rollback(), Current::rollback_only() or
Coordinator::rollback_only() . In TX, when a server caltx_rollback () , the

transaction may be rolled back or seta@lback only, as in the Transaction Service.

tx_commitand tx_set_commit_return

tx_commit() corresponds tCurrent::commit(. The Trarsaction Service
operationshave a parametereport_heuristics , corresponding to tl 2
commit_return parameter of TX.

Support of X/Open TX Interfa November 1997 10-75

10

tXx_set_transaction_control

tx_set_transaction_control() is used, in TX, to switch between unchained and
chained mode; this function is not meel in the Transaction Service environment
because it does not support chained transactions.

tx_set_transaction_timeout

tx_set_transaction_timeout() corresponds tiCurrent:set_timeout() or
TransactionFactory::create()

tx_info

tx_info() returns information related to the current transaction. In the Transaction
Service:

» the XID may be retrieved bCoordinator::get_txcontext() ;
« the XID (in effect) may beetrieved by Current:get_transaction_name() ;
* the transaction state may betrieved byCurrent::get_status() ;

» the commit return attribute isot needed because this attribute is given in the
commit() operation;
* the timeoutattribute cannot be obtained.

A.2 Support of X/Open Resource Managers

10-76

A.2.1 Requirements

X/Open DTP-compliant Resource Managers, simply calledpg€fOResource
Managers or RMs, are Resource Managers that can be involvedistributed
transaction by allowing their two-phasemmitprotocol to be controlled via the
X/Open XA Interface. Many RDBMS suppliers currently offer (or intend to offer)
X/Open Resource Managers. Many OODBMS'’ intend also to support that&Xace
(some have already implemented it).

The Transaction Service must therefore be able to intelittdddOpen Resource
Managers. This section will illustrate how an X/Opgeesource Manager may be used
by a Transaction Service-compliant system.

The architecture of Transaction Service, based on the same concepts as the X/Open
DTP Model, allows mapping of Transaction Service operations to and from XA
interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mappietgveen XA prmnitives

offered by an X/Open Resource Manager (called RM hereafter) andte¢hnfaces of

the Transaction Service and their operations in the different phases of a transaction and
during recovery.

Support of X/Open Resource Mana November 1997

10

The mappings are summarized in the following table:

Table 10-3XA mappings

X/Open Object Transaction Service

xa_start() Receiv er::received_r equest

ax_reg() Current::resume

xa_end() Receiver::s ending _re ply
Current::suspend

ax_unreg() no equivalent

xa_prepare() Resource::prepare

xa_commit() Resource::commit

xa_rollback() Resource::rollback

xa_recover() no equivalent

no equivalent RecoveryCoordinator::replay_completion()

xa_forget() Resource::forget()

In the X/Open DTP modaelll the interactions are made in the same X/Open thread of
control.

A.2.3 XID

An XID is the Transaction Identifier. As defined by X/Open, this XID is the only
information used byResource Managers to associate logged information to the
transaction, including objects’ before images, after images, lockgdramghction state.

The contents of an XID is defined by X/Open as follows:

#define XIDDATASIZE 128 /* size in bytes ¥/
#define MAXGTRIDSIZE 64

/* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64

/* maximum size in bytes of bqual */

struct xid_t {
long formatID;/* format identifier */
long gtrid_length;
/* value not to exceed 64 */
long bqual_length;
/* value not to exceed 64 */
char data [XIDDATASIZE];
3
typedef struct xid_t XID;

Figure 1-7 X/Open XID

Support of X/Open Resource Mana(November 1997 10-77

10

The XID uniquely and unambiguously identifiesligtributed transaction (information
contained in thgtrid part of the XD) and atransaction-branch, the work performed
by a node in the tresaction tree (information contained in bqual part of the XID).

To facilitate the use of distributed transaction in hetemeges environments, X/Open
has adopted the structure of the Transacti@niifier used in OSI TP buallows the
useof other Transaction Identifiers formats, which may be defined by the value of a
Format Identifier field contained in the XID structure. The OSI TP Transaction
Identifier contains informatioabout the initiator of the transaction and the superior in
the transaction tree; this information may be used, duriogvery, to contact these
entities and obtain the outcome of the transaction.

In the Trarsaction Service, tightly-couplezbncurrency is assumed (a Icheld by a
transaction may be accessed by any participant of the same transaction) and the
transaction branch part of the XID must not be given to RMs.

Interactions with an XA-compliant RM

Model

To model the relationship between the X#erfaceand the Transaction Service
operation, an X/Open Transaction Manager lsnmodeled this component is used
here as a way to descr the interactions and may be implemented in a different
manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:

« Static registration, in which the Transaction Service invotiiesRM wherver it
is itself involved in a new transaction.

» Dynamic registration, in which the RM notifies the Tsantion Service that it has
been requested to perform some warld request the XID of the current
transaction.

An RM gets involved in a trazaction vhen it has t@erform some new work for this
transaction. This happens in one of the followirtgations:
* A request carrying a transaction context jusd been received and the RM has to
perform work for the target object of this request;

« A method performing a request that is carrying a transaction context is resumed
(by aCurrent::resume() operation).

An object may receive several requests carrying a transaction context for the same
transaction. An RM may also perform work for several objects in the same transaction.
Thus an RM may be involved several times in the same transaction; the “resudne”
the “join” concepts of XA may be used notify the RM of any multiple involvement.
When an RM has to get involved in a tsaction, it must obtain the correspling

XID from the Transaction Service through xa_start() primitive or by a return
parameter of aax_reg() primitive. This XID istransmitted to the RM as a parameter

to xa_start() orax_reg() and is used by the RM to relate any work performed or
any lock obtained to the transaction.

10-78 Support of X/Open Resource Mana November 1997

10

If the Transaction Service is called by ax_reg() while it is not aware of any
transaction, it returns a null XID to the RM. The RM is then free to start a local
transaction of its own, and no Transaction Service transaction will be accepted until
the RM issues aax_unreg()

Refer to X/Open documents for more information about propagation of a transaction to
an RM.

First phase of Commitment

When thefirst phase otommitment is started, thEransaction Service issues an
xa_prepare() primitive andprocess its results to determiite decision.

Second Phase of Commitment

When the second phase of aoitment is started, the Transaction Service issues an
xa_commit() primitive and process itesults to determine the heuristic situation.

One-phase commitment

When the Trasaction Service wants to perform a one-pl@samitment, it issues an
xa_commit() primitive and process itesults to determine the heuristic situation.

In the XA interface, there is no specific primitive fmme-phaseommitment: an RM
must consider axa_commit() without precedinixa prepare() as a request to
perform a one-phasgommitment.

Rollback

When a rollback has to be performed, the Transaction Service issues an
xa_rollback() primitive andprocess its results to determine the heuristic situation.

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manager
which issues axa_recover() ; the RM then gives back &t of all XIDs that are
either in the Ready state or have been heuristically completed.

In the Trarsaction Service recovery is performed bresourc that issues a
replay_completion operation to €oordinatol (see SubsectiorTransaction
Completion after Failu" in “Transaction Service Protoc” on page 10-4).

Failure of an Operation

Any failure of an operation typically leads to a rollback of thedaation especially if

it is not possible to determine whether the operation kas performed or not.
However, in the decidedommit state, thcommit operation must be retried until the
reply has been received (unless a hsicrhazard condition is detected).

Support of X/Open Resource Mana(November 1997 10-79

10

Failure of an RM

If an RM fails, the Transaction Service detecting the failure will issue an xa_recover().
The Transaction Service will then get a list of XIDs of transactions for which the RM
is in the ready state and transactions that have been heuristically completed.

The Transaction Service will then:
* Call xa_rollback() for all transactions that knows to beneither in the
prepared state nor in the decided cairstate.

e Call xa_commit() for all transactions that knows to be irthe decideccommit
state.

» Wait for the decisions commit or rollback for the other.

Failure of Transaction Service

Upon warm restart of the Transaction Senaoel retrieval of the states of transactions
needing recovery from stable storage, the Transaction Service wxa_recover()

to get thdist of transactions for which the RM needs recovery fadere of anRM,
here above).

A.3 Interoperation with Transactional Protocols

A.3.1 Transactional Protocols

A CORBA application may sometimeged to interoperate with one or more
applications using one of the de-facto standard transactional protocol: G3IdTP
SNA LU 6.2. Inthis case, the Transaction Service must be able to import or export
transactions using one of these protocols.

Export is the ability to relate a transaction of the Transa8®@mice to a transaction

of a foreign transactional protocol. Importing means relating a Transaction Service
transaction to a transaction started on a remote application and propagated via the
foreign transactional protocol.

Since the model used by the Transaction Service isasitoithe model of OSI TAnd

the X/Open DTP model, the interactions with OSI TP are straightforward. Since OSI
TP is a compatible superset of SNA LI26a mapping to SNA communications is
easily accomplished.

To interoperate, a mapping should be defined for the two-piuamenit, rollback, and
recovery mechanisms, and for the transacti@ntifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.2 OSI TP Interopeability

OSI TP [ISO92] is the trsactional protocol defined by ISO. It has been selected by
X/Open to allow the distribution of transactions by one of the communication
interfaces: remote proceducall®, client-server or peer-to-peer (CPI-C Level-2 API
[CIW93)).

10-80 Interoperation with Transactional Protoct November 1997

10

The Transaction Service supports only unchained transactions. The use of dialogues
using the Chained Transactions functional unit is possible omgsifictive rules are
defined. These rules are not described in this document.

OSI TP Transaction Identifiers

In OSI TP, loosely-coupled transactions are supported and ewdgyof the

transaction tree possesses a transaction branch identifier which is composed of the
transaction identifier (or atomic action identifiemd a branch iehtifier (the branch
identifier being null for the root node of the hsaction tree). Both the transaction
identifier and the branch ideifier contains an AE-Title (Application Entity Title) and

a suffix that make itinique within acertainscope.

The format of the statard X/Open XID is compatible with th@SI TP idenfiers, the
gtrid corresponding to the atomic action identifeerd thebqual corresponding to
the branch identifier.

IncomingOSI TP Conmunications (Imported Transactions)

The Transaction Service is a subordinate in an OSI TP transaction tree and interacts
with its superior by regular PDUs as defined by the OSI TP protocolTfdmsaction
Service introduces the transaction identifier receivetherOSI TP dialogue using the
TransactionFactory::recreate operation.

The Transaction Service maps the OSI TP mament, rolltack and recovery
procedures to the Transaction Serwoenmitmentprocedure aollows:

* The Transaction Service, upoeception of an OSI TP Prepare message, will
enter the firsphase otcommitmentprocedure.

* When it enters the prepared state for the transaction, the Transaction Service will
trigger the sending of an OSI TP Ready message to its superior. (It may trigger a
Recover (Ready) messag#dennormal communications are broken with the
superior).

» The Transaction Service, upoaception of an OSI TP Commit message, enters
the second phase obmmitmentprocedure. (It may receive a Recover (Qoit)
when normal communications are broken with the superior.)

» The Transaction Service, upon reception of an OSI TP Rollback me$sags/
be a Recover (Umown) whennormal communications at@oken with the
superior or any other rollbackitiating condition) will enter its rollback
procedure (unless a rollback is already in progress).

4.See “Distributed Transaction Processing: TRRPC Secification, X/Open Document P305.” X/Open
Company Ltd., Readingl.K..

5.See “Distributed Transaction Processing: The XATMI Specifica¥é@pen Document P306.”
X/Open Company Ltd., Reading, U.K..

Interoperation with Transactional Protoct November 1997 10-81

10

10-82

* The Transaction Service, upon reception ofl#se rollback reply, will trigger the
sending of a Rollback Responsef@irm message tis superior.

Outgoing OSI TP Gmmunications (Exported Transactions)

The Transaction Service behaves asesor in an OSI TP transaction traad
interacts with its subordinates by regular PDUs as defined by the OSI TP protocol.

The Transaction Service will map the OSI TP coitmentprocedure as follows:

» The Transaction Service, during tfiest phase otommitmentprocedure will
invoke an OSI TP Prepare message tataibubordinates.

» Upon reception of an OSI TP Ready message, the Transaction Service will
process this message as a successful regprepar«:

» The Transaction Service, upon entering the second phase of thetomnt
procedure will send an OSI TP Commit message (it may be a Recovem{@om
when normal communications are broken with the subordinata) to
subordinates.

» The Transaction Service, upon reception of an OSI TP Rollback me$sags/
be any other rollback-initiating condition) will enter its rollback procedure (unless
a rollback is already in progress).

» The Transaction Service, upoaception of the last Roldfltk Response/f@hfirm
message from itsubordinates, will process this message as a reply to a rcllback
operation and determine the heuristic situation.

A.3.3 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88D]) is a traactional protocol defined by IBM. It is
widely used for transaction distribution. The standard interface to acce2LU
communications is CPI-C (Commdtrogramming Interface for Communications)
defined by IBM in the context of SAA [RIC93] andcurrently being evolved by the
CPI-C Implementers' Workshop to become CPI-C level 2, a madearface usable
for LU 6.2 and OSI TP communications [CIW93].

LU 6.2 supports only chained transactions but, at a given node, a transastinteid

only when resources have been involved in thestation. LU 6.Zan be used for a
portion of an “unchained” transaction tree if the Bl2 cawversations are endexdter

each transaction by any node that has both LU 6.2 conversations and dialogues of an
unchained transaction.

LU 6.2 Transaction Identifiers

SNA LU 6.2 also supports loosely-coupled transactions and uses a sfuroiidt for
transaction identifiers: the Logical Unit &fork (LUWID) corresponds to the OSI
Transaction Identifier. The LUWID is composed of:

e The Fully Qualified Logical Unit Name, which @éomposed of up to 17 bytes, is
unique in an SNA network or a set of interconnected 3K#vorks.

* An instance number which is unique at the LU that create theaitéon.

Interoperation with Transactional Protoct November 1997

10

* The sequence number that is incremented whenever the transac@mnstted.

The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a string
of 1 to 8 bytes which are uniquathin the context of the LU having established the
conversation and is meaningful when combined with the Fully Qualified LU Name of
this Logical Unit.

Incoming LU 6.2 Communications

The LU 6.2 two-phaseommit protocol is different from the OSI TP protocol: the
system sending a Prepare message has to perform lagudnig responsible for
recovery. LU 6.2 does also support features list-agent opimization,read-only and
allows any node in the transactitree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction treetenadts

with its superior using SNA requesiad responses as defined by the LU 6.2 protocol.
The Transactioservicemaps he LUWID corresponding to the incoming conversation
to an OMGotid_t and issueTransactionFactory recreate to import the
transaction.

The Transaction Service maps the LU 6.2 oatment, rollack and recovery
procedures to the Transaction Serwoenmitmentprocedure a$ollows:

» The Transaction Servicepan reception of an LU 6.2 Prepare message will enter
thefirst phase ocommitmentprocedure.

e The Transaction Service, upon entering the prepsiiae forthe transaction, the
Transaction Service will trigger the sending of a Request Commit message to is
superior.

» The Transaction Service, upoaception of an LU 6.2 Committed message (it
may be a Compare States (Guitted) whennormal communications at@oken
with the superior) will enter the second phaseahmitmentprocedure.

» The Transaction Service, upteaving the decided commit state, will trigger the
sending of a Forget message to is superior (it may be a Resenhwimeal
communications are broken with the supgr

Due to the two-phase canit difference, the Transactiore&ice will never send the
equivalent of the Recover(Ready) unless prompted by the superior.

The last-agent and read-only features may alssulpported by the Transaction
Service.
Outgoing LU 6.2 Communications

The Transaction Service has to log when the Prepare message is sent and, in case of
communication failure orestart of thelransaction Service, a recovery is needed.

Interoperation with Transactional Protoct November 1997 10-83

10

A.4 ODMG Model

10-84

ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Management Group)
describing portable interface to access Obatiabase Management Systems
(ODBMS).

Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transaction
Service.

The ODMG model defines optional transactions and supports the nested transaction
concept. The ODMG model does not cover the integration of ODBMS with an external
Transactio ‘Servic, allowingother resources antbmmunicationso be involvecin a
transaction. No two-phasmmmit orrecovery protocol is described.

A transaction object must be creatd@the transactional operatioase:

e Begin (or start) to begin a transaction (or a subtransaction).

» Commit torequest commitment of a transaction.

» Abort to rollback a transaction.

» Checkpoint to commit the transaction txeep the locks. This feature is not
supported by the current version of the Transaction Service.

» abort_to_top_level to request rollback of a nested transafetioity. The
Transaction Service does mditectly support this feature bdbes provide means
to perform this functionality by resuming the context of the top-level transaction
and then requesting rollback.

If the transaction object is destroyed, the transaction is roled. b

Integration ofODMG ODBMSs with the Traaction Service

Since ODMG-93 does not defiramy way to integrate an (GEMS into an exsting
transaction, the integration is difficult unless the BMI5 suppors the XA interface, in
which case the section on XA-cpirant RM is applicable.

In the future, it is anticipated that ™S will implement the Transaction Service-
defined interfaces and be considered as a recoverable server.

A possibility is touse, at a root node, an ODBMS alast resource and, after all
subordinates are prepared, to request a one-phaseitroemnt tothe ODBMS. If the
outcome for the ODBMS isommit, the transactiowill be committed, if it is rollack,
the transaction will be rolledack. Themechanism may work if it is possible to
determine, after a crash, whether the ODB&t®mitted orrolled back; this may be
done at application level.

ODMG Mode November 1997

10

Appendix B Transaction Service Glossary

B.1 TransactionTeris

2PC:

Abort :

Active :

Atomicity :

Begin:

Commit :

Commit co ordinator :

Commit participan t:

Committed :

Completion :

SeeTwo-phase commit.

Se«Rollback

The state of a transaction when processing is in progretcompletiol of the
transaction has not yebmmenced.

A transaction property that ensures that if work is interrupted by failure, any
partially completed results will bendone. A transaction whose work completes
is said to commit. A transaction whosenk is completely undone is said to
rollback (abort).

An operation on the Transaction Service which establishes tiw Impundary
of a transaction.

Commit hagwo definitions as follows:
An operation in theCurrent andTerminato interfaces that a program uses to
request that the current transaction terminate normally and that the effects of

that transaction be made permanent.

An operation in theResourc interface which causes the effects a transaction to
be made permanent.

In a two-phase comit protocol, the program that collects the vote from the
participants.

In a two-phase comit protocol, the program that returns a vote on the
completion of a transaction.

The property of a transaction or a transactional objelo¢n ithas successfully
performed the commitrotocol. See alsin-doub, active, anc rolled bacl.

The processing required (either commi or rollback) to obtain the durable
outcome of a transaction.

TransactionTeris November 1997 10-85

10

Coordinator :

Consistency :

Decided commit state

Decided rollback state

Direct ¢ ontext
management:

Durability :

Execution environment

Flat Transaction :

Forgotten "state"

Heuristic Commit or
Rollback :

Indirect context
management :

10-86

A coordinator involvesResourc objects in a transaction when they are
registered. A coordinator is responsible for driving the two-pleasemit
protocol. See alsCommit coordinatc andCommit participar.t

A property of a transaction that ensures that the transaction’s actions, taken as a
group, do noviolate any of the integrity constraints associated with the state of
its associated objects. This requires that the application program be
implemented correctly: the Transaction Service provides the functionality to
support application data consistency.

A root coordinator enters the decided eninstate when ihas written a log-
commitrecord; a subordinate coordinator or resource is in the decimtadit
state vhen it has received the camt instruction from its superior; in the latter
case, a log-comit record may be written but this is not essential.

A coordinator or resource enters the decided rollback stiaém w decides to
rollback the transaction or has received a signal to do so.

An application manipulates ttControl object and the other objects associated
with the transactionSee alscindirect context ranagement.

A transaction property that ensures the results of a successfully completed
transaction will never be lost, except in the event of catastrophe. It ésadign
implemented by a combination of persistent storage and a logging service that
provides a backup copy of permanent changes.

An implementation-dependefdactor that may determine the outcome of certain
operations on the Transaction Service. Typically the execution environment is
the scope within which shared state is agad.

A transaction that has no subtransactions—and that cannot have subtransactions.

This is not really a transacticstate at allbecause there is no memory of the
transaction: it has either completed or rolled backalhdecords on permanent
storage have been deleted.

To unilaterally make the commit or rollback decision akin-doub
transactionsvhenthe coordinator fails or contact with the coordinator fails.

An application uses thCurreni object, provided by the Transaction Service, to
associate the transactioargext with the application thread of contr@ee also
Direct context mangement.

TransactionTerrs November 1997

10

In-doubt :

Interposition :

Isolation :

Lock service :

Log-ready record (and
contents):

Log-commit record (and
contents):

Log-heuristic record

Log-damage record :

Log service:

Nested transaction :

Participant :

The state of a transaction if it is controlled by a transaction manager that can not
be contacted, so the camt decision is in doubt. See alactive, committe;,
rolled bacl.

Adding a sequence of one or msubordinate coordinato between oot
coordinatol and its participants.

A transaction property that allows concurrent execution, but the results will be
the same as if executiomas serialized. Isoladbn ensures that concurrently
executing transactions cannot observe inconsistencies in shared data.

Called the Concurrency ControlSiee, it isan Object Service used by
resources to control access to shared objects by concurrently executing methods.

for an intermediate coordinator a log-ready record containsifidation of the
(superior) coordinator and Resourc objects (including subordinate
coordinators) registered with the coordinator which refVoteCommi (i.e., it
excludes registered objects whiapliedVoteReadOnl); for aResourc object
a log-ready record includes idéitation of the coordinator with which it is
registered.

A log-commit record contains identification of all registerResourc objects
which repliedvVoteCommi.

This contains a record of a heuristic decision eiHeuristicCommit or
HeuristicRollback

This contains a record of heuristic damage i.e. where it is known that a heuristic
decision conflicted with thdecided outcon (HeuristicMixed) or where

there is a risk that a heuristic decision conflicted with the decided outcome
(HeuristicHazard).

A service used by resource managers for recording recovery information and the
Transaction Service for recording transaction state durably.

A transaction that either has subtransaction or is a subtransaction on some other
transaction.

SeeCommit participant.

TransactionTeris November 1997 10-87

10

Persistent sto rage: Generally speaking, a synonym iStable storag. In the context of the OMA,
the Persistent Object Service (POS) provides an object representation of stable
storage.

Prepared : The state that a transaction is ilmem phase one of a two-phase caitrhas
completed.

Presumed rollback : An optimizaton of the two-phase commit protocol that results in more efficient

performance as throot coordinato does not need to log anything before the
commitdecision and thParticipants (i.e. Resourc objects) do not need to log
anything before they prepare. 8alledbecause, atestart, if no record of the
transaction is found, it is safe to assume the transaction rolled back.

Propagation : A function of the Transaction Service that allows Transaction conte of a
client to be associated with a transactional operation on a server object. The
Transaction Serviceupports botlimplicit and explicitpropagation of
transaction context.

Recoverable Object : An object whose data is affected by auitting orrolling back a transaction.

Recoverable Server : A transactional object with recoveraldtate that registersResourc (not
necessarily itself) with Coordinatoi to participate in transaction complet.on

Recovery Service : A service used by resource managersréstoringthe state of objects to a prior
state of consistency.

Resource : An object in the Transaction Service that is registered for involvement in two-
phasecommit—2PC. Corresponds to Resource Manager.

Resource Manager : An X/Open term for &omponent which manages timegrity of the state of a
set of related resources.

Rollback : Rollback (alsoknown asAbori) has two definitions, a®llows:
An operation in theCurrent anc Terminato interfaces used to indicate that the
current transaction has terminated abnormally issdffects shold be

discarded.

An operation in theResourc interface which causes all stateanges in the
transaction to be undone.

10-88 TransactionTerrs November 1997

10

Rolled Back:

Root Coordinator:

Security Service :

Stable storage :

Sub-coordinator :

Subordinate Coordinator

Synchronization :

Thread:

Thread Service :

TP monitor :

Transaction :

Transactional client

Transaction Context

Transactional operation

The property of a transaction or a transactional objden ithas discarded all
changes made in the current transaction. Seein-doub, active, and
committed

The first cardinator in a sequence of coordinators where there is interposition.
The coordinator associated with the transaction originator.

An object service which provides identifications of users (authentication),
controls access to resources (authorization), and provides auditing of resource
access.

Storage not likely to be damaged as the result of node failure.

SeeSubordinate Coordinator.

A coordinator subordinate to tiroot coordinato wheninterpositior has been
performed. A subordinate coordinator appears Resourc object to its
superior. Alsoknown as eSub-coordinatc.r

An object in the Transaction Servieghich controls theéransfer of persistent
object state data so it can be made durable by itciassdresource.

The entity that is currently in control of the processor.

A service which enables methods to be executedwoently by the same
process. Where two or more methods can execute concurrently each method is
associated with its own thread of control.

A system component that accepts input work requests and associates resources
with the programs that adpon these requests to provideua-time
environment for program execution.

A collection of operations on the physical andtedxt application state.

An arbitrary program thatan invoke operations of many transactional objects
in a single transaction. Not necessarily Transaction originator.

The transaction information associated with a specificathr&eePropagatior.
An operation on an object that participates in the propagation of the current

transaction.

TransactionTeris November 1997 10-89

10

Transaction originator

Transaction Manager :

Transactional object

Transactional server:

Transaction Service :

TSPortability :

Two-Phase commit :

10-90

An arbitrary program—typically, a transactional client, but not necessarily an
object—that begins a transaction.

A system component thanplements therotocol engine for 2-phasmmmit
protocol. See alsTransaction Service

An object whose operations are affected by beingked within the scope of a
transaction.

A collection of one or more objects whose behavior is affected by the
transaction, but has no recoverable statgsodwn.

An Object Service that implements the protocols required to guarantee the
ACID (Atomicity, Consistency, Isolation, and Durktly) properties of
transactions. See al{Transaction Manager

An interface of the Trasaction Service which allows it to track transactional
operationsand propagate transaction context to another Transaction Service
implementation.

A transaction manager protocol for ensuring thatliinges to recoverable
resources occur atomically and furthermore, the failure of any resource to
complete will causell other resource to undo aiges. Also calle@PC.

TransactionTerrs November 1997

	Transaction Service Specification
	Contents
	10.1 Service Description
	10.1.1 Overview of Transactions
	10.1.2 Transactional Applications
	10.1.3 Definitions
	Figure�10�1 Application Including Basic Elements
	Transactional Client
	Transactional Object
	Recoverable Objects and Resource Objects
	Transactional Server
	Recoverable Server

	10.1.4 Transaction Service Functionality
	Transaction Models
	Flat Transactions
	Nested Transactions

	Transaction Termination
	Transaction Integrity
	Transaction Context
	Synchronization

	10.1.5 Principles of Function, Design, and Perform...
	Functional Requirements
	Design Requirements
	Performance Requirements

	10.2 Service Architecture
	Figure�10�2 Major Components and Interfaces of the...
	10.2.1 Typical Usage
	10.2.2 Transaction Context
	10.2.3 Context Management
	10.2.4 Datatypes
	10.2.5 Structures
	10.2.6 Exceptions
	Standard Exceptions
	Heuristic Exceptions
	HeuristicRollback Exception
	HeuristicCommit Exception
	HeuristicMixed Exception
	HeuristicHazard Exception

	WRONG_TRANSACTION Exception
	Other Exceptions

	10.3 Transaction Service Interfaces
	10.3.1 Current Interface
	begin
	commit
	rollback
	rollback_only
	get_status
	get_transaction_name
	set_timeout
	get_control
	suspend
	resume

	10.3.2 TransactionFactory Interface
	create
	If the parameter has a nonzero value n, then the n...
	recreate

	10.3.3 Control Interface
	get_terminator
	get_coordinator

	10.3.4 Terminator Interface
	commit
	rollback

	10.3.5 Coordinator Interface
	get_status
	get_parent_status
	get_top_level_status
	is_same_transaction
	is_ancestor_transaction
	is_descendant_transaction
	is_related_transaction
	is_top_level_transaction
	hash_transaction
	hash_top_level_tran
	register_resource
	register_synchronization
	register_subtran_aware
	rollback_only
	get_transaction_name
	create_subtransaction
	get_txcontext

	10.3.6 Recovery Coordinator Interface
	replay_completion

	10.3.7 Resource Interface
	prepare
	rollback
	commit
	commit_one_phase
	forget

	10.3.8 Synchronization Interface
	before_completion
	after_completion

	10.3.9 Subtransaction Aware Resource Interface
	commit_subtransaction
	rollback_subtransaction

	10.3.10 TransactionalObject Interface

	10.4 The User’s View
	10.4.1 Application Programming Models
	Direct Context Management: Explicit Propagation
	Indirect Context Management: Implicit Propagation
	Indirect Context Management: Explicit Propagation
	Direct Context Management: Implicit Propagation

	10.4.2 Interfaces
	Table�10�1 Use of Transaction Service Functionalit...

	10.4.3 Checked Transaction Behavior
	10.4.4 X/Open Checked Transactions
	Reply Check
	Commit Check
	1. The commit request for the transaction is being...
	2. The client issuing commit has received replies ...

	Resume Check

	10.4.5 Implementing a Transactional Client: Heuris...
	10.4.6 Implementing a Recoverable Server
	Recoverable Object
	Resource Object
	Reliable Servers

	10.4.7 Application Portability
	Flat Transactions
	X/Open Checked Transactions

	10.4.8 Distributed Transactions
	10.4.9 Applications Using Both Checked and Uncheck...
	10.4.10 Examples
	A Transaction Originator: Indirect and Implicit
	Transaction Originator: Direct and Explicit
	Example of a Recoverable Server
	Example of a Transactional Object

	10.4.11 Model Interoperability
	Importing Transactions
	Figure�10�3 X/Open Client
	Figure�10�4 X/Open Server

	Exporting Transactions
	Figure�10�5 Sample Transaction Managed by the Tran...

	Programming Rules

	10.4.12 Failure Models
	Transaction Originator
	Local Failure
	External Failure

	Transactional Server
	Local Failure
	External Failure

	Recoverable Server

	10.5 The Implementers’ View
	1. “Transaction Service Protocols” on page�10�49 d...
	2. “ORB/TS Implementation Considerations” on page�...
	3. “Model Interoperability” on page�10�67 describe...
	10.5.1 Transaction Service Protocols
	General Principles
	1. The protocol defined by this specification is a...
	2. Resource objects—including subordinate coordina...
	3. The prepare operation is issued at most once to...
	4. Participants must remember heuristic decisions ...
	5. A coordinator knows which Resource objects are ...
	6. A participant should be able to request the out...
	7. Participants should be able to report the compl...

	Normal Transaction Completion
	Coordinator Role
	One Phase Commit
	Subtransactions
	Recoverable Server Role
	Synchronization Registration
	Top-Level Registration
	Subtransaction Registration
	Top Level Synchronization
	Top-Level Completion
	1. Returning VoteCommit to prepare
	2. Returning VoteRollback to prepare
	3. Returning VoteReadOnly to prepare

	Subtransaction Completion
	Subordinate Coordinator Role
	Synchronization
	Registration
	Subtransaction Registration
	Top-level Completion
	Subtransaction Completion
	Subordinate Coordinator
	Subtransactions

	Failures and Recovery
	Failure Processing
	Local Failure
	External Failure

	Transaction Completion after Failure
	Resources
	Heuristic Reporting
	Coordinator Role
	Synchronizations
	Subtransactions
	Recoverable Server role
	If No Heuristic Decision is Made
	When a Heuristic Decision is Made
	Subordinate Coordinator Role

	10.5.2 ORB/TS Implementation Considerations
	Transaction Propagation
	Interposition
	Subordinate Coordinator Synchronization
	Subordinate Coordinator Registration

	Transaction Service Interoperation
	Structure of the Propagation Context
	otid_t
	TransIdentity
	coord
	term
	otid
	timeout
	<TransIdentity> parents
	implementation_specific_data
	Appearance of the Propagation Context in Messages

	Transaction Service Portability
	1. An additional ORB interface that allows the Tra...
	2. A collection of Transaction Service operations ...
	Identification of the Transaction Service to the O...
	NotAvailable
	AlreadyIdentified
	identify_sender
	identify_receiver
	The Transaction Service Callbacks
	ReqId
	Sender::sending_request
	Sender::received_reply
	Receiver::received_request
	Receiver::sending_reply
	Behavior of the Callback Interfaces
	Requirements on the ORB
	Requirements on the Transaction Service

	10.5.3 Model Interoperability
	Figure�10�6 Model Interoperability Example

	10.6 The CosTransactions Module
	10.6.1 The CosTSPortability Module

	Appendix A Relationship of Transaction Service to ...
	A.1 Support of X/Open TX Interface
	A.1.1 Requirements
	A.1.2 TX Mappings
	Table 10�2 TX mappings
	tx_open
	tx_close
	tx_begin
	tx_rollback
	tx_commit and tx_set_commit_return
	tx_set_transaction_control
	tx_set_transaction_timeout
	tx_info

	A.2 Support of X/Open Resource Managers
	A.2.1 Requirements
	A.2.2 XA Mappings
	Table 10�3 XA mappings

	A.2.3 XID
	Figure 1�7 X/Open XID
	Model
	Propagation of a Transaction to an RM
	First phase of Commitment
	Second Phase of Commitment
	One-phase commitment
	Rollback
	Recovery
	Failure of an Operation
	Failure of an RM
	Failure of Transaction Service

	A.3 Interoperation with Transactional Protocols
	A.3.1 Transactional Protocols
	A.3.2 OSI TP Interoperability
	OSI TP Transaction Identifiers
	Incoming OSI TP Communications (Imported Transacti...
	Outgoing OSI TP Communications (Exported Transacti...

	A.3.3 SNA LU 6.2 Interoperability
	LU 6.2 Transaction Identifiers
	Incoming LU 6.2 Communications
	Outgoing LU 6.2 Communications
	ODMG Standard

	A.4 ODMG Model
	Integration of ODMG ODBMSs with the Transaction Se...

	Appendix B Transaction Service Glossary
	B.1 TransactionTerms

