
Transaction Service Specification 10
er,

s.
This chapter provides the following information about the Transaction Service:

• A description of the service, which explains the functional, design, and
performance requirements that are satisfied by this specification.

• An overview of the Transaction Service that introduces the concepts used
throughout this chapter.

• A description of the Transaction Service’s architecture and a detailed definition of
the Transaction Service, including definitions of its interfaces and operations.

• A user’s view of the Transaction Service as seen by the application programm
including client and object implementer.

• An implementer’s view of the Transaction Service, which will interest
Transaction Service and ORB providers.

This chapter also contains an appendix that explains the relationship between the
Transaction Service and TP standards, and an appendix that contains transaction term

Contents

This chapter contains the following sections.

Section Title Page

“Service Description” 10-2

“Service Architecture” 10-12

“Transaction Service Interfaces” 10-17

“The User’s View” 10-34

“The Implementers’ View” 10-48
 Transaction Service: v1.1 November 1997 10-1

10

 the

ed

re

ns.

ey

or

 to
it all

se
10.1 Service Description

The concept of transactions is an important programming paradigm for simplifying
construction of reliable and available applications, especially those that require
concurrent access to shared data. The transaction concept was first deployed in
commercial operational applications where it was used to protect data in centraliz
databases. More recently, the transaction concept has been extended to the broader
context of distributed computation. Today it is widely accepted that transactions a
the key to constructing reliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developing reliable distributed applications, and the object
paradigm, key to productivity and quality in application development, together to
address the business problems of commercial transaction processing.

10.1.1 Overview of Transactions

The Transaction Service supports the concept of a transaction. A transaction is a unit
of work that has the following (ACID) characteristics:

• A transaction is atomic; if interrupted by failure, all effects are undone (rolled
back).

• A transaction produces consistent results; the effects of a transaction preserve
invariant properties.

• A transaction is isolated; its intermediate states are not visible to other transactio
Transactions appear to execute serially, even if they are performed concurrently.

• A transaction is durable; the effects of a completed transaction are persistent; th
are never lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed
rolled back. When a transaction is committed, all changes made by the associated
requests are made permanent. When a transaction is rolled back, all changes made by
the associated requests are undone.

The Transaction Service defines interfaces that allow multiple, distributed objects
cooperate to provide atomicity. These interfaces enable the objects to either comm
changes together or to rollback all changes together, even in the presence of
(noncatastrophic) failure. No requirements are placed on the objects other than tho
defined by the Transaction Service interfaces.

“ The CosTransactions Module” 10-69

Appendix A “Relationship of Transaction Service to TP
Standards”

10-74

Appendix B “Transaction Service Glossary” 10-85

Section Title Page
10-2 Transaction Service: v1.1 November 1997 Service Description

10

 of a

e of

re

e

s the
ction
he

xt
Transaction semantics can be defined as part of any object that provides ACID
properties. Examples are ODBMSs and persistent objects. The value of a separate
transaction service is that it allows:

• Transactions to include multiple, separately defined, ACID objects.

• The possibility of transactions which include objects and resources from the non-
object world.

10.1.2 Transactional Applications

The Transaction Service provides transaction synchronization across the elements
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scop
a transaction is defined by a transaction context that is shared by the participating
objects. The Transaction Service places no constraints on the number of objects
involved, the topology of the application or the way in which the application is
distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an
object defined by the Transaction Service), which establishes a transaction context
associated with the client thread. The client then issues requests. These requests a
implicitly associated with the client’s transaction; they share the client’s transaction
context. Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a consequence of th
client’s requests would then be committed; otherwise, the changes would be rolled
back.

In this scenario, the transaction context is transmitted implicitly to the objects, without
direct client intervention—See “Application Programming Models” on page 10-34.
The Transaction Service also supports scenarios where the client directly control
propagation of the transaction context. For example, a client can pass the transa
context to an object as an explicit parameter in a request. An implementation of t
Transaction Service might limit the client’s ability to explicitly propagate the
transaction context, in order to guarantee transaction integrity (See “Application
Programming Models” on page 10-34, Subsection "Direct Context Management:
Explicit Propagation").

The Transaction Service does not require that all requests be performed within the
scope of a transaction. A request issued outside the scope of a transaction has no
associated transaction context. It is up to each object to determine its behavior when
invoked outside the scope of a transaction; an object that requires a transaction conte
can raise a standard exception.

10.1.3 Definitions

Applications supported by the Transaction Service consist of the following entities:

• Transactional Client (TC)

• Transactional Objects (TO)
 Transaction Service: v1.1 November 1997 Service Description 10-3

10

nts.

• Recoverable Objects

• Transactional Servers

• Recoverable Servers

The following figure shows a simple application which includes these basic eleme

Figure 10-1 Application Including Basic Elements

Transactional Client

A transactional client is an arbitrary program that can invoke operations of many
transactional objects in a single transaction.

The program that begins a transaction is called the transaction originator.

Transactional Object

We use the term transactional object to refer to an object whose behavior is affected
by being invoked within the scope of a transaction. A transactional object typically
contains or indirectly refers to persistent data that can be modified by requests.

transaction completion,
may force rollbackmay force rollback

transaction completion

Transaction Service

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Distributed

transaction
context

Client/Server Application

Participates in

Resource

Recoverable
Server

Transactional
Server

Transactional
Client

Transactional
Operation

Transactional
Operation

begin or
 end

not involved in
transaction completion,

registers resource in

transaction

Transactional
Object Object

Recoverable
10-4 Transaction Service: v1.1 November 1997 Service Description

10

ior,

ests

s

es
done

ut not
est.

it
bject

n be

lient

s so

ed on
The Transaction Service does not require that all requests have transactional behav
even when issued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requ
but not others.

We use the term nontransactional object to refer to an object none of whose operation
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the chang
produced by the request might not survive a failure and the changes will not be un
if the transaction associated with the request is rolled back.

An object can also choose to support transactional behavior for some requests b
others. This choice can be exercised by both the client and the server of the requ

The Transaction Service permits an interface to have both transactional and
nontransactional implementations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional behavior can be
a quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:

• Transactional Server

• Recoverable Server

Recoverable Objects and Resource Objects

To implement transactional behavior, an object must participate in certain protocols
defined by the Transaction Service. These protocols are used to ensure that all
participants in the transaction agree on the outcome (commit or rollback) and to
recover from failures.

To be more precise, an object is required to participate in these protocols only if
directly manages data whose state is subject to change within a transaction. An o
whose data is affected by committing or rolling back a transaction is called a
recoverable object.

A recoverable object is by definition a transactional object. However, an object ca
transactional but not recoverable by implementing its state using some other
(recoverable) object. A client is concerned only that an object is transactional; a c
cannot tell whether a transactional object is or is not a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It doe
by registering an object called a Resource with the Transaction Service. The
Transaction Service drives the commit protocol by issuing requests to the resources
registered for a transaction.

A recoverable object typically involves itself in a transaction because it is required to
retain in stable storage certain information at critical times in its processing. When a
recoverable object restarts after a failure, it participates in a recovery protocol bas
the contents (or lack of contents) of its stable storage.
 Transaction Service: v1.1 November 1997 Service Description 10-5

10

cted

le.

uired
A transaction can be used to coordinate non-durable activities which do not require
permanent changes to storage.

Transactional Server

A transactional server is a collection of one or more objects whose behavior is affe
by the transaction, but which have no recoverable states of their own. Instead, it
implements transactional changes using other recoverable objects. A transactional
server does not participate in the completion of the transaction, but it can force the
transaction to be rolled back.

Recoverable Server

A recoverable server is a collection of objects, at least one of which is recoverab

A recoverable server participates in the protocols by registering one or more Resource
objects with the Transaction Service. The Transaction Service drives the commit
protocol by issuing requests to the resources registered for a transaction.

10.1.4 Transaction Service Functionality

The Transaction Service provides operations to:

• Control the scope and duration of a transaction

• Allow multiple objects to be involved in a single, atomic transaction

• Allow objects to associate changes in their internal state with a transaction

• Coordinate the completion of transactions

Transaction Models

The Transaction Service supports two distributed transaction models: flat transactions
and nested transactions. An implementation of the Transaction Service is not req
to support nested transactions.

Flat Transactions

The Transaction Service defines support for a flat transaction model. The definition of
the function provided, and the commitment protocols used, is modelled on the X/Open
DTP transaction model definition.1

A flat transaction is considered to be a top-level transaction—see the next
section—that cannot have a child transaction.

1. See Distributed Transaction Processing: The XA Specification, X/Open Document C193. X/Open
Company Ltd., Reading, U.K., ISBN 1-85912-057-1.
10-6 Transaction Service: v1.1 November 1997 Service Description

10

 not

ildren

.

as

n.
the

w
Nested Transactions

The Transaction Service also defines a nested transaction model. Nested transactions
provide for a finer granularity of recovery than flat transactions. The effect of failures
that require rollback can be limited so that unaffected parts of the transaction need
rollback.

Nested transactions allow an application to create a transaction that is embedded in an
existing transaction. The existing transaction is called the parent of the subtransaction;
the subtransaction is called a child of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The ch
of one parent are called siblings.

Subtransactions can be embedded in other subtransactions to any level of nesting. The
ancestors of a transaction are the parent of the subtransaction and (recursively) the
parents of its ancestors. The descendants of a transaction are the children of the
transaction and (recursively) the children of its descendants.

A top-level transaction is one with no parent. A top-level transaction and all of its
descendants are called a transaction family.

A subtransaction is similar to a top-level transaction in that the changes made on
behalf of a subtransaction are either committed in their entirety or rolled back.
However, when a subtransaction is committed, the changes remain contingent upon
commitment of all of the transaction’s ancestors.

Subtransactions are strictly nested. A transaction cannot commit unless all of its
children have completed. When a transaction is rolled back, all of its children are
rolled back.

Objects that participate in transactions must support isolation of transactions. The
concept of isolation applies to subtransactions as well as to top level transactions
When a transaction has multiple children, the children appear to other transactions to
execute serially, even if they are performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within a
subtransaction fails, only the subtransaction is rolled back. The parent transaction h
the opportunity to correct or compensate for the problem and complete its operation.
Subtransactions can also be used to perform suboperations of a transaction in parallel,
without the risk of inconsistent results.

Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transactio
Typically, a transaction is terminated by the client that originated the transaction—
transaction originator. Some implementations of the Transaction Service may allo
transactions to be terminated by Transaction Service clients other than the one which
created the transaction.
 Transaction Service: v1.1 November 1997 Service Description 10-7

10

ally).

a

ll

rt of

ides
Any participant in a transaction can force the transaction to be rolled back (eventu
If a transaction is rolled back, all participants rollback their changes. Typically, a
participant may request the rollback of the current transaction after encountering
failure. It is implementation-specific whether the Transaction Service itself monitors
the participants in a transaction for failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints on the use of the
Transaction Service interfaces in order to guarantee integrity equivalent to that
provided by the interfaces which support the X/Open DTP transaction model. This is
called checked transaction behavior.

For example, allowing a transaction to commit before all computations acting on
behalf of the transaction have completed can lead to a loss of data integrity. Checked
implementations of the Transaction Service will prevent premature commitment of a
transaction.

Other implementations of the Transaction Service may rely completely on the
application to provide transaction integrity. This is called unchecked transaction
behavior.

Transaction Context

As part of the environment of each ORB-aware thread, the ORB maintains a
transaction context. The transaction context associated with a thread is either nu
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environment or in multiple
execution environments.

The transaction context can be implicitly transmitted to transactional objects as pa
a transactional operation invocation. The Transaction Service also allows programmers
to pass a transaction context as an explicit parameter of a request.

Synchronization

The Transaction Service defines support for a synchronization interface. This prov
a protocol by which an object may be notified prior to the start of the two-phase
commit protocol within the coordinator with which it is registered. An implementation
of the Transaction Service is not required to support synchronization.

10.1.5 Principles of Function, Design, and Performance

The Transaction Service defined in this specification fulfills a number of functional,
design, and performance requirements.
10-8 Transaction Service: v1.1 November 1997 Service Description

10

he

erve
sfully

tion

ere

ion
.

Functional Requirements

The Transaction Service defined in this specification addresses the following
functional requirements:

Support for multiple transaction models. The flat transaction model, which is widely
supported in the industry today, is a mandatory component of this specification. T
nested transaction model, which provides finer granularity isolation and facilitates
object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is the ability
to “wrapper” existing programs (coarse grain objects) to allow these functions to s
as building blocks for new business applications. This technique has been succes
used to marry object-oriented end-user interfaces with commercial business logic
implemented using classical procedural techniques.

It can similarly be used to encapsulate the large body of existing business software on
legacy environments and leverage that in building new business applications. This will
allow customers to gradually deploy object technology into their existing
environments, without having to reimplement all existing business functions.

Model Interoperability. Customers desire the capability to add object
implementations to existing procedural applications and to augment object
implementations with code that uses the procedural paradigm. To do so in a transac
environment requires that a single transaction be shared by both the object and
procedural code. This includes the following:

• A single transaction which includes ORB and non-ORB applications and
resources.

• Interoperability between the object transaction service model and the X/Open
Distributed Transaction Processing (DTP) model.

• Access to existing (non-object) programs and resource managers by objects.

• Access to objects by existing programs and resource managers.

• Coordination by a single transaction service of the activities of both object and
non-object resource managers.

• The network case: A single transaction, distributed between an object and non-
object system, each of which has its own Transaction Service.

The Transaction Service accommodates this requirement for implementations wh
interoperability with X/Open DTP-compliant transactional applications is necessary.

Network Interoperability . Customers require the ability to interoperate between
systems offered by multiple vendors:

• Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate with itself using a single ORB.

• Multiple transaction services, single ORB - It must be possible for one transact
service to interoperate with a cooperating transaction service using a single ORB

• Single transaction service, multiple ORBs - It must be possible for a single
transaction service to interoperate with itself using different ORBs.
 Transaction Service: v1.1 November 1997 Service Description 10-9

10

n.

ing

,
• Multiple transaction services, multiple ORBs - It must be possible for one
transaction service to interoperate with a cooperating transaction service using
different ORBs.

The Transaction Service specifies all required interactions between cooperating
Transaction Service implementations necessary to support a single ORB. The
Transaction Service depends on ORB interoperability (as defined by the CORBA
specification) to provide cooperating Transaction Services across different ORBs.

Flexible transaction propagation control. Both client and object implementations
can control transaction propagation:

• A client controls whether or not its transaction is propagated with an operatio

• A client can invoke operations on objects with transactional behavior and objects
without transactional behavior within the scope of a single transaction.

• An object can specify transactional behavior for its interfaces.

The Transaction Service supports both implicit (system-managed) propagation and
explicit (application-managed) propagation. With implicit propagation, transactional
behavior is not specified in the operation’s signature. With explicit propagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors . Customers need object technology to build mission-critical
applications. These applications are deployed on commercial transaction process
systems where a TP Monitor provides both efficient scheduling and the sharing of
resources by a large number of users. It must be possible to implement the Transaction
Service in a TP monitor environment. This includes:

• The ability to execute multiple transactions concurrently.

• The ability to execute clients, servers, and transaction services in separate
processes.

The Transaction Service is usable in a TP Monitor environment.

Design Requirements

The Transaction Service supports the following design requirements:

Exploitation of OO Technology. This specification permits a wide variety of ORB
and Transaction Service implementations and uses objects to enable ORB-based
secure implementations. The Transaction Service provides the programmer with easy
to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applications can be constructed using interfaces that
are as simple or simpler than their procedural equivalents.

Low Implementation Cost. The Transaction Service specification considers cost from
the perspective of three users of the service - clients, ORB implementers, and
Transaction Service providers.
10-10 Transaction Service: v1.1 November 1997 Service Description

10

ms

o
ot

n

at

ing
same

vior
nces
ot

t

:

• For clients, it allows a range of implementations which are compliant with the
proposed architecture. Many ORB implementations will exist in client
workstations which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platfor
that implement transactions.

• The specification provides for minimal impact to the ORB. Where feasible,
function is assigned to an object service implementation to permit the ORB t
continue to provide high performance object access when transactions are n
used.

• Since this Transaction Service will be supported by existing (procedural)
transaction managers, the specification allows implementations that reuse existing
procedural Transaction Managers.

Portability . The Transaction Service specification provides for portability of
applications. It also defines an interface between the ORB and the Transaction Service
that enables individual Transaction Service implementations to be ported betwee
different ORB implementations.

Avoidance of OMG IDL interface variants. The Transaction Service allows a single
interface to be supported by both transactional and non-transactional implementations.
This approach avoids a potential “combinatorial explosion” of interface variants th
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threaded and multi-threa ded implementations. The
Transaction Service defines a flexible model that supports a variety of programm
styles. For example, a client with an active transaction can make requests for the
transaction on multiple threads. Similarly, an object can support multiple transactions
in parallel by using multiple threads.

A wide spectrum of implementation choices. The Transaction Service allows
implementations to choose the degree of checking provided to guarantee legal beha
of its users. This permits both robust implementations which provide strong assura
for transaction integrity and lightweight implementations where such checks are n
warranted.

Performance Requirements

The Transaction Service is expected to be implemented on a wide range of hardware
and software platforms ranging from desktop computers to massively parallel servers
and in networks ranging in size from a single LAN to worldwide networks. To meet
this wide range of requirements, consideration must be given to algorithms which
scale, efficient communications, and the number and size of accesses to permanen
storage. Much of this is implementation, and therefore not visible to the user of the
service. Nevertheless, the expected performance of the Transaction Service was
compared to its procedural equivalent, the X/Open DTP model in the following areas

• The number of network messages required.

• The number of disk accesses required.

• The amount of data logged.
 Transaction Service: v1.1 November 1997 Service Description 10-11

10

tion
ion.

a

i

The objective of the specification was to achieve parity with the X/Open model for
equivalent function, where technically feasible.

10.2 Service Architecture

Figure 10-2 illustrates the major components and interfaces defined by the Transac
Service. The transaction originator is an arbitrary program that begins a transact
The recoverable server implements an object with recoverable state that is invoked
within the scope of the transaction, either directly by the transaction originator or
indirectly through one or more transactional objects.

The transaction originator creates a transaction using a TransactionFactory; a Control
is returned that provides access to a Terminator and a Coordinator. The transaction
originator uses the Terminator to commit or rollback the transaction. The Coordinator
is made available to recoverable servers, either explicitly or implicitly (by implicitly
propagating a transaction context with a request). A recoverable server registers
Resource with the Coordinator. The Resource implements the two-phase commit
protocol which is driven by the Transaction Service. A recoverable server may regster
a Synchronization with the Coordinator. The Synchronization implements a dependent
object protocol driven by the Transaction Service. A recoverable server can also
register a specialized resource called a SubtransactionAwareResource to track the
completion of subtransactions. A Resource uses a RecoveryCoordinator in certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most applications use the Current pseudo object, which provides
access to an implicit per-thread transaction context.

Transaction Service

(transmitted with request)

transaction originator

SubtransactionAwareResource

transaction
context

transaction
context

(associated with thread)

transaction
context

(associated with thread)

Control

Resource

Figure 10-2 Major Components and Interfaces of the Transaction Service

TransactionFactory

Current CurrentTerminator
Coordinator

Control

recoverable server

RecoveryCoordinator

Synchronization
10-12 Transaction Service: v1.1 November 1997 Service Architecture

10

action
ead
text

s
ct

e

d.

me

est on

ued

n

t
10.2.1 Typical Usage

A typical transaction originator uses the Current object to begin a transaction, which
becomes associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve
transactional objects. When a request is issued to a transactional object, the trans
context associated with the invoking thread is automatically propagated to the thr
executing the method of the target object. No explicit operation parameter or con
declaration is required to transmit the transaction context. Propagation of the
transaction context can extend to multiple levels if a transactional object issues a
request to a transactional object.

Using the Current object, the transactional object can unilaterally rollback the
transaction and can inquire about the current state of the transaction. Using the Current
object, the transactional object also can obtain a Coordinator for the current
transaction. Using the Coordinator, a transactional object can determine the
relationship between two transactions, to implement isolation among multiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object ha
persistent data that must be managed as part of the transaction. A recoverable obje
uses the Coordinator to register a Resource object as a participant in the transaction.
The resource represents the recoverable object’s participation in the transaction; ach
resource is implicitly associated with a single transaction. The Coordinator uses the
resource to perform the two-phase commit protocol on the recoverable object’s data.

After the computations involved in the transaction have been completed, the
transaction originator uses the Current object to request that the changes be committe
The Transaction Service commits the transaction using a two-phase commit protocol
wherein a series of requests are issued to the registered resources.

10.2.2 Transaction Context

The transaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted for multiple threads to be associated with the same transaction at the sa
time.

When a thread in an object server is used by an object adapter to perform a requ
a transactional object, the object adapter initializes the transaction context associated
with that thread by effectively copying the transaction context of the thread that iss
the request. An implementation of the Transaction Service may restrict the capabilities
of the new transaction context. For example, an implementation of the Transactio
Service might not permit the object server thread to request commitment of the
transaction.

The object adapter is not required to initialize the transaction context of every reques
handler. It is required to initialize the transaction context only if the interface
supported by the target object is derived from the TransactionalObject interface.
Otherwise, the initial transaction context of the thread is undefined.
 Transaction Service: v1.1 November 1997 Service Architecture 10-13

10

tion
s

s) so
e

ntext
n

nable

s

,
When a thread retrieves the response to a deferred synchronous request, an excep
may be raised if the thread is no longer associated with the transaction that it wa
associated with when the deferred synchronous request was issued. (See “ Exceptions”
on page 10-16, subsection “WRONG_TRANSACTION Exception” for a more precise
definition.)

When nested transactions are used, the transaction context remembers the stack of
nested transactions started within a particular execution environment (e.g., proces
that when a subtransaction ends, the transaction context of the thread is restored to th
context in effect when the subtransaction was begun. When the context is transferred
between execution environments, the received context refers only to one particular
transaction, not a stack of transactions.

10.2.3 Context Management

The Transaction Service supports management and propagation of transaction co
using objects provided by the Transaction Service. Using this approach, the transactio
originator issues a request to a TransactionFactory to begin a new top-level
transaction. The factory returns a Control object specific to the new transaction that
allows an application to terminate the transaction or to become a participant in the
transaction (by registering a Resource). An application can propagate a transaction
context by passing the Control as an explicit request parameter.

The Control does not directly support management of the transaction. Instead, it
supports operations that return two other objects, a Terminator and a Coordinator. The
Terminator is used to commit or rollback the transaction. The Coordinator is used to
enable transactional objects to participate in the transaction. These two objects can be
propagated independently, allowing finer granularity control over propagation.

An implementation of the Transaction Service may restrict the ability for some or all
of these objects to be transmitted to or used in other execution environments, to e
it to guarantee transaction integrity.

An application can also use the Current object operations get_control , suspend ,
and resume to obtain or change the implicit transaction context associated with its
thread.

When nested transactions are used, a Control can include a stack of nested transaction
begun in the same execution environment. When a Control is transferred between
execution environments, the received Control refers only to one particular transaction
not a stack of transactions.
10-14 Transaction Service: v1.1 November 1997 Service Architecture

10
10.2.4 Datatypes

The CosTransactions module defines the following datatypes:

10.2.5 Structures

The CosTransactions module defines the following structures:

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

struct otid_t {
long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};
 Transaction Service: v1.1 November 1997 Service Architecture 10-15

10

al

ill

s
10.2.6 Exceptions

Standard Exceptions

The CosTransactions module adds new standard exceptions to CORBA for
TRANSACTION_REQUIRED, TRANSACTION_ROLLEDBACK, and
INVALID_TRANSACTION. These exceptions are defined in Chapter 3, Section 3.15 of
the Common Object Request Broker: Architecture and Specification.

Heuristic Exceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. Heuristic decisions are normally made
only in unusual circumstances, such as communication failures, that prevent norm
processing. When a heuristic decision is taken, there is a risk that the decision w
differ from the consensus outcome, resulting in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting
incorrect heuristic decisions or the possibility of incorrect heuristic decisions:

HeuristicRollback Exception

The commit operation on Resource raises the HeuristicRollback exception to
report that a heuristic decision was made and that all relevant updates have been rolled
back.

HeuristicCommit Exception

The rollback operation on Resource raises the HeuristicCommit exception to
report that a heuristic decision was made and that all relevant updates have been
committed.

HeuristicMixed Exception

A request raises the HeuristicMixed exception to report that a heuristic decision wa
made and that some relevant updates have been committed and others have been rolled
back.

exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};
10-16 Transaction Service: v1.1 November 1997 Service Architecture

10

n
quest.

HeuristicHazard Exception

A request raises the HeuristicHazard exception to report that a heuristic decision
may have been made, the disposition of all relevant updates is not known, and for
those updates whose disposition is known, either all have been committed or all have
been rolled back. (In other words, the HeuristicMixed exception takes priority over
the HeuristicHazard exception.)

WRONG_TRANSACTION Exception

The CosTransactions module adds the WRONG_TRANSACTION exception that ca
be raised by the ORB when returning the response to a deferred synchronous re
This exception is defined in Chapter 4 of the Common Object Request Broker:
Architecture and Specification.

Other Exceptions

The CosTransactions module defines the following additional exceptions:

These exceptions are described below along with the operations that raise them.

10.3 Transaction Service Interfaces

The interfaces defined by the Transaction Service reside in the CosTransactions

module. (OMG IDL for the CosTransactions module is shown in “The
CosTransactions Module” on page 10-69.) The interfaces for the Transaction Service
are as follows:

• Current

• TransactionFactory

• Terminator

• Coordinator

• RecoveryCoordinator

• Resource

• Synchronization

• Subtransaction Aware Resource

• Transactional Object

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-17

10

n
se the

ice

for
d to

avior

ould
No operations are defined in these interfaces for destroying objects. No applicatio
actions are required to destroy objects that support the Transaction Service becau
Transaction Service destroys its own objects when they are no longer needed.

10.3.1 Current Interface

The Current interface defines operations that allow a client of the Transaction Serv
to explicitly manage the association between threads and transactions. The Current
interface also defines operations that simplify the use of the Transaction Service
most applications. These operations can be used to begin and end transactions an
obtain information about the current transaction.

The Current interface is designed to be supported by a pseudo object whose beh
depends upon and may alter the transaction context associated with the invoking
thread. It may be shared with other object services (e.g., security) and is obtained by
using a resolve initial references(“TransactionCurrent”) operation on the CORBA::ORB
interface. Current supports the following operations:

Note – In order to pass the transaction from one thread to another, a program sh
not use the Current object. It should pass the Control object to the other thread.

interface Current : CORBA::Current {
void begin()

raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)

raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};
10-18 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

o
ntly

ct of

y

ct of

begin

A new transaction is created. The transaction context of the client thread is modified s
that the thread is associated with the new transaction. If the client thread is curre
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otherwise, the new transaction is a top-level transaction.

The SubtransactionsUnavailable exception is raised if the client thread already
has an associated transaction and the Transaction Service implementation does not
support nested transactions.

commit

If there is no transaction associated with the client thread, the NoTransaction
exception is raised. If the client thread does not have permission to commit the
transaction, the standard exception NO_PERMISSION is raised. (The commit operation
may be restricted to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effe
this request is equivalent to performing the commit operation on the corresponding
Terminator object (see “Terminator Interface” on page 10-23); see “Terminator
Interface” and “Exceptions” on page 10-16 for a description of the exceptions that ma
be raised.

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request.
Otherwise, the thread’s transaction context is set to null.

rollback

If there is no transaction associated with the client thread, the NoTransaction
exception is raised. If the client thread does not have permission to rollback the
transaction, the standard exception NO_PERMISSION is raised. (The rollback
operation may be restricted to the transaction originator in some implementations;
however, the rollback_only operation, described below, is available to all
transaction participants.)

Otherwise, the transaction associated with the client thread is rolled back. The effe
this request is equivalent to performing the rollback operation on the corresponding
Terminator object (see “Terminator Interface” on page 10-23).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request.
Otherwise, the thread’s transaction context is set to null.
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-19

10

g

rned.

cts

ext

scope

e
rollback_only

If there is no transaction associated with the client thread, the NoTransaction
exception is raised. Otherwise, the transaction associated with the client thread is
modified so that the only possible outcome is to rollback the transaction. The effect of
this request is equivalent to performing the rollback_only operation on the
corresponding Coordinator object (see “Coordinator Interface” on page 10-24).

get_status

If there is no transaction associated with the client thread, the StatusNoTransaction
value is returned. Otherwise, this operation returns the status of the transaction
associated with the client thread. The effect of this request is equivalent to performin
the get_status operation on the corresponding Coordinator object (see “Coordinator
Interface” on page 10-24).

get_transaction_name

If there is no transaction associated with the client thread, an empty string is retu
Otherwise, this operation returns a printable string describing the transaction. The
returned string is intended to support debugging. The effect of this request is
equivalent to performing the get_transaction_name operation on the corresponding
Coordinator object (see “Coordinator Interface” on page 10-24).

set_timeout

This operation modifies a state variable associated with the target object that affe
the time-out period associated with top-level transactions created by subsequent
invocations of the begin operation. If the parameter has a nonzero value n, then top-
level transactions created by subsequent invocations of begin will be subject to being
rolled back if they do not complete before n seconds after their creation. If the
parameter is zero, then no application specified time-out is established.

get_control

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, a Control object is returned that represents the transaction cont
currently associated with the client thread. This object can be given to the resume
operation to reestablish this context in the same thread or a different thread. The
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. This operation is not dependent on the state of th
transaction; in particular, it does not raise the TRANSACTION_ROLLEDBACK exception.

suspend

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that represents the transaction context
currently associated with the client thread. This object can be given to the resume
10-20 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

scope

ith no

no
t,
us

aise
operation to reestablish this context in the same thread or a different thread. The
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. In addition, the client thread becomes associated w
transaction. This operation is not dependent on the state of the transaction; in
particular, it does not raise the TRANSACTION_ROLLEDBACK exception.

resume

If the parameter is a null object reference, the client thread becomes associated with
transaction. Otherwise, if the parameter is valid in the current execution environmen
the client thread becomes associated with that transaction (in place of any previo
transaction). Otherwise, the InvalidControl exception is raised. See “Control
Interface” on page 10-22 for a discussion of restrictions on the scope of a Control. This
operation is not dependent on the state of the transaction; in particular, it does not r
the TRANSACTION_ROLLEDBACK exception.

10.3.2 TransactionFactory Interface

The TransactionFactory interface is provided to allow the transaction originator to
begin a transaction. This interface defines two operations, create and recreate ,
which create a new representation of a top-level transaction. A TransactionFactory is
located using the FactoryFinder interface of the life cycle service and not by the
resolve_initial_reference operation on the ORB interface defined in “Example
Object Adapters” in Chapter 2 of the Common Object Request Broker: Architecture
and Specification.

create

A new top-level transaction is created and a Control object is returned. The Control
object can be used to manage or to control participation in the new transaction. An
implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum, it
can be used by the client thread.

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-21

10

ro,

s to
If the parameter has a nonzero value n, then the new transaction will be subject to being
rolled back if it does not complete before n seconds have elapsed. If the parameter is ze
then no application specified time-out is established.

recreate

A new representation is created for an existing transaction defined by the
PropagationContext and a Control object is returned. The Control object can be used
to manage or to control participation in the transaction. An implementation of the
Transaction Service which supports interposition (see “ORB/TS Implementation
Considerations” on page 10-60) uses recreate to create a new representation of the
transaction being imported, subordinate to the representation in ctx . The recreate
operation can also be used to import a transaction which originated outside of the
Transaction Service.

10.3.3 Control Interface

The Control interface allows a program to explicitly manage or propagate a transaction
context. An object supporting the Control interface is implicitly associated with one
specific transaction.

The Control interface defines two operations, get_terminator and
get_coordinator . The get_terminator operation returns a Terminator object,
which supports operations to end the transaction. The get_coordinator operation
returns a Coordinator object, which supports operations needed by resources to
participate in the transaction. The two objects support operations that are typically
performed by different parties. Providing two objects allows each set of operation
be made available only to the parties that require those operations.

A Control object for a transaction is obtained using the operations defined by the
TransactionFactory interface or the create_subtransaction operation defined by
the Coordinator interface. It is possible to obtain a Control object for the current
transaction (associated with a thread) using the get_control or suspend operations
defined by the Current interface (see “Current Interface” on page 10-18). (These two
operations return a null object reference if there is no current transaction.)

An implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within a single thread.

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};
10-22 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

tes
get_terminator

An object is returned that supports the Terminator interface. The object can be used to
rollback or commit the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Terminator
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within the client thread.

get_coordinator

An object is returned that supports the Coordinator interface. The object can be used
to register resources for the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Coordinator
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within the client thread.

10.3.4 Terminator Interface

The Terminator interface supports operations to commit or rollback a transaction.
Typically, these operations are used by the transaction originator.

An implementation of the Transaction Service may restrict the scope in which a
Terminator can be used; at a minimum, it can be used within a single thread.

commit

If the transaction has not been marked rollback only, and all of the participants in the
transaction agree to commit, the transaction is committed and the operation termina
normally. Otherwise, the transaction is rolled back (as described below) and the
TRANSACTION_ROLLEDBACK standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report
inconsistent or possibly inconsistent outcomes using the HeuristicMixed and
HeuristicHazard exceptions (defined in “Exceptions” on page 10-16). A
Transaction Service implementation may optionally use the Event Service to report
heuristic decisions.

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-23

10

 the

urces.

ns
The commit operation may rollback the transaction if there are subtransactions of
transaction that have not themselves been committed or rolled back or if there are
existing or potential activities associated with the transaction that have not completed.
The nature and extent of such error checking is implementation-dependent.

When a top-level transaction is committed, all changes to recoverable objects made in
the scope of this transaction are made permanent and visible to other transactions or
clients. When a subtransaction is committed, the changes are made visible to other
related transactions as appropriate to the degree of isolation enforced by the reso

rollback

The transaction is rolled back.

When a transaction is rolled back, all changes to recoverable objects made in the scope
of this transaction (including changes made by descendant transactions) are rolled
back. All resources locked by the transaction are made available to other transactio
as appropriate to the degree of isolation enforced by the resources.

10.3.5 Coordinator Interface

The Coordinator interface provides operations that are used by participants in a
transaction. These participants are typically either recoverable objects or agents of
recoverable objects, such as subordinate coordinators. Each object supporting the
Coordinator interface is implicitly associated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction() ;
unsigned long hash_top_level_tran() ;

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

};
10-24 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

ect:

e

ed for

een

s

.

An implementation of the Transaction Service may restrict the scope in which a
Coordinator can be used; at a minimum, it can be used within a single thread.

get_status

This operation returns the status of the transaction associated with the target obj

• StatusActive - A transaction is associated with the target object and it is in th
active state. An implementation returns this status after a transaction has been
started and prior to a coordinator issuing any prepares unless it has been mark
rollback.

• StatusMarkedRollback - A transaction is associated with the target object and
has been marked for rollback, perhaps as the result of a rollback_only operation.

• StatusPrepared - A transaction is associated with the target object and has b
prepared (i.e., all subordinates have responded VoteCommit) . The target object
may be waiting for a superior’s instructions as to how to proceed.

• StatusCommitted - A transaction is associated with the target object and it ha
completed commitment. It is likely that heuristics exists; otherwise, the transaction
would have been destroyed and StatusNoTransaction returned.

• StatusRolledBack - A transaction is associated with the target object and the
outcome has been determined as rollback. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and StatusNoTransaction
returned.

• StatusUnknown - A transaction is associated with the target object, but the
Transaction Service cannot determine its current status. This is a transient
condition, and a subsequent invocation will ultimately return a different status.

• StatusNoTransaction - No transaction is currently associated with the target
object. This will occur after a transaction has completed.

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive) ;

PropagationContext get_txcontext ()
raises(Unavailable);

};
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-25

10

he

d to

for

 in

g for

 this
s

ciated
n is

• StatusPreparing - A transaction is associated with the target object and it is t
process of preparing. An implementation returns this status if it has started
preparing, but has not yet completed the process, probably because it is waiting for
responses to prepare from one or more resources.

• StatusCommitting - A transaction is associated with the target object and is in
the process of committing. An implementation returns this status if it has decide
commit, but has not yet completed the process, probably because it is waiting
responses from one or more resources.

• StatusRollingBack - A transaction is associated with the target object and it is
the process of rolling back. An implementation returns this status if it has decided
to rollback, but has not yet completed the process, probably because it is waitin
responses from one or more resources.

get_parent_status

If the transaction associated with the target object is a top-level transaction, then
operation is equivalent to the get_status operation. Otherwise, this operation return
the status of the parent of the transaction associated with the target object.

get_top_level_status

This operation returns the status of the top-level ancestor of the transaction asso
with the target object. If the transaction is a top-level transaction, then this operatio
equivalent to the get_status operation.

is_same_transaction

This operation returns true if, and only if, the target object and the parameter object
both refer to the same transaction.

is_ancestor_transaction

This operation returns true if, and only if, the transaction associated with the target
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction T2 if and only if T1 is the same as T2 or
T1 is an ancestor of the parent of T2.

is_descendant_transaction

This operation returns true if, and only if, the transaction associated with the target
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if, and only if, T2 is an ancestor of
T1 (see above).
10-26 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

ction

o

bject.

ect

ction.

et

’s

ll not

g
is_related_transaction

This operation returns true if, and only if, the transaction associated with the target
object is related to the transaction associated with the parameter object. A transa
T1 is related to a transaction T2 if, and only if, there exists a transaction T3 such that
T3 is an ancestor of T1 and T3 is an ancestor of T2.

is_top_level_transaction

This operation returns true if, and only if, the transaction associated with the target
object is a top-level transaction. A transaction is a top-level transaction if it has n
parent.

hash_transaction

This operation returns a hash code for the transaction associated with the target o
Each transaction has a single hash code. Hash codes for transactions should be
uniformly distributed.

hash_top_level_tran

This operation returns the hash code for the top-level ancestor of the transaction
associated with the target object. This operation is equivalent to the
hash_transaction operation when the transaction associated with the target obj
is a top-level transaction.

register_resource

This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transaction is terminated, the resource will
receive requests to commit or rollback the updates performed as part of the transa
These requests are described in the description of the Resource interface. The
Inactive exception is raised if the transaction has already been prepared. The
standard exception TRANSACTION_ROLLEDBACK may be raised if the transaction has
been marked rollback only.

If the resource is a subtransaction aware resource (it supports the
SubtransactionAwareResource interface) and the transaction associated with the targ
object is a subtransaction, then this operation registers the specified resource with the
subtransaction and indirectly with the top-level transaction when the subtransaction
ancestors have completed. Otherwise, the resource is registered as a participant in the
current transaction. If the current transaction is a subtransaction, the resource wi
receive prepare or commit requests until the top-level ancestor terminates.

This operation returns a RecoveryCoordinator that can be used by this resource durin
recovery.
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-27

10

es
the

ck

as

e

the
y
pport
register_synchronization

This operation registers the specified Synchronization object such that it will be
notified to perform necessary processing prior to prepare being driven to resourc
registered with this Coordinator. These requests are described in the description of
Synchronization interface. The Inactive exception is raised if the transaction has
already been prepared. The SynchronizationUnavailable exception is raised if the
Coordinator does not support synchronization. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the transaction has been marked rollba
only.

register_subtran_aware

This operation registers the specified subtransaction aware resource such that it will be
notified when the subtransaction has committed or rolled back. These requests are
described in the description of the SubtransactionAwareResource interface.

Note that this operation registers the specified resource only with the subtransaction.
This operation cannot be used to register the resource as a participant in the
transaction.

The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. The Inactive exception is raised if the subtransaction (or any
ancestor) has already been terminated. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the subtransaction (or any ancestor) h
been marked rollback only.

rollback_only

The transaction associated with the target object is modified so that the only possible
outcome is to rollback the transaction. The Inactive exception is raised if the
transaction has already been prepared.

get_transaction_name

This operation returns a printable string describing the transaction associated with th
target object. The returned string is intended to support debugging.

create_subtransaction

A new subtransaction is created whose parent is the transaction associated with
target object. The Inactive exception is raised if the target transaction has alread
been prepared. An implementation of the Transaction Service is not required to su
nested transactions. If nested transactions are not supported, the exception
SubtransactionsUnavailable is raised.
10-28 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

he

.

ction

n

s.

g

The create_subtransaction operation returns a Control object, which enables the
subtransaction to be terminated and allows recoverable objects to participate in t
subtransaction. An implementation of the Transaction Service may restrict the ability
for the Control object to be transmitted to or used in other execution environments

get_txcontext

The get_txcontext operation returns a PropagationContext object, which is used by
one Transaction Service domain to export the current transaction to a new Transa
Service domain. An implementation of the Transaction Service may also use the
PropagationContext to assist in the implementation of the is_same_transaction
operation when the input Coordinator has been generated by a different Transaction
Service implementation.

The Unavailable exception is raised if the Transaction Service implementation
chooses to restrict the availability of the PropagationContext.

10.3.6 Recovery Coordinator Interface

A recoverable object uses a RecoveryCoordinator to drive the recovery process in
certain situations. The object reference for an object supporting the
RecoveryCoordinator interface, as returned by the register_resource operation, is
implicitly associated with a single resource registration request and may only be used
by that resource.

replay_completion

This operation can be invoked at any time after the associated resource has been
prepared. The Resource must be passed as the parameter. Performing this operatio
provides a hint to the Coordinator that the commit or rollback operations have not
been performed on the resource. This hint may be required in certain failure case
This non-blocking operation returns the current status of the transaction. The
NotPrepared exception is raised if the resource has not been prepared.

10.3.7 Resource Interface

The Transaction Service uses a two-phase commitment protocol to complete a top-
level transaction with each registered resource. The Resource interface defines the
operations invoked by the transaction service on each resource. Each object supportin
the Resource interface is implicitly associated with a single top-level transaction. Note

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-29

10

 The

n

that in the case of failure, the completion sequence will continue after the failure is
repaired. A resource should be prepared to receive duplicate requests for the commit
or rollback operation and to respond consistently.

prepare

This operation is invoked to begin the two-phase commit protocol on the resource.
resource can respond in several ways, represented by the Vote result.

If no persistent data associated with the resource has been modified by the transaction,
the resource can return VoteReadOnly . After receiving this response, the Transactio
Service is not required to perform any additional operations on this resource.
Furthermore, the resource can forget all knowledge of the transaction.

If the resource is able to write (or has already written) all the data needed to commit
the transaction to stable storage, as well as an indication that it has prepared the
transaction, it can return VoteCommit . After receiving this response, the Transaction
Service is required to eventually perform either the commit or the rollback operation
on this object. To support recovery, the resource should store the RecoveryCoordinator
object reference in stable storage.

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};
10-30 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

g

action

.

on is

ction.

tion. If

on is

If
The resource can return VoteRollback under any circumstances, including not havin
any knowledge about the transaction (which might happen after a crash). If this
response is returned, the transaction must be rolled back. Furthermore, the Trans
Service is not required to perform any additional operations on this resource. After
returning this response, the resource can forget all knowledge of the transaction.

The resource reports inconsistent outcomes using the HeuristicMixed and
HeuristicHazard exceptions (described in “Exceptions” on page 10-16). Heuristic
outcomes occur when a resource acts as a sub-coordinator and at least one of its
resources takes a heuristic decision after a VoteCommit return.

rollback

If necessary, the resource should rollback all changes made as part of the transaction
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptions” on page 10-16) are used
to report heuristic decisions related to the resource. If a heuristic outcome excepti
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case rollback is performed
again. Otherwise, the resource can immediately forget all knowledge of the transa

commit

If necessary, the resource should commit all changes made as part of the transac
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptions” on page 10-16) are used
to report heuristic decisions related to the resource. If a heuristic outcome excepti
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case commit is performed again.
Otherwise, the resource can immediately forget all knowledge of the transaction.

The NotPrepared exception is raised if the commit operation is performed without
first performing the prepare operation.

commit_one_phase

If possible, the resource should commit all changes made as part of the transaction.
it cannot, it should raise the TRANSACTION_ROLLEDBACK standard exception.

If a failure occurs during commit_one_phase , it must be retried when the failure is
repaired. Since their can only be a single resource, the HeuristicHazard exception is
used to report heuristic decisions related to that resource. If a heuristic exception is
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case commit_one_phase is
performed again. Otherwise, the resource can immediately forget all knowledge of the
transaction.
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-31

10

tion

bject

-

e

 the

 to

edure

y

forget

This operation is performed only if the resource raised a heuristic outcome excep
to rollback , commit , or commit_one_phase . Once the coordinator has determined
that the heuristic situation has been addressed, it should issue forget on the resource.
The resource can forget all knowledge of the transaction.

10.3.8 Synchronization Interface

The Transaction Service provides a synchronization protocol which enables an o
with transient state data that relies on an X/Open XA conformant Resource Manager
for ensuring that data is made persistent, to be notified before the start of the two
phase commitment protocol, and after its completion. An object with transient state
data that relies on a Resource object for ensuring that data is made persistent can also
make use of this protocol, provided that both objects are registered with the sam
Coordinator. Each object supporting the Synchronization interface is implicitly
associated with a single top-level transaction.

before_completion

This operation is invoked prior to the start of the two-phase commit protocol within
coordinator the Synchronization has registered with. This operation will therefore be
invoked prior to prepare being issued to Resource objects or X/Open Resource
Managers registered with that same coordinator. The Synchronization object must
ensure that any state data it has that needs to be made persistent is made available
the resource.

Only standard exceptions may be raised. Unless there is a defined recovery proc
for the exception raised, the transaction should be marked rollback only.

after_completion

This operation is invoked after all commit or rollback responses have been received b
this coordinator. The current status of the transaction (as determined by a get_status
on the Coordinator) is provided as input.

Only standard exceptions may be raised and they have no effect on the outcome of the
commitment process.

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

} ;
10-32 Transaction Service: v1.1 November 1997 Transaction Service Interfaces

10

vel

-

ble

ants

ction

dard

ction
10.3.9 Subtransaction Aware Resource Interface

Recoverable objects that implement nested transaction behavior may support a
specialization of the Resource interface called the SubtransactionAwareResource
interface. A recoverable object can be notified of the completion of a subtransaction by
registering a specialized resource object that offers the SubtransactionAwareResource
interface with the Transaction Service. This registration is done by using the
register _resource or the register_subtran_aware operation of the current
Coordinator object. A recoverable object generally uses the register_resource
operation to register a resource that will participate in the completion of the top-le
transaction and the register_subtran_aware operation to be notified of the
completion of a subtransaction.

Certain recoverable objects may want a finer control over the registration in the
completion of a subtransaction. These recoverable objects will use the
register _resource operation to ensure participation in the completion of the top
level transaction and they will use the register_subtran_aware operation to be
notified of the completion of a particular subtransaction. For example, a recovera
object can use the register_subtran_aware operation to establish a “committed
with respect to” relationship between transactions; that is, the recoverable object w
to be informed when a particular subtransaction is committed and then perform certain
operations on the transactions that depend on that transaction’s completion. This
technique could be used to implement lock inheritance, for example.

The Transaction Service uses the SubtransactionAwareResource interface on each
Resource object registered with a subtransaction. Each object supporting this interface
is implicitly associated with a single subtransaction.

commit_subtransaction

This operation is invoked only if the resource has been registered with a subtransa
and the subtransaction has been committed. The Resource object is provided with a
Coordinator that represents the parent transaction. This operation may raise a stan
exception such as TRANSACTION_ROLLEDBACK.

Note that the results of a committed subtransaction are relative to the completion of its
ancestor transactions, that is, these results can be undone if any ancestor transaction is
rolled back.

rollback_subtransaction

This operation is invoked only if the resource has been registered with a subtransa
and notifies the resource that the subtransaction has rolled back.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};
 Transaction Service: v1.1 November 1997 Transaction Service Interfaces 10-33

10

t

ion

ation

 on a
y

 the

y
10.3.10 TransactionalObject Interface

The TransactionalObject interface is used by an object to indicate that it is
transactional. By supporting the TransactionalObject interface, an object indicates tha
it wants the transaction context associated with the client thread to be associated with
all operations on its interface.

The TransactionalObject interface defines no operations. It is simply a marker.

10.4 The User’s View

The audience for this section is object and client implementers; it describes applicat
use of the Transaction Service functions.

10.4.1 Application Programming Models

A client application program may use direct or indirect context management to manage
a transaction.

• With indirect context management, an application uses the Current object provided
by the Transaction Service, to associate the transaction context with the applic
thread of control.

• In direct context management, an application manipulates the Control object and
the other objects associated with the transaction.

Propagation is the act of associating a client’s transaction context with operations
target object. An object may require transactions to be either explicitly or implicitl
propagated on its operations.

Implicit propagation means that requests are implicitly associated with the client’s
transaction; they share the client’s transaction context. It is transmitted implicitly tothe
objects, without direct client intervention. Implicit propagation depends on indirect
context management, since it propagates the transaction context associated with
Current object. Explicit propagation means that an application propagates a
transaction context by passing objects defined by the Transaction Service as explicit
parameters.

An object that supports implicit propagation would not typically expect to receive an
Transaction Service object as an explicit parameter.

A client may use one or both forms of context management, and may communicate
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects. They are described below.

interface TransactionalObject {
};
10-34 Transaction Service: v1.1 November 1997 The User’s View

10

ter

.
Direct Context Management: Explicit Propagation

The client application directly accesses the Control object, and the other objects which
describe the state of the transaction. To propagate the transaction to an object, the
client must include the appropriate Transaction Service object as an explicit parame
of an operation.

Indirect Context Management: Implicit Propagation

The client application uses operations on the Current object to create and control its
transactions. When it issues requests on transactional objects, the transaction context
associated with the current thread is implicitly propagated to the object.

Indirect Context Management: Explicit Propagation

For an implicit model application to use explicit propagation, it can get access to the
Control using the get_control operation on Current. It can then use a Transaction
Service object as an explicit parameter to a transactional object. This is explicit
propagation.

Direct Context Management: Implicit Propagation

A client that accesses the Transaction Service objects directly can use the resume
operation on Current to set the implicit transaction context associated with its thread
This allows the client to invoke operations of an object that requires implicit
propagation of the transaction context.
 Transaction Service: v1.1 November 1997 The User’s View 10-35

10

ne

se it

ion
10.4.2 Interfaces

Note – For clarity, subtransaction operations are not shown.

10.4.3 Checked Transaction Behavior

Some Transaction Service implementations will enforce checked behavior for the
transactions they support, to provide an extra level of transaction integrity. The
purpose of the checks is to ensure that all transactional requests made by the
application have completed their processing before the transaction is committed. A
checked Transaction Service guarantees that commit will not succeed unless all
transactional objects involved in the transaction have completed the processing of their
transactional requests.

There are many possible implementations of checking in a Transaction Service. O
provides equivalent function to that provided by the request/response inter-process
communication models defined by X/Open.

The X/Open Transaction Service model of checking is particularly important becau
is widely implemented. It describes the transaction integrity guarantees provided by
many existing transaction systems. These transaction systems will provide the same
level of transaction integrity for object-based applications by providing a Transact
Service interface that implements the X/Open checks.

1. All Indirect context management operations are on the Current object interface

Table 10-1Use of Transaction Service Functionality

Context management

Function Used by Direct Indirect 1

Create a transaction Transaction
originator

TransactionFactory::create
Control::get_terminator
Control::get_coordinator

begin,set_timeout

Terminate a transaction Transaction originator—implicit
All— explicit

Terminator::commit
Terminator::rollback

commit
rollback

Rollback a transaction Server Terminator::rollback_only rollback_only

Control propagation
of transaction to a server

Server Declaration of method parameter TransactionalObject
interface

Control by client
of transaction
propagation
to a server

All Request parameters get_control
suspend
resume

Become a participant
in a transaction

Recoverable Server Coordinator::register_resource Not applicable

Miscellaneous All Coordinator::get_status
Coordinator::get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable
Not applicable
10-36 Transaction Service: v1.1 November 1997 The User’s View

10

 the

tions

en

efore

 by a

nsure
10.4.4 X/Open Checked Transactions

In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing
X/Open model of checking provides equivalent function to that provided by the
XATMI and TxRPC interfaces defined by X/Open for transactional applications.
X/Open DTP Transaction Managers are examples of transaction management func
that implement checked transaction behavior.

This implementation of checked behavior depends on implicit transaction propagation.
When implicit propagation is used, the objects involved in a transaction at any giv
time may be represented as a tree, the request tree for the transaction. The beginner of
the transaction is the root of the tree. Requests add nodes to the tree, replies remove
the replying node from the tree. Synchronous requests, or the checks described below
for deferred synchronous requests, ensure that the tree collapses to a single node b
commit is issued.

If a transaction uses explicit propagation, the Transaction Service cannot know which
objects are or will be involved in the transaction; that is, a request tree cannot be
constructed or assured. Therefore, the use of explicit propagation is not permitted
Transaction Service implementation that enforces X/Open-style checked behavior.

Applications that use synchronous requests implicitly exhibit checked behavior. For
applications that use deferred synchronous requests, in a transaction where all clients
and objects are in the domain of a checking Transaction Service, the Transaction
Service can enforce this property by applying a reply check and a commit check.

The Transaction Service must also apply a resume check to ensure that the transaction
is only resumed by application programs in the correct part of the request tree.

Reply Check

Before allowing an object to reply to a transactional request, a check is made to e
that the object has received replies to all its deferred synchronous requests that
propagated the transaction in the original request. If this condition is not met, an
exception is raised and the transaction is marked as rollback-only, that is, it cannot be
successfully committed.

A Transaction Service may check that a reply is issued within the context of the
transaction associated with the request.

Commit Check

Before allowing commit to proceed, a check is made to ensure that:

1. The commit request for the transaction is being issued from the same execution
environment that created the transaction.
 Transaction Service: v1.1 November 1997 The User’s View 10-37

10

 of

col

of

ted.

lar
at
 a
2. The client issuing commit has received replies to all the deferred synchronous
requests it made that caused the propagation of the transaction.

Resume Check

Before allowing a client or object to associate a transaction context with its thread
control, a check is made to ensure that this transaction context was previously
associated with the execution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

10.4.5 Implementing a Transactional Client: Heuristic Completions

The commit operation takes the boolean report_heuristics as input. If the
report_heuristics argument is false , commit can complete as soon as the root
coordinator has made its decision to commit or rollback the transaction. The
application is not required to wait for the coordinator to complete the commit proto
by informing all the participants of the outcome of the transaction. This can
significantly reduce the elapsed time for the commit operation, especially where
participant Resource objects are located on remote network nodes. However, no
heuristic conditions can be reported to the application in this case.

Using the report_heuristics option guarantees that the commit operation will not
complete until the coordinator has completed the commit protocol with all resources
involved in the transaction. This guarantees that the application will be informed
any non-atomic outcomes of the transaction via the HeuristicMixed or
HeuristicHazard exceptions, but increases the application-perceived elapsed time
for the commit operation.

10.4.6 Implementing a Recoverable Server

A Recoverable Server includes at least one recoverable object and one Resource
object. The responsibilities of each of these objects are explained in the following
sections.

Recoverable Object

The responsibilities of the recoverable object are to implement the object’s operations,
and to register a Resource object with the Coordinator so commitment of the
recoverable object’s resources, including any necessary recovery, can be comple

The Resource object identifies the involvement of the recoverable object in a particu
transaction. This means a Resource object may only be registered in one transaction
a time. A different Resource object must be registered for each transaction in which
recoverable object is concurrently involved.
10-38 Transaction Service: v1.1 November 1997 The User’s View

10

y

ber

t

n use
ts

ply
dual

ction

A recoverable object may receive multiple requests within the scope of a single
transaction. It only needs to register its involvement in the transaction once. The
is_same_transaction operation allows the recoverable object to determine if the
transaction associated with the request is one in which the recoverable object is alread
registered.

The hash_transaction operations allow the recoverable object to reduce the num
of transaction comparisons it has to make. All coordinators for the same transaction
return the same hash code. The is_same_transaction operation need only be done
on coordinators which have the same hash code as the coordinator of the curren
request.

Resource Object

The responsibilities of a Resource object are to participate in the completion of the
transaction, to update the Recoverable Server’s resources in accordance with the
transaction outcome, and ensure termination of the transaction, including across
failures. The protocols that the Resource object must follow are described in
“ Transaction Service Protocols” on page 10-49.

Reliable Servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server ca
the same interface as a Recoverable Server to ensure application integrity for objec
that do not have recoverable state. In the case of a Reliable Server, the recoverable
object can register a Resource object that replies VoteReadOnly to prepare if its
integrity constraints are satisfied (e.g., all debits have a corresponding credit), or
replies VoteRollback if there is a problem. This approach allows the server to ap
integrity constraints which apply to the transaction as a whole, rather than to indivi
requests to the server.

10.4.7 Application Portability

This section considers application portability across the broadest range of Transa
Service implementations.

Flat Transactions

There is one optional function of the Transaction Service, support for nested
transactions. For an application to be portable across all implementations of the
Transaction Service, it should be designed to use the flat transaction model. The
Transaction Service specification treats flat transactions as top-level nested
transactions.
 Transaction Service: v1.1 November 1997 The User’s View 10-39

10

ill
s

s

ed
d

ts of

cked

n

th
X/Open Checked Transactions

Transaction Service implementations may implement checked or unchecked behavior.
The transaction integrity checks implemented by a Transaction Service need not be the
same as those defined by X/Open. However, many existing transaction management
systems have implemented the X/Open model of interprocess communication, and will
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.

Applications written to conform to the transaction integrity constraints of X/Open w
be portable across all implementations of an X/Open checked Transaction Service, a
well as all Transaction Service implementations which support unchecked behavior.

10.4.8 Distributed Transactions

The Transaction Service can be implemented by multiple components located across a
network. The different components can be based on the same or on different
implementations of the Transaction Service.

A single transaction can involve clients and objects supported by more than one
instance of the Transaction Service. The number of Transaction Service instance
involved in the transaction is not visible to the application implementer. There is no
change in the function provided.

10.4.9 Applications Using Both Checked and Unchecked Services

A single transaction can include objects supported by both checked and uncheck
Transaction Service implementations. Checked transaction behavior cannot be applie
to the transaction as a whole.

It is possible to provide useful, limited forms of checked behavior for those subse
the transaction’s resources in the domain of a checked Transaction Service.

• First, a transactional or recoverable object, whose resources are managed by a
checked Transaction Service, may be accessed by unchecked clients. The che
Transaction Service can ensure, by registering itself in the transaction, that the
transaction will not commit before all the integrity constraints associated with the
request have been satisfied.

• Second, an application whose resources are managed by a checked Transactio
Service may act as a client of unchecked objects, and preserve its checked
semantics.

10.4.10 Examples

Note – All the examples are written in pseudo code based on C++. In particular they do
not include implicit parameters such as the ORB::Environment , which should appear
in all requests. Also, they do not handle the exceptions that might be returned wi
each request.
10-40 Transaction Service: v1.1 November 1997 The User’s View

10

ment

t and

d

se

A Transaction Originator: Indirect and Implicit

In the code fragments below, a transaction originator uses indirect context manage
and implicit transaction propagation; txn_crt is an example of an object supporting
the Current interface; the client uses the begin operation to start the transaction which
becomes implicitly associated with the originator's thread of control:

The program commit s the transaction associated with the client thread. The
report_heuristics argument is set to false so no report will be made by the
Transaction Service about possible heuristic decisions.

Transaction Originator: Direct and Explicit

In the following example, a transaction originator uses direct context managemen
explicit transaction propagation. The client uses a factory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction an
uses the returned Control object to retrieve the Terminator and Coordinator objects.

The client issues requests, some of which involve transactional objects, in this ca
explicit propagation of the context is used. The Control object reference is passed as
an explicit parameter of the request; it is declared in the OMG IDL of the interface.

.. .
t xn_crt.begin();
// should test the exceptions that might be raised
...
// the client issues requests, some of which involve
// transactional objects;
BankAccount1->makeDeposit(deposit);
.. .

....
txn_crt.commit(false);
...

...
CosTransactions::Control c;
CosTransactions::Terminator t;
CosTransactions::Coordinator co;

c = TFactory->create(0);
t = c->get_terminator();
.. .

...
transactional_object->do_operation(arg, c);
 Transaction Service: v1.1 November 1997 The User’s View 10-41

10

ct's
The transaction originator uses the Terminator object to commit the transaction; the
report_heuristics argument is set to false : so no report will be made by the
Transaction Service about possible heuristic decisions.

Example of a Recoverable Server

BankAccount1 is an object with internal resources. It inherits from both the
TransactionalObject and the Resource interfaces:

Upon entering, the context of the transaction is implicitly associated with the obje
thread. The pseudo object supporting the Current interface is used to retrieve the
Coordinator object associated with the transaction.

Before registering the Resource, the object must check whether it has already been
registered for the same transaction. This is done using the hash_transaction and
is_same_transaction operations on the current Coordinator to compare a list of
saved coordinators representing currently active transactions. In this example, the
object registers itself as a Resource. This requires the object to durably record its

...
t->commit(false);

interface BankAccount1:

CosTransactions::TransactionalObject,CosTransactions::Resource
{
...
 void makeDeposit (in float amt);
...
};

class BankAccount1
{
public:
...
void makeDeposit(float amt);
...
}

void makeDeposit (float amt)
{
CosTransactions::Control c;
CosTransactions::Coordinator co;

c = txn_crt.get_control();
co = c->get_coordinator();
...
10-42 Transaction Service: v1.1 November 1997 The User’s View

10
registration before issuing register_resource to handle potential failures and
imposes the restriction that the object may only be involved in one transaction at a
time.

If more parallelism is required, separate Resource objects can be registered for each
transaction the object is involved in.

Example of a Transactional Object

BankAccount2 is an object with external resources that inherits from the
TransactionalObject interface:

RecoveryCoordinator r;
r = co->register_resource (this);

// performs some transactional activity locally
balance = balance + f;
num_transactions++;
...
// end of transactional operation
};

interface BankAccount2: CosTransactions::TransactionalObject
{
...
 void makeDeposit(in float amt);
...
};

class BankAccount2
{
public:
...
void makeDeposit(f loat amt);
...
}

 Transaction Service: v1.1 November 1997 The User’s View 10-43

10

ct's
nal,

e
h the

g

 the
Upon entering, the context of the transaction is implicitly associated with the obje
thread. The makeDeposit operation performs some transactional requests on exter
recoverable servers. The objects res1 and res2 are recoverable objects. The current
transaction context is implicitly propagated to these objects.

10.4.11 Model Interoperability

The Transaction Service supports interoperability between Transaction Service
applications using implicit context propagation and procedural applications using th
X/Open DTP model. A single transaction management component may act as bot
Transaction Service and an X/Open Transaction Manager.

Interoperability is provided in two ways:

• Importing transactions from the X/Open domain to the Transaction Service
domain.

• Exporting transactions from the Transaction Service domain to the X/Open
domain.

Importing Transactions

X/Open applications can access transactional objects. This means that an existin
application, written to use X/Open interfaces, can be extended to invoke transactional
operations. This causes the X/Open transaction to be imported into the domain of
Transaction Service.

void makeDeposit(float amt)
{

balance = res1->get_balance(amt);
balance = balance + amt;
res1->set_balance(balance);

res2->increment_num_transactions();
} // end of transactional operation
10-44 Transaction Service: v1.1 November 1997 The User’s View

10
The X/Open application may be a client or a server.

Figure 10-3 X/Open Client

Figure 10-4 X/Open Server

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AA
AA
AA
AA

AAAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

TX

X/Open

Client

AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

X/Open

Server
X/Open
client
 Transaction Service: v1.1 November 1997 The User’s View 10-45

10

tion
on

y
Exporting Transactions

Transactional objects can use X/Open communications and resource manager
interfaces, and include the resources managed by these components in a transac
managed by the Transaction Service. This causes the Transaction Service transacti
to be exported into the domain of the X/Open transaction manager.

Figure 10-5 Sample Transaction Managed by the Transaction Service

Programming Rules

Model interoperability results in application programs that use both X/Open and
Transaction Service interfaces.

A transaction originator may use the X/Open TX interface or the Transaction Service
interfaces to create and terminate a transaction. Only one style may be used in one
originator.

A single application may inherit a transaction with an application request either b
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of both X/Open
resource manager interfaces and transactional object interfaces.

An X/Open client or server may invoke operations of transactional objects. The
X/Open transaction is imported into the Transaction Service domain using the
recreate operation on TransactionFactory.

AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB

RM API

Transaction

Manager

New Application (Objects)

X/Open
Resource
Manager

CM API

X/Open
server
10-46 Transaction Service: v1.1 November 1997 The User’s View

10

th
en

ce of

lace

e
f the
A transactional object with a Current object that associates a transaction context wi
a thread of control, can call X/Open Resource Managers. How requests to the X/Op
Resource managers become associated with the transaction context of the Current
object is implementation-dependent.

10.4.12 Failure Models

The Transaction Service provides atomic outcomes for transactions in the presen
application, system or communication failures. This section describes the behavior of
application entities when failures occur. The protocols used to achieve this behavior
are described in “Transaction Service Protocols” on page 10-49.

From the viewpoint of each user object role, two types of failure are relevant: a failure
affecting the object itself (local failure) and a failure external to the object (external
failure), such as failure of another object or failure in the communication with that
object.

Transaction Originator

Local Failure

A failure of a transaction originator prior to the originator issuing commit will cause
the transaction to be rolled back. A failure of the originator after issuing commit and
before the outcome is reported may result in either commitment or rollback of the
transaction depending on timing; in this case completion of the transaction takes p
without regard to the failure of the originator.

External Failure

Any external failure affecting the transaction prior to the originator issuing commit
will cause the transaction to be rolled back; the standard exception
TRANSACTION_ROLLEDBACK will be raised in the originator when it issues commit .

A failure after commit and before the outcome has been reported will mean that th
client may not be informed of the transaction outcome, depending on the nature o
failure, and the use of the report_heuristics option of commit . For example, the
transaction outcome will not be reported to the client if communication between the
client and the coordinator fails.

A client may use get_status on the Coordinator to determine the transaction
outcome. However, this is not reliable because the status NoTransaction is
ambiguous: it could mean that the transaction committed and has been forgotten, or
that the transaction rolled back and has been forgotten.

If an originator needs to know the transaction outcome, including in the case of
external failures, then either the originator’s implementation must include a Resource
object so that it will participate in the two-phase commit procedure (and any recovery),
or the originator and coordinator must be located in the same failure domain (for
example, the same execution environment).
 Transaction Service: v1.1 November 1997 The User’s View 10-47

10

l

on of

:

Transactional Server

Local Failure

If the Transactional Server fails then optional checks by a Transaction Service
implementation may cause the transaction to be rolled back; without such checks,
whether the transaction is rolled back depends on whether the commit decision has
already been made (this would be the case where an unchecked client invokes commit
before receiving all replies from servers).

External Failure

Any external failure affecting the transaction during the execution of a Transactiona
Server will cause the transaction to be rolled back. If this occurs while the
transactional object’s method is executing, the failure has no effect on the executi
this method. The method may terminate normally, returning the reply to its client.
Eventually the TRANSACTION_ROLLEDBACK exception will be returned to a client
issuing commit .

Recoverable Server

Behavior of a recoverable server when failures occur is determined by the two phase
commit protocol between the coordinator and the recoverable server’s Resource
object(s). This protocol, including the local and external failure models and the
required behavior of the Resource, is described in “Transaction Service Protocols” on
page 10-49.

10.5 The Implementers’ View

This section contains three major categories of information.

1. “Transaction Service Protocols” on page 10-49 defines in more detail the protocols
of the Transaction Service for ensuring atomicity of transactions, even in the
presence of failure.

This section is not a formal part of the specification but is provided to assist in
building valid implementations of the specification. These protocols affect
implementations of Recoverable Servers and the Transaction Service.

2. “ORB/TS Implementation Considerations” on page 10-60 provides additional
information for implementers of ORBs and Transaction Services in those areas
where cooperation between the two is necessary to realize the Transaction Service
function.

The following aspects of ORB and Transaction Service implementation are covered

• transaction propagation.

• interoperation between different transaction service implementations.

• ORB changes necessary to support portability of transaction service
implementations.
10-48 Transaction Service: v1.1 November 1997 The Implementers’ View

10

s

ilures.

e

action
ts

oes

 by

so

mits
otten
3. “Model Interoperability” on page 10-67 describes how an implementation achieve
interoperation between the Transaction Service and procedural transaction
managers.

10.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols be followed to implement the
atomicity property. These protocols affect the implementation of recoverable servers,
(recoverable objects that register for participation in the two-phase commit process)
and the coordinators that are created by a transaction factory. These responsibilities
ensure the execution of the two-phase commit protocol and include maintaining state
information in stable storage, so that transactions can be completed in case of fa

General Principles

The first coordinator created for a specific transaction is responsible for driving th
two-phase commit protocol. In the literature, this is referred to as the root Transaction
Coordinator or simply root coordinator. Any coordinator that is subsequently created
for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a coordinator is referred to as a subordinate
Transaction Coordinator or simply subordinate coordinator and by registering a
resource becomes a transaction participant. Recoverable servers are always trans
participants. The root coordinator initiates the two-phase commit protocol; participan
respond to the operations that implement the protocol. The specification is based on
the following rules for commitment and recovery:

1. The protocol defined by this specification is a two-phase commit with presumed
rollback.

This permits efficient implementations to be realized since the root coordinator d
not need to log anything before the commit decision and the participants (i.e.,
Resource objects) do not need to log anything before they prepare.

2. Resource objects—including subordinate coordinators—do not start commitment
themselves, but wait for prepare to be invoked.

3. The prepare operation is issued at most once to each resource.

4. Participants must remember heuristic decisions until the coordinator or some
management application instructs them to forget that decision.

5. A coordinator knows which Resource objects are registered in a transaction and
is aware of resources that have completed commitment.

In general, the coordinator must remember this information if a transaction com
in order to ensure proper completion of the transaction. Resources can be forg
early if they do not vote to commit the transaction.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-49

10

e,

g

ery
y

 the

t

t

t of
.

6. A participant should be able to request the outcome of a transaction at any tim
including after failures occurring subsequent to its Resource object being prepared.

7. Participants should be able to report the completion of the transaction (includin
any heuristic condition).

The recording of information relating to the transaction which is required for recov
is described as if it were a log file for clarity of description; an implementation ma
use any suitable persistent storage mechanism.

Normal Transaction Completion

Transaction completion can occur in two ways; as part of the normal execution of the
Current::commit or Terminator::commit operations or independent of these
operations if a failure should occur before normal execution can complete. This section
describes the normal (no failure) case. “Failures and Recovery” on page 10-57
describes the failure cases.

Coordinator Role

The root coordinator implements the following protocol:

• When the client asks to commit the transaction, and no prior attempt to rollback
the transaction has been made, the coordinator issues the before_completion
request to all registered synchronizations.

• When all registered synchronizations have responded, the coordinator issues
prepare request to all registered resources.

• If all registered resources reply VoteReadOnly , then the root coordinator replies
to the client that the transaction committed (assuming that the client can still be
reached).

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies to the client. There
is no requirement for the coordinator to log in this case.

• If any registered resource replies VoteRollback or cannot be reached then the
coordinator will decide to rollback and will so inform those registered resources
which already replied VoteCommit.

• Once a VoteRollback reply is received, a coordinator need not send prepare

to the remaining resources. Rollback will be subsequently sent to resources tha
replied VoteCommit .

If the report_heuristics parameter was specified on commit , the client will
be informed of the rollback outcome when any heuristic reports have been
collected (and logged if required).

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly , a root coordinator may decide to commi
the transaction.

• Before issuing commit operations on those registered resources which replied
VoteCommit , the coordinator must ensure that the commit decision and the lis
registered resources—those that replied VoteCommit —is stored in stable storage
10-50 Transaction Service: v1.1 November 1997 The Implementers’ View

10

t

tatus

 a

s

rs any
• If the coordinator receives VoteCommit or VoteReadOnly responses from each
registered resource, it issues the commit request to each registered resource tha
responded VoteCommit .

• After having received all commit or rollback responses, if synchronizations
exist, the root coordinator issues after_completion to each of them passing the
transaction outcome as status before responding to the client.

• The root coordinator issues forget to a resource after it receives a heuristic
exception.

• This responsibility is not affected by failure of the coordinator. When receiving
commit replies containing heuristic information, a coordinator constructs a
composite for the transaction.

• The root coordinator forgets the transaction after having logged its heuristic s
if heuristics reporting was requested by the originator.

• The root coordinator can now trigger the sending of the reply to the commit
operation if heuristic reporting is required. If no heuristic outcomes were
recorded, the coordinator can be destroyed.

One Phase Commit

If a coordinator has only a single registered resource, it can perform the
commit_one_phase operation on the resource instead of performing prepare and
then commit or rollback . If a synchronization exists, before_completion is issued
prior to commit_one_phase and after_completion is issued when the response to
commit_one_phase has been received. If a failure occurs, the coordinator will not be
informed of the transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction coordinator must notify any
registered subtransaction aware resources of the subtransaction’s commit or rollback
status using the commit_subtransaction or rollback_subtransaction
operations of the SubtransactionAwareResource interface.

A transaction service implementation determines how it chooses to respond when
resource responds to commit_subtransaction with a system exception. The service
may choose to rollback the subtransaction or it may ignore the exceptional condition.
The SubtransactionAwareResource operations are used to notify the resources of a
subtransaction when the subtransaction commits in the case where the resource need
to keep track of the commit status of its ancestors. They are not used to direct the
resources to commit or rollback any state. The operations of the Resource interface are
used to commit or rollback subtransaction resources registered using the
register_resource operation of the Coordinator interface.

When the subtransaction is committed and after all of the registered subtransaction
aware resources have been notified of the commitment, the subtransaction registe
resources registered using register_resource with its parent Coordinator or it may
register a subordinate coordinator to relay any future requests to the resources.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-51

10

n

ake

rable
they
From the application programmer point of view, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The
report_heuristics parameter on commit is ignored since heuristics are not
produced when subtransactions are committed.

Recoverable Server Role

A recoverable server includes at least one recoverable object and one Resource object.
The recoverable object has state that demonstrates at least the atomicity property. The
Resource object implements the two-phase commit protocol as a participant on behalf
of the recoverable object. The responsibilities of each of these objects is described
below.

Synchronization Registration

A recoverable server may need to register a Synchronization object to ensure that
object state data which is persistently managed by a resource is returned to the
resource prior to starting the commitment protocol.

Top-Level Registration

A recoverable object registers a Resource object with the Coordinator so commitment
of the transaction including any necessary recovery can be completed.

A recoverable object uses the is_same_transaction operation to determine whether
it is already registered in this transaction. It can also use hash_transaction to
reduce the number of comparisons. This relies on the definition of the
hash_transaction operation to return the same value for all coordinators in the
same transaction even if they are generated by multiple Transaction Service
implementations.

Once registered, a recoverable server assumes the responsibilities of a transactio
participant.

Subtransaction Registration

A Recoverable Server registers for subtransaction completion only if it needs to t
specific actions at the time a subtransaction commits. An example would be to change
ownership of locks acquired by this subtransaction to its parent.

A recoverable object uses the is_same_transaction operation to determine whether
it is already registered in this subtransaction. It can also use hash_transaction to
reduce the number of comparisons.

Top Level Synchronization

Synchronization objects ensure that persistent state data is returned to the recove
object managed by a resource or to the underlying database manager. To do so
implement a protocol which moves the data prior to the prepare phase and does
necessary processing after the outcome is complete.
10-52 Transaction Service: v1.1 November 1997 The Implementers’ View

10

f

efined

may
me
Top-Level Completion

Resource objects implement a recoverable object’s involvement in transaction
completion. To do so, they must follow the two-phase commit protocol initiated by
their coordinator and maintain certain elements of their state in stable storage. The
responsibilities of a Resource object with regard to a particular transaction depend on
how it will vote:

1. Returning VoteCommit to prepare

Before a Resource object replies VoteCommit to a prepare operation, it must
implement the following:

• make persistent the recoverable state of its recoverable object.

The method by which this is accomplished is implementation dependent. If a
recoverable object has only transient state, it need not be made persistent.

• ensure that its object reference is recorded in stable storage to allow it to
participate in recovery in the event of failure.

How object references are made persistent and then regenerated after a failure is
outside the scope of this specification. The Persistent Object Service or some
other mechanism may be used. How persistent Resource objects get restarted after
a failure is also outside the scope of this specification.

• record the RecoveryCoordinator object reference so that it can initiate recovery o
the transaction later if necessary.

• the Resource then waits for the coordinator to invoke commit or rollback .

• A Resource with a heuristic outcome must not discard that information until it
receives a forget from its coordinator or some administrative component.

2. Returning VoteRollback to prepare

A Resource which replies VoteRollback has no requirement to log. Once having
replied, the Resource can return recoverable resources to their prior state and forget
the transaction.

3. Returning VoteReadOnly to prepare

A Resource which replies VoteReadOnly has no requirement to log. Once having
replied, the Resource can release its resources and forget the transaction.

Subtransaction Completion

The role of the subtransaction aware resource at subtransaction completion are d
by the subtransaction aware resource itself. The coordinator only requires that it
respond to commit_subtransaction or rollback_subtransaction .

All resources need to be notified when a transaction commits or is rolled back. But
some resources need to know when subtransactions commit so that they can update
local data structures and track the completion status of ancestors. The resource
have rules that are specific to ancestry and must perform some work as all or so
ancestors complete. The nested semantics and effort required by the Resource object
are defined by the object and not the Transaction Service.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-53

10

ly the

tion

tors

s or

n

e

erver.
Once the resource has been told to prepare, the resource's obligations are exact
same as a top-level resource.

For example, in the Concurrency Control Service, a resource in a nested transac
might want to know when the subtransaction commits because another subtransaction
may be waiting for a lock held by that subtransaction. Once that subtransaction
commits, others may be granted the lock. There is no requirement to make lock
ownership persistent until a prepare message is received.

For the Persistent Object Service, it is important to keep separate update information
associated with a subtransaction. When that subtransaction commits, the Persistent
Object Service may need to reorganize its information (such as undo information) in
case the parent subtransaction chooses to rollback. Again, the Persistent Object Service
resource need not make updates permanent until a prepare message is received. At
that point, it has the same responsibilities as a top-level resource.

Subordinate Coordinator Role

An implementation of the Transaction Service may interpose subordinate coordina
to optimize the commit tree for completing the transaction. Such coordinators behave
as transaction participants to their superiors and as coordinators to their resource
inferior coordinators.

Synchronization

A subordinate coordinator may register a Synchronization object with its superior
coordinator if it needs to perform processing before its prepare phase begins.

Registration

A subordinate coordinator registers a Resource with its superior coordinator. Once
registered, a subordinate coordinator assumes the responsibilities of a transactio
participant and implements the behavior of a recoverable server.

Subtransaction Registration

If any of the resources registered with the subordinate coordinator support the
SubtransactionAwareResource interface, the subordinate coordinator must register a
subtransaction aware resource with its parent coordinator. If any of the resources
registered with the subordinate using the register_resource operation, the
subordinate must register a Resource with its superior. If both types of resources wer
registered with the subordinate, the subordinate only needs to register a subtransaction
aware resource with its superior.

Top-level Completion

A subordinate coordinator implements the completion behavior of a recoverable s

Subtransaction Completion

A subordinate coordinator implements the subtransaction completion behavior of a
recoverable server.
10-54 Transaction Service: v1.1 November 1997 The Implementers’ View

10

ribed

r

ase;

nd

ome
Subordinate Coordinator

A subordinate coordinator does not make the commit decision but simply relays the
decision of its superior (which may also be a subordinate coordinator) to resources
registered with it. A subordinate coordinator acts as a recoverable server as desc
previously, in terms of saving its state in stable storage. A subordinate coordinator (o
indeed any resource) may log the commit decision once it is known (as an
optimization) but this is not essential.

• A subordinate coordinator issues the before_completion operation to any
synchronizations when it receives prepare from its superior.

• When all responses to before_completion have been received, a subordinate
coordinator issues the prepare operation to its registered resources.

• If all registered resources reply VoteReadOnly , then the subordinate coordinator
will decide to reply VoteReadOnly .

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies VoteReadOnly to its
superior. There is no requirement for the subordinate coordinator to log in this c
the subordinate coordinator takes no further part in the transaction and can be
destroyed.

• If any registered resource replies VoteRollback or cannot be reached then the
subordinate coordinator will decide to rollback and will so inform those registered
resources which already replied VoteCommit.

Once a VoteRollback reply is received, the subordinate coordinator need not se
prepare to the remaining resources. The subordinate coordinator issues
after_completion to any synchronizations and, after all responses have been
received, replies VoteRollback to its superior.

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly , a subordinate coordinator may decide to
reply VoteCommit .

The subordinate coordinator must record the prepared state, the reference of its
superior RecoveryCoordinator and its list of resources that responded VoteCommit
in stable storage before responding to prepare .

• A subordinate coordinator issues the commit operation to its registered resources
which replied VoteCommit when it receives a commit request from its superior.

• If any resource reports a heuristic outcome, the subordinate coordinator must report
a heuristic outcome to its superior.

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, reports the heuristic outcome
to its superior. The specific outcome reported depends on the other heuristic
outcomes received. The subordinate coordinator must record the heuristic outc
in stable storage.

• After having received all commit replies, a subordinate coordinator logs its
heuristic status (if any).
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-55

10

 its

uing

te
• The subordinate coordinator then replies to the commit from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations
and, after all responses have been received, it then replies to its superior. If no
heuristic report was sent the Coordinator is destroyed.

• A subordinate coordinator performs the rollback operation on its registered
resources when it receives a rollback request from its superior.

If any resource reports a heuristic outcome, the subordinate coordinator records the
appropriate heuristic outcome in stable storage and will report this outcome to
superior. Before doing so, however, it issues after_completion to any registered
synchronizations and, after receiving all the responses, reports the heuristic
outcome to its superior.

• The subordinate coordinator then replies to the rollback from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations
and, after all responses have been received, it then replies to its superior. If no
heuristic report was sent the Coordinator is destroyed.

• If a subordinate coordinator receives a commit_one_phase request, and it has a
single registered resource, it can simply perform the commit_one_phase request
on its resource. Before doing so, if a synchronization exists, it issues
before_completion to the synchronization, then, after receiving the
commit_one_phase response, issues after_completion to the synchronization.

If it has multiple registered resources, it behaves like a superior coordinator, iss
before_completion to any synchronizations and, after receiving the responses,
issuing prepare to each resource to determine the outcome, then issuing commit
or rollback requests, followed by after_completion requests if
synchronizations exist.

• A subordinate coordinator performs the forget operation on those registered
resources that reported a heuristic outcome when it receives a forget request from
its superior.

Subtransactions

A subordinate coordinator for a subtransaction relays commit_subtransaction and
rollback_subtransaction requests to any subtransaction aware resources
registered with it. In addition, it performs the same roles as a top-level subordina
coordinator when the top-level transaction commits. It must relay prepare and
commit requests to each of the resources that registered with it using the
register_resource operation.
10-56 Transaction Service: v1.1 November 1997 The Implementers’ View

10

n

cols

 must

 must

ion

e the
lity

rce
Failures and Recovery

The previous descriptions dealt with the protocols associated with the Transactio
Service when a transaction completes without failure. To ensure atomicity and
durability in the presence of failure, the transaction service defines additional proto
to ensure that transactions, once begun, always complete.

Failure Processing

The unit of failure is termed the failure domain. It may consist of the coordinator and
some local resources registered with it, or the coordinator and the resources may each
be in its own failure domain.

Local Failure

Any failure in the transaction during the execution of a coordinator prior to the commit
decision being made will cause the transaction to be rolled back.

A coordinator is restarted only if it has logged the commit decision.

• If the coordinator only contains heuristic information, nothing is done.

• If the transaction is marked rollback only, a coordinator can send rollback to
its resources and inferior coordinators.

• If the transaction outcome is commit, the coordinator sends commit to prepared
registered resources and the regular commitment procedure is started.

• If any registered resources exist but cannot be reached, then the coordinator
try again later.

If registered resources no longer exist, then this means that they completed
commitment before the coordinator failed and have no heuristic information.

• If a subordinate coordinator is prepared, then it must contact its superior
coordinator to determine the transaction outcome.

• If the superior coordinator exists but cannot be reached, then the subordinate
retry recovery later.

• If the superior coordinator no longer exists, then the outcome of the transact
can be presumed to be rollback.

The subordinate will inform its registered resources.

External Failure

Any failure in the transaction during the execution of a coordinator prior to the commit
decision being made will cause the transaction to be rolled back.

Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point wher
failure occurred. That means that the coordinator will usually have the responsibi
for sending the commit decision to its registered resources. Certain failure conditions
will require that the resource initiate the recovery procedure—recall that the resou
might also be a subordinate coordinator. These are described in more detail below.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-57

10

e a
me

ly
,

t

d, as

as

s

aged
Resources

A resource represents some collection of recoverable data associated with a
transaction. It supports the Resource interface described in “ Resource Interface” on
page 10-29. When recovering from failure after its changes have been prepared, a
resource uses the replay_completion operation on the RecoveryCoordinator to
determine the outcome of the transaction and continue completion.

Heuristic Reporting

If the coordinator does not complete the two-phase commit in a timely manner, a
subordinate (i.e., a resource or a subordinate coordinator) in the transaction may elect
to commit or rollback the resources registered with it in a prepared transaction (tak
heuristic decision). When the coordinator eventually sends the outcome, the outco
may differ from that heuristic decision. The result is referred to as HeuristicMixed

or HeuristicHazard. The result is reported by the root coordinator to the client on
when the report_heuristics option on commit is selected. In these circumstances
the participant (subordinate) and the coordinator must obey a set of rules that define
what they report.

Coordinator Role

A root coordinator that fails prior to logging the commit decision can unilaterally
rollback the transaction. If its resources have also rolled back because they were no
prepared, the transaction is returned to its prior state of consistency. If any resources
are prepared, they are required to initiate the recovery process defined below.

• A root coordinator that has a committed outcome will continue the completion
protocol by sending commit .

• A root coordinator that has a rolled back outcome will continue the completion
protocol by sending rollback .

Synchronizations

Synchronization objects are not persistent so they are not restarted after failure an
a result, their operations are not invoked during failure processing.

Subtransactions

Subtransactions are not durable, so there is no completion after failure. However, once
the top-level coordinator issues prepare , a subtransaction subordinate coordinator h
the same responsibilities as a top-level subordinate coordinator.

Recoverable Server role

The Transaction Service imposes certain requirements on the recoverable object
participating in a transaction. These requirements include an obligation to retain
certain information at certain times in stable storage (storage not likely to be dam
as the result of failure). When a recoverable object restarts after a failure, it
participates in a recovery protocol based on the contents (or lack of contents) of its
stable storage.
10-58 Transaction Service: v1.1 November 1997 The Implementers’ View

10

he

l

.

is

d for

t
Once having replied VoteCommit , the resource remains responsible for discovering t
outcome of the transaction (i.e., whether to commit or rollback). If the resource
subsequently makes a heuristic decision, this does not change its responsibilities to
discover the outcome.

If No Heuristic Decision is Made

A resource that is prepared is responsible for initiating recovery. It does so by issuing
replay_completion to the RecoveryCoordinator. The reply tells the resource the
outcome of the transaction. The coordinator can continue the completion protoco
allowing the resource to either commit or rollback. The resource can resend
replay_completion if the completion protocol is not continued.

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::OBJECT_NOT_EXIST , it will know that the Coordinator no longer
exists and therefore the outcome was to rollback (presumed rollback).

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::COMM_FAILURE , it will know only that the Coordinator may or may
not exist. In this case, the resource retains responsibility for initiating recovery
again at a later time.

When a Heuristic Decision is Made

Before acting on a heuristic decision, it must record the decision in stable storage

• If the heuristic decision turns out to be consistent with the outcome, then all
well and the transaction can be completed and the heuristic decision can be
forgotten.

• If the heuristic decision turns out to be wrong, the heuristic damage is recorded in
stable storage and one of the heuristic outcome exceptions
(HeuristicCommit,HeuristicRollback,HeuristicMixed, or
HeuristicHazard) is returned when completion continues.

The heuristic outcome details must be retained persistently until the resource is
instructed to forget. In this case, the resource remains persistent until the forget is
received.

Subordinate Coordinator Role

The behavior of a subordinate coordinator after a failure of its superior coordinator is
implementation-dependent; however, it does follow the following protocols:

• Since it appears as a resource to its superior coordinator, the protocol define
recoverable servers applies to subordinate coordinators.

• Since it is also a subordinate coordinator for its own registered resources, it is
permitted to send duplicate commit , rollback , and forget requests to its
registered resources.

• It is required to (eventually) perform either commit or rollback on any resource
to which it has received a VoteCommit response to prepare .

• It2 is required to (eventually) perform the forget operation on any resource tha
reported a heuristic outcome.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-59

10

re

a

ribed

Since subtransactions are not durable, it has no responsibility in this area for failu
recovery.

10.5.2 ORB/TS Implementation Considerations

The Transaction Service and the ORB must cooperate to realize certain Transaction
Service function. This is discussed in greater detail in the following sections.

Transaction Propagation

The transaction is represented to the application by the Control object. Within the
Transaction Service, an implicit context is maintained for all threads associated with
transaction. Although there is some common information, the implicit context is not
the same as the Control object defined in this specification and is distinct from the
ORB Context defined by CORBA. It is the implicit context that must be transferred
between execution environments to support transaction propagation.

The objects using a particular Transaction Service implementation in a system form a
Transaction Service domain. Within the domain, the structure and meaning of the
implicit context information can be private to the implementation. When leaving the
domain, this information must be translated to a common form if it is to be understood
by the target Transaction Service domain, even across a single ORB. When the implicit
context is transferred, it is represented as a PropagationContext.

No OMG IDL declaration is required to cause propagation of the implicit context with
a request. The minimum amount of information that could serve as an implicit context
is the object reference of the Coordinator. However, an identifier (e.g., an X/Open
XID) is also required to allow efficient (local) execution of the
is_same_transaction and hash_transaction operations when interposition is
done. Implementations may choose to also include the Terminator object reference if
they support the ability for ending the transaction in other execution environments than
the originator’s. Transferring the implicit context requires interaction between the
Transaction Service and the ORB to add or extract the implicit context from ORB
messages. This interaction is also used to implement the checking functions desc
in “X/Open Checked Transactions” on page 10-37.

When the Control object is passed as an operation argument (explicit propagation), no
special transfer mechanism is required.

Interposition

When a transaction is propagated, the implicit context is exported and can be used by
the importing Transaction Service implementation to create a new Control object
which refers to a new (local) Coordinator. This technique, interposition, allows a

2.or some “agent” acting on its behalf: for example a system management application.
10-60 Transaction Service: v1.1 November 1997 The Implementers’ View

10

sages
rvice

r

 any
rlying

te

can

surrogate to handle the functions of a coordinator in the importing domain. These
coordinators act as subordinate coordinators. When interposition is performed, a single
transaction is represented by multiple Coordinator objects.

Interposition allows cooperating Transaction Services to share the responsibility for
completing a transaction and can be used to minimize the number of network mes
sent during the completion process. Interposition is required for a Transaction Se
implementation to implement the is_same_transaction and hash_transaction
operations as local method invocations, thus improving overall systems performance.

An interposed coordinator registers as a participant in the transaction with the
Coordinator identified in the PropagationContext of the received request. The
relationships between coordinators in the transaction form a tree. The root coordinato
is responsible for completing the transaction.

Many implementations of the Transaction Service will want to perform interposition
and thus create Control objects and subsequently Coordinator objects for each
execution environment participating in the transaction. To create a new (local) Control,
an importing Transaction Service uses the information in the propagation context to
recreate a Control object using a TransactionFactory. Interposition must be
complete before the get_control operation can complete in the target object. An
object adaptor is one possible place to implement interposition.

Subordinate Coordinator Synchronization

A subordinate coordinator may register with its superior coordinator to ensure that
local state data maintained by the subordinate coordinator is returned to the unde
resource prior to the subordinate coordinator’s associated Resource seeing prepare .

Subordinate Coordinator Registration

A subordinate coordinator must register with its superior coordinator to orchestra
transaction completion for its local resources. The register_resource operation of
the Coordinator can be used to perform this function. The subordinate coordinator
either support the Resource interface itself or provide another Resource object which
wil l support transaction completion. Some implementations of the Transaction Service
may wish to perform this function as a by-product of invoking the first operation on an
object in a new domain as is done with the X/Open model. This requires that the
information necessary to perform registration be added to the reply message of that
first operation.

Transaction Service Interoperation

The Transaction Service can be implemented by multiple components at different
locations. The different components can be based on the same or different
implementations of the Transaction Service. As stated in “Principles of Function,
Design, and Performance” on page 10-8, it is a requirement that multiple Transaction
Services interoperate across the same ORB and different ORBs.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-61

10

orted

r
ice.
 two-

 is

e

s for

ry

s

Transaction Service interoperation is specified by defining the data structures exp
between different implementations of the Transaction Service. When the implicit
context is propagated with a request, the destination uses it to locate the superio
coordinator. That coordinator may be implemented by a foreign Transaction Serv
By registering a resource with that coordinator, the destination arranges to receive
phase commit requests from the (possibly foreign) Transaction Service.

The Transaction Service permits many configurations; no particular configuration
mandated. Typically, each program will be directly associated with a single
Transaction Service. However, when requests are transmitted between programs in
different Transaction Service domains, both Transaction Services must understand th
shared data structures to interoperate.

An interface between the ORB and the Transaction Service is defined that arrange
the implicit context to be carried on messages that represent method invocations made
within the scope of a transaction.

Structure of the Propagation Context

The PropagationContext structure is defined in “Structures” on page 10-15. For the
functions defined within the base section of the propagation context, it is necessa
only to send it with requests. Implementations may use the vendor specific portion for
additional functions (for example, to register an interposed coordinator with its
superior), which may require the propagation context to be returned. Whether it i
returned or not, is implementation specific.

otid_t

The otid_t structure is a more efficient OMG IDL version of the X/Open defined
transaction identifier (XID). The otid_t can be transformed to an X/Open XID and
vice versa.

TransIdentity

A structure that defines information for a single transaction. It consists of a coord , an
optional term , and an otid .

coord

The Coordinator for this transaction in the exporting Transaction Service domain.

term

The Terminator for this transaction in the exporting Transaction Service domain.
Transaction Services that do not allow termination by other than the originator will set
this field to a null reference (OBJECT_NIL).
10-62 Transaction Service: v1.1 November 1997 The Implementers’ View

10

action
does
-

back
on.

s
otid

An identifier specific to the current transaction or subtransaction. This value is
intended to support efficient (local) execution of the is_same_transaction and
hash_transaction operations when the importing Transaction Service does
interposition.

timeout

The timeout value associated with the transaction in the relevant set_timeout
operation (or the default timeout).

<TransIdentity> parents

A sequence of TransIdentity structures representing the parent(s) of the current
transaction. The ordering of the sequence starts at the parent of the current trans
and includes all ancestors up to the top-level transaction. An implementation that
not support nested transactions would send an empty sequence. This allows a non
nested transaction implementation to know when a nested transaction is being
imported. It also supports efficient (local) execution of the Coordinator operations
which test parentage when the importing Transaction Service does interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed
with the rest of the context if the transaction is re-imported into that implementati

Appearance of the Propagation Context in Messages

The appearance of the PropagationContext in messages is defined by the CORBA
interoperability specification (see the General Inter-ORB Protocol chapter of the
Common Object Request Broker: Architecture and Specification). The Transaction
Service passes the PropagationContext to the ORB via the TSPortability interface
defined in “The Transaction Service Callbacks” on page 10-65.

• When exporting a transaction, the ORB sets the PropagationContext into the
ServiceContext::context_data field and marshals the PropagationContext a
defined by the GIOP message format and marshalling rules.

• When importing a transaction, the ORB demarshalls the
ServiceContext::context_data according to the GIOP formatting rules and
extracts the PropagationContext to be presented to the Transaction Service.

For more information, see the General Inter-ORB Protocol chapter of the Common
Object Request Broker: Architecture and Specification.

Transaction Service Portability

This section describes the way in which the ORB and the Transaction Service
cooperate to enable the PropagationContext to be passed and any X/Open-style
checking to be performed on transactional requests.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-63

10

RBA

y

y to

s.

 the

acks

rt
Because it is recognized that other object services and future extensions to the CO
specification may require similar mechanisms, this component is specified separately
from the main body of the Transaction Service to allow it to be revised or replaced b
a mechanism common to several services independently of any future Transaction
Service revisions.

To enable a single Transaction Service to work with multiple ORBs, it is necessar
define a specific interface between the ORB and the Transaction Service, which
conforming ORB implementations will provide, and demanding Transaction Service
implementations can rely on. The remainder of this section describes these interface
There are two elements of the required interfaces:

1. An additional ORB interface that allows the Transaction Service to identify itself to
the ORB when present in order to be involved in the transmission of transactional
requests.

2. A collection of Transaction Service operations (the Transaction Service callbacks)
that the ORB invokes when a transactional request is sent and received.

These interfaces are defined as pseudo-IDL to allow them to be implemented as
procedure calls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to
ORB within its domain to establish the transaction callbacks to be used for
transactional requests and replies.

The Transaction Service identifies itself to the ORB using the following interface.

The callback routines identified in this operation are always in the same addressing
domain as the ORB. On most machine architectures, there are a unique set of callb
per address space. Since invocation is via a procedure call, independent failures cannot
occur.

NotAvailable

The NotAvailable exception is raised if the ORB implementation does not suppo
the CosTSPortability module.

i nterface TSIdentification { // PIDL
exception NotAvailable {};
exception AlreadyIdentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, AlreadyIdentified);

void identify_receiver(in CosTSPortability::Receiver receiver)
raises (NotAvailable, AlreadyIdentified);

} ;
10-64 Transaction Service: v1.1 November 1997 The Implementers’ View

10

 to
d.

.
AlreadyIdentified

The AlreadyIdentified exception is raised if the identify_sender or
identify_receiver operation had previously identified callbacks to the ORB for
this addressing domain.

identify_sender

The identify_sender operation provides the interface that defines the callbacks
be invoked by the ORB when a transactional request is sent and its reply receive

identify_receiver

The identify_receiver operation provides the interface that defines the callbacks
to be invoked by the ORB when a transactional request is received and its reply sent.

The Transaction Service must identify itself to the ORB at least once per Transaction
Service domain. Sending and receiving transactional requests are separately identified
If the callback interfaces are different for different processes within a Transaction
Service domain, they are identified to the ORB on a per process basis. Only one
Transaction Service implementation per addressing domain can identify itself to the
ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requests can identify only the receiver callbacks.

The Transaction Service Callbacks

The CosTSPortability module defines two interfaces. Both interfaces are defined as
PIDL. The Sender interface defines a pair of operations which are called by the ORB
sending the request before it is sent and after its reply is received. The Receiver
interface defines a pair of operations which are called by the ORB receiving the
request when the request is received and before its reply is sent. Both interfaces use the
PropagationContext structure defined in “Structures” on page 10-15.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-65

10

rvice

 The
pe

e

om
ReqId

The ReqId is an unique identifier generated by the ORB which lasts for the duration of
the processing of the request and its associated reply to allow the Transaction Se
to correlate callback requests and replies.

Sender::sending_request

A request is about to be sent. The Transaction Service returns a PropagationContext to
be delivered to the Transaction Service at the server managing the target object.
TRANSACTION_REQUIRED standard exception is raised when invoked outside the sco
of a transaction.

Sender::received_reply

A reply has been received. The PropagationContext from the server is passed to the
Transaction Service along with the returned environment. The Transaction Servic
examines the Environment to determine whether the request was successfully
performed. If the Environment indicates the request was unsuccessful, the
TRANSACTION_ROLLEDBACK standard exception is raised.

Receiver::received_request

A request has been received. The PropagationContext defines the transaction making
the request. It is associated with the target object only if the target object inherits fr
the TransactionalObject interface.

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ct x);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env) ;

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};
10-66 Transaction Service: v1.1 November 1997 The Implementers’ View

10

ds to

uest

is
essed

.

ion at

ables
d

d
ad
Receiver::sending_reply

A reply is about to be sent. A checking transaction service determines whether there
are outstanding deferred requests or subtransactions and raises a system exception
using the normal mechanisms. The exception data from the callback operation nee
be re-raised by the calling ORB.

Behavior of the Callback Interfaces

The following sections describe the protocols associated with the callback interfaces:

Requirements on the ORB

The ORB will invoke the sender callbacks only when a transactional operation is
issued for an object in a different process. Objects within the same process implicitly
share the same transaction context. The receiver callbacks are invoked when the ORB
receives a transactional request from a different process.

The ORB must generate a request identifier for each outgoing request and be able to
associate the identifier with the reply when it is returned. For deferred synchronous
invocations, this allows the Transaction Service to correlate the reply with the req
to implement checked behavior. The request identifier is passed on synchronous
invocations to permit the same interface to be used.

The callbacks are invoked in line with the processing of requests and replies. Th
means that the callbacks will be executed on the same thread that issued or proc
the actual request or reply. When the DII is used, the received_reply callback must
be invoked on the same thread that will subsequently process the response.

Requirements on the Transaction Service

Within a single process, the transaction context is part of the thread specific state
Multiple threads executing on behalf of the same transaction will share the same
transaction context since a thread can only execute on behalf of a single transact
a time. Since the callbacks are defined as PIDL (procedure calls), they are invoked on
the client’s thread when sending and the server’s thread when receiving. This en
the Transaction Service to locate the proper transaction context when sending an
associate the received transaction context with the thread that will process the
transactional operation. The callback interfaces may only raise standard exceptions and
may not make additional object invocations using the ORB.

10.5.3 Model Interoperability

The indirect context management programming model of the Transaction Service is
designed to be compatible with the X/Open DTP standard, and implementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associate
with a thread of control. Some X/Open Transaction Managers support a single thre
of control in a process, others allow multiple threads of control per process.
 Transaction Service: v1.1 November 1997 The Implementers’ View 10-67

10

iates

Model interoperability is possible because the Transaction Service design is
compatible with the X/Open DTP model of a Transaction Manager. X/Open assoc
an implicit current transaction with each thread of control.

This means that a single transaction management service can provide the interfaces
defined for the Transaction Service and also provide the TX and XA interfaces of
X/Open DTP. This is illustrated in Figure 10-6.

Figure 10-6 Model Interoperability Example

The transactional object making the SQL call, and the SQL Resource manager, are
both executing on the same thread of control. The transaction manager is able to
recognize the relationship between the transaction context of the object, and the
transaction associated with the SQL DB.

The Current and Coordinator interfaces of the Transaction Service implement two-
phase commit for the objects in the transaction. The Resource Manager will participate
in the two-phase commitment process via the X/Open XA interface.

AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB
XA

SQL

Transaction

Manager

New Application (Objects) SQL Data Base

SQL DB
Resource
Manager
10-68 Transaction Service: v1.1 November 1997 The Implementers’ View

10
10.6 The CosTransactions Module

#include <Corba.idl>
module CosTransactions {
// DATATYPES
enum Status {

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

// Structure definitions
struct otid_t {

long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};

// Forward references for interfaces defined later in module
interface Current;
interface TransactionFactory;
interface Control;
interface Terminator;
interface Coordinator;
 Transaction Service: v1.1 November 1997 The CosTransactions Module 10-69

10
interface RecoveryCoordinator;
interface Resource;
interface Synchronization;
interface SubtransactionAwareResource;
interface TransactionalObject;

// Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

// Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};

// Current transaction
interface Current : CORBA::Current {

void begin()
raises(SubtransactionsUnavailable);

void commit(in boolean report_heuristics)
raises(

NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};
10-70 Transaction Service: v1.1 November 1997 The CosTransactions Module

10
interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();
Control create_subtransaction()

raises(SubtransactionsUnavailable, Inactive);
 Transaction Service: v1.1 November 1997 The CosTransactions Module 10-71

10
PropagationContext get_txcontext ()
raises(Unavailable);

};

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};

interface TransactionalObject {
};

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

};

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

}; // End of CosTransactions Module
10-72 Transaction Service: v1.1 November 1997 The CosTransactions Module

10
10.6.1 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env) ;

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};
 Transaction Service: v1.1 November 1997 The CosTransactions Module 10-73

10

ined
Appendix A Relationship of Transaction Service to TP Standards

This appendix discusses the relationship and possible interactions with the following
related standards:

• X/Open TX interface

• X/Open XA interface

• OSI TP protocol

• LU 6.2 protocol

• ODMG standard

A.1 Support of X/Open TX Interface

A.1.1 Requirements

The X/Open DTP model3 is now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-def
interface to delineate transactions, to interact with a Transaction Manager. (The
Transaction Manager is the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence between the TX interface primitives and the Transaction Service
operations (Current interface) are as follows:

3.See “Distributed Transaction Processing: The XA Specification, X/Open Document C193.” X/Open
Company Ltd., Reading, U.K., ISBN 1-85912-057-1.

Table 10-2TX mappings

TX inte rface Current interface

tx_open() no equivalent

tx_close() no equivalent

tx_begin() Current::begin()

tx_rollback() Current::rollback() or
Current::rollback_only()

tx_commit() Current::commit()

tx_set_commit_return() report_heuristics parameter of
Current::commit()

tx_set_transaction_control() no equivalent
(chained transactions not supported)

tx_set_transaction_timeout() Current::set_timeout()
10-74 Support of X/Open TX Interface November 1997

10

tion
n

ent.
tx_open

tx_open() provides a way to open, in a given execution environment, the Transac
Manager and the set of Resource Managers that are linked to it. Such an operatiodoes
not exist in the Transaction Service; such processing may be implicitly executed when
the first operation of the Transaction Service is executed in the execution environm

This processing is also related to a future Initialization Service.

tx_close

tx_close() provides a way to close, in a given execution environment, the
Transaction Manager and the set of Resource Managers that are linked to it. Such an
operation does not exist in the Transaction Service.

tx_begin

tx_begin() corresponds to Current::begin () or to

TransactionFactory::create ().

tx_rollback

tx_rollback() corresponds to Current::rollback(),

Terminator::rollback(), Current::rollback_only() or
Coordinator::rollback_only() . In TX, when a server calls tx_rollback () , the
transaction may be rolled back or set as rollback only, as in the Transaction Service.

tx_commit and tx_set_commit_return

tx_commit() corresponds to Current::commit(. The Transaction Service
operations have a parameter, report_heuristics , corresponding to the

commit_return parameter of TX.

1. A printable string is output: not guaranteed to be the XID in all implementations.

tx_info() - XID Coordinator::get_txcontext()
Current::get_name() 1

tx_info() - COMMIT_RETURN no equivalent

tx_info() - TRANSACTION_TIME_OUT no equivalent

tx_info() - TRANSACTION_STATE Current::get_status()

Table 10-2TX mappings

TX inte rface Current interface
 Support of X/Open TX Interface November 1997 10-75

10

d

n

pen

n and
tx_set_transaction_control

tx_set_transaction_control() is used, in TX, to switch between unchained an
chained mode; this function is not needed in the Transaction Service environment
because it does not support chained transactions.

tx_set_transaction_timeout

tx_set_transaction_timeout() corresponds to Current::set_timeout() or
TransactionFactory::create() .

tx_info

tx_info() returns information related to the current transaction. In the Transactio
Service:

• the XID may be retrieved by Coordinator::get_txcontext() ;

• the XID (in effect) may be retrieved by Current::get_transaction_name() ;

• the transaction state may be retrieved by Current::get_status() ;

• the commit return attribute is not needed because this attribute is given in the
commit() operation;

• the timeout attribute cannot be obtained.

A.2 Support of X/Open Resource Managers

A.2.1 Requirements

X/Open DTP-compliant Resource Managers, simply called X/Open Resource
Managers or RMs, are Resource Managers that can be involved in a distributed
transaction by allowing their two-phase commit protocol to be controlled via the
X/Open XA Interface. Many RDBMS suppliers currently offer (or intend to offer)
X/Open Resource Managers. Many OODBMS’ intend also to support the XA Interface
(some have already implemented it).

The Transaction Service must therefore be able to interact with X/Open Resource
Managers. This section will illustrate how an X/Open Resource Manager may be used
by a Transaction Service-compliant system.

The architecture of Transaction Service, based on the same concepts as the X/O
DTP Model, allows mapping of Transaction Service operations to and from XA
interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mapping between XA primitives
offered by an X/Open Resource Manager (called RM hereafter) and the interfaces of
the Transaction Service and their operations in the different phases of a transactio
during recovery.
10-76 Support of X/Open Resource Managers November 1997

10

 of
The mappings are summarized in the following table:

In the X/Open DTP model all the interactions are made in the same X/Open thread
control.

A.2.3 XID

An XID is the Transaction Identifier. As defined by X/Open, this XID is the only
information used by Resource Managers to associate logged information to the
transaction, including objects’ before images, after images, locks, and transaction state.

The contents of an XID is defined by X/Open as follows:

Table 10-3XA mappings

X/Open Object Transaction Service

xa_start()
ax_reg()

Receiv er::received_r equest
Current::resume

xa_end() Receiver::s ending _re ply
Current::suspend

ax_unreg() no equivalent

xa_prepare() Resource::prepare

xa_commit() Resource::commit

xa_rollback() Resource::rollback

xa_recover() no equivalent

no equivalent RecoveryCoordinator::replay_completion()

xa_forget() Resource::forget()

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64
 /* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64
 /* maximum size in bytes of bqual */

struct xid_t {
 long formatID;/* format identifier */
 long gtrid_length;
 /* value not to exceed 64 */
 long bqual_length;
 /* value not to exceed 64 */
 char data [XIDDATASIZE];
};
typedef struct xid_t XID;

Figure 1-7 X/Open XID
 Support of X/Open Resource Managers November 1997 10-77

10

f a

in

ed

e
tion.
”

r
or
The XID uniquely and unambiguously identifies a distributed transaction (information
contained in the gtrid part of the XID) and a transaction-branch, the work performed
by a node in the transaction tree (information contained in the bqual part of the XID).

To facilitate the use of distributed transaction in heterogeneous environments, X/Open
has adopted the structure of the Transaction Identifier used in OSI TP but allows the
use of other Transaction Identifiers formats, which may be defined by the value o
Format Identifier field contained in the XID structure. The OSI TP Transaction
Identifier contains information about the initiator of the transaction and the superior
the transaction tree; this information may be used, during recovery, to contact these
entities and obtain the outcome of the transaction.

In the Transaction Service, tightly-coupled concurrency is assumed (a lock held by a
transaction may be accessed by any participant of the same transaction) and the
transaction branch part of the XID must not be given to RMs.

Interactions with an XA-compliant RM

Model

To model the relationship between the XA interface and the Transaction Service
operation, an X/Open Transaction Manager has been modeled; this component is used
here as a way to describe the interactions and may be implemented in a different
manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:

• Static registration, in which the Transaction Service involves the RM whenever it
is itself involved in a new transaction.

• Dynamic registration, in which the RM notifies the Transaction Service that it has
been requested to perform some work and request the XID of the current
transaction.

An RM gets involved in a transaction when it has to perform some new work for this
transaction. This happens in one of the following situations:

• A request carrying a transaction context has just been received and the RM has to
perform work for the target object of this request;

• A method performing a request that is carrying a transaction context is resum
(by a Current::resume() operation).

An object may receive several requests carrying a transaction context for the sam
transaction. An RM may also perform work for several objects in the same transac
Thus an RM may be involved several times in the same transaction; the “resumeand
the “join” concepts of XA may be used to notify the RM of any multiple involvement.
When an RM has to get involved in a transaction, it must obtain the corresponding
XID from the Transaction Service through an xa_start() primitive or by a return
parameter of an ax_reg() primitive. This XID is transmitted to the RM as a paramete
to xa_start() or ax_reg() and is used by the RM to relate any work performed
any lock obtained to the transaction.
10-78 Support of X/Open Resource Managers November 1997

10

ntil

n to

n.

er

If the Transaction Service is called by an ax_reg() while it is not aware of any
transaction, it returns a null XID to the RM. The RM is then free to start a local
transaction of its own, and no Transaction Service transaction will be accepted u
the RM issues an ax_unreg() .

Refer to X/Open documents for more information about propagation of a transactio
an RM.

First phase of Commitment

When the first phase of commitment is started, the Transaction Service issues an
xa_prepare() primitive and process its results to determine its decision.

Second Phase of Commitment

When the second phase of commitment is started, the Transaction Service issues an
xa_commit() primitive and process its results to determine the heuristic situation.

One-phase commitment

When the Transaction Service wants to perform a one-phase commitment, it issues an
xa_commit() primitive and process its results to determine the heuristic situation.

In the XA interface, there is no specific primitive for one-phase commitment: an RM
must consider an xa_commit() without preceding xa_prepare() as a request to
perform a one-phase commitment.

Rollback

When a rollback has to be performed, the Transaction Service issues an
xa_rollback() primitive and process its results to determine the heuristic situatio

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manag
which issues an xa_recover() ; the RM then gives back a list of all XIDs that are
either in the Ready state or have been heuristically completed.

In the Transaction Service recovery is performed by a resource that issues a
replay_completion operation to a Coordinator (see Subsection "Transaction
Completion after Failure" in “Transaction Service Protocols” on page 10-49).

Failure of an Operation

Any failure of an operation typically leads to a rollback of the transaction, especially if
it is not possible to determine whether the operation has been performed or not.
However, in the decided commit state, the commit operation must be retried until the
reply has been received (unless a heuristic hazard condition is detected).
 Support of X/Open Resource Managers November 1997 10-79

10

er().
M

s

rt

e
e

SI

y
Failure of an RM

If an RM fails, the Transaction Service detecting the failure will issue an xa_recov
The Transaction Service will then get a list of XIDs of transactions for which the R
is in the ready state and transactions that have been heuristically completed.

The Transaction Service will then:

• Call xa_rollback() for all transactions that it knows to be neither in the
prepared state nor in the decided commit state.

• Call xa_commit() for all transactions that it knows to be in the decided commit
state.

• Wait for the decisions commit or rollback for the other.

Failure of Transaction Service

Upon warm restart of the Transaction Service and retrieval of the states of transaction
needing recovery from stable storage, the Transaction Service will call xa_recover()
to get the list of transactions for which the RM needs recovery (see failure of an RM,
here above).

A.3 Interoperation with Transactional Protocols

A.3.1 Transactional Protocols

A CORBA application may sometimes need to interoperate with one or more
applications using one of the de-facto standard transactional protocol: OSI TP and
SNA LU 6.2. In this case, the Transaction Service must be able to import or expo
transactions using one of these protocols.

Export is the ability to relate a transaction of the Transaction Service to a transaction
of a foreign transactional protocol. Importing means relating a Transaction Servic
transaction to a transaction started on a remote application and propagated via th
foreign transactional protocol.

Since the model used by the Transaction Service is similar to the model of OSI TP and
the X/Open DTP model, the interactions with OSI TP are straightforward. Since O
TP is a compatible superset of SNA LU 6.2, a mapping to SNA communications is
easily accomplished.

To interoperate, a mapping should be defined for the two-phase commit, rollback, and
recovery mechanisms, and for the transaction identifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.2 OSI TP Interoperability

OSI TP [ISO92] is the transactional protocol defined by ISO. It has been selected b
X/Open to allow the distribution of transactions by one of the communication
interfaces: remote procedure call4, client-server 5 or peer-to-peer (CPI-C Level-2 API
[CIW93]).
10-80 Interoperation with Transactional Protocols November 1997

10

ues

he

acts

 will
er a

s
The Transaction Service supports only unchained transactions. The use of dialog
using the Chained Transactions functional unit is possible only if restrictive rules are
defined. These rules are not described in this document.

OSI TP Transaction Identifiers

In OSI TP, loosely-coupled transactions are supported and every node of the
transaction tree possesses a transaction branch identifier which is composed of t
transaction identifier (or atomic action identifier) and a branch identifier (the branch
identifier being null for the root node of the transaction tree). Both the transaction
identifier and the branch identifier contains an AE-Title (Application Entity Title) and
a suffix that make it unique within a certain scope.

The format of the standard X/Open XID is compatible with the OSI TP identifiers, the
gtrid corresponding to the atomic action identifier and the bqual corresponding to
the branch identifier.

Incoming OSI TP Communications (Imported Transactions)

The Transaction Service is a subordinate in an OSI TP transaction tree and inter
with its superior by regular PDUs as defined by the OSI TP protocol. The Transaction
Service introduces the transaction identifier received on the OSI TP dialogue using the
TransactionFactory::recreate operation.

The Transaction Service maps the OSI TP commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an OSI TP Prepare message, will
enter the first phase of commitment procedure.

• When it enters the prepared state for the transaction, the Transaction Service
trigger the sending of an OSI TP Ready message to its superior. (It may trigg
Recover (Ready) message when normal communications are broken with the
superior).

• The Transaction Service, upon reception of an OSI TP Commit message, enter
the second phase of commitment procedure. (It may receive a Recover (Commit)
when normal communications are broken with the superior.)

• The Transaction Service, upon reception of an OSI TP Rollback message (it may
be a Recover (Unknown) when normal communications are broken with the
superior or any other rollback-initiating condition) will enter its rollback
procedure (unless a rollback is already in progress).

4.See “Distributed Transaction Processing: The TxRPC Specification, X/Open Document P305.” X/Open
Company Ltd., Reading, U.K..

5.See “Distributed Transaction Processing: The XATMI Specification, X/Open Document P306.”
X/Open Company Ltd., Reading, U.K..
 Interoperation with Transactional Protocols November 1997 10-81

10

l.

ss

ack

of an

• The Transaction Service, upon reception of the last rollback reply, will trigger the
sending of a Rollback Response/Confirm message to its superior.

Outgoing OSI TP Communications (Exported Transactions)

The Transaction Service behaves as a superior in an OSI TP transaction tree and
interacts with its subordinates by regular PDUs as defined by the OSI TP protoco

The Transaction Service will map the OSI TP commitment procedure as follows:

• The Transaction Service, during the first phase of commitment procedure will
invoke an OSI TP Prepare message to all its subordinates.

• Upon reception of an OSI TP Ready message, the Transaction Service will
process this message as a successful reply to prepare.

• The Transaction Service, upon entering the second phase of the commitment
procedure will send an OSI TP Commit message (it may be a Recover (Commit)
when normal communications are broken with the subordinate) to all
subordinates.

• The Transaction Service, upon reception of an OSI TP Rollback message (it may
be any other rollback-initiating condition) will enter its rollback procedure (unle
a rollback is already in progress).

• The Transaction Service, upon reception of the last Rollback Response/Confirm
message from its subordinates, will process this message as a reply to a rollb
operation and determine the heuristic situation.

A.3.3 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88b]) is a transactional protocol defined by IBM. It is
widely used for transaction distribution. The standard interface to access LU 6.2
communications is CPI-C (Common Programming Interface for Communications)
defined by IBM in the context of SAA [CPIC93] and currently being evolved by the
CPI-C Implementers' Workshop to become CPI-C level 2, a modern interface usable
for LU 6.2 and OSI TP communications [CIW93].

LU 6.2 supports only chained transactions but, at a given node, a transaction is started
only when resources have been involved in the transaction. LU 6.2 can be used for a
portion of an “unchained” transaction tree if the LU 6.2 conversations are ended after
each transaction by any node that has both LU 6.2 conversations and dialogues
unchained transaction.

LU 6.2 Transaction Identifiers

SNA LU 6.2 also supports loosely-coupled transactions and uses a specific format for
transaction identifiers: the Logical Unit of Work (LUWID) corresponds to the OSI
Transaction Identifier. The LUWID is composed of:

• The Fully Qualified Logical Unit Name, which is composed of up to 17 bytes, is
unique in an SNA network or a set of interconnected SNA networks.

• An instance number which is unique at the LU that create the transaction.
10-82 Interoperation with Transactional Protocols November 1997

10

tring

 of

ol.
n

ter

o is

se of
• The sequence number that is incremented whenever the transaction is committed.

The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a s
of 1 to 8 bytes which are unique within the context of the LU having established the
conversation and is meaningful when combined with the Fully Qualified LU Name
this Logical Unit.

Incoming LU 6.2 Communications

The LU 6.2 two-phase commit protocol is different from the OSI TP protocol: the
system sending a Prepare message has to perform logging and is responsible for
recovery. LU 6.2 does also support features like last-agent optimization, read-only and
allows any node in the transaction tree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction tree and interacts
with its superior using SNA requests and responses as defined by the LU 6.2 protoc
The Transaction Service maps the LUWID corresponding to the incoming conversatio
to an OMG otid_t and issues TransactionFactory ::recreate to import the
transaction.

The Transaction Service maps the LU 6.2 commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an LU 6.2 Prepare message will en
the first phase of commitment procedure.

• The Transaction Service, upon entering the prepared state for the transaction, the
Transaction Service will trigger the sending of a Request Commit message t
superior.

• The Transaction Service, upon reception of an LU 6.2 Committed message (it
may be a Compare States (Committed) when normal communications are broken
with the superior) will enter the second phase of commitment procedure.

• The Transaction Service, upon leaving the decided commit state, will trigger the
sending of a Forget message to is superior (it may be a Reset when normal
communications are broken with the superior).

Due to the two-phase commit difference, the Transaction Service will never send the
equivalent of the Recover(Ready) unless prompted by the superior.

The last-agent and read-only features may also be supported by the Transaction
Service.

Outgoing LU 6.2 Communications

The Transaction Service has to log when the Prepare message is sent and, in ca
communication failure or restart of the Transaction Service, a recovery is needed.
 Interoperation with Transactional Protocols November 1997 10-83

10

)

ion

tion
rnal

ion
ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Management Group
describing portable interface to access Object Database Management Systems
(ODBMS).

Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transact
Service.

A.4 ODMG Model

The ODMG model defines optional transactions and supports the nested transac
concept. The ODMG model does not cover the integration of ODBMS with an exte
Transaction Service, allowing other resources and communications to be involved in a
transaction. No two-phase commit or recovery protocol is described.

A transaction object must be created. The transactional operations are:

• Begin (or start) to begin a transaction (or a subtransaction).

• Commit to request commitment of a transaction.

• Abort to rollback a transaction.

• Checkpoint to commit the transaction but keep the locks. This feature is not
supported by the current version of the Transaction Service.

• abort_to_top_level to request rollback of a nested transaction family. The
Transaction Service does not directly support this feature but does provide means
to perform this functionality by resuming the context of the top-level transact
and then requesting rollback.

If the transaction object is destroyed, the transaction is rolled back.

Integration of ODMG ODBMSs with the Transaction Service

Since ODMG-93 does not define any way to integrate an ODBMS into an existing
transaction, the integration is difficult unless the ODBMS supports the XA interface, in
which case the section on XA-compliant RM is applicable.

In the future, it is anticipated that ODBMS will implement the Transaction Service-
defined interfaces and be considered as a recoverable server.

A possibility is to use, at a root node, an ODBMS as a last resource and, after all
subordinates are prepared, to request a one-phase commitment to the ODBMS. If the
outcome for the ODBMS is commit, the transaction will be committed, if it is rollback,
the transaction will be rolled back. The mechanism may work if it is possible to
determine, after a crash, whether the ODBMS committed or rolled back; this may be
done at application level.
10-84 ODMG Model November 1997

10
 Appendix B Transaction Service Glossary

B.1 TransactionTerms

2PC: See Two-phase commit.

Abort : See Rollback

Active : The state of a transaction when processing is in progress and completion of the
transaction has not yet commenced.

Atomicity : A transaction property that ensures that if work is interrupted by failure, any
partially completed results will be undone. A transaction whose work completes
is said to commit. A transaction whose work is completely undone is said to
rollback (abort).

Begin : An operation on the Transaction Service which establishes the initial boundary
of a transaction.

Commit : Commit has two definitions as follows:

An operation in the Current and Terminator interfaces that a program uses to
request that the current transaction terminate normally and that the effects of
that transaction be made permanent.

An operation in the Resource interface which causes the effects a transaction to
be made permanent.

Commit co ordinator : In a two-phase commit protocol, the program that collects the vote from the
participants.

Commit participan t: In a two-phase commit protocol, the program that returns a vote on the
completion of a transaction.

Committed : The property of a transaction or a transactional object, when it has successfully
performed the commit protocol. See also in-doubt, active, and rolled back.

Completion : The processing required (either by commit or rollback) to obtain the durable
outcome of a transaction.
 TransactionTerms November 1997 10-85

10

.

Coordinator : A coordinator involves Resource objects in a transaction when they are
registered. A coordinator is responsible for driving the two-phase commit
protocol. See also Commit coordinator and Commit participant.

Consistency : A property of a transaction that ensures that the transaction’s actions, taken as a
group, do not violate any of the integrity constraints associated with the state of
its associated objects. This requires that the application program be
implemented correctly: the Transaction Service provides the functionality to
support application data consistency.

Decided commit state : A root coordinator enters the decided commit state when it has written a log-
commit record; a subordinate coordinator or resource is in the decided commit
state when it has received the commit instruction from its superior; in the latter
case, a log-commit record may be written but this is not essential.

Decided rollback state : A coordinator or resource enters the decided rollback state when it decides to
rollback the transaction or has received a signal to do so.

Direct c ontext
management:

An application manipulates the Control object and the other objects associated
with the transaction. See also Indirect context management.

Durability : A transaction property that ensures the results of a successfully completed
transaction will never be lost, except in the event of catastrophe. It is generally
implemented by a combination of persistent storage and a logging service that
provides a backup copy of permanent changes.

Execution environment : An implementation-dependent factor that may determine the outcome of certain
operations on the Transaction Service. Typically the execution environment is
the scope within which shared state is managed.

Flat Transaction : A transaction that has no subtransactions—and that cannot have subtransactions

Forgotten "state" : This is not really a transaction state at all, because there is no memory of the
transaction: it has either completed or rolled back and all records on permanent
storage have been deleted.

Heuristic Commit or
Rollback :

To unilaterally make the commit or rollback decision about in-doubt
transactions when the coordinator fails or contact with the coordinator fails.

Indirect context
management :

An application uses the Current object, provided by the Transaction Service, to
associate the transaction context with the application thread of control. See also
Direct context management.
10-86 TransactionTerms November 1997

10

.

r
In-doubt : The state of a transaction if it is controlled by a transaction manager that can not
be contacted, so the commit decision is in doubt. See also active, committed,
rolled back.

Interposition : Adding a sequence of one or more subordinate coordinators between a root
coordinator and its participants.

Isolation : A transaction property that allows concurrent execution, but the results will be
the same as if execution was serialized. Isolation ensures that concurrently
executing transactions cannot observe inconsistencies in shared data.

Lock service : Called the Concurrency Control Service, it is an Object Service used by
resources to control access to shared objects by concurrently executing methods

Log-ready record (and
contents):

for an intermediate coordinator a log-ready record contains identification of the
(superior) coordinator and of Resource objects (including subordinate
coordinators) registered with the coordinator which replied VoteCommit (i.e., it
excludes registered objects which replied VoteReadOnly); for a Resource object
a log-ready record includes identification of the coordinator with which it is
registered.

Log-commit record (and
contents):

A log-commit record contains identification of all registered Resource objects
which replied VoteCommit.

Log-heuristic record : This contains a record of a heuristic decision either HeuristicCommit or
HeuristicRollback .

Log-damage record : This contains a record of heuristic damage i.e. where it is known that a heuristic
decision conflicted with the decided outcome (HeuristicMixed) or where
there is a risk that a heuristic decision conflicted with the decided outcome
(HeuristicHazard).

Log service: A service used by resource managers for recording recovery information and the
Transaction Service for recording transaction state durably.

Nested transaction : A transaction that either has subtransaction or is a subtransaction on some othe
transaction.

Participant : See Commit participant.
 TransactionTerms November 1997 10-87

10
Persistent sto rage : Generally speaking, a synonym for Stable storage. In the context of the OMA,
the Persistent Object Service (POS) provides an object representation of stable
storage.

Prepared : The state that a transaction is in when phase one of a two-phase commit has
completed.

Presumed rollback : An optimization of the two-phase commit protocol that results in more efficient
performance as the root coordinator does not need to log anything before the
commit decision and the Participants (i.e. Resource objects) do not need to log
anything before they prepare. So called because, at restart, if no record of the
transaction is found, it is safe to assume the transaction rolled back.

Propagation : A function of the Transaction Service that allows the Transaction context of a
client to be associated with a transactional operation on a server object. The
Transaction Service supports both implicit and explicit propagation of
transaction context.

Recoverable Object : An object whose data is affected by committing or rolling back a transaction.

Recoverable Server : A transactional object with recoverable state that registers a Resource (not
necessarily itself) with a Coordinator to participate in transaction completion.

Recovery Service : A service used by resource managers for restoring the state of objects to a prior
state of consistency.

Resource : An object in the Transaction Service that is registered for involvement in two-
phase commit—2PC. Corresponds to a Resource Manager.

Resource Manager : An X/Open term for a component which manages the integrity of the state of a
set of related resources.

Rollback : Rollback (also known as Abort) has two definitions, as follows:

An operation in the Current and Terminator interfaces used to indicate that the
current transaction has terminated abnormally and its effects should be
discarded.

An operation in the Resource interface which causes all state changes in the
transaction to be undone.
10-88 TransactionTerms November 1997

10

Rolled Back: The property of a transaction or a transactional object when it has discarded all
changes made in the current transaction. See also in-doubt, active, and
committed.

Root Coordinator: The first coordinator in a sequence of coordinators where there is interposition.
The coordinator associated with the transaction originator.

Security Service : An object service which provides identifications of users (authentication),
controls access to resources (authorization), and provides auditing of resource
access.

Stable storage : Storage not likely to be damaged as the result of node failure.

Sub-coordinator : See Subordinate Coordinator.

Subordinate Coordinator : A coordinator subordinate to the root coordinator when interposition has been
performed. A subordinate coordinator appears as a Resource object to its
superior. Also known as a Sub-coordinator.

Synchronization : An object in the Transaction Service which controls the transfer of persistent
object state data so it can be made durable by its associated resource.

Thread : The entity that is currently in control of the processor.

Thread Service : A service which enables methods to be executed concurrently by the same
process. Where two or more methods can execute concurrently each method is
associated with its own thread of control.

TP monitor : A system component that accepts input work requests and associates resources
with the programs that act upon these requests to provide a run-time
environment for program execution.

Transaction : A collection of operations on the physical and abstract application state.

Transactional client : An arbitrary program that can invoke operations of many transactional objects
in a single transaction. Not necessarily the Transaction originator.

Transaction Context : The transaction information associated with a specific thread. See Propagation.

Transactional operation : An operation on an object that participates in the propagation of the current
transaction.
 TransactionTerms November 1997 10-89

10
Transaction originator : An arbitrary program—typically, a transactional client, but not necessarily an
object—that begins a transaction.

Transaction Manager : A system component that implements the protocol engine for 2-phase commit
protocol. See also Transaction Service.

Transactional object : An object whose operations are affected by being invoked within the scope of a
transaction.

Transactional server: A collection of one or more objects whose behavior is affected by the
transaction, but has no recoverable state of its own.

Transaction Service : An Object Service that implements the protocols required to guarantee the
ACID (Atomicity, Consistency, Isolation, and Durability) properties of
transactions. See also Transaction Manager.

TSPortability : An interface of the Transaction Service which allows it to track transactional
operations and propagate transaction context to another Transaction Service
implementation.

Two-Phase commit : A transaction manager protocol for ensuring that all changes to recoverable
resources occur atomically and furthermore, the failure of any resource to
complete will cause all other resource to undo changes. Also called 2PC.
10-90 TransactionTerms November 1997

	Transaction Service Specification
	Contents
	10.1 Service Description
	10.1.1 Overview of Transactions
	10.1.2 Transactional Applications
	10.1.3 Definitions
	Figure�10�1 Application Including Basic Elements
	Transactional Client
	Transactional Object
	Recoverable Objects and Resource Objects
	Transactional Server
	Recoverable Server

	10.1.4 Transaction Service Functionality
	Transaction Models
	Flat Transactions
	Nested Transactions

	Transaction Termination
	Transaction Integrity
	Transaction Context
	Synchronization

	10.1.5 Principles of Function, Design, and Perform...
	Functional Requirements
	Design Requirements
	Performance Requirements

	10.2 Service Architecture
	Figure�10�2 Major Components and Interfaces of the...
	10.2.1 Typical Usage
	10.2.2 Transaction Context
	10.2.3 Context Management
	10.2.4 Datatypes
	10.2.5 Structures
	10.2.6 Exceptions
	Standard Exceptions
	Heuristic Exceptions
	HeuristicRollback Exception
	HeuristicCommit Exception
	HeuristicMixed Exception
	HeuristicHazard Exception

	WRONG_TRANSACTION Exception
	Other Exceptions

	10.3 Transaction Service Interfaces
	10.3.1 Current Interface
	begin
	commit
	rollback
	rollback_only
	get_status
	get_transaction_name
	set_timeout
	get_control
	suspend
	resume

	10.3.2 TransactionFactory Interface
	create
	If the parameter has a nonzero value n, then the n...
	recreate

	10.3.3 Control Interface
	get_terminator
	get_coordinator

	10.3.4 Terminator Interface
	commit
	rollback

	10.3.5 Coordinator Interface
	get_status
	get_parent_status
	get_top_level_status
	is_same_transaction
	is_ancestor_transaction
	is_descendant_transaction
	is_related_transaction
	is_top_level_transaction
	hash_transaction
	hash_top_level_tran
	register_resource
	register_synchronization
	register_subtran_aware
	rollback_only
	get_transaction_name
	create_subtransaction
	get_txcontext

	10.3.6 Recovery Coordinator Interface
	replay_completion

	10.3.7 Resource Interface
	prepare
	rollback
	commit
	commit_one_phase
	forget

	10.3.8 Synchronization Interface
	before_completion
	after_completion

	10.3.9 Subtransaction Aware Resource Interface
	commit_subtransaction
	rollback_subtransaction

	10.3.10 TransactionalObject Interface

	10.4 The User’s View
	10.4.1 Application Programming Models
	Direct Context Management: Explicit Propagation
	Indirect Context Management: Implicit Propagation
	Indirect Context Management: Explicit Propagation
	Direct Context Management: Implicit Propagation

	10.4.2 Interfaces
	Table�10�1 Use of Transaction Service Functionalit...

	10.4.3 Checked Transaction Behavior
	10.4.4 X/Open Checked Transactions
	Reply Check
	Commit Check
	1. The commit request for the transaction is being...
	2. The client issuing commit has received replies ...

	Resume Check

	10.4.5 Implementing a Transactional Client: Heuris...
	10.4.6 Implementing a Recoverable Server
	Recoverable Object
	Resource Object
	Reliable Servers

	10.4.7 Application Portability
	Flat Transactions
	X/Open Checked Transactions

	10.4.8 Distributed Transactions
	10.4.9 Applications Using Both Checked and Uncheck...
	10.4.10 Examples
	A Transaction Originator: Indirect and Implicit
	Transaction Originator: Direct and Explicit
	Example of a Recoverable Server
	Example of a Transactional Object

	10.4.11 Model Interoperability
	Importing Transactions
	Figure�10�3 X/Open Client
	Figure�10�4 X/Open Server

	Exporting Transactions
	Figure�10�5 Sample Transaction Managed by the Tran...

	Programming Rules

	10.4.12 Failure Models
	Transaction Originator
	Local Failure
	External Failure

	Transactional Server
	Local Failure
	External Failure

	Recoverable Server

	10.5 The Implementers’ View
	1. “Transaction Service Protocols” on page�10�49 d...
	2. “ORB/TS Implementation Considerations” on page�...
	3. “Model Interoperability” on page�10�67 describe...
	10.5.1 Transaction Service Protocols
	General Principles
	1. The protocol defined by this specification is a...
	2. Resource objects—including subordinate coordina...
	3. The prepare operation is issued at most once to...
	4. Participants must remember heuristic decisions ...
	5. A coordinator knows which Resource objects are ...
	6. A participant should be able to request the out...
	7. Participants should be able to report the compl...

	Normal Transaction Completion
	Coordinator Role
	One Phase Commit
	Subtransactions
	Recoverable Server Role
	Synchronization Registration
	Top-Level Registration
	Subtransaction Registration
	Top Level Synchronization
	Top-Level Completion
	1. Returning VoteCommit to prepare
	2. Returning VoteRollback to prepare
	3. Returning VoteReadOnly to prepare

	Subtransaction Completion
	Subordinate Coordinator Role
	Synchronization
	Registration
	Subtransaction Registration
	Top-level Completion
	Subtransaction Completion
	Subordinate Coordinator
	Subtransactions

	Failures and Recovery
	Failure Processing
	Local Failure
	External Failure

	Transaction Completion after Failure
	Resources
	Heuristic Reporting
	Coordinator Role
	Synchronizations
	Subtransactions
	Recoverable Server role
	If No Heuristic Decision is Made
	When a Heuristic Decision is Made
	Subordinate Coordinator Role

	10.5.2 ORB/TS Implementation Considerations
	Transaction Propagation
	Interposition
	Subordinate Coordinator Synchronization
	Subordinate Coordinator Registration

	Transaction Service Interoperation
	Structure of the Propagation Context
	otid_t
	TransIdentity
	coord
	term
	otid
	timeout
	<TransIdentity> parents
	implementation_specific_data
	Appearance of the Propagation Context in Messages

	Transaction Service Portability
	1. An additional ORB interface that allows the Tra...
	2. A collection of Transaction Service operations ...
	Identification of the Transaction Service to the O...
	NotAvailable
	AlreadyIdentified
	identify_sender
	identify_receiver
	The Transaction Service Callbacks
	ReqId
	Sender::sending_request
	Sender::received_reply
	Receiver::received_request
	Receiver::sending_reply
	Behavior of the Callback Interfaces
	Requirements on the ORB
	Requirements on the Transaction Service

	10.5.3 Model Interoperability
	Figure�10�6 Model Interoperability Example

	10.6 The CosTransactions Module
	10.6.1 The CosTSPortability Module

	Appendix A Relationship of Transaction Service to ...
	A.1 Support of X/Open TX Interface
	A.1.1 Requirements
	A.1.2 TX Mappings
	Table 10�2 TX mappings
	tx_open
	tx_close
	tx_begin
	tx_rollback
	tx_commit and tx_set_commit_return
	tx_set_transaction_control
	tx_set_transaction_timeout
	tx_info

	A.2 Support of X/Open Resource Managers
	A.2.1 Requirements
	A.2.2 XA Mappings
	Table 10�3 XA mappings

	A.2.3 XID
	Figure 1�7 X/Open XID
	Model
	Propagation of a Transaction to an RM
	First phase of Commitment
	Second Phase of Commitment
	One-phase commitment
	Rollback
	Recovery
	Failure of an Operation
	Failure of an RM
	Failure of Transaction Service

	A.3 Interoperation with Transactional Protocols
	A.3.1 Transactional Protocols
	A.3.2 OSI TP Interoperability
	OSI TP Transaction Identifiers
	Incoming OSI TP Communications (Imported Transacti...
	Outgoing OSI TP Communications (Exported Transacti...

	A.3.3 SNA LU 6.2 Interoperability
	LU 6.2 Transaction Identifiers
	Incoming LU 6.2 Communications
	Outgoing LU 6.2 Communications
	ODMG Standard

	A.4 ODMG Model
	Integration of ODMG ODBMSs with the Transaction Se...

	Appendix B Transaction Service Glossary
	B.1 TransactionTerms

