
A W h i t e P a p e r

R e l i a b l e
Q u e u i n g U s i n g
B E A T U X E DO®

M a y 1 9 9 6

E n t e r p r i s e M i d d l e w a r e S e r i e s

Copyright © 1996 by BEA Systems, Inc. (BEA), 385 Moffett Park Drive, Suite 105, Sunnyvale, CA
94089-1208, USA.

BEA and BEA TUXEDO are trademarks of BEA Systems, Inc. (BEA). All other trademarks are the
p ro p e rty of their respective owners.

All rights re s e rved. No part of this publication may be re p roduced, photocopied, stored on a
retrieval system, or transmitted without the express prior written consent of the publisher.
All specifications subject to change without notice.

P re v i e w

This paper describes the benefits of reliable queuing as a communication paradigm for building
distributed business applications. As an alternative to on-line re q u e s t / response communication, re l i-
able queuing allows business applications to communicate through the use of stable-storage queues
in an asynchronous or time-independent manner. BEA TUXEDO offers such a reliable queuing
mechanism. Its main features and benefits are presented here .

1

2

I n t roduction: On-Line Versus Queuing. 4

How Queuing Can Help in a Computerized System. 4

Work Flow . 4

Unavailable Systems. 5

Overloaded Systems. 6

Cheaper Fault-To l e r a n c e . 6

Characteristics of a Good Queuing System . 6

F e a t u res of BEA TUXEDO Queuing. 7

Queuing as an Extension of BEA TUXEDO. .7

Basic Queuing . 8

Advanced Queuing: Control Inform a t i o n. 9

Time Release. 9

Priorities. 9

Reply and Failure Queues. 10

Correlation Identifiers. 10

Advanced Queuing: Queue Ordering . 10

O rdering Overr i d e s . 11

The Effect of Tr a n s a c t i o n s . 11

Queuing Meets On-Line . 12

C o n c l u s i o n . 12

C o n t e n t s

3

4

1 . I n t ro d u c t i o n : On-Line Versus Queuing
When a company sends a customer a bill via mail, the company does not re q u i re the person to

be at home when the bill is put in the mail. Neither does the postal service re q u i re that the person be
at home when the bill is delivered. Likewise, when the person who receives the bill sends a payment,
he does not re q u i re that the company actually be open for business on the day the payment is sent.
On the other hand, prior to the advent of answering machines, telephone conversations demanded
that the person called (the “callee”) answer the phone before anything meaningful could happen.
Answering machines changed the re q u i rement that the callee be available. Instead one could leave a
message, which was heard later. Sometimes, leaving a message is unsatisfactory, because the caller
re q u i res information immediately from the callee. The important point is that sometimes communi-
cation demands that the communicating parties both be simultaneously available at the time commu-
nication takes place. Other communications may take place without the simultaneous availability of
the two part i e s .

In the case when both parties must be available, we say that the communication is synchro n o u s ,
immediate or on-line. When the parties communicate by leaving messages, we say that the communi-
cation is asynchronous. Asynchronous communication re q u i res that messages be left somewhere. In
the case of mail, the message is left in your mail box. In the case of an answering machine, the mes-
sage is left on the re c o rding medium of the machine.

In computer systems, software modules may also demand that a partner be available, or perh a p s
may communicate via messages. Ty p i c a l l y, a partner must be available when the caller needs some
immediate information (e.g., a customer re c o rd), or re q u i res that some immediate action be taken
(e.g., printing out a bill to give to a waiting customer). When modules communicate via messages,
the place the messages are held while awaiting “pick up” are called message queues. These queues
a re storage areas, either in main memory or on disk. Main memory queues eliminate the overhead of
disk writing, but have the potential for loss should the computer stop operation before the intended
t a rget retrieves from them. Disk-based queues have the advantage that messages can be stored re l i-
ably while machines or networks are down. The price for this reliability is the extra cost of writing
messages to, and reading them from, disk.

1.1 How Queuing Can Help in a Computerized System

T h e re are many places in a business process where queuing messages is useful. Business pro c e s s e s
that use queuing do so because their tasks are accomplished asynchronously (i.e., without knowledge
of whether “downstream” systems are available, or when they might be ready to process messages).

T h roughout this paper, we will use the example of a mail order firm, named Acme Clothing, or
just AC, to illustrate the use of queuing. This section provides some examples.

1.1.1 Work Flow

Many business tasks consist of a series of steps to perf o rm a job. Each step takes some input,
modifies the business (e.g., adds a customer’s name to a database), and generates some outputs for
subsequent processes. In a simple case, this is what e-mail systems do. An initial message is generated
and sent to a worker. The worker reads it, takes some action, and either replies or passes it on to a
c o - w o r k e r. The process is repeated until everything connected with the initial stimulus is completed.
Another example, on a larger scale, replaces individual workers by whole computer systems. That is,
work comes into a system and is put on a work queue. It is processed by software in that system and
subsequently put onto the queue of the next system. The process repeats until all of the business
functions associated with the initial input are completed.

R e l i a b l e Q u e u i n g U s i n g B E A T U X E D O®

For example, when a new customer orders merchandise from AC by phone, the AC customer
re p resentative uses the AC Customer Interface System (CIS) to create an entry for the customer and
take the customer’s ord e r. Once the order is taken, the following actions are perf o rmed by the CIS
s o f t w a re :

• notification of SHIPSYS, the AC shipping system,to send the merchandize to the customer,

• notification of CATALOGSYS, AC’s in-house catalog system, of the customer’s identity, so a
c u rrent catalog is mailed,

• send a request for payment to CREDITCO, the customer’s credit card company, and

• send a notice to GIFTCO, the company AC has contracted with to send a new customer a
“ Welcome Customer Gift”.

F i g u re 1 shows the relationship of these systems, with work flowing from CIS to them. Note that
it may not be possible to complete a number of these work items while, or immediately after, the
o rder is taken by CIS. For example, whereas AC is open 24 hours a day, the GIFTCO’s system may
only be operational from 8am to 5pm. Thus, Figure 1 shows that the work destined for these other
systems is sent to stable-storage message queues for later processing by the receiving systems.

1.1.2 Unavailable Systems

Many times information needs to flow to a system and the system is not available. It may not be
possible, cost effective, or necessary to have it available all the time. In this case, queuing can be used
to buffer up inputs to the downstream system and submit them when it becomes available. As pre v i-
ously mentioned, this is the case with GIFTCO, whose operational hours are not the same as those of
AC. CREDITCO, on the other hand, is supposed to be on-line 24 hours a day. Sometimes, however,
the CREDITCO system is brought down for maintenance, which doesn’t correspond to the AC
maintenance schedule. Because AC likes immediate payment from CREDITCO for customer pur-
chases, requests to CREDITCO for payment are immediately attempted by CIS. If CREDITCO is
o ff-line for maintenance, CIS puts the requests for payment in a queue, and submits them as soon as
CREDITCO comes back on-line.

5

F i g u re 1. Work Flow at Acme Clothing

6

1.1.3 Overloaded Systems

Sometimes the downstream system cannot process inputs as fast as they are generated by the
u p s t ream system. Reasons for this include the following:

• the downstream system runs on a less powerful computer,

• the downstream system shares a computer with other tasks, or

• the downstream processing is more complicated than the upstream system.

If the mismatch in processing capability between the upstream and downstream system is tempo-
r a ry, queues can be used as a buffer between the two systems. Assuming that the queues don’t over-
f l o w, information can move between the systems. Suppose, for example, that during the daytime of
peak holiday season, AC customer re p resentatives can create shipping orders faster that the shipping
d e p a rtment can satisfy them. During the night hours, customer requests decline, and the shipping
d e p a rtment can “catch up”. To accommodate this scenario, AC uses queues to buffer the flow of
i n f o rmation from CIS to SHIPSYS.

1.1.4 Cheaper Fault-To l e r a n c e

G e n e r a l l y, businesses would like to insure that their systems always complete their work, and are
always available. Tr a d i t i o n a l l y, this is achieved by expensive fault-tolerant systems. The expense usu-
ally comes from the replication of hard w a re. Using queuing, it is possible to achieve the desire d
results by only replicating part of the system. The idea is the following:

• c a p t u re the input on a fault-tolerant sub-system, and put the remainder
of the system onnon-fault-tolerant hard w a re ,

• if the remainder of the system (on non-fault-tolerant hard w a re) is available, send the message on,

• if the remainder of the system is unavailable, save the message until it becomes available
and then submit it.

The important thing is that the system can always accept work, and gives the promise of eventu-
ally processing it. In the case of AC, the company always wants customers to be able to place ord e r s ,
24 hours a day. To do this, AC uses fault-tolerant computers to run CIS, while it uses less expensive
computers to run SHIPSYS. The issues in deferring processing are a bit tricky. Generally, you want
to be guaranteed that the queued work is eventually processed. But you may not want the work
p rocessed more than once. In the case of AC, it is willing to defer processing of the shipping re q u e s t
if the computer running SHIPSYS goes down, but it also wants to be sure that any particular order is
shipped exactly once, even if the shipping computer fails in the middle of the transfer of the shipping
request from the CIS computer to SHIPSYS computer. That is, if the downstream system comes up,
s t a rts processing, but fails in the middle, you want to resubmit the message until the down- stre a m
system “gets it right”. AC, whose company motto is “We Really Deliver!” wants to make sure that
its customers get what they pay for! But AC also wants to ensure that SHIPSYS doesn’t process any
message more than once. We describe techniques to ensure the processing of a message exactly once
later in this paper.

2. Characteristics of a Good Queuing System
Users of queuing systems include:

• Application programmers who write programs that use queues.

• Administrators who configure and monitor queues and applications
that access queues.

• End users who use applications that access queues.

Each user has his or her own re q u i rements. The application programmer needs a simple b u t
p o w e rful interface to manipulate items in the queue. At the simplest level, the operat i o n s a re to put an
item into a queue (i.e., enqueue a message) or to get one out (i.e., dequeue a message). We take for
granted that the queuing system works in a distributed environment. That is, access to queues may be
remote from the machine on which the queue resides. In part i c u l a r, details of where the queue re s i d e s ,
and whether or not the machine it resides on is of the same kind as the enqueuer or dequeuer s h o u l d
be hidden. The programmer should be able to concentrate on the application using the queuing sys-
tem, not make up for deficiencies in the queuing system itself. Since the purpose of a queuing system
is to store and make available stored messages, this it should do reliably and eff i c i e n t l y.

An important aspect of using a queuing system is when to remove an item from a queue. That is,
should an item be removed immediately when a program dequeues it? What happens if just after
dequeuing the message, the computer fails? Then the message has been dequeued but never pro c e s s e d .
For some types of applications this may be tolerable, but for others it may be a disaster. What one
would really like is to have a message removed when the dequeuer is finished processing it. But we
also want to be careful not to process a message multiple times.

The natural way to handle messages put in a queue is that the first message put into the queue is
the first message taken out (this is called “First-In, First-Out”, or simply “FIFO”). For example, if a
queue is being used to hold customer requests for tickets, and the tickets are being sold on a “first-
c o m e - f i r s t - s e rved” basis, the queue should be accessed in FIFO ord e r. But applications may need other
dequeuing orders as well. Perhaps the most recent message put into a queue is the most import a n t
one to be read. AC honors customer requests for expedited service. To do this, AC customer reps use
CIS to mark certain shipping requests as high priority. SHIPSYS, in turn, accesses the queue it re c e i v e s
f rom CIS in priority ord e r.

An important user of the queuing system is the system administrator. This person needs the tools
to be able to create, monitor, re-prioritize, extend, and otherwise oversee the queues. So, easy-to-use
administrative tools, including administrative program interfaces (for customization) are needed.

End users of computers systems that use queuing re q u i re systems that efficiently accept and
p rocess their requests, guarantee delivery of messages, provide assurance that messages are pro c e s s e d
exactly once, and work in a mixed-vendor environment. Because the AC company uses such a sys-
tem, its customer re p resentatives can offer superior service (“expedited processing”) and never have
to explain why an order was not delivered or delivered multiple times. AC customer reps are always
doing new business for AC!

3. Features of BEA TUXEDO Queuing

3.1 Queuing as an Extension of BEA TUXEDO

A major advantage of BEA TUXEDO is that it provides several simple yet powerful communica-
tion tools[1] , one of which is its reliable queuing feature known as /Q. These tools make writing
distributed applications simpler by hiding hard w a re and networking details from application pro-
grammers. Thus, programmers can concentrate on writing their application rather than worry i n g
about h o w p rograms communicate with each other.

7

8

One of BEA TUXEDO’s features that makes it easier to write distributed programs is “typed
b u ffers”. Typed buffers are used by programs to send data among themselves as well as to and fro m
BEA TUXEDO queues. A typed buffer is a data stru c t u re that not only contains application data but
also information about that data. This information allows BEA TUXEDO to perf o rm data format con-
versions t r a n s p a rently as data moves to programs or queues residing on systems having diff e rent data
re p resentation formats. The advantage of typed buffers is that application data can be sent “as is”.

P rograms using BEA TUXEDO /Q place their application data in typed buffers which then
become the messages stored reliably in disk-based queues. When a program retrieves a message
f rom a queue, it receives the message in the form of a typed buff e r.

3.2 Basic Queuing

For the application pro g r a m m e r, the API of /Q is both simple and powerful, consisting of
two functions:

• tpenqueue - which puts a message in a queue, and

• tpdequeue - which takes a message from a queue.

Queues are addressed by simple string names, like “PAYMENT_QUEUE”, and the name of the
queue is one of the parameters of both tpenqueue and tpdequeue. But how does the queue get there
in the first place? Queues are setup by the BEA TUXEDO administrator who defines the queues and
how much space each is to contain. More o v e r, queues are gathered into a collection called a queue
space. The name of the queue space is also a parameter of tpenqueue and tpdequeue. To send a mes-
sage one calls tpenqueue and supplies:

• the name of the queue space,

• the name of the queue,

• the message (i.e., the typed buffer) to be enqueued and its length,

• parameters controlling the delivery of the message, and

• flags controlling the operation of tpenqueue.

as in:

tpenqueue(queuespace, queuename, control_info, message, len, flags);

For example, one might call:

message = tpalloc(“STRING”, NULL, 500); /* allocate a typed buffer */
s t rcpy(message, payment_re c o rd); /* put data into typed buffer */
tpenqueue(“CIS”, “PAYMENT_QUEUE”, control_info, message, len, flags);

to send a payment re c o rd message to the PAYMENT_QUEUE. Likewise, to dequeue a message one
calls tpdequeue, pro v i d i n g :

• the name of the queue space,

• the name of the queue,

• options to control the dequeuing,

• a typed buffer into which to receive the message and its length, and

• flags controlling the operation of tpdequeue.

as in:
tpdequeue(queuespace, queuename, control_info, message, len, flags);

For example, to read the message enqueued above, CIS could run a program that calls:
/* get a typed buffer for receiving dequeued message into */

message = tpalloc(“STRING”, NULL, 500);

tpdequeue(“CIS”, “PAYMENT_QUEUE”, control_info, &message, &len, flags);

Note that this API is quite powerful and simple. Nowhere does the programmer specify the location
of the queue, or have to provide any extra code to convert the message to diff e rent machine re p re-
sentations. BEA TUXEDO perf o rms all these functions transpare n t l y.

3.3 Advanced Queuing: Control Inform a t i o n

E v e ry message enqueued has some control information associated with it. Most of this inform a-
tion is set by the application (e.g., the name of the reply queue), but some of the information is set
by the BEA TUXEDO queuing software directly (e.g., the unique message identifier assigned to each
enqueued message).

3.3.1 Time Release

When enqueuing a message, it is possible for the enqueuer to specify that the message not be
dequeued until after some time. This time may either be absolute (e.g., 2am on January 7th), or re l a-
tive to the time of enqueuing (e.g., five hours from now). Programs attempting to dequeue messages
whose “time has not yet come” don’t see them, even though the messages are in the queue.

This feature may be used, for example, by AC when it wishes to distribute price lists in advance
of the time the prices become effective. CIS simply enqueues the prices in advance and specifies the
dequeuing time as the absolute time the prices are to become effective. Thus, a dequeuing pro g r a m
whose purpose is to update prices as issued by AC, won’t see any price updates until the eff e c t i v e
time, whereupon the price messages will become available, and the program will dequeue them and
post the new prices. The way to specify time delay is to manipulate the control stru c t u re, which is
the third parameter to tpenqueue and tpdequeue. For example, to specify that a message is not to be
dequeued for one hour (3600 seconds) after it is enqueued, one would code:

c o n t rol_info->deq_time = 3600; /* no dequeues until 3600 seconds from now */

c o n t rol_info->flag = TPQTIME_REL; /* indicates that a relative time value is set */

prior to calling tpenqueue.

3.3.2 Priorities

Messages can be assigned priorities. The priority given to a message determines where it is placed
on the queue relative to other messages. Messages with higher priorities are placed closer to the head
of the queue so that they are dequeued before messages with lower priorities.

Usually mail order companies like AC offer their customers the choice of regular or expre s s
shipping where the customer pays a premium for overnight delivery. When CIS enqueues orders to

SHIPSYS, it marks those items for immediate delivery with a higher priority than those being sent
via regular shipping. By doing so, SHIPSYS ensures that it dequeues those items that must be sent
out immediately before retrieving any other orders. On enqueuing a message, /Q’s control stru c t u re
allows a message to be given a priority between 1 and 100, inclusive, where 100 is the highest priority.
Thus, for CIS to enqueue an order that is to be delivered overnight, one would code:

c o n t rol_info->priority = 100; /* set the enqueuing priority to the highest level */

9

10

c o n t rol_info->flag = TPQPRIORITY; /* indicates that a priority value is set */

prior to calling tpenqueue.

3.3.3 Reply and Failure Queues

B e f o re enqueuing a message, a program can name two queues, a reply queue and a failure
queue, that should be used by downstream programs that encounter the message. When a message is
dequeued, these two queue names indicate where reply or error messages generated as a result of
p rocessing the original message should be enqueued.

For example, when CIS enqueues a payment request to CREDITCO, it can name a reply queue
w h e re a positive acknowledgement of payment should be enqueued. In addition, it can name a fail-
u re queue that CREDITCO can use if it encounters an error processing the payment request. In the
event that an AC customer re p resentative incorrectly types a credit card number that CREDITCO
cannot process, CREDITCO could enqueue a “verify card number” message on CIS’ failure queue.

3 . 3 . 4 C o rrelation Identifiers

Applications can assign “tags” to messages such that they can be identified as they move fro m
queue to queue and processed by diff e rent parts of the application. These tags are called “corre l a t i o n
identifiers”. One use of correlation identifiers is to correlate request messages with replies. That is, a
message can be assigned a correlation identifier before it is enqueued on the application’s re q u e s t
queue. The program dequeuing the request message will process the message and attach that mes-
s a g e ’s correlation identifier to the reply message that it generates. It then places the reply message on
the application’s reply queue. By doing so, the reply message is identified as being a reply for the
request message that had the same correlation identifier.

One way CIS could use correlation identifiers is to track orders as they “move” through the sys-
tem. That is, when a customer places an ord e r, a unique number is generated that identifies the ord e r.
When SHIPSYS actually sends out an ord e r’s merchandise, it enqueues a message to CIS. This mes-
sage contains as its correlation identifier the order number as well as other information about how
the merchandise was sent. CIS periodically runs batch jobs that read messages from this queue and
uses the correlation identifier to locate each ord e r’s re c o rd and updates its status. By doing so, AC
customer re p resentatives have up-to-date information on every ord e r. A customer can be told exact-
ly when an order was shipped, which courier was used, and when it should arrive at its destination.

3.4 Advanced Queuing: Queue Ord e r i n g

By default, messages are enqueued in the order specified by the administrator when a queue is
c reated and dequeued in FIFO ord e r. Recognizing that sometimes messages are not intended for
immediate processing, and that orderings other than FIFO are needed, BEA TUXEDO provides a
rich set of facilities for control of this type. These include the following capabilities:

• the ability to put messages into the queue in priority ord e r,

• the ability to put messages into the queue in time ord e r, and

• the ability to put messages into a queue in either FIFO or LIFO
(i.e., “Last-in, First-out”) ord e r s .

The administrator can use combinations of the above orderings such that there can be up to
t h ree ordering criteria per queue. For example, a queue could be defined to have time as its primary,
priority as its secondary, and FIFO as its final ordering criterion. Such a queue would be arr a n g e d

first in time ord e r, with messages having the same time release arranged in priority ord e r, with mes-
sages having the same time and the same priority sorted in FIFO ord e r.

3.4.1 Ordering Overr i d e s

Even though a queue has been defined to have a particular queue ordering, sometimes an appli-
cation needs to override this ordering. The BEA TUXEDO queuing facility lets administrators con-
f i g u re queues such that programs enqueuing messages can override the assigned ord e r i n g . The two
o u t-o f-o rder features are :

• The ability to place a message at the head of a queue, thus “jumping ahead” of all other enqueued
messages. In the case where a queue was configured to support only FIFO ordering, this over-
ride option allows for the expedited handling of messages placed at the head of the queue.

• The ability to put a message in a queue ahead of a specified message.

Queue administrators have the option of deciding that enforcing queue ordering is important to
the fairness of the application and not allow for ordering overrides. For example, a brokerage appli-
cation that enqueues market orders might configure its queues to have strict FIFO ordering such that
customers’ orders are sent to the market only in the order they arr i v e .

3.5 The Effect of Tr a n s a c t i o n s

A transaction is a method to make sure that a number of operations are either all perf o rmed, or
none of them are perf o rmed. Transactions are usually used to ensure that multiple updates to data-
bases are all effected. Such updates may be within a single database system, or may be spread acro s s
multiple database systems. For example, if money is to be transferred from a savings to a checking
account, two re c o rds may have to be updated: the savings account balance in the savings account
re c o rd should be decreased by the amount being transferred and the checking account balance in the
checking account re c o rd should be increased by the same amount. The desired effect is that both bal-
ances be updated. It is highly undesirable for one balance to be updated but not the other.

Suppose neither the checking nor savings accounts are on-line at the time someone wants to make
a transfer. The system could still enqueue messages to both systems. But it would like to ensure that
both messages are enqueued. To do this, the system must ensure that the systems holding the messages
a re coordinated. This BEA TUXEDO does. In fact, it can coordinate the update of a queue with the
update of any other queue and the update of any database system. What happens if one of the mes-
sages can be put in its target queue but the other message can’t be enqueued? In this case, the pro g r a m-
m e r calls the rollback function, and no messages are enqueued whatsoever. That is, a message is not
really enqueued until the “commit point” of the transaction it is in is completed by a successful call
to the commit operation.

Remember the problem we posed before about ensuring that an enqueued message is pro c e s s e d
exactly once? The transactional pro p e rties of message queues help solve it. When a message is dequeued
by a program using tpdequeue, the message is only removed from the queue if the dequeuer’s trans-
action commits. If the transaction is rolled-back, or times-out, the message is left in the queue. Thus
it will be processed again. Because the message is left in the queue as a result of the non-commitment
of its enclosing transaction, all of the databases updated as a result of that transaction are also undone.
That is, when the transaction is rolled back, not only is the message left in the queue, but the eff e c t s
of processing it are undone. It is as if the message were never dequeued in the first place. So when it

11

12

is subsequently re-dequeued, it can be processed without fear of it already having been processed. In
e ffect the system guarantees that it is processed exactly once!

4. Queuing Meets On-Line
Of course, it is possible for applications to use both synchronous and asynchronous communica-

tions. For example, an application may accept data from an input device, update some database, and
enqueue work for a downstream system. It processes some of the data “now” and schedules some for
l a t e r. Moreover the system can conditionally do either. For example, upon accepting work, the system
may try to invoke parts of the application immediately (i.e., on-line). If those parts of the application
a re unavailable, it may be possible to queue the request for them. Thus, if the system can process the
request on-line, it does so. If parts of the application can’t be accessed, it queues data for them.

A BEA TUXEDO application written to try on-line processing before failing over to a re l i a b l e ,
s t a b l e-storage queue to capture requests might look something like:

re q u e s t->acct = acct_no; /* Populate request buffer with account...*/

re q u e s t->amt = amount; /* ...and amount information for payment request */

/* Send the request to the on-line service named “RequestPayment” */

if (tpcall(“RequestPayment”, request, req_len, &re p l y, &reply_len, 0) == -1) {

/* The call failed; check error codes */

s w i t c h (t p e rrno) {case TPENOENT: /* The service is not available; fall-through to next case... */

case TPETIME: /* The service timed-out; probable cause: a network failure */

tpenqueue(“CIS”, “PAYMENT_QUEUE”, qctl, request, req_len, 0);

b reak; ...}}

5. Conclusion
A s y n c h ronous communication via queuing systems is a powerful tool to model real-world work

flow and to overcome a variety of situations where it is not possible for cooperating systems to be
immediately available for each other. BEA TUXEDO provides a feature-rich queuing system that can
be used in an integrated fashion with its other distributed features to provide superior on-line and
queuing software to build robust synchronous and asynchronous business applications.

R e f e re n c e s
1 BEA Systems, Inc., “Programming a Distributed Application: The BEA TUXEDO Approach”,
BEA TUXEDO White Paper.

BEA Systems, Inc., focuses on providing customers with the products and services necessary to build, deploy, and maintain
distributed OLTP applications—without losing access to their legacy information systems. The BEA enterprise middleware
solutions include core transaction processing (TP) monitor technology and components of an advanced distributed applica-
tion framework. The BEA product family provides an infrastru c t u re to enable scalable, flexible, and maintainable thre e -
tier applications.

13

BEA Systems, Inc. (BEA), 385 Moffett Park Drive, Suite 105, Sunnyvale, CA 94089-1208, USA.

