
Table of Contents

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
vi

A CLASS RTI::RTIAMBASSADOR

A.1 FEDERATION MANAGEMENT

A.1.1 createFederationExecution()..A.1-1
A.1.2 destroyFederationExecution() ..A.1-3
A.1.3 federateRestoreComplete()...A.1-4
A.1.4 federateRestoreNotComplete() ...A.1-5
A.1.5 federateSaveBegun()..A.1-6
A.1.6 federateSaveAchieved()..A.1-8
A.1.7 federateSaveComplete() ...A.1-9
A.1.8 federateSaveNotAchieved() .. A.1-10
A.1.9 federateSaveNotComplete().. A.1-11
A.1.10 joinFederationExecution() ... A.1-12
A.1.11 pauseAchieved()... A.1-14
A.1.12 registerFederationSynchronizationPoint().. A.1-15
A.1.13 requestFederationRestore().. A.1-17
A.1.14 requestFederationSave() .. A.1-19
A.1.15 requestPause()... A.1-21
A.1.16 requestRestore()... A.1-22
A.1.17 requestResume() .. A.1-23
A.1.18 resignFederationExecution().. A.1-24
A.1.19 restoreAchieved()... A.1-25
A.1.20 restoreNotAchieved() ... A.1-26
A.1.21 resumeAchieved() .. A.1-27
A.1.22 synchronizationPointAchieved() ... A.1-28

A.2 DECLARATION MANAGEMENT

A.2.1 publishInteractionClass()...A.2-1
A.2.2 publishObjectClass()..A.2-2
A.2.3 subscribeInteractionClass() ...A.2-4
A.2.4 subscribeObjectClassAttribute()...A.2-6
A.2.5 subscribeObjectClassAttributes() ...A.2-8
A.2.6 unpublishInteractionClass() ... A.2-10
A.2.7 unpublishObjectClass().. A.2-11
A.2.8 unsubscribeInteractionClass().. A.2-13
A.2.9 unsubscribeObjectClass() .. A.2-14
A.2.10 unsubscribeObjectClassAttribute() ... A.2-15

A.3 OBJECT MANAGEMENT

A.3.1 changeAttributeTransportType() ..A.3-1
A.3.2 changeInteractionTransportType()...A.3-3
A.3.3 deleteObject() ..A.3-4
A.3.4 deleteObjectInstance() ...A.3-5
A.3.5 localDeleteObjectInstance()...A.3-7
A.3.6 registerObject() ...A.3-8
A.3.7 registerObjectInstance() ..A.3-9
A.3.8 requestClassAttributeValueUpdate() .. A.3-11
A.3.9 requestID() .. A.3-12
A.3.10 requestObjectAttributeValueUpdate()... A.3-13
A.3.11 sendInteraction() ... A.3-14
A.3.12 updateAttributeValues() ... A.3-16

A.4 OWNERSHIP MANAGEMENT

A.4.1 attributeIsOwnedByFederate() ...A.4-1
A.4.2 attributeOwnershipAcquisition() ..A.4-2
A.4.3 attributeOwnershipAcquisitionIfAvailable() ...A.4-4
A.4.4 attributeOwnershipReleaseResponse() ...A.4-5
A.4.5 cancelAttributeOwnershipAcquisition()..A.4-6
A.4.6 cancelNegotiatedAttributeOwnershipDivestiture()..A.4-8
A.4.7 isAttributeOwnedByFederate()...A.4-9

Table of Contents

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
vii

A.4.8 negotiatedAttributeOwnershipDivestiture() .. A.4-10
A.4.9 queryAttributeOwnership() .. A.4-12
A.4.10 requestAttributeOwnershipAcquisition()... A.4-14
A.4.11 requestAttributeOwnershipDivestiture() ... A.4-16
A.4.12 unconditionalAttributeOwnershipDivestiture() ... A.4-18

A.5 TIME MANAGEMENT

A.5.1 changeAttributeOrderType() ..A.5-1
A.5.2 changeInteractionOrderType()...A.5-3
A.5.3 disableAsynchronousDelivery()..A.5-5
A.5.4 disableTimeConstrained()..A.5-6
A.5.5 disableTimeRegulation() ..A.5-7
A.5.6 enableAsynchronousDelivery()...A.5-8
A.5.7 enableTimeConstrained()...A.5-9
A.5.8 enableTimeRegulation()... A.5-11
A.5.9 flushQueueRequest() .. A.5-13
A.5.10 modifyLookahead() .. A.5-15
A.5.11 nextEventRequest() .. A.5-16
A.5.12 nextEventRequestAvailable().. A.5-18
A.5.13 queryFederateTime() ... A.5-20
A.5.14 queryLBTS() .. A.5-21
A.5.15 queryLookahead().. A.5-22
A.5.16 queryMinNextEventTime() ... A.5-23
A.5.17 requestFederateTime()... A.5-24
A.5.18 requestFederationTime().. A.5-25
A.5.19 requestLBTS().. A.5-26
A.5.20 requestLookahead() ... A.5-27
A.5.21 requestMinNextEventTime()... A.5-28
A.5.22 retract() ... A.5-29
A.5.23 setLookahead() .. A.5-30
A.5.24 setTimeConstrained()... A.5-31
A.5.25 timeAdvanceRequest().. A.5-32
A.5.26 timeAdvanceRequestAvailable() ... A.5-34
A.5.27 turnRegulationOff() ... A.5-36
A.5.28 turnRegulationOn().. A.5-37
A.5.29 turnRegulationOnNow()... A.5-38

A.6 DATA DISTRIBUTION MANAGEMENT

A.6.1 associateRegionForUpdates() ..A.6-1
A.6.2 createRegion() ...A.6-2
A.6.3 deleteRegion() ...A.6-3
A.6.4 notifyAboutRegionModification() ...A.6-4
A.6.5 registerObjectInstanceWithRegion()...A.6-5
A.6.6 requestClassAttributeValueUpdateWithRegion() ..A.6-7
A.6.7 sendInteractionWithRegion() ...A.6-9
A.6.8 subscribeInteractionClassWithRegion().. A.6-11
A.6.9 subscribeObjectClassAttributesWithRegion() ... A.6-13
A.6.10 unassociateRegionForUpdates() .. A.6-15
A.6.11 unsubscribeInteractionClassWithRegion().. A.6-16
A.6.12 unsubscribeObjectClassWithRegion()... A.6-17

A.7 TYPES AND ANCILLARY SERVICES

A.7.1 ~RTIambassador()...A.7-1
A.7.2 dequeueFIFOasynchronously() ..A.7-2
A.7.3 disableAttributeRelevanceAdvisorySwitch()..A.7-3
A.7.4 disableAttributeScopeAdvisorySwitch() ..A.7-4
A.7.5 disableClassRelevanceAdvisorySwitch()...A.7-5
A.7.6 disableInteractionRelevanceAdvisorySwitch() ..A.7-6
A.7.7 enableAttributeRelevanceAdvisorySwitch() ..A.7-7
A.7.8 enableAttributeScopeAdvisorySwitch() ...A.7-8

Table of Contents

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
viii

A.7.9 enableClassRelevanceAdvisorySwitch()..A.7-9
A.7.10 enableInteractionRelevanceAdvisorySwitch() ... A.7-10
A.7.11 getAttributeHandle() .. A.7-11
A.7.12 getAttributeName() .. A.7-12
A.7.13 getAttributeRoutingSpaceHandle() ... A.7-13
A.7.14 getDimensionHandle() ... A.7-14
A.7.15 getDimensionName() ... A.7-15
A.7.16 getInteractionClassHandle() .. A.7-16
A.7.17 getInteractionClassName()... A.7-17
A.7.18 getInteractionRoutingSpaceHandle().. A.7-18
A.7.19 getObjectClass() .. A.7-19
A.7.20 getObjectClassHandle() ... A.7-20
A.7.21 getObjectClassName() ... A.7-21
A.7.22 getObjectInstanceHandle()... A.7-22
A.7.23 getObjectInstanceName()... A.7-23
A.7.24 getOrderingHandle() ... A.7-24
A.7.25 getOrderingName().. A.7-25
A.7.26 getParameterHandle() ... A.7-26
A.7.27 getParameterName().. A.7-27
A.7.28 getRegion().. A.7-28
A.7.29 getRegionToken()... A.7-29
A.7.30 getRoutingSpaceHandle() .. A.7-30
A.7.31 getRoutingSpaceName()... A.7-31
A.7.32 getTransportationHandle()... A.7-32
A.7.33 getTransportationName()... A.7-33
A.7.34 RTIambassador() ... A.7-34
A.7.35 tick().. A.7-35

A Class RTI::RTIambassador

A.1 Federation Management

Federation Management createFederationExecution()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-1

A.1.1 createFederationExecution()

1RTI.0 �RTI 1.3
ABSTRACT

This method creates a named federation execution (FedExec) and
registers it with the RTI executive (RtiExec). The RTI 1.3 version
of this method has an additional argument for specifying the
FED file to use for the federation.

HLA IF SPECIFICATION
This method realizes the “Create Federation Execution” Federation
Management service as specified in the HLA Interface
Specification (§2.1 in version 1.1; §4.2 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

createFederationExecution (
const RTI::FederationExecutionName

executionName
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::FederationExecutionAlreadyExists,
RTI::RTIinternalError,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
void
RTI::RTIambassador::

createFederationExecution (
const char* executionName, ßß Changes Type Changes Type
const char* FED ßß RTI 1.3 Only RTI 1.3 Only

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederationExecutionAlreadyExists,
RTI::RTIinternalError

)

ARGUMENTS
executionName

string specifying the name of the FedExec to create

FED (RTI 1.3 Only)
filename in the directory specified by the RTI_CONFIG
environment variable from which to read the Federation
Execution Data (FED)

DESCRIPTION
A federate uses createFederationExecution() to create a
new federation executive (FedExec) process. [The FedExec is
frequently referred to as “the federation”. A FedExec is,
essentially, an active federation.] Once the FedExec completes its
initialization and informs the RTI Executive (RtiExec) of its
existence, it is possible for federates to begin joining the new
federation.

When createFederationExecution() completes, there is a
brief period before the FedExec is ready to accept joining
federates. As a result, an immediate call to
joinFederationExecution() will probably fail. Applications
should either (1) design a time delay between creating and
attempting to join a new federation or (2) call
joinFederationExecution() repeatedly until successful.

If several federates compete to create the FedExec, a race
condition results. The first federate to request the new federation
will succeed. Subsequent requests will encounter an exception.

RETURN VALUES
A non-exceptional exit from this method indicates that the RtiExec
has approved the creation of the named Federation and that the
corresponding FedExec has been forked.

A non-exceptional return does not guarantee that the federation has
been successfully created. Errors that occur in the initialization of
the FedExec (e.g. a bad path to the FedExec executable) are not
detected. Output from the FedExec is logged to the file
“Xterm.#####” (where ##### is a PID) in the current directory.
The log should be consulted when attempting to diagnose
problems with FedExec initialization.

WINDOWS® NT NOTES
The location of the executable that is forked to start the FedExec is
“%RTI_HOME%\bin\win32\fedex.exe”. Currently, output from
the FedExec is not logged on Windows NT.

UNIX® NOTES
The location of the script that launches the FedExec is
“$RTI_HOME/bin/fedex.sh”.

RELEASE NOTES
RTI 1.3

The FED-file argument to
createFederationExecution() is associated with the
federation in the RtiExec and communicated to joining
federates.

When migrating federates from RTI 1.0, derive the second
argument by appending the string “.fed” to the first argument.

The type of RTI 1.0 string arguments is typically const
Identifier, where Identifier is a typedef for char*. This
results in an effective type of char* const instead of the
desired const char*. In RTI 1.3 the typedefs have been
eliminated and the type of string arguments is just const
char*.

Note that the format of the RTI 1.3 FED file differs from the
RTI 1.0 FED file. Consult the programmer’s guide for
details.

RTI 1.0
The 1.0 implementation does not allow an application-defined
filename for FED information. The filename used is always
the federation name with the “.fed” extension.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederationExecutionAlreadyExists
A FedExec for the given Federation has already been
registered with the RtiExec. Note: FedExecs unregister with
the RtiExec upon termination. However, an abnormal
termination of a FedExec (e.g. a "kill -9") may result in a
defunct FedExec that remains registered. In such cases, it is
necessary to manually unregister the FedExec via the RtiExec
console.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

Federation Management createFederationExecution()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-2

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

destroyFederationExecution()

joinFederationExecution()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-3

A.1.2 destroyFederationExecution()

RTI 1.0 �RTI 1.3
ABSTRACT

This service unregisters a named federation and shuts down the
associated FedExec. The syntax of this method changes slightly
from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Destroy Federation Execution”
Federation Management service as specified in the HLA Interface
Specification (§2.2 in version 1.1; §4.3 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

destroyFederationExecution (
const RTI::FederationExecutionName

executionName
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::FederatesCurrentlyJoined,
RTI::FederationExecutionDoesNotExist,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
void
RTI::RTIambassador::

destroyFederationExecution (
 const char *executionName ßß Changes Type Changes Type
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederatesCurrentlyJoined,
 RTI::FederationExecutionDoesNotExist,
 RTI::RTIinternalError
)

ARGUMENTS
executionName

string specifying the name of the FedExec to destroy

DESCRIPTION
A federate uses destroyFederationExecution() to tear down
an FedExec. If the prerequisites for Federation destruction are met
(i.e. there are no federates joined to the Federation), the FedExec
notifies the RtiExec of its intention to shut down and then exits.

There are no restrictions on who may destroy the Federation. A
federate need not be the creator of the FedExec or even have been
a member of the FedExec.

RETURN VALUES
A non-exceptional return indicates that the FedExec has been
successfully destroyed.

NOTE ON TYPES
The type of RTI 1.0 string arguments is typically const
Identifier, where Identifier is a typedef for char*. This results
in an effective type of char* const instead of the desired const
char*. In RTI 1.3 the typedefs have been eliminated and the type
of string arguments is just const char*.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been

detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederatesCurrentlyJoined
There are still federates joined in the Federation. All federates
resigned (or be manually removed via the FedExec console)
before the FedExec can be destroyed. The FedExec
automatically removes non-existent federates from the
federation (even if they fail to resign properly). It shouldn't be
necessary to manually remove federates under normal
circumstances.

RTI::FederationExecutionDoesNotExist
The RTI does not have a FedExec registered for the named
Federation.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

createFederationExecution()

Federation Management federateRestoreComplete()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-4

A.1.3 federateRestoreComplete()

RTI 1.3
ABSTRACT

This service notifies the RTI that the federate has successfully
completed an attempted federate restoration. The semantics of
federation save and restore have changed substantially from
RTI 1.0 to RTI 1.3. This service was named restoreAchieved
in RTI 1.0; the 1.0 implementation is discussed in a separate
section.

HLA IF SPECIFICATION
This method (in conjunction with
federateRestoreNotComplete()) realizes the “Federate
Restore Complete” Federation Management service as specified in

the HLA Interface Specification (§4.20 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

federateRestoreComplete ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreNotRequested,
RTI::RTIinternalError

)

DESCRIPTION
A federate invokes federateRestoreComplete() to indicate
the successful completion of a restoration of federate-managed
state, as initiated by a initiateFederateRestore() callback.
The federate may not resume normal operation until it receives a
federationRestored() or federationNotRestored()
callback to indicate that the federation-wide restoration attempt has
concluded. In the interim, the federate must continue to tick()
the RTI so that synchronization messages may be processed.

The title of this method is something of a misnomer, as the method
indicates not only that the restoration completed, but that it
completed successfully.

RETURN VALUES
A non-exceptional return indicates that the LRC will notify the
federation of the completed restore and will restart the operation of
the federate when the remainder of the federation finishes
restoring.

MIGRATION NOTE
Note that under the RTI 1.0 semantics, the federate could continue
operation immediately after notifying the RTI of local restore
success/failure. In RTI 1.3, the federate must wait until the entire
federation has completed the (attempted) restoration before it may
continue.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreNotRequested
There is no outstanding request for a federate restoration.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::FederateAmbassador

initiateFederateRestore()

federationRestored()

federationNotRestored()

RTI::RTIambassador
federateRestoreNotComplete()

requestFederationRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-5

A.1.4 federateRestoreNotComplete()

RTI 1.3
ABSTRACT

This service notifies the RTI that the federate has completed an
attempted federate restoration, but without success. The semantics
of federation save and restore have changed substantially from
RTI 1.0 to RTI 1.3. This service was named
restoreNotAchieved in RTI 1.0; the 1.0 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method (in conjunction with
federateRestoreComplete()) realizes the “Federate Restore
Complete” Federation Management service as specified in the HLA

Interface Specification (§4.20 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

federateRestoreNotComplete ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreNotRequested,
RTI::RTIinternalError

)

DESCRIPTION
A federate invokes federateRestoreNotComplete() to
indicate the unsuccessful completion of a restoration of federate-
managed state, as initiated by a initiateFederateRestore()
callback. The federate may not resume normal operation until it
receives a federationNotRestored() callback to indicate that
the federation-wide restoration attempt has concluded. In the
interim, the federate must continue to tick() the RTI so that
synchronization messages may be processed.

The only special action taken by RTI 1.3 based on the fact that a
restore was not successful is that the
federationNotRestored() callback will be used to restart the
federates after the federation-wide restore is complete. Failure of
one federate to restore does not prevent the rest of the federation
from continuing to restore normally.

The title of this method is something of a misnomer, as it actually
indicates that the restoration has completed, only not successfully.

RETURN VALUES
A non-exceptional return indicates that the LRC will notify the
federation of the completed restore and will restart the operation of
the federate when the remainder of the federation finishes
restoring.

MIGRATION NOTE
Note that under the RTI 1.0 semantics, the federate could continue
operation immediately after notifying the RTI of local restore
success/failure. In RTI 1.3, the federate must wait until the entire
federation has completed the (attempted) restoration before it may
continue.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreNotRequested
There is no outstanding request for a federate restoration.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::FederateAmbassador

initiateFederateRestore()

federationNotRestored()

RTI::RTIambassador
federateRestoreComplete()

requestFederationRestore()

Federation Management federateSaveBegun()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-6

A.1.5 federateSaveBegun()

RTI 1.0 �RTI 1.3
ABSTRACT

This service informs the RtiExec that the calling federate has
begun saving its internal state as per an
initiateFederateSave() request. The syntax of this service
changes slightly between RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
Realizes the “Federate Save Begun” Federation Management
service as specified in the HLA Interface Specification (§2.13 in

version 1.1; §4.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

federateSaveBegun ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::SaveNotInitiated

)

// RTI 1.0 Only
void
RTI::RTIambassador::

federateSaveBegun (
 RTI::FederationTime theTime

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidFederationTime,
 RTI::RTIinternalError,
 RTI::SaveNotInitiated,
 RTI::UnimplementedService ßß RTI 1.0 Only RTI 1.0 Only
);

// RTI 1.3 Only
void
RTI::RTIambassador::

federateSaveBegun ()
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveNotInitiated
)

DESCRIPTION
A federate uses federateSaveBegun() to signal that it has
begun saving its state in compliance with an outstanding
initiateFederateSave() request. The federate is expected to
complete the save as soon as possible after the initiation of the
save. The federate is unable to advance in time (and therefore
receive time-stamp-ordered events) or utilize any other service that
would change the internal state of the RTI until the completion of
the save.

The federate should subsequently notify the RTI via
federateSaveComplete() on completion of a successful save or
federateSaveNotComplete() on completion of a failed save.
Currently, the RTI will save its internal state and then wait for all
federates to complete their saves.

The RTI is responsible for saving and restoring its internal state.
However, the RTI does not define a format or provide any facility
for federates to save their external state. It is up to the federation

developers to implement their own save and restore mechanisms.

RELEASE NOTES
RTI 1.0

In RTI 1.0, federateSave[Not]Complete() are named
federateSave[Not]Achieved().

Also in RTI 1.0, federate[Not]Achieved() block while
the LRC saves its internal state and waits for the federation-
wide save to complete.

RTI 1.3
The 1.3 implementation does not utilize this information in
any way; in fact, the federateSaveBegun() call may be
omitted entirely. However, federates should invoke this
service to assure compliance with all RTI implementations.

In RTI 1.3, federateSave[Not]Complete() do not block;
instead, the federate remains suspended until restarted by a
federation[Not]Saved() callback.

RETURN VALUES
A non-exceptional return indicates that the RTI acknowledges the
beginning of the federate save and that the federate should proceed
to save its state.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::InvalidFederationTime
The specified time does not correspond to the valid time of an
outstanding requested save.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::SaveNotInitiated
There are no current outstanding save requests of the local
federate.

RTI::UnimplementedService (RTI 1.0 Only)
This exception is never thrown.

SEE ALSO
RTI 1.0
RTI::FederateAmbassador::

initiateFederateSave()

RTI::RTIambassador::
federateSaveAchieved()
federateSaveNotAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-7

RTI 1.3
RTI::FederateAmbassador

initiateFederateSave()

federationSaved()

federationNotSaved()

RTI::RTIambassador

federateSaveComplete()

federateSaveNotComplete()

Federation Management federateSaveAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-8

A.1.6 federateSaveAchieved()

RTI 1.0
ABSTRACT

This service notifies the RtiExec that the federate has successfully
completed a requested save. The semantics of federation save
and restore have changed substantially from RTI 1.0 to RTI
1.3. This service is named federateSaveComplete in RTI
1.3; the 1.3 implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method (in conjunction with
federateSaveNotAchieved()) realizes the “Federate Save
Achieved” Federation Management service as specified in the HLA
Interface Specification (§2.14 in version).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

federateSaveAchieved ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RTIinternalError,
RTI::SaveNotInitiated

)

DESCRIPTION
A Federate uses federateSaveAchieved() to signal a
successfully completed save. Saves are conducted on receipt of an
initiateFederateSave() request and begin with the
federateSaveBegun() signal.

The federateSaveAchieved() call blocks until all other
federates and the RTI have completed their saves (i.e., successfully
or unsuccessfully). The RTI attempts to restore its internal state
from the file “RTIxxx-n.sav” where “xxx” is the save label and “n”
is the federate's federate handle. These files will be located in the
configuration directory (e.g., $RTI_CONFIG on UNIX® platforms
and %RTI_CONFIG% on Windows® NT platforms).

Upon return from this method, the Federate's logical time will
continue advancing as prescribed by the time-advance service in
effect at the time of the save.

RETURN VALUES
A non-exceptional return indicates that all federate saves and the
RTI save have completed and that the Federate should resume
advancement of the Federate's logical time.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveNotInitiated
There is no outstanding request for a federate save or the
Federate failed to indicated the beginning of its save (i.e., via
the federateSaveBegun() method).

SEE ALSO
RTI::FederateAmbassador::

initiateFederateSave()

RTI::RTIambassador::
federateSaveBegun()

federateSaveNotAchieved()

requestFederationSave()

requestRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-9

A.1.7 federateSaveComplete()

RTI 1.3
ABSTRACT

This service notifies the federation that the federate has
successfully completed a requested save. The semantics of
federation save and restore have changed substantially from
RTI 1.0 to RTI 1.3. This service was named
federateSaveAchieved in RTI 1.0; the 1.0 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method (in conjunction with
federateSaveNotComplete()) realizes the “Federate Save
Complete” Federation Management service as specified in the HLA

Interface Specification (§4.14 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

federateSaveComplete ()
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveNotInitiated
)

DESCRIPTION
A federate invokes federateSaveComplete() to indicate the
successful completion of a save of federate-managed state, as
initiated by an initiateFederateSave() callback. The
federate may not resume normal operation until it receives a
federationSaved() or federationNotSaved() callback to
indicate that the federation-wide save attempt has concluded. In
the interim, the federate must continue to tick() the LRC so that
synchronization messages may be processed.

When the LRC receives the indication that all federates
participating in the save have completed saving their federate state,
it will save the state of the LRC internal components to a file. The
filename the state is written to is given by
$RTI_SAVE_PATH/FED/fedex/label/type/handle, where

• $RTI_SAVE_PATH is an environment variable

• FED is the FED filename as passed to
createFederationExecution()

• fedex is the federation execution name

• type is the federate name as passed to
joinFederationExecution(); this is used to match saved
states to the correct type of application at restore-time

• handle is the current federate handle

When the LRC receives the indication that all other participating
LRCs have saved their internal state, the federate will be restarted
using the federationSaved() or federationNotSaved()
callback.

The title of this method is something of a misnomer, as the method
indicates not only that the save completed, but that it completed
successfully.

RETURN VALUES
A non-exceptional return indicates that the LRC will notify the
federation of the save completion and will restart the operation of
the federate when the remainder of the federation has saved.

MIGRATION NOTE
Note that under the RTI 1.0 semantics, the federate could continue
operation immediately after notifying the RTI of local save
success/failure. In RTI 1.3, the federate must wait until the entire
federation has completed the (attempted) save before it may
continue.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveNotInitiated
There is no outstanding request for a federate save or the
federate failed to indicate the beginning of its save (i.e., via
the federateSaveBegun() method).

SEE ALSO
RTI::FederateAmbassador

initiateFederateSave()

federationSaved()

federationNotSaved()

RTI::RTIambassador
federateSaveNotComplete()

requestFederationSave()

Federation Management federateSaveNotAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-10

A.1.8 federateSaveNotAchieved()

RTI 1.0
ABSTRACT

This service notifies the RtiExec that the federate was unsuccessful
in its attempt to save, but has completed the attempt. The
semantics of federation save and restore have changed
substantially from RTI 1.0 to RTI 1.3. This service is named
federateSaveNotComplete in RTI 1.3; the 1.3
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method (in conjunction with federateSaveAchieved())
realizes the “Federate Save Achieved” Federation Management
service as specified in the HLA Interface Specification (§2.14 in
version).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

federateSaveNotAchieved ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RTIinternalError,
RTI::SaveNotInitiated

)

DESCRIPTION
A Federate uses federateSaveNotAchieved() to signal an
unsuccessfull, but completed save attempt. Saves are conducted on
receipt of an initiateFederateSave() request and begin with
the federateSaveBegun() signal.

The federateSaveNotAchieved() call blocks until all other
federates and the RTI have completed their saves (i.e., successfully
or unsuccessfully). The RTI attempts to restore its internal state
from the file “RTIxxx-n.sav” where “xxx” is the save label and “n”
is the federate's federate handle. These files will be located in the
configuration directory (e.g., $RTI_CONFIG on UNIX® platforms
and %RTI_CONFIG% on Windows® NT platforms).

The RtiExec makes an entry in the Federate's log file that the save
failed and proceeds as if the save was successful (i.e. the internal
state of the RTI will still be saved).

Upon return from this method, the Federate's logical time will
continue advancing as prescribed by the time-advance service in
effect at the time of the save.

RETURN VALUES
A non-exceptional return indicates that all federate saves and the
RTI save have completed and that the Federate should resume
advancement of the Federate's logical time.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveNotInitiated
There are no current outstanding save requests of the local
federate.

SEE ALSO
RTI::FederateAmbassador::

initiateFederateSave()

RTI::RTIambassador::
federateSaveAchieved()
federateSaveBegun()
requestFederationSave()
requestRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-11

A.1.9 federateSaveNotComplete()

RTI 1.3
ABSTRACT

This service notifies the federation that the federate has failed to
successfully complete a requested save. The semantics of
federation save and restore have changed substantially from
RTI 1.0 to RTI 1.3. This service was named
federateSaveNotAchieved in RTI 1.0; the 1.0
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method (in conjunction with federateSaveComplete())
realizes the “Federate Save Complete” Federation Management

service as specified in the HLA Interface Specification (§4.14 in
version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

federateSaveNotComplete ()
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,

RTI::RTIinternalError,
 RTI::SaveNotInitiated
)

DESCRIPTION
A federate invokes federateSaveNotComplete() to indicate
the unsuccessful completion of a save of federate-managed state,
as initiated by an initiateFederateSave() callback. The
federate may not resume normal operation until it receives a
federationNotSaved() callback to indicate that the federation-
wide save attempt has concluded. In the interim, the federate must
continue to tick() the RTI so that synchronization messages may
be processed.

The only special action taken by RTI 1.3 based on the fact that a
save was not successful is that the federationNotSaved()
callback will be used to restart the federates after the federation-
wide save is complete. Failure of one federate to save does not
prevent the rest of the federation from continuing to save normally.

When the LRC receives the indication that all federates
participating in the save have completed saving their federate state,
it will save the state of the LRC internal components to a file. The
filename the state is written to is given by
$RTI_SAVE_PATH/FED/fedex/label/type/handle, where

• $RTI_SAVE_PATH is an environment variable

• FED is the FED filename as passed to
createFederationExecution()

• fedex is the federation execution name

• type is the federate name as passed to
joinFederationExecution(); this is used to match saved
states to the correct type of application at restore-time

• handle is the current federate handle

When the LRC receives the indication that all other participating
LRCs have saved their internal state, the federate will be restarted
using the federationNotSaved() callback.

The title of this method is something of a misnomer, as the method
indicates that a save completed, only not successfully.

RETURN VALUES
A non-exceptional return indicates that the LRC will notify the
federation of the save completion and will restart the operation of
the federate when the remainder of the federation has saved.

MIGRATION NOTE
Note that under the RTI 1.0 semantics, the federate could continue
operation immediately after notifying the RTI of local save
success/failure. In RTI 1.3, the federate must wait until the entire
federation has completed the (attempted) save before it may
continue.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveNotInitiated
There are no current outstanding save requests of the local
federate.

SEE ALSO
RTI::FederateAmbassador

initiateFederateSave()

federationNotSaved()

RTI::RTIambassador
federateSaveComplete()

requestFederationSave()

Federation Management joinFederationExecution()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-12

A.1.10 joinFederationExecution()

RTI 1.0 �RTI 1.3
ABSTRACT

This service requests permission to participate in a named
federation and initializes the RTI ambassador with federation-
specific data. The types of the arguments change slightly from
RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Join Federation Execution” Federation
Management service as specified in the HLA Interface
Specification (§2.3 in version 1.1; §4.4 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::FederateHandle
RTI::RTIambassador::

joinFederationExecution (
const RTI::FederateName yourName
const RTI::FederationExecutionName

executionName
RTI::FederateAmbassadorPtr

federateAmbassadorReference
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::CouldNotOpenFED,
RTI::ErrorReadingFED,
RTI::FederateAlreadyExecutionMember,
RTI::FederationExecutionDoesNotExist,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
RTI::FederateHandle
RTI::RTIambassador::

joinFederationExecution (
 const char *yourName, ßß Changes Type Changes Type

const char *executionName, ßß Changes Type Changes Type
RTI::FederateAmbassadorPtr ßß Changes Type Changes Type

federateAmbassadorReference
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::CouldNotOpenFED,
 RTI::ErrorReadingFED,
 RTI::FederateAlreadyExecutionMember,
 RTI::FederationExecutionDoesNotExist,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
yourName

a string specifying the name by which the federate will be
known to the federation

executionName
a string specifying the name of the federation to join

federateAmbassadorReference
a pointer to an instance of a federate-supplied class
implementing the FederateAmbassador abstract class

The calling federate is responsible for managing the storage
associated with this object. The referenced object must persist
until the federate resigns from the federation via
resignFederationExecution().

DESCRIPTION
This service negotiates entry into a named federation execution

and initializes the RTI ambassador based on a Federation
Execution Data (FED) file and the current execution status of the
federation. The federation join process can be thought of as
occurring in three phases, all of which complete during a
successful invocation of joinFederationExecution():

1. The LRC establishes socket communications with global
RTI processes. A connection to the RtiExec has already
been established during the construction of the
RTIambassador object. This connection is used to query the
RtiExec for a reference to the FedEx for the named
federation. This reference includes the hostname and port
number of the FedEx, to which the LRC attempts to connect.
Once this connection is established, the FedEx communicates
to the joining LRC information about the multicast channels
being used for the federation. The LRC then subscribes to the
appropriate multicast channels.

2. The LRC initializes its RTI ambassador based on the
federation-specific configuration found in the FED file.
The location and specific contents of the FED differ by
platform and RTI version; see release notes below for details.
In general, the FED file defines the hierarchy of object and
interaction classes and the ordering and transportation policies
for interactions and attributes. The structure of the FED file
determines the assignment of RTI “handles” that are used to
communicate names across the federation. It is therefore
essential that all federates in a federation use an exact copy of
the same FED file (if not the same physical file.)
The Management Object Model defines a hierarchy of object
and interaction classes that must appear in every FED file.
Some RTI implementations also have mandatory object and
interaction classes for RTI internal use. See “Federation
Execution Data” in the RTI Programmer’s Guide for more
information on the FED.

3. The LRC constructs the running state of the federation
based on information obtained from the FedEx and the
participating federates. The FedEx communicates to the
joining LRC the federate handle of all federates in the
federation. To participate in the distributed time-management
algorithm, the joining federate must obtain a logical time
report from each federate currently participating in the
federation. A solicitation message is broadcast to the
federation and each of the remote LRCs will respond with the
current logical time of its federate. The federate applications
need not concern themselves with this process except that
joinFederationExecution() will block until all remote
federates have ticked their LRCs sufficiently to allow for a
response to the logical time solicitation. This is one of
several important reasons why federates should always call
tick() as often as possible.
The LRC also publishes and subscribes various MOM classes
on behalf of the federate. A Manager.Federate object is
instantiated to represent the state of the local federate.
Essential MOM operation is automatically managed by the
LRC without intervention by the federate.
The FedEx and the remote federates collaborate to inform the
joining federate of any outstanding save, restore, or
synchronization point requests. The joining federate becomes
a participant in any synchronization points that have not been
fully achieved at the time of the join.

Note that an invocation of createFederationExecution()
does not synchronously wait for the FedEx to set up and begin
accepting connections. The federate creating the FedEx must
account for this delay by introducing a delay between the create
and the join, or by repeatedly invoking

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-13

joinFederationExecution() until it succeeds.

RETURN VALUES
The FederateHandle instance returned by this method is a numeric
value that the RTI has associated with the joining federate. The
handle is guaranteed to be unique to the federation during the
lifetime of the federate, and is used in situations that require an
individual federate to be uniquely identified. Among other things,
this value is used to identify the federate as a sender/receiver of
MOM objects and interactions.

RELEASE NOTES
RTI 1.0

The filename of the FED file is the supplied FederateName
with a “.fed” extension. FED file location is operating system
dependent (see below).

The RTI 1.0 uses a single multicast group per federation.

Identifiers in an RTI 1.0 FED file are case-sensitive. The
Interface Specification was subsequently changed to stipulate
that FED identifiers should be case-insensitive.

RTI 1.3
The filename of the FED file is communicated to the joining
federate from the RtiExec and is established by the FED
argument to createFederationExecution().

In addition to the FedEx, RTI 1.3 also contains global
processes serving as “reliable distributors”. Connections may
be established and broken between an LRC and reliable
distributors before, during, or after the join process.

The RTI 1.3 uses potentially many multicast groups and ports
per federation. See “Data Distribution Management” and
“RTI Configuration” in the RTI Programmer’s Guide.

The RTI 1.3 uses a checksum to enforce the use of the same
FED file by all federates.

Attempts to join during a federation save or restore under RTI
1.3 will fail.

The restore functionality of RTI 1.3 uses federate names (i.e.
the first argument to joinFederationExecution()) to
map saved LRC states to currently active federates. As such,
two applications should use the same name if and only if they
could function correctly if the state of their LRCs were
interchanged due to a save and subsequent restore. Usually,
multiple instances of the same application on interchangeable
platforms joined to the federation will share the same name.

WINDOWS® NT/95 NOTES
The expected location of the FED file is “%RTI_CONFIG%\[FED-
name]”.

UNIX® NOTES
The expected location of the FED file is “$RTI_CONFIG/[FED-
name]”.

NOTE ON TYPES
The type of RTI 1.0 string arguments is typically const
Identifier, where Identifier is a typedef for char*. This results
in an effective type of char* const instead of the desired const
char*. In RTI 1.3 the typedefs have been eliminated and the type
of string arguments is just const char*.

The FederateAmbassador class has changed substantially between
RTI 1.0 and RTI 1.3; consult the Federate Ambassador reference
for details.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::CouldNotOpenFED
The FED file could not be found.

RTI::ErrorReadingFED
The FED file was not in the correct format. This can occur if
one of the classes or interactions used by the MOM Manager
is missing or incorrect. [See the example FED files in the RTI
distribution for the definitions of MOM data types.]

RTI::FederateAlreadyExecutionMember
The RTIambassador instance is already associated with a
FedExec. An RTI ambassador may only be associated with
one FedExec at a given time. Note: The same RTIambassador
instance may be associated with different FedExec processes
at different times and different RTIambassador instances may
be associated with different Federation Executions at the same
time.

RTI::FederationExecutionDoesNotExist
The RTI does not have a FedExec registered for the named
Federation.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

createFederationExecution()

publishInteractionClass()

publishObjectClass()

resignFederationExecution()

subscribeInteractionClass()

RTI 1.0 Only
setTimeConstrained()

subscribeObjectClassAttribute()

turnRegulationOn()

RTI 1.3 Only
enableTimeConstrained()

enableTimeRegulation()

registerFederationSynchronizationPoint()

requestFederationRestore()

requestFederationSave()

subscribeObjectClassAttributes()

Federation Management pauseAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-14

A.1.11 pauseAchieved()

RTI 1.0
ABSTRACT

This service informs the federation that the federate has suspended
execution as per the most recent outstanding initiatePause()
request. The pause/resume capability of HLA 1.1 has been
replaced by the more general “synchronization point”
functionality of HLA 1.3.

HLA IF SPECIFICATION
This method realizes the “Pause Achieved” Federation
Management service as specified in the HLA Interface
Specification (§2.7 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

pauseAchieved (
const RTI::PauseLabel label

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::NoPauseRequested,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress,
RTI::UnknownLabel

)

ARGUMENTS
label

a string indicating the name of the pause request to which the
Federate is responding. [When a Federate requests a pause
using the requestPause() method, a pause label is
supplied. The Federation communicates this label to all
federates via the initiatePause() callback.]

DESCRIPTION
A Federate uses pauseAchieved() to signal that it has
successfully suspended execution in response to an initiate pause
request. Pause requests are communicated via the
FederationAmbassador callback method initiatePause(). The
Federate should remain suspended (in accordance with the terms of
the pause label) until instructed to resume via the
initiateResume() callback.

RETURN VALUES
A non-exceptional return indicates that the RTI acknowledges
notification of the Federate's successful suspension of execution.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NoPauseRequested
There is not an outstanding pause request.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"

operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::UnknownLabel
The passed pause label does not match the label associated
with the most recent outstanding pause request.

SEE ALSO
RTI::FederateAmbassador::

initiatePause()
initiateResume()

RTI::RTIambassador::
requestPause()
requestResume()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-15

A.1.12 registerFederationSynchronizationPoint()

RTI 1.3
ABSTRACT

This service is used to initiate the establishment of a named
checkpoint that serves to synchronize some or all federates
according to federation-defined semantics. The synchronization
mechanism is a generalization of the pause/resume mechanism
featured in HLA 1.1.

HLA IF SPECIFICATION
This method realizes the “Register Federation Synchronization
Point” Federation Management service as specified in the HLA
Interface Specification (§4.6 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

registerFederationSynchronizationPoint (
 const char *label,
 const char *theTag

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

void
RTI::RTIambassador::

registerFederationSynchronizationPoint (
 const char *label,

 const char *theTag,
const RTI::FederateHandleSet& syncSet

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
label

a string used to uniquely identify the synchronization point

theTag
an application-defined string passed to remotes when the
synchronization point is announced; not interpreted by the
RTI

syncSet
the subset of the participating federates to synchronize

DESCRIPTION
Synchronization points are a generalization of the pause/resume
capabilities featured in early revisions of HLA. They provide a
mechanism for federates to schedule checkpoints with federation-
defined semantics, while relying on the RTI to perform the
bookkeeping associated with determining when the checkpoint is
achieved by the desired set of federates.

The two variants of this service differ in the set of federates that
are to be included in the synchronization point computation:

• The three-argument variation schedules a synchronization
point affecting only federates explicitly represented in the
handle-set. This is known as a specified synchronization
point.

• The two-argument version schedules a synchronization point
that applies to all federates in the federation including
federates that join the federation while the synchronization is
in progress. This is known as a universal synchronization
point.

In both variants, federates that resign from the federation while a
synchronization point is in progress are assumed to have achieved
the synchronization point and are removed from the set.

There is no arbitrary limit on the number of synchronization points
that may be in progress at a given time. However, only one
synchronization point with a given label may be outstanding for
the federation at a given time (even if the synchronization points
apply to mutually exclusive subsets of federates.)

The RTI implements a negotiation protocol to arbitrate race
conditions that may occur in the registration of synchronization
points. Essentially, if two federates simultaneously attempt to
register synchronization points with different federate sets,
whichever request is processed first by the FedEx is the “winner”.
If two federates attempt to register synchronization points with the
same federate set, both will succeed.

The federate is appraised of the success or failure of a
synchronization point through a
synchronizationPointRegistrationSucceeded() or
synchronizationPointRegistrationFailed() callback,
respectively. A successful indication always occurs
asynchronously with respect to the registration request, i.e. during
a subsequent invocation of tick(). An unsuccessful indication
may occur asynchronously or synchronously (i.e., before the
registerFederationSynchronizationPoint() call returns),
depending on whether a race condition occurred.

If the registration succeeds, all federates to which the
synchronization point is applicable will receive an announcement
in the form of a announceSynchronizationPoint() callback.
This possibly includes the federate that registered the
synchronization point. When all federates included in the
synchronization point (including recently-joined federates if a
universal synchronization point was registered) have achieved
synchronization or resigned, the relevant federates will be
informed of synchronization through a
federationSynchronized() callback.

RETURN VALUES
A non-exceptional return indicates that the federate’s
synchronization request has been submitted to the federation, and
the federate will be appraised of success or failure of the
registration through subsequent federate-ambassador callbacks.

MIGRATION NOTES
The functionality of the RTI 1.0 pause/resume services can be
trivially implemented using a “pause” synchronization point,
followed by a “resume’ synchronization point when the pause is
achieved.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

Federation Management registerFederationSynchronizationPoint()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-16

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

announceSynchronizationPoint()

federationSynchronized()

synchronizationPointRegistrationFailed()

synchronizationPointRegistrationSucceeded()

RTI::RTIambassador
joinFederationExecution()

resignFederationExecution()

synchronizationPointAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-17

A.1.13 requestFederationRestore()

RTI 1.3
ABSTRACT

This service requests that all federates re-initialize themselves
based on a named saved state. The semantics of federation save
and restore have changed substantially from RTI 1.0 to RTI
1.3. This service was named requestRestore in RTI 1.0; the
1.0 implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Request Federation Restore” Federation
Management service as specified in the HLA Interface

Specification (§4.16 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestFederationRestore (
 const char *label

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
label

a string label associated with a previously saved named
federation state

DESCRIPTION
A federate invokes requestFederationRestore() to initiate an
attempt to reconstitute a named federation state that has previously
been saved. The request to restore is communicated to the FedEx,
which examines the saved state to see if a restore is possible given
the current active federation. The directory expected to contain the
saved state is given by $RTI_SAVE_PATH/FED/fedex/label,
where

• $RTI_SAVE_PATH is an environment variable

• FED is the FED filename as passed to
createFederationExecution()

• fedex is the federation execution name

Note that the contents of directory given by this expression must
be the same for every participating federate and the FedEx for the
restore to be successful. The FedEx approves the request to restore
if the following criteria are met:

• the checksum computed for the FED file currently used by the
federation matches the saved FED checksum

• for each type of federate (as distinguished by the “name”
argument supplied to joinFederationExecution()), the
number of federates in the saved state equals the number in
the active federation

• a save or restore is not already in progress

If one or more of the criteria are not met, the requesting federate
will be notified through a
requestFederationRestoreFailed() callback. If all criteria
are met, the following sequence of events takes place:

1. The FedEx enters “restore” mode, during which time all
requests to join, resign, or initiate a save or restore will be

denied.

2. The requesting federate receives a positive acknowledgement
in the form of a
requestFederationRestoreSucceeded() callback.

3. Each federate (including the requesting federate) receives a
federationRestoreBegun() callback, at which time the
federate is suspended from invoking any services that changes
the state of the LRC or the federation.

4. When all federates have been suspended, each LRC will
restore its internal state based on a saved LRC state for a
federate of a matching type.

5. When an LRC has finished restoring its internal state, it
invokes its federate’s initiateFederateRestore()
callback with the new federate handle as an argument. At this
point, the federate should take the appropriate actions to
restore its federate-managed state.

6. Each federate reports a successful or failed restoration of
federate-managed state using the
federateRestoreComplete() or
federateRestoreNotComplete() service, respectively.

7. When all federates have reported a successful or failed
restoration, all federates receive notification that the
federation-wide restore has completed. If all federates
reported a successful restoration, the
federationRestored() is used, otherwise the
federationNotRestored() callback is used. Upon receipt
of such a callback, a federate is no longer suspended and may
resume normal operation.

8. The FedEx returns to “running” mode, in which joins,
resignations, saves, and restores are allowed.

Note that saved LRC states are not portable across platforms.
Federates running on incompatible platforms should use different
names to indicate that their saved states are not interchangeable.

The RTI provides no facility for saving or restoring federate-
managed state. Federate developers must develop their own
conventions for locating and reconstituting named federate states.

Even in a suspended state, a federate must continue to call
tick() so that internal RTI communications may be serviced.

RETURN VALUES
A non-exceptional return indicates that the federate’s desire to
initiate a restoration of a named federation state has been
communicated to the FedEx. The federate will be notified of the
success or failure of said request through a subsequent federate
ambassador callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

Federation Management requestFederationRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-18

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

federationNotRestored()

federationRestoreBegun()

federationRestored()

initiateFederateRestore()

requestFederationRestoreFailed()

requestFederationRestoreSucceeded()

RTI::RTIambassador::
getRegion()

requestFederationSave()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-19

A.1.14 requestFederationSave()

RTI 1.0 �RTI 1.3
ABSTRACT

This service requests that the federation save its state at a specified
logical time. The semantics of federation save and restore have
changed substantially from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Request Federation Save” Federation
Management service as specified in the HLA Interface

Specification (§2.11 in versions 1.1; §4.11 in 1.3).

SYNOPSIS
#include <RTI.hh>
// Save at the specified time.
// RTI 1.0 Only
void
RTI::RTIambassador::

requestFederationSave (
const RTI::SaveLabel label
RTI::FederationTime theTime

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

requestFederationSave (
 const char *label, ßß Changes Type Changes Type
 const RTI::FedTime& theTime ßß Changes Type Changes Type

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::FederationTimeAlreadyPassed,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

// Save as soon as possible.
// RTI 1.0 Only
void
RTI::RTIambassador::

requestFederationSave (
const RTI::SaveLabel label

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

requestFederationSave (
 const char *label ßß Changes Type Changes Type

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS

label
a string to be associated with this particular pause request

theTime
the desired time for the Federation save; omission of this
argument implies that the save should take place as soon as
possible

DESCRIPTION
A federate invokes requestFederationSave() to initiate an
attempt to save the federation state to disk. The federate-supplied
label is used to distinguish among multiple saved states for the
purposes of restoration. The label is not interpreted by the RTI
other than it becomes a component of the path in which RTI
internal state is stored. The logical time argument (if present)
specifies a federation time at which the save is to occur. The
logical time is only relevant for time-constrained federates; non-
time-constrained federates will always save as soon as possible. If
no logical time is supplied, all federates save as soon as possible.

The following is a generic description of the save/restore process.
The reader is referred to the release notes section for details
specific to a particular RTI implementation.

1. At some point subsequent to a successful invocation of
requestFederationSave(), all participating federates will
receive an initiateFederateSave() callback. Upon such,
a federate is suspended from invoking any services that would
change the internal state of its LRC.

2. Each federate invokes federateSaveBegun() to indicate
that it has begun saving its federate-managed state. Upon
completion of an attempt to save federate-managed state, each
federate invokes an RTI service indicating success or failure.

3. At some point during or after the invocation of the service
indicating success or failure, the LRC associated with the
federate saves its internal state to disk.

Even in a suspended state, a federate must continue to call
tick() so that internal RTI communications may be serviced.

Saved LRC states may not be portable across architectures. The
federation manager should ensure that the configurations of the
saved and restoring federations will result in a mapping of LRC
states such that a saved LRC state is always reconstituted on an
identical (or compatible) platform. See the release notes for details
of how this mapping is computed.

RETURN VALUES
A non-exceptional return indicates that the federation save has
been initiated.

RELEASE NOTES
RTI 1.0

• The initiateFederateSave() callback is made as
soon as possible for all federates (i.e., non-time-
constrained federates will receive the callback as soon as
possible.)

• The services invoked by a federate to report success or
failure of a save of federate-managed state are named
federateSaveAchieved() and
federateSaveNotAchieved(), respectively.

• The LRC associated with a federate saves its internal
state synchronously with respect to a
federateSaveAchieved() or
federateSaveNotAchieved() callback. Subsequent
to the successful invocation of one of these services, the
federate is no longer suspended and may resume normal

Federation Management requestFederationSave()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-20

activity.

• The RTI is not proactive in notifying federates that the
federation-wide save has completed. Federates may use
the Manager.Federate and Manager.Federation object
classes provided by the MOM to monitor the status of a
federation save.

• Federates joining while a save is in progress are not
included in the save. Federates may resign while a save
is in progress.

• During a restoration, saved LRC states are mapped to
active LRCs based on federate handles. That is, the state
of the LRC associated with a federate with handle n is
restored to the state of the LRC associated with the
federate with handle n at the time of the save. It is the
responsibility of the federation manager to ensure that
the restored federation may operate correctly based on
this mapping of federate handles.

RTI 1.3
• Federates do not receive an initiateFederateSave()

callback until all time-constrained federates have
attained the logical time at which the save is to take
place.

• The services invoked by a federate to report success or
failure of a save of federate-managed state are named
federateSaveComplete() and
federateSaveNotComplete(), respectively. The later
name is somewhat of a misnomer, as the method is
actually used to indicate the completion of an
unsuccessful save attempt.

• The LRC associated with a federate saves its state only
after it has received indication that each federate in the
federation has completed (or failed) to save its federate-
managed state.

• When all LRCs have finished saving their internal states,
all federates will receive a callback notification that the
federation-wide save has finished. If all saving federates
report success, a federationSaved() callback is
made, otherwise a federationNotSaved() callback is
made. Upon receipt of such a callback, the federate is no
longer suspended and may resume normal operation.

• Federates are prevented from joining or resigning while a
save is in progress.

• During a restoration, saved LRC states are mapped to
active LRCs based on the type of federate (as
distinguished by the name argument provided to
joinFederationExecution().) A restore can only
take place if there exists a function mapping federate
handles in the saved state to federate handles in the
active federation at the time of the restoration such that:

• the function is total, one-to-one, and onto

• all mappings in the function are between federates
of the same type

• The federateSaveBegun() callback is not required by
the 1.3 implementation; however, federates should still
invoke this service to ensure compliance with other HLA
implementations.

NOTE ON TYPES
The type of RTI 1.0 string arguments is typically const
Identifier, where Identifier is a typedef for char*. This results

in an effective type of char* const instead of the desired const
char*. In RTI 1.3 the typedefs have been eliminated and the type
of string arguments is just const char*.

RTI 1.3 encapsulates logical time in the FedTime class. Typically,
an instance of this class is passed by reference in situations where a
C++ double was used in RTI 1.0.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified logical time argument lies in the federation’s
past, whereas the context of the service invocation required a
future logical time.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador
initiateFederateSave()

RTI::RTIambassador

federateSaveAchieved()

federateSaveBegun()

federateSaveNotAchieved()

requestRestore()

RTI 1.3
RTI::FederateAmbassador

federationNotSaved()

federationSaved()

initateFederateSave()

RTI::RTIambassador
federateSaveBegun()

federateSaveComplete()

federateSaveNotComplete()

requestFederationRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-21

A.1.15 requestPause()

RTI 1.0
ABSTRACT

This service requests that all federates in the Federation suspend
execution as soon as possible. The pause/resume capability of
HLA 1.1 has been replaced by the more general
“synchronization point” functionality of HLA 1.3.

HLA IF SPECIFICATION
This method realizes the “Request Pause” Federation Management
service as specified in the HLA Interface Specification (§2.5 in
version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestPause (
const RTI::PauseLabel label

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationAlreadyPaused,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
label

a string to be associated with this particular pause request

DESCRIPTION
A federate uses requestPause() to notify all federates in a
federtion of the federate's desire to suspend federation execution.
All federates participating in the federation are signaled via the
initiatePause() callback (i.e., upon receipt of which, federates
are expected to suspend their execution).

The passed label is communicated to participating federates as a
part of initiatePause(). The label is not interpreted by the
RTI. Federation developers may define different types of pauses
associated with different labels in a way that makes sense in the
context of a given federation. The label is simply a means for the
requesting federate to specify a textual description of the reason for
the pause request or any other information relevant in the context
of the federation.

A paused federate should continue to participate in message
exchanges (e.g., sending and receiving updates and interactions)
and utilizing RTI services.

Currently, the federation does not inform the federate when a
requested pause has been achieved. However, a federate can call
requestPause() periodically until the exception
RTI::FederationAlreadyPaused is thrown.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully communicated its desire to suspend federation
execution.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationAlreadyPaused
The Federation is already paused.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

initiatePause()

RTI::RTIambassador::
initiateResume()
pauseAchieved()
requestResume()

Federation Management requestRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-22

A.1.16 requestRestore()

RTI 1.0
ABSTRACT

This service requests that all federates re-initialize themselves
based on a previous, labeled save. The semantics of federation
save and restore have changed substantially from RTI 1.0 to
RTI 1.3. This service is named requestFederationRestore
in RTI 1.3; the 1.3 implementation is discussed in a separate
section.

HLA IF SPECIFICATION
This method realizes the “Request Restore” Federation
Management service as specified in the HLA Interface
Specification (§2.15 in version).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestRestore (
const RTI::SaveLabel label

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress,
RTI::SpecifiedSaveLabelDoesNotExist

)

ARGUMENTS
label

a string used to identify the particular save that will be used to
restore the state of federates

DESCRIPTION
A Federate uses requestRestore() to notify all federates in a
Federation of the Federate’s desire to initiate a restore process. All
federates participating in the Federation are signaled via the
initiateRestore() callback. Upon receipt of the
initiateRestore() signal, federates are expected to restore a
previously stored (e.g. saved in a file or database) state identified
by the passed label.

Unlike the counterpart "save" operation, restoration cannot be
scheduled at a specific logical time across all federates; rather, it is
initiated immediately upon the receipt of the restore request. The
restored logical times of all states should be the same and will
override pre-restoration values. It’s a good idea to pause the
Federation Execution before a state restoration.

The passed label is communicated to participating Federates as a
part of the initiateRestore() signal. The label is not
interpreted by the RTI. Federation developers may define different
types of saves associated with different labels in a way that makes
sense in the context of a given Federation. The label should
correspond to a previous “save” label.

The RTI is responsible for saving and restoring its internal state.
However, the RTI does not define a format or provide any facility
for federates to save their external state. It is up to the federation
developers to implement their own save and restore mechanisms.

Only one restoration request may be outstanding at a given
instance. Subsequent invocations of requestRestore() override
previous requests. The RTI attempts to restore its internal state
from the file “RTIxxx-n.sav” where “xxx” is the save label and “n”
is the federate's federate handle. These files will be located in the

configuration directory (e.g., $RTI_CONFIG on UNIX® platforms
and %RTI_CONFIG% on Windows® NT platforms).

Federates must join the FedExec in a consistent order if the
restored internal states are to match up with the same federates.

RETURN VALUES
A non-exceptional return indicates that the Federate has
successfully communicated its desire to restore Federation state
from a labeled state save.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::SpecifiedSaveLabelDoesNotExist
The RTI was unable to find the file where the RTI state was
preserved.

SEE ALSO
RTI::FederateAmbassador::

initiateRestore()

RTI::RTIambassador::
requestFederationSave()
restoreAchieved()
restoreNotAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-23

A.1.17 requestResume()

RTI 1.0
ABSTRACT

This service requests that a paused federation resume execution as
soon as possible. The pause/resume capability of HLA 1.1 has
been replaced by the more general “synchronization point”
functionality of HLA 1.3.

HLA IF SPECIFICATION
This method realizes the “Request Resume” Federation
Management service as specified in the HLA Interface
Specification (§2.8 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestResume ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationNotPaused,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

DESCRIPTION
A federate uses requestResume() to request that the federation
end the current pause and resume execution. The federation signals
federates to resume by invoking the callback function
initiateResume(). The federate requesting resumption need not
be the same federate that requested the pause.

RTI 1.0 provides no easy way for a federate to determine when all
federates have resumed execution. The Manager.Federate and
Manager.Federation objects provided by the MOM may be used to
monitor the progress of a federation-wide resume.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully communicated its desire to resume federation
execution.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationNotPaused
Federation execution currently is not paused.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"

operation.

SEE ALSO
RTI::FederateAmbassador::

initiateResume()

RTI::RTIambassador::
requestPause()
resumeAchieved()

Federation Management resignFederationExecution()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-24

A.1.18 resignFederationExecution()

RTI 1.0 RTI 1.3
ABSTRACT

This services terminates the federate’s participation in a federation.

HLA IF SPECIFICATION
This method realizes the “Resign Federation Execution”
Federation Management service as specified in the HLA Interface
Specification (§2.4 in version 1.1; §4.5 in version 1.3).

SYNOPSIS
#include <RTI.hh>

enum RTI::ResignAction {
RELEASE_ATTRIBUTES = 1,
DELETE_OBJECTS,
DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES,
NO_ACTION

};

void
RTI::RTIambassador::

resignFederationExecution (
RTI::ResignAction theAction

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederateOwnsAttributes,
RTI::InvalidResignAction,
RTI::RTIinternalError

)

ARGUMENTS
theAction

enumerated value indicating the desired policy for
relinquishment of federate-owned attributes

DESCRIPTION
A federate uses resignFederationExecution() to inform a
FedExec that the federate no longer wishes to participate in the
federation. Before doing so, it is necessary to resolve ownership of
any attribute-instances owned by the federate. The four resolution
policies defined are:

RELEASE_ATTRIBUTES
The federate releases control of all owned attributes including
those for which it holds the privilege-to-delete ownership
token. Essentially, this is an unconditional divestiture of every
attribute owned by the federate. The Federation will inform
federates of available attributes via the
requestAttributeOwnershipAssumption() callback.

Any ownership tokens that aren't assumed by another federate
become "orphaned". Orphaned tokens continue to exist in the
Federation. They are tracked by the RTI internally, by another
federate process or by the FedExec and are eligible for
acquisition by any interested federate. However, no additional
notification is provided that an attribute is orphaned (i.e.,
beyond the original request for attribute ownership
assumption).

DELETE_OBJECTS
The resigning federate deletes all objects for which it holds
the privilege-to-delete ownership token. The effect of this
option is the same as if the federate had explicitly called
deleteObject() for every object for which it holds the
privilege-to-delete token. If the federate owns attributes of
objects for which it does not hold the delete privilege, these
attributes become "zombies" (see NO ACTION below.)

DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES
The resigning federate first deletes any objects for which it
holds the privilege-to-delete token and then releases
ownership of any remaining owned attributes (i.e., effectively,
a combination of the DELETE_OBJECTS and
RELEASE_ATTRIBUTES options.) This is the recommended
option for most situations.

NO_ACTION
The resigning federate suggests no action regarding attribute
owndership. All attributes and objects owned by the federate
become "zombies" (i.e. technically, they still exist in the
Federation but they are immutable, cannot be discovered and
are not eligible for acquisition by other federates.

The resignFederationExecution() method will not return
until (1) the ownership of all federate-owned attributes is resolved
as prescribed by the resign action and (2) the connection between
the federate and the FedExec is terminated. On completion, the
internal state of the RTIambassador instance is reset, allowing it to
be associated with another FedExec through a subsequent
invocation of joinFederationExecution(). The
FederateAmbassador instance associated with the federate and
previously provided to the FedExec is no longer needed at this
point and may be disposed of at the federate's leisure.

Any messages queued for delivery to the federate at the time of
resignation are lost.

RETURN VALUES
A non-exceptional return indicates that the resignation was
successful.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateOwnsAttributes
This exception is not thrown by the current implementations
of this service.

RTI::InvalidResignAction
The parameter specifying the ownership resolution policy was
not a recognized value.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::FederateAmbassador::

requestAttributeOwnershipAssumption()

RTI::RTIambassador::
deleteObject()

destroyFederationExecution()

joinFederationExecution()

requestAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-25

A.1.19 restoreAchieved()

RTI 1.0
ABSTRACT

This service notifies the RTI that the federate has successfully
completed an attempted federate restoration. The semantics of
federation save and restore have changed substantially from
RTI 1.0 to RTI 1.3. This service is named
federateRestoreComplete in RTI 1.3; the 1.3
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method (in conjunction with restoreNotAchieved())
realizes the “Restore Achieved” Federation Management service as
specified in the HLA Interface Specification (§2.17 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

restoreAchieved ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RTIcanNotRestore,
RTI::RTIinternalError,
RTI::RestoreNotRequested

)

DESCRIPTION
A federate uses restoreAchieved() to signal a successfully
completed restore. Restores are conducted on receipt of an
initiateRestore() request.

The restoreAchieved() call blocks until all other federates and
the RTI have completed their restores (i.e., successfully or
unsuccessfully.) The RTI attempts to restore its internal state from
the file “RTIxxx-n.sav” where “xxx” is the save label and “n” is
the federate's federate handle. These files will be located in the
configuration directory (e.g., $RTI_CONFIG on UNIX® platforms
and %RTI_CONFIG% on Windows® NT platforms).

Upon return from this method, the federate's logical time will be
reset to the original save time and continue advancing as
prescribed by the time-advance service in effect at the time of the
save.

RETURN VALUES
A non-execptional return indicates that all federates in the
Federation have finished restoring their states and that the internal
state of the RTI has been restored.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreNotRequested
There is no outstanding request for a federate restoration.

RTI::RTIcanNotRestore
The RTI internal state save file is missing or corrupt.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log

file for more details.

SEE ALSO
RTI::FederateAmbassador::

initiateRestore()

RTI::RTIambassador::
requestFederationSave()
requestRestore()
restoreNotAcheived()

Federation Management restoreNotAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-26

A.1.20 restoreNotAchieved()

RTI 1.0
ABSTRACT

This service notifies the RTI that the federate has completed an
attempted federate restoration, but without success.

HLA IF SPECIFICATION
This method (in conjunction with restoreAchieved()) realizes
the “Restore Achieved” Federation Management service as
specified in the HLA Interface Specification (§2.17 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

restoreNotAchieved ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreNotRequested,
RTI::RTIcanNotRestore,
RTI::RTIinternalError

)

DESCRIPTION
A Federate uses restoreNotAchieved() to signal a
unsuccessful, but completed restore. Restores are conducted on
receipt of an initiateRestore() request.

The restoreNotAchieved() call blocks until all other federates
and the RTI have completed their restores (i.e., successfully or
unsuccessfully). The RTI attempts to restore its internal state from
the file “RTIxxx-n.sav” where “xxx” is the save label and “n” is
the federate's federate handle. These files will be located in the
configuration directory (e.g., $RTI_CONFIG on UNIX® platforms
and %RTI_CONFIG% on Windows® NT platforms).

Upon return from this method, the federate's state is undetermined.
The RTI’s internal state is still restored. Time will continue
advancing as prescribed by the time-advance service in effect at
the time of the save.

RETURN VALUES
A non-execptional return indicates that all the federates in the
Federation have finished restoring their states and that the internal
state of the RTI has been restored.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreNotRequested
There is no outstanding request for a federate restoration.

RTI::RTIcanNotRestore, RTI::RTICannotRestore
The RTI internal state save file is missing or corrupt.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO

RTI::FederateAmbassador::
initiateRestore()

RTI::RTIambassador::
restoreAcheived()
requestFederationSave()
requestRestore()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-27

A.1.21 resumeAchieved()

RTI 1.0
ABSTRACT

This service informs the RtiExec that the calling Federate has
resumed execution as per the most recent initiateResume()
request. The pause/resume capability of HLA 1.1 has been
replaced by the more general “synchronization point”
functionality of HLA 1.3.

HLA IF SPECIFICATION
This method realizes the “Resume Achieved” Federation
Management service as specified in the HLA Interface
Specification (§2.10 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

resumeAchieved ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::NoResumeRequested,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
A Federate uses resumeAchieved() to signal that it has
successfully resumed execution in response to an initiate resume
request. Resume requests are communicated via the
initiateResume() callback method.

RETURN VALUES
A non-exceptional return indicates that the RTI acknowledges
notification that the Federate has resumed execution.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NoResumeRequested
The Federation does not believe that the Federate has been
requested to resume execution.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

RTI::FederateAmbassador::
initiatePause()
initiateResume()

RTI::RTIambassador::
requestResume()

Federation Management synchronizationPointAchieved()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.1-28

A.1.22 synchronizationPointAchieved()

RTI 1.3
ABSTRACT

This service informs the federation that the federate has met the
federation-defined criteria associated with a synchronization point
that has previously been announced to the federate. The
synchronization mechanism is a generalization of the
pause/resume mechanism featured in HLA 1.1.

HLA IF SPECIFICATION
This method realizes the “Synchronization Point Achieved”
Federation Management service as specified in the HLA Interface
Specification (§4.9 in version 1.3).

SYNOPSIS
void
RTI::RTIambassador::

synchronizationPointAchieved (
 const char *label

)
throw (

 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::SynchronizationPointLabelWasNotAnnounced

)

ARGUMENTS
label

synchronization point identifier that was previously
announced to the federate

DESCRIPTION
Synchronization points are a generalization of the pause/resume
capabilities featured in early revisions of HLA. They provide a
mechanism for federates to schedule checkpoints with federation-
defined semantics, while relying on the RTI to perform the
bookkeeping associated with determining when the checkpoint is
achieved by the desired set of federates.

A federate uses synchronizationPointAchieved() to indicate
that it has met the synchronization criteria associated with some
currently outstanding synchronization point. The label argument
to this service must correspond to a synchronization point that has
been previously announced to the federate through the
announceSynchronizationPoint() callback.

When all federates included in the synchronization have achieved
the synchronization point or resigned, each included federate will
receive a federationSynchronized() callback to announce
that synchronization has been achieved. This callback always
occurs during a subsequent tick(); the federate will never receive
a callback during a synchronizationPointAchieved()
callback.

Depending on the semantics of a synchronization point, it may or
may not be appropriate for a federate to continue operation while
waiting for synchronization to be achieved. The RTI places no
restrictions on a federation pending synchronization; federation
developers are free to implement their own restrictions based on
federation-specific synchronization semantics. At a minimum, all
federates must continue to invoke tick() so that internal RTI
communications may be serviced.

RETURN VALUES
A non-exceptional return indicates that the federation will be
informed of the federate’s attainment of the specified

synchronization point.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::SynchronizationPointLabelWasNotAnnounced
The specified label does not represent a current
synchronization request outstanding to the federate as
indicated by announceSynchronizationPoint().

SEE ALSO
RTI::FederateAmbassador

announceSynchronizationPoint()

federationSynchronized()

RTI::RTIambassador
registerFederationSynchronizationPoint()

A.2 Declaration Management

Declaration Management publishInteractionClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-1

A.2.1 publishInteractionClass()

RTI 1.0 RTI 1.3
ABSTRACT

This service conveys the intention of a federate to begin generating
interactions of a specified class.

HLA IF SPECIFICATION
This method (in conjunction with
unpublishInteractionClass()) realizes the “Publish
Interaction Class” Declaration Management service as specified in
the HLA Interface Specification version 1.1 (§3.2).

This method realizes the “Publish Interaction Class” Declaration
Management service as specified in the HLA Interface
Specification version 1.3 (§5.4).

SYNOPSIS
#include <RTI.hh>
void
RTI::RTIambassador::

publishInteractionClass (
RTI::InteractionClassHandle theInteraction

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theInteraction

the interaction class to be published

DESCRIPTION
This service informs the LRC that the federate may begin
generating interactions of the specified class. Attempts by a
federate to send interactions of a class that is not currently
published by the federate will fail. Publication of an interaction
class does not imply the publication of subclasses of that class.

While an interaction class is published, the LRC will advise the
publishing federate of the existence of remote subscribers. These
advisories are not enforced; however, it is suggested that a federate
refrain from generating superfluous interactions in order to
conserve resources. Invoking this service with an interaction class
that is already published by the federate results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC has acknowledged
the federate’s intention to begin generation of the specified
interaction class.

RELEASE NOTES
RTI 1.0

• The callbacks that advise the federate of the existence or
absence of remote subscribing federates are
startInteractionGeneration() and
stopInteractionGeneration(), respectively.

• Several MOM interaction classes used managed
internally by the RTI are automatically published on
behalf of the federate.

RTI 1.3
• The callbacks that advise the federate of the existence or

absence of remote subscribing federates are
turnInteractionsOn() and

turnInteractionsOff(), respectively. These
advisory callbacks may be toggled on and off using the
enableInteractionRelevanceAdvisorySwitch()

and
disableInteractionRelevanceAdvisorySwitch()
services, respectively

• Only active subscriptions are considered by the advisory
mechanism.

• Internal MOM publications are kept separate from
federate publications. All MOM interactions that the
federate intends to generate must be explicitly published.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The specified interaction class handle is not valid within the
context of the current FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

startInteractionGeneration() ßß RTI 1.0 Only

stopInteractionGeneration() ßß RTI 1.0 Only

turnInteractionsOff() ßß RTI 1.3 Only

turnInteractionsOn() ßß RTI 1.3 Only

RTI::RTIambassador::
changeInteractionOrderType()

changeInteractionTransportType()

disableInteractionRelevanceAdvisorySwitch()
ßß RTI 1.3 Only

enableInteractionRelevanceAdvisorySwitch()
ßß RTI 1.3 Only

getInteractionClassHandle()

publishObjectClass()

sendInteraction()

sendInteraction()

sendInteractionWithRegion() ßß RTI 1.3 Only

subscribeInteractionClass()

subscribeInteractionClassWithRegion()ßß RTI 1.3 Only

unpublishInteractionClass()

Declaration Management publishObjectClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-2

A.2.2 publishObjectClass()

RTI 1.0 �RTI 1.3
ABSTRACT

This service conveys the intention of a federate to begin acquiring
and updating instances of a set of attributes of a specified class.
The semantics of this service with respect to implicitly
unpublished class-attributes changes between RTI 1.0 and RTI
1.3.

HLA IF SPECIFICATION
This method (in conjunction with unpublishObjectClass())
realizes the “Publish Object Class” Declaration Management
service as specified in the HLA Interface Specification version 1.1
(§3.1).

This method realizes the “Publish Object Class” Declaration
Management service as specified in the HLA Interface

Specification version 1.3 (§5.2).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

publishObjectClass (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& attributeList

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the object-class context of the attributes to be published

attributeList
the set of attributes to be published

DESCRIPTION
This service informs the LRC that the federate intends to acquire
and update instances of the specified attributes. Subsequent to the
publication of an object class and an associated set of attributes:

• The federate may register new instances of the object class.
Any published attributes will be initially owned by the
federate; all other attributes will be initially unowned and
available for acquisition.

• The federate may bid for ownership of existing instances of
the published attributes using ownership management
services.

• The federate may be offered existing instances of the
published attributes that are being divested by remote
federates. The LRC will advise the federate of the existence
or absence of remote federates that have declared a
subscription interest in the published object class and
attributes. These advisories are not enforced; however, it is
suggested that a federate refrain from generating superfluous
registrations and updates in order to conserve resources.

The privilegeToDelete attribute (inherently present in every
federation-defined object class) is automatically added to any non-
empty set of published attributes.

If the specified object class is already being published, the
specified attribute set replaces the currently published attribute set.
Any attributes in the currently published attribute set that are not in
the specified attribute set are implicitly unpublished; see the
release-specific notes for the ramifications of this policy. Invoking
publishObjectClass() with an empty attribute set is equivalent
to invoking unpublishObjectClass() for the object class in
question. Attempts to register new instances of an unpublished
object class or acquire ownership of instances of unpublished
attributes will fail.

RETURN VALUES
A non-exceptional return indicates that the given set of attributes
has been published for the object class, possibly replacing an
existing set of published attributes. The federate is eligible to
create objects of the given object class and to acquire instances of
the specified attributes via ownership management services.

RELEASE NOTES
RTI 1.0

• The callbacks that advise the federate of the presence or
absence of remote subscribing federates are
startUpdates() and stopUpdates() respectively.

• The federate retains ownership of any currently owned
instances of attributes that are implicitly unpublished as a
result of this service.

• Classes derived from the MOM-defined Manager object
class receive special treatment. All subclasses of
Manager are implicitly published by the MOM manager
and must remain published throughout the lifetime of the
FedExec. If the Federate attempts to republish a
descendent of Manager with a different set of attributes,
this set must contain all of the attributes pre-defined by
the MOM. [If the Federate’s publication fails to contain
all such attributes, the object manager automatically adds
these attributes to the new set of published attributes.
Future releases may allow unpublication of non-MOM-
defined attributes. For now, this functionality can be
achieved by republishing the object class with an
attribute set consisting of only the predefined attributes.]

RTI 1.3
• The callbacks that advise the federate of the presence or

absence of remote subscribing federates are
startRegistrationForObjectClass() and
stopRegistrationForObjectClass(), respectively.
This advisory may be toggled on and off using the
enableClassRelevanceAdvisorySwitch() and
disableClassRelevanceAdvisorySwitch()
services, respectively.

• Any locally-owned instances of attributes that are
implicitly unpublished as a result of this service
immediately become unowned. These instances are
offered to the federation as if they had been
unconditionally divested by the federate.

• If the local federate has any outstanding ownership bids
for instances of attributes that would be implicitly
unpublished by this service, the method will throw an
exception.

• Internal MOM publications are kept separate from
federate publications. The federate must explicitly
publish any MOM attributes it intends to acquire and
update.

Declaration Management publishObjectClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-3

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::AttributeHandleSet
RTI::FederateAmbassador::

startUpdates()

stopUpdates()

RTI::RTIambassador::
getAttributeHandle()

getObjectClassHandle()

publishInteractionClass()

registerObject()

requestAttributeOwnershipAcquisition()

subscribeObjectClassAttribute()

updateAttributeValues()

RTI 1.3
RTI::AttributeHandleSet
RTI::FederateAmbassador::

startRegistrationForObjectClass()

stopRegistrationForObjectClass()

RTI::RTIambassador::
attributeOwnershipAcquisition()

disableClassRelevanceAdvisorySwitch()

enableClassRelevanceAdvisorySwitch()

getAttributeHandle()

getObjectClassHandle()

publishInteractionClass()

registerObjectInstance()

subscribeObjectClassAttributes()

updateAttributeValues()

Declaration Management subscribeInteractionClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-4

A.2.3 subscribeInteractionClass()

RTI 1.0 �RTI 1.3
ABSTRACT

This service declares a federate’s interest in receiving a specified
class of interactions. The RTI 1.3 implementation adds an
optional second argument for specifying active vs. passive
subscription.

HLA IF SPECIFICATION
This method realizes the “Subscribe Interaction Class” Declaration
Management service as specified in the HLA Interface
Specification (§3.4 in version 1.1 and §5.8 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

subscribeInteractionClass (
RTI::InteractionClassHandle theClass,
RTI::Boolean ßß RTI 1.3 Only RTI 1.3 Only

active = RTI::RTI_TRUE
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::FederateLoggingServiceCalls,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

interaction class to be subscribed

active (RTI 1.3 Only)
flag specifying whether the subscription should be taken into
account when advising publishing federates of interaction-
class relevance

DESCRIPTION
The subscribeInteractionClass() service instructs the LRC
to deliver interactions of a specified class to the federate.
Subsequent instances of the specified interaction class occurring in
the federation will be delivered to the federate in the form of
receiveInteraction() callbacks. Interactions are never
delivered to the federate ambassador of the originating federate.

If an LRC receives an interaction that is an instance of a subclass
of an interaction class subscribed by the federate, the interaction
will be promoted. The interaction will be delivered via
receiveInteraction() as if it were an instance of the most
specific subscribed superclass of the actual interaction class. Any
parameters that are not present in the subscribed interaction class
(i.e., are defined in subclasses of the subscribed class) will be
filtered from the set of parameter values delivered to the federate.

Subscription to an interaction class entails subscription to all
parameters of the interaction class. Instances of the interaction
class delivered to the federate may contain values for any non-
empty subset of the parameters defined for the interaction class.

Upon subscription to an interaction class, remote publishers of the
interaction class (and its subclasses) will be advised of the
existence of a subscriber.

Invoking subscribeInteractionClass() for an interaction-
class that is already subscribed by the local federate results in a no-
op.

RETURN VALUES
A non-exceptional return indicates that the LRC will begin
delivering instances of the specified interaction class to the
federate.

RELEASE NOTES
RTI 1.0

• The startInteractionGeneration() callback is
used to inform remote publishers of the existence of a
subscriber.

RTI 1.3
• The turnInteractionsOn() callback is used to

inform remote publishers of the existence of a
subscriber.

• If the optional active argument is equal to
RTI::RTI_FALSE, the federation will not be notified of
the subscription. Thus, no turnInteractionsOn()
callbacks will be made as a result of the subscription.
This option is appropriate for a federate that should not
have interactions generated solely for its benefit, but that
should receive any interactions that would normally be
generated (e.g. data-logging federates).

• Invoking subscribeInteractionClass() is
equivalent to invoking
subscribeInteractionClassWithRegion() with
the default region (i.e., the region spanning the entire
routing space bound to the interaction class) for the same
interaction class.

• If a subset of a routing space is subscribed for an
interaction class, interactions of that class associated
with a non-intersecting region may be promoted to a
more general class whose subscription intersects the
interaction’s region of relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateLoggingServiceCalls
This exception is not thrown by the current implementations.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

Declaration Management subscribeInteractionClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-5

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::
receiveInteraction()

startInteractionGeneration()

stopInteractionGeneration()

RTI::RTIambassador::
publishInteractionClass()

sendInteraction()

subscribeObjectClassAttribute()

unsubscribeInteractionClass()

RTI 1.3
RTI::FederateAmbassador

receiveInteraction()

turnInteractionsOff()

turnInteractionsOn()

RTI::RTIambassador
publishInteractionClass()

sendInteraction()

sendInteractionWithRegion()

subscribeObjectClassAttributes()

subscribeObjectClassAttributesWithRegion()

unsubscribeInteractionClass()

Declaration Management subscribeObjectClassAttribute()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-6

A.2.4 subscribeObjectClassAttribute()

RTI 1.0
ABSTRACT

This service declares a federate’s interest in receiving updates for a
set of attributes. In RTI 1.3, this service is named
subscribeObjectClassAttribute; the RTI 1.3
implementation is discussed in a separate section. The
semantics of this service change from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Subscribe Object Class Attribute”
Declaration Management service as specified in the HLA Interface
Specification (§3.3 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

subscribeObjectClassAttribute (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& attributeList

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

Class handle of the affected object class.

attributeList
List of attributes being sought.

DESCRIPTION
A Federate uses subscribeObjectClassAttribute() to
manipulate the types of data it wishes to obtain. Subscription to an
object class does not imply subscription to any subclasses of that
object class. However, instances of non-subscribed subclasses are
promoted to the most specific, subscribed object class and reported
to the Federate. New class instances are reported to the Federate
via the callback function reflectAttributeValues().

Consider the following example. A Beverage class introduces the
attributes “Volume” and “Price”. The subclass
CarbonatedBeverage extends the Beverage class adding the
attribute “Carbonation”. The subclass Soda extends
CarbonatedBeverage adding the attributes “Caffeine” and
“BrandName”.

(class Beverage
 (attribute Volume)
 (attribute Price)
 (class CarbonatedBeverage
 (attribute Carbonation)
 (class Soda
 (attribute Caffeine)
 (attribute BrandName)
)
)
)

A Federate can subscribe to all attributes of the class
CarbonatedBeverage. When another federate creates an instance of
Soda, the new instance is reported to the subscribing Federate as an

instance of CarbonatedBeverage. The soda-specific attributes (i.e.,
“Caffeine” and “BrandName”) are filtered out.

Attribute subscriptions are not cumulative with respect to class
hierarchies. For example, a Federate first subscribes to object class
CarbonatedBeverage with attributes “Carbonation” and “Volume”.
It then subscribes to object class Beverage with attributes
“Volume” and “Price”. Subsequent attribute updates for
CarbonatedBeverage (i.e., via reflectAttributeValues())
will not present the “Price” attribute. The attribute subscription set
for the most-specific subscribed object class is always used.

If subscribeObjectClassAttribute()is invoked with an
object class that is already subscribed, the new attribute set
replaces the existing subscribed attribute set. A revised
subscription does not affect objects that have already been
discovered by the Federate. For example, if a Federate initially
subscribes to the Beverage and later subscribes to Soda, Soda
instances that have previously been discovered as Beverage will
not be rediscovered as the more specific object class.

The Federate will not be discover objects until an attribute update
is received following the subscription of a relevant object class. A
Federate can request an attribute update, via
requestObjectAttributeValueUpdate(), for pre-existing
objects. This is especially useful if the attributes in question are
updated sporadically.

Object classes derived from the Management Object Model
(MOM) Manager class are treated like any other class (i.e., they
are treated differently by object publication services).

RETURN VALUES
A non-exceptional return indicates that the Federate has subscribed
to the given object class and attribute set (i.e., replacing the
existing attribute subscription set, if any).

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

Declaration Management subscribeObjectClassAttribute()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-7

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

discoverObject()
removeObject()
reflectAttributeValues()

RTI::RTIambassador::
publishObjectClass()
subscribeInteractionClass()
requestObjectAttributeValueUpdate()
 unsubscribeObjectClassAttribute()

Declaration Management subscribeObjectClassAttributes()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-8

A.2.5 subscribeObjectClassAttributes()

RTI 1.3
ABSTRACT

This service declares a federate’s interest in receiving reflections
for updates of a specified set of attributes. The RTI 1.0
implementation of this service is named
subscribeObjectClassAttribute; the RTI 1.0
implementation is discussed in a separate section. The RTI 1.3
implementation adds an optional third argument for specifying
passive vs. active subscription.

HLA IF SPECIFICATION
This method realizes the “Subscribe Object Class Attributes”
Declaration Management service as specified in the HLA Interface
Specification (§5.6 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

subscribeObjectClassAttribute (
RTI::ObjectClassHandle theClass,
const RTI::AttributeHandleSet& attributeList,
RTI::Boolean

active = RTI::RTI_TRUE
)

throw (
RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the object-class context of the attribute handles

attributeList
the set of class-attributes to be subscribed

active
flag specifying whether the subscription should be taken into
account when advising publishing federates of object-
registration relevance

DESCRIPTION
The subscribeObjectClassAttributes() service instructs
the LRC to deliver updates of a specified set of class-attributes to
the federate. Subsequent updates of instances of the specified
class-attributes will be delivered to the federate in the form of
reflectAttributeValues() callbacks. Updates are never
delivered to the federate ambassador of the originating federate.

Invoking subscribeObjectClassAttributes() is equivalent
to invoking
subscribeObjectClassAttributesWithRegion() with the
default region (i.e., the region spanning the entire routing space
bound to the class-attributes in the FED file) for the same object
class and set of class-attributes. If a federate is already subscribed
to a set of class-attributes for an object class (resulting from a
subscribeObjectClassAttributes() or a
subscribeObjectClassAttributesWithRegion()), a
subsequent invocation of
subscribeObjectClassAttributes() for the same object
class will replace the previous subscription. That is,

• any previously subscribed attributes that are not in the new

attribute set will no longer be subscribed

• any regions previously associated with the attributes will be
replaced by the default region of the routing space to which
the attributes are bound in the FED file

An implication of this is that an invocation of
subscribeObjectClassAttributes() with an empty attribute
set is equivalent to an invocation of
unsubscribeObjectClass() for the same object class.

Prior to receiving updates for an object instance, a federate will
receive a discoverObjectInstance() callback conveying the
instance’s object handle and its object class. If an object is an
instance of a subclass of an object class subscribed by a federate,
the object will be discovered as if it were an instance of the most
specific subscribed superclass of its actual object class.
Subsequent reflections for attribute-instances of the object will be
filtered by the LRC to only include those attributes that are present
in the discovered object class. A federate will not receive a
discoverObjectInstance() for a given object instance if the
federate already owns attributes of the object instance.

If a federate is subscribing to some object classes with regions
other than the default, object instances may be promoted beyond
the most specific subscribed superclass. The discovered class of
an object instance will be the most specific subscribed object class
for which at least one attribute subscription region intersects the
region associated with the corresponding instance-attribute at the
time the discovery is delivered.

Subscription to an object class does not retroactively affect object
instances that have already been discovered by the subscribing
federate. That is, instances of the newly subscribed object class
that have previously been discovered by the federate as a more
general object class will still be treated by the LRC as instances of
the previously discovered class. To force the rediscovery of
instances, the federate may use the
localDeleteObjectInstance() service.

The subscribing federate will be notified of subsequent updates of
instances of the specified class-attributes using the
reflectAttributeValues() callback. Each reflection will
contain values for a non-empty subset of the currently subscribed
attributes of the instance’s discovered class.

Upon subscription to an interaction class, remote federates
publishing the subscribed object class (or a subclass) such that the
intersection of the published and subscribed class-attributes
(regions notwithstanding) is non-empty may receive
startRegistrationForObjectClass() callbacks. A federate
will not receive such a callback multiple times for the same object
class without an intervening
stopRegistrationForObjectClass() callback.

If the optional active argument to the subscription is equal to
RTI::RTI_FALSE, the federation will not be notified of the
subscription. Thus, no startRegistrationForObjectClass()
callbacks will be made as a result of the subscription. This option
is appropriate for a federate that should not have registrations and
updates made solely for its benefit, but that should receive any
updates that would normally be generated (e.g. data-logging
federates).

A federate will discover object instances whenever instances are
registered or updated after the federate’s subscription to an
appropriate class. For attributes that are sporadically updated
under normal circumstances, it may be desirable to explicitly
request an update for the benefit of a newly-subscribed federate.
The requestObjectAttributeValueUpdate() and
requestClassAttributeValueUpdate() services may be used

Declaration Management subscribeObjectClassAttributes()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-9

for this purpose.

RETURN VALUES
A non-exceptional return indicates that the LRC will begin
delivering reflections of instances of the specified class-attributes
to the federate.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

discoverObjectInstance()

reflectAttributeValues()

removeObjectInstance()

RTI::RTIambassador::
getAttributeHandle()

getObjectClassHandle()

localDeleteObjectInstance()

publishObjectClass()

requestClassAttributeValueUpdate()

requestObjectAttributeValueUpdate()

subscribeInteractionClass()

unsubscribeObjectClass()

Declaration Management unpublishInteractionClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-10

A.2.6 unpublishInteractionClass()

RTI 1.0 �RTI 1.3
ABSTRACT

This service conveys the intention of a federate to cease generation
of interactions of a specified class. The semantics of this service
have changed from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method (in conjunction with
publishInteractionClass()) realizes the “Publish Interaction
Class” Declaration Management service as specified in the HLA
Interface Specification version 1.1 (§3.2).

This method realizes the “Unpublish Interaction Class”
Declaration Management service as specified in the HLA Interface
Specification version 1.3 (§5.5).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

unpublishInteractionClass (
RTI::InteractionClassHandle theInteraction

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

unpublishInteractionClass (
 RTI::InteractionClassHandle theInteraction

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::RestoreInProgress,
 RTI::RTIinternalError
 RTI::SaveInProgress,
)

ARGUMENTS
theInteraction

the interaction class to be unpublished

DESCRIPTION
This service informs the LRC that the federate will no longer
generate interactions of the specified class. The LRC will no
longer advise the federate of the existence or absence of remote
subscribing federates for the interaction class. Subsequent
attempts by the federate to send interactions of the specified class
will fail.

RETURN VALUES
A non-exceptional return indicates that the LRC has acknowledged
the federate’s intention to cease generation of the specified
interaction class.

RELEASE NOTES
RTI 1.0

Any subclasses of the specified interaction class that are
currently published will also be unpublished. A federate may
simultaneously unpublish any published interaction class by

unpublishing the ROOT_INTERACTION_CLASS_HANDLE.
This interaction class is implicitly the superclass of all
federation-defined interactions.

Invoking unpublishInteractionClass() with an
interaction class that is not currently published and has no
currently published subclasses results in a no-op.

RTI 1.3
Only the interaction class that is explicitly the subject of the
service invocation is unpublished. Any subclasses of the
specified interaction class remain published.

Invoking unpublishInteractionClass() with an
interaction class that is not currently published results in a no-
op.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotPublished (RTI 1.3 Only)
This exception is not thrown by the current implementation.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

getInteractionClassHandle()

publishInteractionClass()

Declaration Management unpublishObjectClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-11

A.2.7 unpublishObjectClass()

RTI 1.0 �RTI 1.3
ABSTRACT

This service conveys the intention of a federate to cease creating
instances of and acquiring attributes of a specified object class.
The semantics of this service have changed from RTI 1.0 to
RTI 1.3.

HLA IF SPECIFICATION
This method (in conjunction with publishObjectClass())
realizes the “Publish Object Class” Declaration Management
service as specified in the HLA Interface Specification version 1.1
(§3.1).

This method realizes the “Unpublish Object Class” Declaration
Management service as specified in the HLA Interface

Specification version 1.3 (§5.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

unpublishObjectClass (
RTI::ObjectClassHandle theClass

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederateOwnsAttributes, ßß RTI 1.0 Only RTI 1.0 Only
RTI::ObjectClassNotDefined,
RTI::ObjectClassNotPublished, ßß RTI 1.3 Only RTI 1.3 Only
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the object class to unpublish

DESCRIPTION
The unpublishObjectClass() service conveys the intention of
the federate to cease registration of new instances of a specified
object class. In addition, the federate may no longer acquire
attribute-instances of objects known to the federate as the
unpublished class.

The specifics of this service differ dramatically between RTI 1.0
and RTI 1.3; see release notes below.

RETURN VALUES
A non-exceptional return indicates that the LRC acknowledges the
unpublication of the object class.

RELEASE NOTES
RTI 1.0

• Classes derived from the MOM-defined Manager object
class receive special treatment. All subclasses of
Manager are implicitly published by the MOM manager
and must remain published throughout the lifetime of the
FedExec. The unpublishObjectClass() cannot be
used to unpublish descendents of Manager.

• Unpublication only affects the acquisition of new
attribute-instances. It does not relieve the federate of
update responsibility for any attributes already owned.

• Unpublication of an object class removes the specified
object class and any of its subclasses from the set of

object classes published by the federate. The federate
may no longer create objects or acquire attributes of the
given object class or any of its subclasses.

• Any valid object class is a valid parameter to
unpublishObjectClass(). The object class need not
actually be published by the federate. A federate wishing
to unpublish all object classes can do so by passing the
parameter “ROOT_OBJECT_CLASS_HANDLE” (i.e., the
handle of the RTI-defined object class from which all
federation object classes are implicitly defined).

RTI 1.3
• There is nothing special about object classes defined by

the Management Object Model. MOM internal
publications and federate publications are handled
independently, so a federate may publish and unpublish
MOM classes as it would any other object class.

• Upon unpublication of an object class by a federate, any
locally owned instance-attributes of object instances
known to the federate as the unpublished class
immediately become unowned. These attributes are
offered to the federation as if they had been
unconditionally divested by the unpublishing federate.

• Unpublication of an object class unpublishes only the
specified object class does not unpublish subclasses of
the unpublished class.

• Only object classes currently published by a federate
may be the subject of unpublishObjectClass()
invocations by the federate. Attempts to unpublish
object classes that are not currently published will result
in ObjectClassNotPublished exceptions.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification v1.3 stipulates that a federate may
not unpublish an object class when it owns instances-attributes of
objects known to the federate as the class being unpublished. RTI
1.3 allows this, but immediately divests any such attributes.

The HLA Interface Specification v1.3 forbids the unpublication of
an object class while a federate is participating in ownership
acquisitions involving attribute-instances of objects known to the
federate as the unpublished object class. The RTI 1.3
implementation does not enforce this restriction.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateOwnsAttributes (RTI 1.0 Only)
This exception is not thrown by the current implementation.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

Declaration Management unpublishObjectClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-12

RTI::ObjectClassNotPublished (RTI 1.3 Only)
The specified object class is not currently published by the
local federate and is used in a context requiring a currently
published object class.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

getObjectClassHandle()

publishObjectClass()

requestAttributeOwnershipDivestiture()
 ßß RTI 1.3 Only

unconditionalAttributeOwnershipDivestiture()
 ßß RTI 1.3 Only

Declaration Management unsubscribeInteractionClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-13

A.2.8 unsubscribeInteractionClass()

RTI 1.0 �RTI 1.3
ABSTRACT

This service withdraws a federate’s interest in receiving a specified
class of interactions. The semantics of this service have changed
from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method (in conjunction with
subscribeInteractionClass()) realizes the “Subscribe
Interaction Class” Declaration Management service as specified in
the HLA Interface Specification version 1.1 (§3.4).

This method realizes the “Unsubscribe Object Class” Declaration
Management service as specified in the HLA Interface

Specification version 1.3 (§5.9).

SYNOPSIS
#include <RTI.hh>

void
unsubscribeInteractionClass (

RTI::InteractionClassHandle theClass
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::InteractionClassNotSubscribed, ßß RTI 1.3 Only RTI 1.3 Only
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the interaction class to unpublish

DESCRIPTION
The unsubscribeInteractionClass() service instructs the
LRC to cease delivering interactions of the specified class to the
federate. If there are no other federates subscribing to the
interaction class, remote publishers of the interaction class and its
subclasses may be advised to stop sending interactions of the
unsubscribed class.

RELEASE NOTES
RTI 1.0

• Unsubscription of an interaction class also unsubscribes
any subclasses of the interaction class.

• The specified interaction class need not actually be
subscribed by the Federate. For example, the Federate
may wish to unsubscribe all interaction classes by
passing the argument
“ROOT_INTERACTION_CLASS_HANDLE” (i.e., the handle
of the RTI-defined interaction class from which all
Federation-defined interaction classes are implicitly
defined).

RTI 1.3
• An invocation of unsubscribeInteractionClass()

only unsubscribes the specified interaction class; it does
not unsubscribe subclasses of the specified interaction
class.

• The specified interaction class must be currently
subscribed by the federate; attempts to unsubscribe
interaction classes that are not currently subscribed by
the federate will result in

InteractionClassNotSubscribed exceptions.

RETURN VALUES
A non-exceptional return indicates that the LRC acknowledges the
unsubscription of the specified interaction class.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotSubscribed (RTI 1.3 Only)
The interaction class is not currently subscribed by the
federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::

receiveInteraction()

startInteractionGeneration()

stopInteractionGeneration()

RTI::RTIambassador::
getInteractionClassHandle()

publishInteractionClass()

subscribeInteractionClass()

RTI 1.3
RTI::FederateAmbassador::

receiveInteraction()

turnInteractionsOff()

turnInteractionsOn()

RTI::RTIambassador::
getInteractionClassHandle()

publishInteractionClass()

subscribeInteractionClass()

Declaration Management unsubscribeObjectClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-14

A.2.9 unsubscribeObjectClass()

RTI 1.3
ABSTRACT

This service withdraws a federate’s interest in receiving updates
for a specified object class. In RTI 1.0, this service was named
unsubscribeObjectClassAttribute; the RTI 1.0
implementation is discussed in a separate section. The
semantics of this service have changed from RTI 1.0 to RTI
1.3.

HLA IF SPECIFICATION
This method (in conjunction with
subscribeObjectClassAttribute()) realizes the “Subscribe
Object Class Attribute” Declaration Management service as
specified in the HLA Interface Specification version 1.1 (§3.3).

This method realizes the “Unsubscribe Object Class” Declaration
Management service as specified in the HLA Interface
Specification version 1.3 (§5.7).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

unsubscribeObjectClass (
RTI::ObjectClassHandle theClass

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::ObjectClassNotSubscribed,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the object class to unsubscribe

DESCRIPTION
The unsubscribeObjectClass() service withdraws the
federate’s interest in receiving discoveries and update reflections
for the specified object class.

Upon unsubscription from an object class, the federate will no
longer receive any discoverObjectInstance() callbacks with
a subject whose object class is the unsubscribed class. The
federate will no longer receive reflectAttributeValues() for
object instances that are known to the federate by the unsubscribed
class. Such instances will not be promoted to a more general
subscribed object class, even if such a class exists. The federate
may use the localDeleteObjectInstance() service to force
the rediscovery of object instances that have been discovered as an
unpublished class.

The unsubscribing federate will receive
attributesOutOfScope() callbacks for all previously in-scope
instance-attributes of objects known to the federate by the
unsubscribed class. If there are no other actively subscribing
federates for the object class, remote publishers of the object class
(and its subclasses) may be advised, via the
stopRegistrationForObjectClass() callback, to stop
registering object instances of the unpublished class.

Unsubscription to a specified object class does not result in
unsubscritption of subclasses of the specified object class. If the
subject of an unsubscribeObjectClass() service invocation is

an object class not currently subscribed by the federate, an
ObjectClassNotSubscribed exception will be thrown.

RETURN VALUES
A non-exceptional return indicates that the LRC will cease
delivering discoveries and reflections whose subjects are object
instances of the unpublished class to the federate.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::ObjectClassNotSuibscribed
The specified interaction class is not subscribed by the local
federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

attributesOutOfScope()

discoverObjectInstance()

reflectAttributeValues()

stopRegistrationForObjectClass()

RTI::RTIambassador::
getObjectClassHandle()

subscribeObjectClassAttributes()

Declaration Management unsubscribeObjectClassAttribute()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.2-15

A.2.10 unsubscribeObjectClassAttribute()

RTI 1.0
ABSTRACT

This service withdraws a federate’s interest in receiving updates
for a set of attributes. In RTI 1.3, this service is named
unsubscribeObjectClass; the RTI 1.3 implementation is
discussed in a separate section. The semantics of this service
change from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Unsubscribe Object Class” Declaration
Management service as specified in the HLA Interface
Specification (§3.6 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

unsubscribeObjectClassAttribute (
RTI::ObjectClassHandle theClass

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

Class handle of the affected object class.

DESCRIPTION
A Federate uses unsubscribeObjectClassAttribute() in
conjunction with subscribeObjectClassAttribute() to
manipulate the types of data it wishes to obtain. These two
methods are used by the Federate to manipulate the types of data
about which it wishes to be informed.

The unsubscribeObjectClassAttribute() method removes
the specified object class and any of its subclasses from the set of
object classes that will be presented to the Federate. The specified
object class need not actually be subscribed by the Federate. For
example, the Federate may unsubscribe all object classes by
specifying the object class “ROOT_OBJECT_CLASS_HANDLE” (i.e.,
the handle of the RTI-defined object class from which all
Federation-defined object classes are implicitly derived).

Subscription to an object class does not imply subscription to any
subclasses of that object class. However, instances of non-
subscribed subclasses are promoted to the most specific,
subscribed object class and reported to the Federate. See
subscribeObjectClassAttribute() for a discussion of the
subscription process.

Removal of an object class from the subscription set results in the
removal of all instances of that class from the set of objects known
to the Federate. The Federate is informed of object instance
removals through the callback function removeObject(). This
notification is not delivered synchronously with respect to the
unpublication method, but is queued up for later processing by
RTIambassador’s tick() service.

If the Federate holds any attribute ownership tokens for removed
objects, the object manager will automatically resolve ownership
of these tokens. [See the discussion of
“RELEASE_ATTRIBUTES” in the method

resignFederationExecution().]

Object classes derived from the Management Object Model
(MOM) Manager class are treated like any other class (i.e., they
are treated differently by object publication services).

RETURN VALUES
A non-exceptional return indicates that the given object class and
any of its subclasses has been removed from the set of subscribed
classes. All discovered instances of the affected classes have been
queued for deletion from the set of objects known by the Federate.
The object manager will attempt to divest attribute ownership
tokens of any removed objects "behind the scenes". Updates for
the affected attributes will no longer be presented to the Federate.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

discoverObject()

removeObject()

reflectAttributeValues()

RTI::RTIambassador::
publishObjectClass()

requestObjectAttributeValueUpdate()

subscribeInteractionClass()

subscribeObjectClassAttribute()

A.3 Object Management

Object Management changeAttributeTransportType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-1

A.3.1 changeAttributeTransportType()

RTI 1.0 �RTI 1.3
ABSTRACT

This service specifies the transportation policy for a specified set
of instance-attributes of a specified object instance to use for
updates made by the local federate. The type (but not semantics)
of one parameter changes between RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
Realizes the “Change Attribute Transport Type” Object
Management service as specified in the HLA Interface

Specification (§4.10 in version 1.1;§6.11 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
enum RTI::TransportType {

RELIABLE = 1,
BEST_EFFORT

};

// RTI 1.0 Only
void
RTI::RTIambassador::

changeAttributeTransportType (
RTI::ObjectID theObject
const RTI::AttributeHandleSet& theAttributes
RTI::TransportType theType

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidTransportType,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

changeAttributeTransportType (
 RTI::ObjectHandle theObject, ßß Changes Types Changes Types
 const RTI::AttributeHandleSet&

 theAttributes,
 RTI::TransportationHandle theType ßß Changes Types Changes Types

)
throw (
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidTransportationHandle, ßß Changes Types Changes Types
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object-instance whose instance-attributes are affected

theAttributes
the instance-attributes whose transportation policy is being set

theType
the transportation policy to use for subsequent updates of the
specified instance-attributes by the local federate

DESCRIPTION
This service specifies the transportation mechanism to be used for

subsequent updates of the specified instance-attributes made by the
local federate. The current RTI implementations offer a choice
between reliable and best-effort transportation:

• Reliable transportation uses the TCP protocol to guarantee
that updates will not be discarded by the underlying network.
This level of service is necessary for essential updates, which
must be delivered to all subscribers (e.g. missile detonations,
collision notifications.) Reliable updates experience
relatively high latency and overhead and generally consume
more network bandwidth than best-effort updates. The
reliable service may cause federates to block in an
updateAttributeValues() service invocation.

• Best-effort delivery uses the UDP multicast protocol to
achieve efficient delivery to a large number of recipients. It is
possible that best-effort updates will be discarded by the
network and fail to be delivered to all intended recipients.
This service may be appropriate for non-essential updates
such a routine position reports. Best-effort service typically
offers relatively low latency and utilizes bandwidth
efficiently.

The default transportation service for an instance-attribute is the
transportation service specified for the corresponding class-
attribute in the FED file. The transportation service for an
instance-attribute will revert to the default if the instance-attribute
is transferred between federates using ownership management
services.

This service will allow a transportation policy to be set for any
instance-attributes of any objects known to the federate; however,
such a specification is only meaningful for instance-attributes that
are owned by the local federate.

RETURN VALUES
A non-exceptional exit indicates the specified transportation
service will be used for future updates of the specified object-
attributes.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
This exception is not thrown by the current implementations.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidTransportationHandle (RTI 1.3 Only)
The specified transportation service handle is not a valid
handle as returned by the getTransportationHandle()
service.

RTI::InvalidTransportType (RTI 1.0 Only)
The transport type specified is not recognized.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the Federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal

Object Management changeAttributeTransportType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-2

state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::RTIambassador::

changeAttributeOrderType()

changeInteractionTransportType()

updateAttributeValues()

Object Management changeInteractionTransportType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-3

A.3.2 changeInteractionTransportType()

RTI 1.0 �RTI 1.3
ABSTRACT

Change the transportation mechanism used by the federate for
interactions of a specified class.

HLA IF SPECIFICATION
Realizes the “Change Interaction Transport Type” Object
Management service as specified in the HLA Interface

Specification (§4.12 in version 1.1; §6.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>
// RTI 1.0 Only
enum RTI::TransportType {

RELIABLE = 1,
BEST_EFFORT

};

// RTI 1.0 Only
void
RTI::RTIambassador::

changeInteractionTransportType (
RTI::InteractionClassHandle theClass
RTI::TransportType theType

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::InteractionClassNotPublished,
RTI::InvalidTransportType,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)
// RTI 1.3 Only
void
RTI::RTIambassador::

changeInteractionTransportType (
 RTI::InteractionClassHandle theClass,
 RTI::TransportationHandle ßß Changes Types Changes Types

theType
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished,
 RTI::InvalidTransportationHandle, ßß Changes Types Changes Types
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

the interaction class affected by the change in transportation
service

theType
the transportation service to use for the specified interaction
class

DESCRIPTION
This service specifies the transportation mechanism to be used for
subsequent interactions of the specified interaction class sent by
the local federate. The current RTI implementations offer a choice
between reliable and best-effort transportation:

• Reliable transportation uses the TCP protocol to guarantee
that interactions will not be discarded by the underlying
network. This level of service is necessary for essential
interactions, which must be delivered to all subscribers (e.g.
missile detonations, collision notifications.) Reliable

interactions experience relatively high latency and overhead
and generally consume more network bandwidth than best-
effort interactions. The reliable service may cause federates
to block in an sendInteraction() service invocation.

• Best-effort delivery uses the UDP multicast protocol to
achieve efficient delivery to a large number of recipients. It is
possible that best-effort interactions will be discarded by the
network and fail to be delivered to all intended recipients.
This service may be appropriate for non-essential interactions
such a routine position reports. Best-effort service typically
offers relatively low latency and utilizes bandwidth
efficiently.

The default transportation service for an interaction instance is the
transportation service specified for the corresponding interaction
class in the FED file.

RETURN VALUES
A non-exceptional return indicates that future interactions of the
specified class will be sent using the specified transportation
service.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotPublished
The operation attempted requires that the interaction class be
currently published by the federate.

RTI::InvalidTransportationHandle
The specified transportation service handle is not a valid
handle as returned by the getTransportationHandle()
service.

RTI::InvalidTransportType
The transport type specified is not recognized.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

changeAttributeTransportType()

changeInteractionOrderType()

publishInteractionClass()

sendInteraction()

Object Management deleteObject()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-4

A.3.3 deleteObject()

RTI 1.0
ABSTRACT

This service removes an object from the federation. The RTI 1.3
implementation of this service is named
deleteObjectInstance; the RTI 1.0 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Delete Object” Object Management
service as specified in the HLA Interface Specification (§4.8 in
versions 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::EventRetractionHandle
RTI::RTIambassador::

deleteObject (
RTI::ObjectID objectID
RTI::FederationTime theTime

 const RTI::UserSuppliedTag theTag
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::DeletePrivilegeNotHeld,
RTI::FederateNotExecutionMember,
RTI::InvalidFederationTime,
RTI::ObjectNotKnown,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

ARGUMENTS
objectID

Object to be deleted from the FedExec.

theTime
Time at which the object deletion is to become effective.

theTag
A string passed to federates that describes the interaction or
provides some other meaningful data.

DESCRIPTION
A Federate uses deleteObject() to remove an object from the
FedExec. The Federate must own the object – i.e., hold the
privilege-to-delete attribute. The RTI-defined handle
“PRIVILEGE_TO_DELETE_HANDLE” identifies the privilege-to-
delete attribute. Delete privilege is initially granted to the Federate
that registers the object.

If the Federate is “time regulating” and any of the instance's
attributes are being sent time-stamp-ordered, the object deletion
message will be designated for time-stamp-ordered delivery.
Otherwise, the object deletion message is sent receive-ordered.

A successful invocation of this service causes the Federation to
send removeObject() callbacks to federates that have discovered
the specified object.

When an object is removed from the FedExec, its ID cannot be
reused.

RETURN VALUES
A non-exceptional return indicates that an object-deletion message
has been sent to the other federates in the FedExec.

An RTI::EventRetractionHandle instance is returned. It can be
used as an argument to the retract() method to reinstate the
object.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::DeletePrivilegeNotHeld
The Federate does not hold the privilege-to-delete attribute.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidFederationTime
The specified time value is not a legal time for a time-stamp-
ordered update. It is less than the Federate's logical time plus
its lookahead. Not thrown in RTI 1.0 and dropped entirely in
RTI 1.3.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the Federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

removeObject()

RTI::RTIambassador::
queryAttributeOwnership()

registerObject()

retract()

Object Management deleteObjectInstance()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-5

A.3.4 deleteObjectInstance()

RTI 1.3
ABSTRACT

This service removes an object instance from the federation. The
RTI 1.3 implementation of this service is named
deleteObjectInstance; the RTI 1.0 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Delete Object Instance” Federation
Management service as specified in the HLA Interface
Specification (§6.8 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::EventRetractionHandle
RTI::RTIambassador::

deleteObjectInstance (
 RTI::ObjectHandle objectHandle,
 const RTI::FedTime& theTime,
 const char *theTag

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::DeletePrivilegeNotHeld,
 RTI::FederateNotExecutionMember,
 RTI::InvalidFederationTime,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
);

void
RTI::RTIambassador::

deleteObjectInstance (
 RTI::ObjectHandle objectHandle,
 const char *theTag

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::DeletePrivilegeNotHeld,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
objectHandle

the object-instance to be removed from the federation

theTime

the time at which to schedule the deletion for time-stamp-
ordered delivery

theTag

a string that is passed to resulting invocations of
removeObjectInstance(); this is not interpreted by the
RTI and may be used to communicate federation-specific
information about the deletion

DESCRIPTION
This service initiates the deletion of an object instance from the
federation. Only a federate owning the privilegeToDelete
instance-attribute of an object instance may initiate the deletion of
that instance. The deletion is processed immediately by the LRC
of the initiating federate. The deletion is communicated to remote
LRCs and is queued for time-stamp-ordered (TSO) or receive-
ordered processing for relevant federates. Processing of a deletion
event by an LRC entails the following:

• All records of the object instance are removed from the
internal structures of the LRC.

• If the object instance is known to the federate through
registration or discovery, a removeObjectInstance()
callback is made.

• Any instance-attributes owned by the federate no longer exist
in the federation. The federate may receive a
turnUpdatesOffForObjectInstance() advisory callback
for any locally owned instance-attributes for which updates
are currently turned on.

If an LRC processes an update for an object instance that has
previously been deleted at the LRC, the object may be
rediscovered by the federate, possibly as a different object class.
This may include updates that were queued for delivery or in-
transit at the point in execution when the deletion was processed.
This is usually undesirable, and is recommended that the federation
take precautions to prevent this situation (e.g., by using time-
stamp-ordering to ensure that the deletion is the last event
processed for an object instance.)

A removeObjectInstance() callback resulting from a
deleteObjectInstance() service invocation will be delivered
TSO if and only if

• a logical time argument is provided to the
deleteObjectInstance() service invocation

• a TSO delivery policy is in effect for the privilegeToDelete
attribute of the specified object instance at the initiating
federate

• the federate initiating the deletion is time regulating

• the federate receiving the deletion is time constrained at the
point in execution at which the deletion is queued for delivery
and the point in execution at which the deletion is delivered to
the federate

No logical time argument will be provided to
removeObjectInstance() callbacks that are not delivered in
TSO order, even if a logical time was specified to the
deleteObjectInstance() service invocation which initiated the
deletion.

A deletion notification is distributed to the federation using
whichever transportation service is in effect for the
privilegeToDelete instance-attribute of the deleted object instance.

RETURN VALUES
A non-exceptional return indicates that the object-instance deletion
has been initiated in the federation.

The timed variant of this service returns

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::DeletePrivilegeNotHeld
The “privilege to delete” attribute is not owned by the local
federate.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

Object Management deleteObjectInstance()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-6

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the Federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

discoverObjectInstance()

removeObjectInstance()

turnUpdatesOffForObjectInstance()

RTI::RTIambassador::
changeAttributeOrderType()

changeAttributeTransportType()

enableTimeConstrained()

enableTimeRegulation()

localDeleteObjectInstance()

registerObjectInstance()

resignFederationExecution()

retract()

updateAttributeValues()

Object Management localDeleteObjectInstance()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-7

A.3.5 localDeleteObjectInstance()

RTI 1.3
ABSTRACT

This service may be used by a federate to cause a specified object
instance to be rediscovered by the federate.

HLA IF SPECIFICATION
This service realizes the “Local Delete Object Instance” Federation
Management service as specified in the HLA Interface
Specification (§6.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador

localDeleteObjectInstance (
 RTI::ObjectHandle objectHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::FederateOwnsAttributes,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

 ARGUMENTS
objectHandle

the object instance to rediscover

DESCRIPTION
This service causes the LRC to treat the specified object instance
as if it had never been discovered by the federate. If any of the
instance-attributes of the object instance match the current
subscription interests of the federate, the federate will receive a
discoverObjectInstance() callback for the object instance
and an attributesInScope() callback for the instance-
attributes matching the subscription. The newly discovered class
will be the most specific object class at which the federate has
subscribed to a class-attribute with a region overlapping the region
associated with the corresponding instance-attribute. These
callbacks will occur synchronously with respect to the
localDeleteObjectInstance() service invocation.

If none of the instance-attributes of the specified instance match
the federate’s current subscription interests, the instance remains
undiscovered by the federate. It may be subsequently rediscovered
as a result of changing subscriptions or associations. The federate
will not receive an attributeOutOfScope() or
removeObjectInstance() callback.

RETURN VALUES
A non-exceptional return indicates that the specified object
instance has been undiscovered and possibly rediscovered.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateOwnesAttributes
One or more attributes of the specified object are owned by
the local federate.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the Federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

attributeOutOfScope()

attributesInScope()

discoverObjectInstance()

RTI::RTIambassador::
deleteObjectInstance()

Object Management registerObject()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-8

A.3.6 registerObject()

RTI 1.0
ABSTRACT

This service introduces a new object instance into the federation.
The RTI 1.3 implementation of this service is named
registerObjectInstance; the RTI 1.3 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Register Object” Object Management
service as specified in the HLA Interface Specification (§4.2 in
version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

registerObject (
RTI::ObjectClassHandle theClass
RTI::ObjectID theObjectID

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidObjectID,
RTI::ObjectAlreadyRegistered,
RTI::ObjectClassNotDefined,
RTI::ObjectClassNotPublished,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the object class for which a new instance is being registered

TheObjectID
the object ID to associate with the specified class (should
have been previously obtained via a call to requestID().)

DESCRIPTION
A Federate uses registerObject() to identify a unique
identification number for a new instance of an object class that is
under construction. [The registerObject() method does not
announce the existence of a newly created object. The object
cannot be discovered by other federates until an attribute update
notification is sent out.] The Federate must publish the object class
(i.e., ObjectClassHandle) prior to calling registerObject().
The registration process differs between the RTI 1.0 and RTI 1.3
releases.

The Federate first obtains one or more object IDs via
requestID(). It then uses the method registerObject() to
asscociate an object class type with the object ID. [The Federate
supplies both the object class handle and the object ID.] The
registerObject() call binds the class type to the ID number.

The initial transportation mechanism and update ordering policy
for a given attribute are set to the values defined in the FOM file,
“[federation name].fed”.

RETURN VALUES
A non-exceptional return indicates that the object has been
successfully registered with the RTI. The Federate may begin
generating updates for the attributes it publishes.

WINDOWS® NT NOTES
On Windows NT, the location of the FOM file is
“%RTI_CONFIG%\[federation].fed”.

UNIX® NOTES
On UNIX platforms, the location of the FOM file is
“$RTI_CONFIG/[federation name].fed”.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidObjectID
The specified object ID has not been reserved for use by the
Federate.

RTI::ObjectAlreadyRegistered
An object has already been registered using the specified
object ID.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::ObjectClassNotPublished
The specified object class has not been published by the
Federate.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

discoverObject()

RTI::RTIambassador::
changeAttributeOrderType()

changeAttributeTransportType()

deleteObject()

publishObjectClass()

requestID()

updateAttributeValues()

Object Management registerObjectInstance()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-9

A.3.7 registerObjectInstance()

RTI 1.3
ABSTRACT

TBD

HLA IF SPECIFICATION
This method realizes the “Register Object Instance” Object
Management service as specified in the HLA Interface
Specification (§6.2 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::ObjectHandle
RTI::RTIambassador::

registerObjectInstance (
 RTI::ObjectClassHandle theClass,

const char *theObject
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectAlreadyRegistered,
 RTI::ObjectClassNotDefined,
 RTI::ObjectClassNotPublished,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

RTI::ObjectHandle
RTI::RTIambassador::

registerObjectInstance (
 RTI::ObjectClassHandle theClass

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::ObjectClassNotPublished,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

the object class of which the new object is an instance

theObject

a symbolic name associated with the new instance; this is not
interpreted by the RTI except that it must be unique to the
federation at a given point in execution

DESCRIPTION
This service creates a new object instance in the federation.
Instance-attributes of the newly created object which correspond to
class-attributes published by the federate at the level of the
specified object class are initially owned by the registering
federate. All other instance-attributes are initially unowned and
are available for acquisition by any federate.

All instance-attributes are initially associated with the default
region (i.e., the region spanning the entire routing space to which
the corresponding class-attributes are bound in the FED file.) All
instance-attributes are initially associated with the transportation
and ordering service categories to which the corresponding class-
attributes are bound in the FED file.

The creation of a new object instance is immediately announced to
the federation, resulting in discoverObjectInstance()
callbacks for any federates whose subscription interests include at
least one class-attribute of the registered object class. The object
instance may also be discovered as a result of subsequent updates

and data-distribution management operations affecting instance-
attributes of the object.

The symbolic name must be unique to the federation over the
lifetime of the object instance. The
getObjectInstanceHandle() and
getObjectInstanceName() services are used to convert
between symbolic object names and numeric identifiers, and may
be used to implement global named objects. If no symbolic name
is specified, the RTI will assign a symbolic name consisting of the
concatenation of

1. the string “HLA”

2. the hexadecimal IP address of the federate’s host machine

3. the process ID of the federate process

4. the time in seconds since the epoch at which the federate
process was started

5. an integer corresponding to the sequence number of the
registration relative to other registrations by the same federate

Note that symbolic names generated using this algorithm are
guaranteed to be unique over the lifetime of the federation (not just
the lifetime of the object instance.)

The LRC will provide a turnUpdatesOnForObjectInstance()
advisory for any instance-attributes of the newly registered
instance for which there are active subscribers.

RETURN VALUES
A successful invocation of this service returns a numeric handle
that uniquely identifies the newly created instance in the current
federation execution. This handle is guaranteed to be unique over
the lifetime of the registering federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectAlreadyRegistered
The symbolic name associated with the object has already
been registered within the federation.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::ObjectClassNotPublished
The operation attempted requires that the object class be
currently published by the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

Object Management registerObjectInstance()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-10

SEE ALSO
RTI::FederateAmbassador::

discoverObject()

startRegistrationForObjectClass()

turnUpdatesOnForObjectInstance()

RTI::RTIambassador::
associateRegionForUpdates()

attributeOwnershipAcquisition()

changeAttributeOrderType()

changeAttributeTransportType()

deleteObjectInstance()

enableAttributeRelevanceAdvisorySwitch()

getAttributeRoutingSpaceHandle()

getObjectClassHandle()

getObjectInstanceHandle()

getObjectInstanceName()

negotiatedAttributeOwnershipDivestiture()

publishObjectClass()

registerObjectInstanceWithRegion()

subscribeObjectClassAttributes()

updateAttributeValues()

Object Management requestClassAttributeValueUpdate()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-11

A.3.8 requestClassAttributeValueUpdate()

RTI 1.0 RTI 1.3
ABSTRACT

This service stimulates the generation of attribute updates for a
given class of objects.

HLA IF SPECIFICATION
This method (in conjunction with
requestObjectAttributeValueUpdate()), realizes the intent
of the “Request Attribute Value Update” Object Management
service as specified the HLA Interface Specification (§4.14 in
version 1.1; §6.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestClassAttributeValueUpdate (
RTI::ObjectClassHandle theClass
const RTI::AttributeHandleSet& theAttributes

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theClass

the object class for which updates are requested

theAttributes
the set of class-attributes of the specified class for which
updates are requested

DESCRIPTION
This method solicits an update of the specified class-attributes
from the federation. Remote federates will receive a
provideAttributeValueUpdate() callback for each instance
of the requested object class (or a subclass) for which the federate
owns one or more instance-attributes corresponding to the solicited
class-attributes. Upon receipt of such a callback, the remote
federate is expected to comply with the request by issuing an
updateAttributeValues() for the solicited instance-attributes.

This service may be used by a late-arriving (or late-subscribing)
federate to solicit updates for all existing object instances. It is
particularly useful for instance-attributes that are updated
infrequently (or not at all) after instantiation.

RETURN VALUES
A non-exceptional return indicates that updates of all existing
instances of the specified class-attributes have been solicited from
the federation.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::
provideAttributeValueUpdate()

reflectAttributeValues()

RTI::RTIambassador::
discoverObject()

requestObjectAttributeValueUpdate()

RTI 1.3
RTI::FederateAmbassador::

provideAttributeValueUpdate()

reflectAttributeValues()

RTI::RTIambassador::
discoverObjectInstance()

requestClassAttributeValueUpdateWithRegion
 ()

requestObjectAttributeValueUpdate()

Object Management requestID()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-12

A.3.9 requestID()

RTI 1.0
ABSTRACT

This service obtains a range of unique IDs for use in registering
objects with the Federation. In RTI 1.3, object identifiers are
assigned and managed by the LRC.

HLA IF SPECIFICATION
This method realizes the “Request ID” Object Management service
as specified in the HLA Interface Specification (§4.1 in versions
1.1 and 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestID (
RTI::ObjectIDcount idCount
RTI::ObjectID& firstID
RTI::ObjectID& lastID

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::IDsupplyExhausted,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress,
RTI::TooManyIDsRequested

)

ARGUMENTS
idCount

the number of identification numbers (IDs) to reserve

firstID
(returned) the first ID in the range of reserved IDs

lastID
(returned) the last ID in the range of reserved IDs

DESCRIPTION
A Federate uses requestID() to obtain a set of unique object IDs
that may be used in subsequent calls to registerObject(). The
IDs are taken from a per Federation set of unique IDs assigned to
each federate in a FedExec. Object IDs are unique within the
Federate and within the FedExec at any given time. [The same
object ID may be used by different federates at different times
within the same FedExec.] IDs are not recycled upon the deletion
of their associated object.

The number of unique IDs available to a federate is configurable
via the “MAX_OBJECTS_PER_FEDERATE” entry in the
“RTI.rid” file.

RETURN VALUES
Upon a non-exceptional completion, the arguments “firstID” and
“lastID” define the endpoints of an inclusive range of object IDs
that may be used by the Federate for the registration of new
Federation objects.

WINDOWS® NT NOTES
On Windows NT, the path of the RTI configuration file is
“%RTI_CONFIG%/RTI.rid”.

UNIX® NOTES
On UNIX platforms, the path of the RTI configuration file is
“$RTI_CONFIG/RTI.rid” file.

EXCEPTIONS
RTI::IDsupplyExhausted

The Federate has exhausted its supply of unique object IDs.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TooManyIDsRequested
The request cannot be granted with a single, continuous range
of object IDs. The request should be broken up into multiple,
smaller requests. [This exception is never actually thrown
in RTI 1.0.]

SEE ALSO
RTI::RTIambassador::

registerObject()

Object Management requestObjectAttributeValueUpdate()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-13

A.3.10 requestObjectAttributeValueUpdate()

RTI 1.0 �RTI 1.3
ABSTRACT

This service stimulates the generation of instance-attribute updates
for a specified object instance. The syntax of this service
changes slightly between RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
This method (in conjunction with
requestClassAttributeValueUpdate()), realizes the intent
of the “Request Attribute Value Update” Object Management
service as specified the HLA Interface Specification (§4.14 in
version 1.1; §6.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

requestObjectAttributeValueUpdate (
RTI::ObjectID theObject
const RTI::AttributeHandleSet& theAttributes

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

requestObjectAttributeValueUpdate (
RTI::ObjectHandle theObject ßß Changes Types Changes Types
const RTI::AttributeHandleSet& theAttributes

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectNotKnown, ßß RTI 1.3 Only RTI 1.3 Only
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theObject

the object instance whose instance-attributes are to be
solicited

theAttributes
the instance-attributes of the specified object instance to
solicit

DESCRIPTION
This method solicits an update of the specified instance-attributes
from the federation. A remote federate will receive a
provideAttributeValueUpdate() callback for any solicited
instance-attributes owned by the federate. Upon receipt of such a
callback, the remote federate is expected to comply with the
request by issuing an updateAttributeValues() for the
solicited instance-attributes.

This service may be used by a late-arriving (or late-subscribing)
federate to solicit updates for all existing object instances. It is
particularly useful for instance-attributes that are updated
infrequently (or not at all) after instantiation.

RETURN VALUES

A non-exceptional return indicates that updates of the specified
instance-attributes have been solicited from the federation.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown (RTI 1.3 Only)
The specified object ID is not valid within the current
FedExec or is not known to the Federate.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

provideAttributeValueUpdate()

reflectAttributeValues()

RTI::RTIambassador::
discoverObject()

requestClassAttributeValueUpdate()

Object Management sendInteraction()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-14

A.3.11 sendInteraction()

RTI 1.0 �RTI 1.3
ABSTRACT

This service generates an interaction event in the federation. The
syntax of this service changes from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Send Interaction” Object Management
service as specified in the HLA Interface Specification (§4.6 in
version 1.1; §6.6 and 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::EventRetractionHandle
RTI::RTIambassador::

sendInteraction (
RTI::InteractionClassHandle theInteraction
const RTI::ParameterHandleValuePairSet&

theParameters
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::InteractionClassNotPublished,
RTI::InteractionParameterNotDefined,
RTI::InvalidFederationTime,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
RTI::EventRetractionHandle
RTI::RTIambassador::

sendInteraction (
RTI::InteractionClassHandle theInteraction,
const RTI::ParameterHandleValuePairSet&

theParameters,
 const RTI::FedTime& theTime, ßß Changes Types Changes Types
 const char* theTag ßß Changes Types Changes Types
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished,
 RTI::InteractionParameterNotDefined,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

// RTI 1.3 Only
void
RTI::RTIambassador::

sendInteraction (
 RTI::InteractionClassHandle theInteraction,

const RTI::ParameterHandleValuePairSet&
theParameters,

 const char *theTag
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished,
 RTI::InteractionParameterNotDefined,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS

theInteraction
the class of the interaction

theParameters
a set of associated values for a subset of the parameters of the
specified interaction class

theTime
a logical time used to determine the time-stamp-ordering of
the interaction

theTag
a string passed to resulting invocations of
receiveInteraction(); this value is not interpreted by the
RTI and may be used to communicate federation-specified
information about the interaction

DESCRIPTION
This service may be used by the federate to communicate an
interaction to the federation. Interactions are used to represent
transient events in the federation (e.g. collisions among objects) or
any other information that is not appropriately represented as
persistent attribute state.

Interactions sent using this service are associated with the default
region (i.e. the region spanning the entire routing space to which
the interaction class is bound in the FED file.) The transportation
and ordering services used to communicate the interaction are
those bound to the interaction class statically in the FED file or
dynamically using the changeInteractionTransportType()
or changeInteractionOrderType() service, respectively.

Interaction instances will be delivered, using the
receiveInteraction() callback, to remote federates
subscribing to the associated interaction class or a superclass of the
associated interaction class. If an interaction is promoted to a more
general interaction class, only values for parameters present in the
delivered class will be presented to the federate.

An interaction instance will be delivered as time-stamp-ordered
(TSO) to a remote subscribing federate if any only if:

• The federate initiating the interaction is time-regulating at the
time the interaction is sent.

• A logical time argument is provided to the
sendInteraction() service invocation resulting in the
interaction. (In RTI 1.0, this is always the case.)

• The interaction class is associated with a TSO ordering
service in the FED file or through a subsequent
changeInteractionOrderType() service invocation.

• The remote federate is time-constrained at the point at which
the interaction is received and the point at which the
interaction is delivered.

The RTI does not enforce the inclusion of values for all parameters
of an interaction class for instances of that class. The parameter
set associated with an interaction instance may contain values for
any subset of the parameters of the specified interaction class and
its superclasses.

RETURN VALUES
A non-exceptional return indicates that the interaction will be
delivered, using the receiveInteraction() callback, to remote
federates whose subscription interests match the class and region
of the interaction instance.

The timed variant of this service returns an event handle which
uniquely identifies the event for purposes of retraction.

Object Management sendInteraction()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-15

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotPublished
The operation attempted requires that the interaction class be
currently published by the federate.

RTI::InteractionParameterNotDefined
One or more of the specified parameter handles is not valid in
the context of the specified interaction class.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::ParameterHandleValuePairSet
RTI::FederateAmbassador::

receiveInteraction()

startInteractionGeneration()

RTI::RTIambassador::
changeInteractionOrderType()

changeInteractionTransportType()

publishInteractionClass()

retract()

subscribeInteractionClass()

tick()

turnRegulationOn()

RTI 1.3
RTI::ParameterHandleValuePairSet

RTI::FederateAmbassador::

receiveInteraction()

turnInteractionsOn()

RTI::RTIambassador::

changeInteractionOrderType()

changeInteractionTransportType()

enableTimeRegulation()

publishInteractionClass()

retract()

subscribeInteractionClass()

subscribeInteractionClassWithRegion()

tick()

Object Management updateAttributeValues()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-16

A.3.12 updateAttributeValues()

RTI 1.0 �RTI 1.3
ABSTRACT

This service notifies the federation of a change in values for one or
more instance-attributes of an object instance. The syntax of this
service changes from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Update Attribute Values” Object
Management service as specified in the HLA Interface
Specification (§4.3 in version 1.1;§6.4 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::EventRetractionHandle
RTI::RTIambassador::

updateAttributeValues (
RTI::ObjectID theObject
const RTI::AttributeHandleValuePairSet&

theAttributes
RTI::FederationTime theTime
const RTI::UserSuppliedTag theTag

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidFederationTime,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
RTI::EventRetractionHandle
RTI::RTIambassador::

updateAttributeValues (
RTI::ObjectHandle theObject, ßß Changes Types Changes Types
const AttributeHandleValuePairSet&

theAttributes,
RTI::FedTime&theTime, ßß Changes Types Changes Types
const char* theTag ßß Changes Types Changes Types

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidFederationTime,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

updateAttributeValues (
 RTI::ObjectHandle theObject,

const RTI::AttributeHandleValuePairSet&
theAttributes,

 const char *theTag
)

throw (
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS

theObject
the object instance whose instance-attributes are being
updates

theAttributes
the set of instance-attributes being updated

theTime
a logical time used for time-stamp-ordering of the update

theTag
a string passed to resulting invocations of
reflectAttributeValues(); this value is not interpreted
by the RTI and may be used to communicate federation-
specified information about the update

DESCRIPTION
This service may be used by the federate to communicate a change
in state of an object instance to the federation. Attributes are used
to represent persistent characteristics of federation state (e.g. the
position of an entity.)

An update of an instance-attribute sent using this service is
associated with the region associated with the instance-attribute
through a local invocation of
registerObjectInstanceWithRegion() or
associateRegionForUpdates(), or with the default region if
no region has been specifically associated with the instance-
attribute. (The default region is the region spanning the entire
routing space to which the class-attribute is bound in the FED file.)
Instance-attributes that are transferred between federates using
ownership management services revert to the default region.

The transportation and ordering services used to communicate an
update of an instance-attribute initiated using this service are those
bound to the corresponding class-attribute statically in the FED file
or dynamically using the changeAttributeTransportType()
or changeAttributeOrderType() service, respectively.

If instance-attributes subject to an updateAttributeValues()
service invocation differ in their characteristic
region/transport/order tuples, multiple updates (and subsequently
multiple reflections) will be generated as a result of the invocation.
One update will be generated for each region/transport/order tuple;
it will contain all instance-attributes that share that characteristic
tuple.

If an update is received by a federate whose subscription matches
the associated class/region for some instance-attribute, the update
will result in a discoverObjectInstance() callback
immediately prior to the reflection.

Instance-attribute updates will be delivered, using the
reflectAttributeValues() callback, to remote federates
subscribing to the instance-attributes at the level of the class by
which the object instance is discovered by the federate. Only
values for those instance-attributes whose corresponding class-
attributes are present in the discovered object class of the object
instance will be presented to a recipient of the update. Only values
for those instance-attributes whose associated update region
intersects the remote federate’s subscription region for the class-
attribute at the level of the discovered object class will be
presented to the federate as a result of the update.

An instance-attribute update will be delivered as time-stamp-
ordered (TSO) to a remote subscribing federate if any only if:

• The federate initiating the update is time-regulating at the
time the update is sent.

• A logical time argument is provided to the
updateAttributeValues() service invocation resulting in

Object Management updateAttributeValues()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.3-17

the interaction. (In RTI 1.0, this is always the case.)

• The instance-attribute class is associated with a TSO ordering
service in the FED file or through a subsequent
changeAttributeOrderType() service invocation.

• The remote federate is time-constrained at the point at which
the update is received and the point at which the update is
delivered.

The RTI does not enforce the inclusion of values for all class-
attributes of an object class for updates of instances of that class.
The attribute set associated with an update may contain values for
any subset of the attributes of the registered class of the object
instance and its superclasses.

RETURN VALUE
A non-exceptional return indicates that the update will be
delivered, using the reflectAttributeValues() callback, to
remote federates whose subscription interests match the class and
regions of the update.

The timed variant of this service returns an event handle which
uniquely identifies the event for purposes of retraction.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the Federate.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

RTI 1.0
RTI::AttributeHandleValuePairSet
RTI::FederateAmbassador::

discoverObject()

reflectAttributeValues()

RTI::RTIambassador::
changeAttributeOrderType()

changeAttributeTransportType()

publishObjectClass()

queryAttributeOwnership()

registerObject()

retract()

subscribeObjectClassAttributes()

tick()

turnRegulationOn()

RTI 1.3
RTI::AttributeHandleValuePairSet

RTI::FederateAmbassador::

attributesInScope()

discoverObjectInstance()

reflectAttributeValues()

turnUpdatesOnForObjectInstance()

RTI::RTIambassador::
associateRegionForUpdates()

changeAttributeOrderType()

changeAttributeTransportType()

enableTimeRegulation()

publishObjectClass()

registerObjectInstance()

registerObjectInstanceWithRegion()

retract()

subscribeObjectClassAttributes()

subscribeObjectClassAttributesWithRegion()

tick()

A.4 Ownership Management

Ownership Management attributeIsOwnedByFederate()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-1

A.4.1 attributeIsOwnedByFederate()

RTI 1.0
ABSTRACT

This service queries the RTI as to which federate, if any, holds the
attribute ownership token for a given attribute. The RTI 1.3
version of this service is named
isAttributeOwnedByFederate; the RTI 1.3 implementation
is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Is Attribute Owned By Federate”
Ownership Management service as specified in the HLA Interface
Specification (§5.9 in version 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::Boolean
RTI::RTIambassador::

attributeIsOwnedByFederate (

RTI::AttributeHandle theAttribute
)

throw (
RTI::AttributeNotDefined,
RTI::AttributeNotKnown,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theObject

Object whose attribute ownership status is being queried.

theAttribute
Attribute whose ownership status is being queried.

DESCRIPTION
attributeIsOwnedByFederate() provides a facility for the
federate to quickly and synchronously determine whether a given
ownership token is locally held.

Note that an attribute for which a federate has outstanding
negotiated divestiture requests is still considered to be held by the
federate until ownership is assumed by another federate.

RETURN VALUES
A successful invocation of this service returns RTI::RTI_TRUE if
the specified ownership token is held by the local federate or
RTI::RTI_FALSE if the ownership token is held by another
federate, unowned, or no longer exists.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotKnown
(Not thrown in 1.0.)

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateInternalError
An error internal to the federate has occurred; this exception
will result in an entry being made to the federate's RTI log.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

requestAttributeOwnershipAcquisition()

requestAttributeOwnershipDivestiture()

Ownership Management attributeOwnershipAcquisition()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-2

A.4.2 attributeOwnershipAcquisition()

RTI 1.3
ABSTRACT

This service initiates an attempt to acquire one or more instance-
attributes of a specified object instance. The RTI 1.0
implementation of this service is named
requestAttributeOwnershipAcquisition; the RTI 1.0
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Attribute Ownership Acquisition”
Ownership Management service as specified in the HLA Interface
Specification (§7.7 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

attributeOwnershipAcquisition (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& desiredAttributes,
 const char *theTag

)
throw (
 RTI::AttributeNotDefined,
 RTI::AttributeNotPublished,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::FederateOwnsAttributes,
 RTI::ObjectClassNotPublished,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object instance whose instance-attributes are requested

desiredAttributes

the instance-attributes of the specified instance for which
ownership is requested

theTag

a string that is passed to resulting invocations of
requestAttributeOwnershipRelease(); this argument
is not interpreted by the RTI and may be used to communicate
federation-specific information about the ownership request

DESCRIPTION
This service initiates a request to transfer ownership of a specified
set of instance-attributes of a specified object instance to a
federate. No instance-attributes in an acquisition request may be
owned by the requesting federate, and all class-attributes must be
published by the requesting federate at the level of the instance’s
discovered object class. Failure to meet these two conditions will
result in a FederateOwnsAttributes or
ObjectClassNotPublished exception, respectively.

Some of the requested instance-attributes may exist in the
federation as unowned attributes. This can occur if

• a federate registers an instance of an object class for which it
is not publishing all class-attributes

• a federate resigns using the release-attributes resignation
policy

• a federate unconditionally divests attributes

• a federate implicitly or explicitly unpublishes a class-attribute
for which it owns instances

• an attribute acquisition request by a federate succeeds, but the
federate has unpublished the class-attribute in the interim

Ownership tokens associated with unowned attributes are tracked
internally by the RTI. Unowned ownership tokens typically
“reside” in the LRC associated with some federate in the
federation. These attributes may be acquired by any federate in the
federation.

If an instance-attribute is unowned and its ownership token is
tracked by the local LRC, the acquiring federate will receive an
attributeOwnershipAcquisitionNotification() callback
synchronously with respect to the
attributeOwnershipAcquisition() service invocation. If an
instance-attribute is unowned and its ownership token is tracked by
a remote LRC, the acquiring federate will receive an
attributeOwnershipAcquisitionNotification() callback
during a subsequent invocation of tick().

If an instance-attribute is owned by a remote federate, the remote
federate will be requested, in the form of a
requestAttributeOwnershipRelease() callback, to release
ownership of the instance-attribute. (A given remote federate will
actually receive a single callback for all requested instance-
attributes that it owns.) The remote federate may release
ownership of the instance-attribute (using
unconditionalAttributeOwnershipDivestiture(),
negotiatedAttributeOwnershipDivestiture(), or
attributeOwnershipReleaseResponse()), or it may do
nothing.

If a remote federate positively responds to a release request, the
ownership of the instance-attribute is transferred to the requesting
federate, and the requesting federate is advised of such using the
attributeOwnershipAcquisitionNotification() callback.
If a remote federate does not respond to a release request, the
request remains outstanding until it is cancelled by the requesting
federate. (The remote federate will only receive a single
requestAttributeOwnershipRelease() callback regardless
of how long the request is outstanding.)

Some instance-attributes may no longer exist in the federation as a
result of federates crashing or resigning without releasing
ownership of locally owned instance-attributes. The RTI does not
attempt to detect and report this condition; an attempt to acquire
non-existent instance-attributes will silently fail to succeed.

An instance-attribute may be temporarily effectively non-existent
in the federation if an ownership transfer message is in-transit
between a releasing and acquiring federate.

A requesting federate may wish to withdraw an acquisition request
using cancelAttributeOwnershipAcquisition() to prevent
attribute acquisition requests from succeeding at arbitrary times in
the future. A federate should cancel any outstanding attribute
acquisition requests before unpublishing a class-attribute
(implicitly or explicitly).

If an instance-attribute in an acquisition request is already the
subject of an acquisition request by the federate, the acquisition
request will be reiterated to the owing federate, if any (i.e.,
requestAttributeOwnershipRelease() will be invoked
again.)

If an instance-attribute in an acquisition request is already the
subject of an acquisition request if available by the federate, the
request is changed from if available to a regular request and
conveyed to the owning federate, if any.

Ownership Management attributeOwnershipAcquisition()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-3

If an instance-attribute in an acquisition request is the subject of an
outstanding acquisition cancellation by the federate, the acquisition
request is reinstated and reiterated to the owning federate, if any.

Note that this service results in zero or one
requestAttributeOwnershipRelease() callbacks for each
remote federate in the federation, and zero to min(n, f-1)
attributeOwnershipAcquisitionNotification() callbacks
for the requesting federate (where n is the number of instance-
attributes requested and f is the number of federates in the
federation.) One
attributeOwnershipAcquisitionNotification() may
occur synchronously with respect to the
attributeOwnershipAcquisition() service invocation.

RETURN VALUES
A non-exceptional return indicates that the remote federate(s)
owning the specified instance-attributes will be requested to
relinquish ownership. The requesting federate will be notified of
successful acquisitions via subsequent
attributeOwnershipAcquisitionNotification()
callbacks.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification version 1.3 states that a federate
must continue publishing an object class while the federate has
outstanding attribute ownership acquisition requests for instance-
attributes of instances known to the federate as the published
object class. The RTI 1.3 does not enforce this restriction.
Instead, if an attribute acquisition request succeeds subsequent to
the unpublication of the discovered object class, the LRC of the
acquiring federate will give the attribute-instances away as if they
had been unconditionally divested by the federate.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotPublished
One or more of the specified attributes are not currently
published by the local federate.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateOwnsAttributes
One or more attributes of the specified object are owned by
the local federate.

RTI::ObjectClassNotPublished
The operation attempted requires that the object class be
currently published by the federate.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification()

requestAttributeOwnershipRelease()

RTI::RTIambassador::
attributeOwnershipAcquisitionIfAvailable()

cancelAttributeOwnershipAcquisition()

getAttributeHandle()

Ownership Management attributeOwnershipAcquisitionIfAvailable()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-4

A.4.3 attributeOwnershipAcquisitionIfAvailable()

RTI 1.3
ABSTRACT

This service initiates an attempt to acquire a set of instance-
attributes of an object instance. Only instance-attributes that exist
in the federation but are currently unowned will be acquired.

HLA IF SPECIFICATION
This method realizes the “Attribute Ownership Acquisition If
Available” Ownership Management service as specified in the
HLA Interface Specification (§7.8 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

attributeOwnershipAcquisitionIfAvailable (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& desiredAttributes

)
throw (
 RTI::AttributeAlreadyBeingAcquired,
 RTI::AttributeNotDefined,
 RTI::AttributeNotPublished,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::FederateOwnsAttributes,
 RTI::ObjectClassNotPublished,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object instance whose instance-attributes are requested

desiredAttributes

the instance-attributes of the specified instance for which
ownership is requested

DESCRIPTION
This service is similar to attributeOwnershipAcquisition(),
except that remote federates are not asked to release ownership of
any instance-attributes that are currently owned:

• The requesting federate will receive an
attributeOwnershipUnavailable() callback for any
instance-attributes that are currently owned by remote
federates.

• The requesting federate will receive an
attributeOwnershipAcquisitionNotification()

callback for any instance-attributes that are not currently
owned by any federate. This callback may occur
synchronously with respect to the
attributeOwnershipAcquisitionIfAvailable()
service invocation.

• The requesting federate will receive no callback for any
instance-attributes that no longer exist in the federation.
Canceling the acquisition request after waiting an
appropriate period may be in order.

If one or more instance-attributes requested using this service is
already the subject of an attributeOwnershipAcquisition()
or attributeOwnershipAcquisitionIfAvailable() request
(including a request that is in the process of being cancelled), the
AttributeAlreadyBeingAcquired exception will be thrown.

RETURN VALUES
A non-exceptional return indicates that the acquisition request has
been announced to the federation. The requesting federate will be
appraised of success or failure through subsequent callbacks.

EXCEPTIONS
RTI::AttributeAlreadyBeingAcquired

The federate is already in the process of acquiring one or
more of the specified attribute-instances.

RTI::AttributeNotDefined
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotPublished
One or more of the specified attributes are not currently
published by the local federate.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateOwnsAttributes
One or more attributes of the specified object are owned by
the local federate.

RTI::ObjectClassNotPublished
The operation attempted requires that the object class be
currently published by the federate.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification()

attributeOwnershipUnavailable()

RTI::RTIambassador::
attributeOwnershipAcquisition()

cancelAttributeOwnershipAcquisition()

getAttributeHandle()

Ownership Management attributeOwnershipReleaseResponse()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-5

A.4.4 attributeOwnershipReleaseResponse()

RTI 1.3
ABSTRACT

This service releases ownership of a set of instance-attributes for a
specified instance, in compliance with a
requestAttributeOwnershipRelease() request. In RTI 1.0,
this information was communicated via the return value of the
requestAttributeOwnershipRelease callback.

HLA IF SPECIFICATION
This method realizes the “Attribute Ownership Release Response”
Ownership Management service as specified in the HLA Interface
Specification (§7.11 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::AttributeHandleSet*
RTI::RTIambassador::

attributeOwnershipReleaseResponse (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& theAttributes

)
throw (
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::FederateWasNotAskedToReleaseAttribute,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object instance whose instance-attributes are being
released

theAttributes

the instance-attributes to release

DESCRIPTION
This service is used to provide a positive response to a remote
attributeOwnershipAcquisition() request that has been
communicated to the local federate using the
requestAttributeOwnershipRelease() callback. The
instance-attributes specified to the service invocation must be the a
subset of the instance-attribute subjects of previous
requestAttributeOwnershipRelease() callbacks.

Upon a successful return from this method, the federate no longer
owns the specified instance-attributes. No
attributeOwnershipDivestitureNotification() callback
is made to the federate. The federate(s) requesting ownership will
be notified of ownership transfer using the
attributeOwnershipAcquisitionNotification() callback.
If more than one federates have outstanding acquisition requests
for the same instance-attribute, ownership will be transferred to the
federate whose request was received most recently.

If the FederateWasNotAskedToReleaseAttribute exception
is thrown unexpectedly, it probably means that the ownership
acquisition was cancelled. Currently, HLA makes no provision for
informing a federate that a previously requested instance-attribute
release has been cancelled.

The unconditionalAttributeOwnershipDivestiture() or
negotiatedAttributeOwnershipDivestiture() service may

be used instead of this service to respond to a release request.

RETURN VALUES
A non-exceptional return indicates that the federate has released
ownership the specified instance-attributes. The requesting
federate will be notified via the
attributeOwnershipAcquisitionNotification() callback.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateWasNotAskedToReleaseAttribute
One or more of the attribute-instances are not the subject of a
currently outstanding
requestAttributeOwnershipRelease() notification.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

requestAttributeOwnershipRelease()

RTI::RTIambassador::
getAttributeHandle()

negotiatedAttributeOwnershipDivestiture()

unconditionalAttributeOwnershipDivestiture()

Ownership Management cancelAttributeOwnershipAcquisition()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-6

A.4.5 cancelAttributeOwnershipAcquisition()

RTI 1.3
ABSTRACT

This service requests the cancellation of a previously requested
ownership acquisition for a specified set of instance-attributes of a
specified object instance.

HLA IF SPECIFICATION
This method realizes the “Cancel Attribute Ownership
Acquisition” Ownership Management service as specified in the
HLA Interface Specification (§7.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

cancelAttributeOwnershipAcquisition (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& theAttributes

)
throw (
 RTI::AttributeAcquisitionWasNotRequested,
 RTI::AttributeAlreadyOwned,
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the instance for which instance-attribute acquisition is being
cancelled

theAttributes

the instance-attributes for which acquisition is being cancelled

DESCRIPTION
This service is used to request the cancellation of an attribute
acquisition request previously made by the federate using the
attributeOwnershipAcquisition() service. The instance-
attribute subjects of such a cancellation request must be instance-
attributes that the local federate has requested to acquire but has
not yet been given ownership. Such a cancellation must be
negotiated with the rest of the federation to guard against the race
condition that would occur if an acquisition request were cancelled
while an acquisition response was in-transit.

Upon receipt of the cancellation request by a remote LRC, the
LRC will confirm the cancellation of any of the specified instance-
attributes that

• the remote federate has been asked to release using
requestAttributeOwnershipRelease()

• the remote federate has not yet released using
attributeOwnershipReleaseResponse(),
unconditionalAttributeOwnershipDivestiture(), or
negotiatedAttributeOwnershipDivestiture()

This confirmation is delivered, in the form of a
confirmAttributeOwnershipAcquisitionCancellation()
callback, to the federate requesting the cancellation.

The canceling federate may still receive some
attributeOwnershipAcquisitionNotification() callbacks
for instance-attributes for which an acquisition cancellation has
been attempted. This occurs when a remote federate has already

responded to the acquisition request when the cancellation request
arrives.

If an instance-attribute no longer exists in the federation, the
canceling federate will never receive a cancellation confirmation
for that instance-attribute.

A remote federate is not informed of the fact that an acquisition
request made using the
requestAttributeOwnershipRelease() callback has been
cancelled. An attempt by a remote federate to respond to a
cancelled acquisition request using
attributeOwnershipReleaseResponse() will result in a
FederateWasNotAskedToReleaseAttribute exception. An
attempt by a remote federate to respond to a cancelled acquisition
request using
unconditionalAttributeOwnershipDivestiture() or
negotiatedAttributeOwnershipDivestiture() will
proceed as they would in the absence of the acquisition request.

Note that this service will result in zero to min(n, f-1)
confirmAttributeOwnershipAcquisitionCancellation()

callbacks, where n is the number of instance-attributes for which a
cancellation is requested and f is the number of federates in the
federation.

RETURN VALUES
A non-exceptional return indicates that the federation has been
notified of the cancellation request. The federate will be notified
of successful cancellations using the
confirmAttributeOwnershipAcquisitionCancellation()
callback.

EXCEPTIONS
RTI::AttributeAcquisitionWasNotRequested

One or more of the instance-attributes is not the subject of a
currently outstanding
attributeOwnershipAcquisition() request.

RTI::AttributeAlreadyOwned
One or more of the instance-attributes is already owned by the
local federate.

RTI::AttributeNotDefined
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal

Ownership Management cancelAttributeOwnershipAcquisition()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-7

state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

requestAttributeOwnershipRelease()

confirmAttributeOwnershipAcquisitionCancellation()

RTI::RTIambassador::
attributeOwnershipAcquisition()

attributeOwnershipReleaseResponse()

getAttributeHandle()

negotiatedAttributeOwnershipDivestiture()

unconditionalAttributeOwnershipDivestiture()

Ownership Management cancelNegotiatedAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-8

A.4.6 cancelNegotiatedAttributeOwnershipDivestiture()

RTI 1.3
ABSTRACT

This service cancels a previously requested negotiated ownership
divestiture for a specified set of instance-attributes of a specified
object instance.

HLA IF SPECIFICATION
This method realizes the “Cancel Negotiated Attribute Ownership
Divestiture” Ownership Management service as specified in the
HLA Interface Specification (§7.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

cancelNegotiatedAttributeOwnershipDivestiture (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& theAttributes

)
throw (
 RTI::AttributeDivestitureWasNotRequested,
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the instance for which instance-attribute divestiture is being
cancelled

theAttributes

the instance-attributes for which divestiture is being cancelled

DESCRIPTION
This service cancels the effects of previous requests to negotiate an
ownership divestiture of the specified instance-attributes of the
specified object instance. An instance-attribute eligible for a
divestiture cancellation must be

• the subject of a previous
negotiatedAttributeOwnershipDivestiture()
request by the local federate

• still owned by the local federate (i.e., has not been the subject
of a attributeOwnershipDivestitureNotification()
callback)

If these two criteria are not met, an invocation of
cancelNegoatiedAttributeOwnershipDivestiture() will
result in an AttributeDivestitureWasNotRequested or
AttributeNotKnown exception, respectively.

If these criteria are met, ownership of the specified instance-
attributes is no longer being divested and will not be transferred to
a remote federate without explicit approval of the owning federate.
Remote federates are not notified that the divestiture has been
cancelled. If a remote federate responds to the divestiture (or
already has a response in-transit at the time of the divestiture
cancellation), it is resolved as if the divestiture had never occurred:

• If the remote federate responds using
attributeOwnershipAcquisition(), the owing federate
will receive a requestAttributeOwnershipRelease()
callback.

• If the remote federate responds using
attributeOwnershipAcquisitionIfAvailable(), the
remote federate will receive an
attributeOwnershipUnavailable() callback.

RETURN VALUES
A non-exceptional return indicates that ownership of the specified
instance-attributes will not be transferred without the explicit
approval of the federate.

EXCEPTIONS
RTI::AttributeDivestitureWasNotRequested

One or more of the instance-attributes is not the subject of a
currently outstanding
negotiatedAttributeOwnershipDivestiture()
request.

RTI::AttributeNotDefined
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipDivestitureNotification()

attributeOwnershipUnavailable()

requestAttributeOwnershipAssumption()

RTI::RTIambassador::
attributeOwnershipAcquisitionIfAvailable()

getAttributeHandle()

negotiatedAttributeOwnershipDivestiture()

Ownership Management isAttributeOwnedByFederate()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-9

A.4.7 isAttributeOwnedByFederate()

RTI 1.3
ABSTRACT

This service queries the LRC to determine whether a specified
instance-attribute of a specified object instance is currently owned
by the local federate.

HLA IF SPECIFICATION
This method realizes the “Is Attribute Owned By Federate”
Federation Management service as specified in the HLA Interface
Specification (§7.17 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::Boolean
RTI::RTIambassador::

isAttributeOwnedByFederate (
 RTI::ObjectHandle theObject,
 RTI::AttributeHandle theAttribute

)
throw (
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
);

ARGUMENTS
theObject

the object instance for which instance-attribute ownership is
being queried

theAttribute

the instance-attribute of the object instance for which
ownership is being queried

DESCRIPTION
This service may be used to synchronously determine whether a
specified instance-attribute is owned by the local federate. A
positive (true) response indicates that the local federate owns the
specified instance-attribute. A negative (false) response indicates
that the specified instance-attribute is unowned, non-existent,
owned by a remote federate, or owned by the RTI.

Note that instance-attributes that have been the subject of an
outstanding negotiatedAttributeOwnershipDivestiture()
service invocation are still considered owned by the divesting
federate until the delivery of a
attributeOwnershipDivestitureNotification() callback.

RETURN VALUES
A successful invocation of this service returns RTI::RTI_TRUE if
the specified instance-attribute is owned by the local federate,
otherwise it returns RTI::RTI_FALSE.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

getAttributeHandle()

queryAttributeOwnership()

Ownership Management negotiatedAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-10

A.4.8 negotiatedAttributeOwnershipDivestiture()

RTI 1.3
ABSTRACT

This service initiates an attempt to release ownership of a specified
set of instance-attributes for a specified object instance. In the
absence of an acquiring federate, the instance-attributes will
continue to be owned by the divesting federate. The RTI 1.0
equivalent of this service is named
requestAttributeOwnershipDivestiture; the RTI 1.0
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Negotiated Attribute Ownership
Divestiture” Ownership Management service as specified in the
HLA Interface Specification (§7.3 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

negotiatedAttributeOwnershipDivestiture (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& theAttributes,
 const char *theTag

)
throw (
 RTI::AttributeAlreadyBeingDivested,
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object instance whose instance-attributes are to be
divested

theAttributes

the instance-attributes to divest

theTag

a string that is passed to resulting invocations of
requestAttributeOwnershipAssumption(); this
argument is not interpreted by the RTI and may be used to
communicate federation-specific information about the
divestiture request

DESCRIPTION
This service initiates a negotiated ownership divestiture of the
specified instance-attributes. For an instance-attribute to be the
valid subject of a
negotiatedAttributeOwnershipDivestiture() service
invocation, it must be

• currently owned by the federate initiating the divestiture

• not already the subject of an outstanding
negotiatedAttributeOwnershipDivestiture()
request

If the specified instance-attributes fail to meet these criteria, the
service invocation will result in an AttributeNotOwned or
AttributeAlreadyBeingDivested exception, respectively.

If an instance-attribute that is the subject of a
negotiatedAttributeOwnershipDivestiture() service

invocation is the subject of a currently outstanding
attributeOwnershipAcqusition() request by one or more
remote federates, ownership will be immediately transferred to a
requesting federate. If multiple federates have outstanding
requests for the same instance-attribute, ownership will be
transferred to the federate whose request was received most
recently. Instance-attributes that are immediately divested in this
fashion will result in a
attributeOwnershipDivestitureNotification() callback
made synchronously with respect to the
negotiatedAttributeOwnershipDivestiture() service
invocation.

An implication of this is that
negotiatedAttributeOwnershipDivestiture() may be
used instead of attributeOwnershipReleaseResponse() to
respond to an ownership release request.

For instance-attributes that are not already the subject of an
acquisition request, ownership divestiture will be coordinated with
the federation to locate an acquiring federate, as follows:

1. Each remote federate will receive a
requestAttributeOwnershipAssumption() callback
for any divesting instance-attributes whose corresponding
class-attributes are published by the remote federate at the
level of the class by which the object instance is discovered
by that federate.

2. One or more remote federates may respond to the assumption
request using the attributeOwnershipAcquisition()
or attributeOwnershipAcquisitionIfAvailable()
service.

3. The LRC of the divesting federate will transfer ownership of
an instance-attribute to the first remote federate for which
such a response is received. At this time, the divesting
federate will receive an
attributeOwnershipDivestitureNotification()

callback to inform it that ownership of the instance-attribute
has been divested.

If a remote federate’s response is received after the ownership of
the requested instance-attribute has already been divested, the
request will be ignored by the LRC of the federate that divested
ownership. Depending on the timing, a late response may result in
the federate that acquired that instance-attribute receiving an
requestAttributeOwnershipRelease() callback (if the
response was in the form of
attributeOwnershipAcquisition()) or the requesting
federate receiving an attributeOwnershipUnavailable()
callback (if the response was in the form of
attributeOwnershipAcquisitionIfAvailable()). If the
acquisition request is received by the federate to which ownership
is being divested while the divestiture notification is in-transit, no
callbacks will be made (i.e., it will be as if the instance-attribute is
temporarily non-existent in the federation).

If no remote federates immediately respond to a divestiture
request, the instance-attributes remain in a state of divestiture
indefinitely. They may be subsequently acquired by any federate;
however, no additional
requestAttributeOwnershipAssumption() callbacks will be
made after the initial divestiture attempt.

The divesting federate may subsequently cancel the negotiated
divestiture of any instance-attributes that have not already been
successfully divested using the
cancelNegotiatedAttributeOwnershipDivestiture()

service. The divesting federate may unconditionally divest

Ownership Management negotiatedAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-11

instance-attributes that are the subject of outstanding negotiated
divestiture requests.

RETURN VALUES
A non-exceptional return indicates that a negotiated divestiture of
the specified instance-attributes has been initiated. The federate
may receive
attributeOwnershipDivestitureNotification() callbacks
for some or all of the divested instance-attributes.

EXCEPTIONS
RTI::AttributeAlreadyBeingDivested

A negotiated divestiture is already in progress for one or more
of the attribute-instances.

RTI::AttributeNotDefined
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipDivestitureNotification()

requestAttributeOwnershipAssumption()

RTI::RTIambassador::
cancelNegotiatedAttributeOwnershipDivestiture()

getAttributeHandle()

unconditionalAttributeOwnershipDivestiture()

Ownership Management queryAttributeOwnership()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-12

A.4.9 queryAttributeOwnership()

RTI 1.0 �RTI 1.3
ABSTRACT

This service determines which federate (if any) holds the attribute
ownership token for a given instance-attribute. The names and
semantics of the resulting callbacks change from RTI 1.0 to
RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Query Attribute Ownership” Ownership
Management service as specified in the HLA Interface

Specification (§5.7 in version 1.1; §7.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

queryAttributeOwnership (
RTI::ObjectID theObject
RTI::AttributeHandle theAttribute

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotKnown, ßß RTI 1.0 Only RTI 1.0 Only
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectNotKnown,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

queryAttributeOwnership (
RTI::ObjectHandle theObject ßß Changes Types Changes Types
RTI::AttributeHandle theAttribute

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectNotKnown,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

ARGUMENTS
theObject

the object-instance of the instance-attribute whose ownership
is being queried

theAttribute
the instance-attribute whose ownership is being queried

DESCRIPTION
This service queries the federation as to the ownership status of a
specified instance-attribute. If the LRC of the querying federate
can provide an answer immediately, i.e.,

• the instance-attribute is owned by the querying federate

• the instance-attribute is owned internally by the LRC
associated with the querying federate

• the instance-attribute is unowned but tracked by the local
LRC

the LRC will provide a response via a callback occurring
synchronously with respect to the
queryAttributeOwnership() service invocation. One of three

callbacks will result from this query:

attributeIsNotOwned(),

attributeOwnedByRTI(), or

informAttributeOwnership(),

as appropriate.

If the LRC cannot provide a response immediately, a query is sent
to the federation. Upon receipt of the query by a remote LRC, the
LRC will send a response if the instance-attribute exists at the LRC
(whether it is owned by the federate, the RTI, or unowned). This
response will be delivered to the querying federate in the form of a
federate ambassador callback during some subsequent invocation
of tick().

If an instance-attribute no longer exists in the federation (i.e., a
federate has crashed or resigned without releasing ownership), the
querying federate will never receive a response. Note that
instance-attributes being transferred among federates will
temporarily be effectively non-existent while the transfer message
is in-transit.

RETURN VALUES
A non-exceptional return indicates that the federate has been
informed of the ownership status of the instance-attribute via a
federate ambassador callback, or that the ownership query has been
sent to the federation.

RELEASE NOTES
RTI 1.0

• Instance-attributes of MOM objects that are registered on
behalf of a federate by an LRC will be reported as being
owned by the federate.

• The querying federate will never receive a response if
the instance-attribute is unowned.

• The attributeIsOwnedByFederate() service may be
used as a quick-test to synchronously determine whether
an instance-attribute is owned by the local federate.

RTI 1.3
• Instance-attributes of MOM objects that are registered on

behalf of a federate by an LRC will be reported as being
owned by the RTI.

• The querying federate will receive a
attributeIsNotOwned() callback if the instance-
attribute exists in the federation but is currently unowned
(i.e., it is tracked by some LRC in the federation).

• The isAttributeOwnedByFederate() service may be
used as a quick-test to synchronously determine whether
an instance-attribute is owned by the local federate.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotKnown (RTI 1.0 Only)
This exception is not thrown by the RTI 1.0 implementation.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

Ownership Management queryAttributeOwnership()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-13

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::

informAttributeOwnership()

RTI::RTIambassador::

attributeIsOwnedByFederate()

getAttributeHandle()

RTI 1.3
RTI::FederateAmbassador::

attributeIsNotOwned()

attributeOwnedByRTI()

informAttributeOwnership()

RTI::RTIambassador::

getAttributeHandle()

isAttributeOwnedByFederate()

Ownership Management requestAttributeOwnershipAcquisition()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-14

A.4.10 requestAttributeOwnershipAcquisition()

RTI 1.0
ABSTRACT

This service informs the federation of the federate's desire to
acquire ownership of a specified set of attributes for a specified
object. The RTI 1.3 implementation of this service is named
attributeOwnershipAcquisition; the RTI 1.3
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Request Attribute Ownership
Acquisition” Ownership Management service as specified in the
HLA Interface Specification (§5.5 in version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestAttributeOwnershipAcquisition (
RTI::ObjectID theObject
const RTI::AttributeHandleSet&

desiredAttributes
const RTI::UserSuppliedTag theTag

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotPublished,
RTI::AttributeNotSubscribed,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederateOwnsAttributes,
RTI::ObjectClassNotPublished,
RTI::ObjectClassNotSubscribed,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theObject

Object whose attributes the federate wishes to acquire
ownership of.

theAttributes
Attributes of the specified object that the federate wishes to
acquire ownership of. The caller is responsible for freeing the
storage associated with this set and may do so at any time
after the completion of the call.

theTag
String value that can contain a description of the reason for
the acquisition request or any other data that is meaningful for
a particular federation. The caller is responsible for freeing
the storage associated with this string and may do so at any
time after the completion of the call.

DESCRIPTION
This method informs the federation that the federate wishes to
acquire ownership of the specified attributes of the specified
object. If the ownership token for a given attribute exists but is not
held by any federate (technically, the token is held by the object
manager of some federate but not owned by the associated federate
ambassador), the federate is automatically granted ownership of
the attribute. If the token is held by a federate, that federate is
requested to relinquish control via its
FederateAmbassador::requestAttributeOwnershipRelease method.

If the federate successfully acquires some or all of the requested
attributes, it will be notified via its
FederateAmbassador::attributeOwnershipAcquisitionNotification

method. It is possible that a single acquisition request result in
multiple acquisition notifications, as different subsets of the set of
requested attributes may be held by different federates. These
notifications do not occur synchronously with respect to the
acquisition request method, but will occur at a later time in
response to an RTIambassador::tick invocation.

There is no negative acknowledgement of ownership acquisition
requests; if a given attribute ownership token no longer exists or if
it is held by a federate that declines to relinquish control, then no
further actions result from the ownership acquisition request for
that attribute.

A federate must publish and subscribe a given attribute and its
associated object class before attempting to acquire tokens for that
attribute. (Note that here "object class" refers to the class by which
the federate knows an object, which may differ from the actual
class of the object.)

RETURN VALUES
A non-exceptional return indicates that a request has been made on
behalf of the federate to obtain ownership of the specified
attributes. It is important to note that a successful return of this
method does not imply acquisition of the requested attributes, only
that the request has been successfully issued.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotPublished
One or more of the specified attribute handles is not published
by the federate.

RTI::AttributeNotSubscribed
One or more of the specified attribute handles is not
subscribed by the federate.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateOwnsAttributes
The federate already holds ownership tokens for one or more
of the attributes specified.

RTI::ObjectClassNotPublished
The object class of the specified object is not published by the
federate.

RTI::ObjectClassNotSubscribed
The object class of the specified object is not subscribed by
the federate.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log

Ownership Management requestAttributeOwnershipAcquisition()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-15

file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification()
requestAttributeOwnershipRelease()

RTI::RTIambassador::
publishObjectClass()

queryAttributeOwnership()

subscribeObjectClassAttribute()

Ownership Management requestAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-16

A.4.11 requestAttributeOwnershipDivestiture()

RTI 1.0
ABSTRACT

This service informs the federation that the federate wishes to
relinquish ownership of a specified set of object attributes and
solicits bids to assume ownership of said attributes. The
equivalent RTI 1.3 functionality is provided by the
unconditionalAttributeOwnershipDivestiture and
negotiatedAttributeOwnershipDivestiture services; the
RTI 1.3 implementation is discussed in separate sections.

HLA IF SPECIFICATION
This method realizes the “Request Attribute Ownership
Divestiture” Ownership Management service as specified in the
HLA Interface Specification (§5.1 in version 1.1).

SYNOPSIS
#include <RTI.hh>

enum RTI::OwnershipDivestitureCondition {
NEGOTIATED = 1,
UNCONDITIONAL

};

void
RTI::RTIambassador::

requestAttributeOwnershipDivestiture (
RTI::ObjectID theObject
const RTI::AttributeHandleSet& theAttributes
RTI::OwnershipDivestitureCondition theCondition
const RTI::UserSuppliedTag theTag

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidDivestitureCondition,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

A variation allows the divesting federate to designate which
federates may submit bids for attribute ownership:

void
RTI::RTIambassador::

requestAttributeOwnershipDivestiture (
RTI::ObjectID theObject
const RTI::AttributeHandleSet& theAttributes
RTI::OwnershipDivestitureCondition theCondition
const RTI::UserSuppliedTag theTag
const RTI::FederateHandleSet& theCandidates

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::ConcurrentAccessAttempted,
RTI::FederateDoesNotExist,
RTI::FederateNotExecutionMember,
RTI::InvalidDivestitureCondition,
RTI::ObjectNotKnown,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

ARGUMENTS
theObject

Object whose attributes the federate wishes to divest
ownership

theAttributes
Set of attributes that the federate wishes to divest ownership
of. The caller is responsible for freeing the memory associated
with the set and may do so at any time after the completion of
the call.

theCondition
Enumerated value indicating whether the federate wishes to
be relieved of attribute publication responsibility even in the
absence of an accepting federate.

theTag
String value that can contain a description of the reason for
the divestiture request or any other data that is meaningful for
a particular federation. The caller is responsible for freeing
the storage associated with this string and may do so at any
time after the completion of the call.

theCandidates
Set of federates that are to be offered ownership of the
attributes being divested. The caller is responsible for freeing
the storage associated with this set and may do so at any time
after the completion of the call.

DESCRIPTION
The federate uses this method to request to be relieved of attribute
publication responsibility. The federate must hold the ownership
token for all attributes it attempts to divest; multiple negotiated
divestiture requests may be made for the same object attribute in
the absence of an acquiring federate.

The request sent out by this method will result in the invocation of
the FederateAmbassador::requestAttributeOwnershipAssumption
method in each of the candidate federates (or all federates join in
the execution if no candidate federates were specified.) This may
result in one or more of these federates making a bid for some or
all of the offered attributes; the divesting federate's object manager
will transfer the ownership token for a given attribute to the
submitter of the first bid (or attribute acquisition request) received
for the attribute.

If the federate specifies a negotiated divestiture, it will retain
ownership of a given attribute until the receipt of a notification that
another federate is willing to assume ownership (this notification
can consist of an ownership bid made in response to the attribute
assumption request or an attribute acquisition request made
independently.) At this point, the federate's object manager will
send an attribute assumption notification to the assuming federate
and inform the divesting federate, via a
FederateAmbassador::attributeOwnershipDivestitureNotification
callback, that it has been relieved of ownership of the attribute.

If the federate specifies an unconditional divestiture, it is
immediately relieved of ownership of all divested attributes and is
notified of this via a
IFederateAmbassador::attributeOwnershipDivestitureNotification
callback (this callback does not occur synchronously with respect
to the attribute divestiture request, but is queued up for future
processing by the RTIambassador::tick service.) At this point, the
ownership tokens are not held by any federate (technically, the
tokens still reside in the object manager of the divesting federate)
and will be transferred to the first federate expressing interest (i.e.
responding to the attribute assumption request or submitting an
independent request for attribute acquisition.)

Note that the candidate set only defines which federates are
explicitly offered ownership of the tokens via the
FederateAmbassador::requestAttributeOwnershipAssumption
method; this does not prevent non-candidate federates from
assuming ownership of the tokens by making an attribute

Ownership Management requestAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-17

acquisition request via the
RTIambassador::requestAttributeOwnershipAcquisition service.

There is no negative acknowledgement of a negotiated attribute
divestiture request; if the federate receives no positive response
within a reasonable amount of time it may wish to issue another
attribute divestiture request.

Multiple ownership divestiture notifications may result from a
single divestiture request, as different federates may assume
ownership of different subsets of the offered attributes.

RETURN VALUES
A non-exceptional return indicates that the candidate federates (or
all federates, if no candidate federates were specified) have been
offered ownership of the specified attributes and that the calling
federate's object manager has been instructed to transfer the
attribute ownership tokens to the first federate willing to assume
them. If an unconditional divestiture was specified, an
attributeOwnershipDivestitureNotification has been queued for
delivery to the federate ambassador on a subsequent
RTIambassador::tick (if a negotiated divestiture was specified,
these notifications are given only after a given attribute has been
divested.)

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederateDoesNotExist
One or more of the specified federate handles is not valid in
the context of the current active federation.

RTI::InvalidDivestitureCondition
The specified divestiture condition was not a recognized
enumerated value.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

RTI::AttributeHandleSet
RTI::FederateHandleSet
RTI::FederateAmbassador::

attributeOwnershipDivestitureNotification()

requestAttributeOwnershipAssumption()

RTI::RTIambassador::
queryAttributeOwnership()

requestAttributeOwnershipAcquisition()

Ownership Management unconditionalAttributeOwnershipDivestiture()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.4-18

A.4.12 unconditionalAttributeOwnershipDivestiture()

RTI 1.3
ABSTRACT

This service releases ownership of a specified set of instance-
attributes for a specified object instance. The attributes
immediately become unowned and are available for acquisition by
any federate. The RTI 1.0 equivalent of this service is named
requestAttributeOwnershipDivestiture; the RTI 1.0
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Unconditional Attribute Ownership
Divestiture” Ownership Management service as specified in the
HLA Interface Specification (§7.2 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

unconditionalAttributeOwnershipDivestiture (
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& theAttributes

)
throw (
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object instance whose instance-attributes are to be
divested

theAttributes

the instance-attributes to divest

DESCRIPTION
This service immediately releases ownership of the specified
instance-attributes.

No attributeOwnershipDivestitureNotification()
callback is made to the federate.

If a released instance-attribute is the subject of an outstanding
attributeOwnershipAcquisition() request, ownership is
immediately transferred to a requesting federate. The requesting
federate will receive an
attributeOwnershipAcquisitionNotification() callback
to inform it of the ownership transfer. If more than one remote
federates have currently outstanding acquisition requests for the
same instance-attribute, ownership is transferred based on
whichever request was received most recently.

If a released instance-attribute is not the subject of an outstanding
attributeOwnershipAcquisition() request, the instance-
attribute becomes unowned. Each remote federate that is
publishing the corresponding class-attribute at the level of the
object class by which the instance is discovered by the remote
federate will be offered ownership using the
requestAttributeOwnershipAssumption() callback. If
multiple federates respond to the assumption request, ownership
will be transferred to the federate whose response is received first.
If no federates respond, the instance-attribute continues to be

unowned and may be acquired using the
attributeOwnershipAcquisition() or
attributeOwnershipAcquisitionIfAvailable() services.
No requestAttributeOwnershipAssumption() callbacks will
be made after the initial divestiture.

RETURN VALUES
A non-exceptional return indicates that the specified instance-
attributes are no longer owned by the federate. Other federates
may be offered ownership using the
requestAttributeOwnershipAssumption() callback.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

requestAttributeOwnershipAssumption()

RTI::RTIambassador::
attributeOwnershipReleaseResponse()

getAttributeHandle()

negotiatedAttributeOwnershipDivestiture()

A.5 Time Management

Time Management changeAttributeOrderType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-1

A.5.1 changeAttributeOrderType()

RTI 1.0 �RTI 1.3
ABSTRACT

This service specifies the ordering policy for a specified set of
instance-attributes of a specified object instance to use for updates
made by the local federate. The type (but not semantics) of one
parameter changes between RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Change Attribute Order Type” service as
specified in the HLA Interface Specification (§4.11 (Object

Management) in version 1.1; §8.23 (Time Management) in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
enum RTI::OrderType {

RECEIVE = 1,
TIMESTAMP

};

// RTI 1.0 Only
void
RTI::RTIambassador::

changeAttributeOrderType (
RTI::ObjectID theObject,
const RTI::AttributeHandleSet& theAttributes,
RTI::OrderType theType

)
throw (

RTI::AttributeNotDefined,
RTI::AttributeNotOwned,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidOrderType,
RTI::ObjectNotKnown,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

// RTI 1.3 Only
void changeAttributeOrderType (
 RTI::ObjectHandle theObject, ßß Changes Types Changes Types
 const RTI::AttributeHandleSet& theAttributes,
 RTI::OrderingHandle theType ßß Changes Types Changes Types

)
throw (
 RTI::AttributeNotDefined,
 RTI::AttributeNotOwned,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidOrderingHandle, ßß Changes Types Changes Types
 RTI::ObjectNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theObject

the object-instance whose instance-attributes are affected

theAttributes
the instance-attributes whose ordering policy is being set

theType
the ordering policy to use for subsequent updates of the
specified instance-attributes by the local federate

DESCRIPTION
This service specifies the ordering policy to be associated with
subsequent updates of the specified instance-attributes made by the
local federate. Recall that an update of an instance-attribute is

delivered in time-stamp order to a subscribing federate if and only
if

• the sending federate is time-regulating

• the receiving federate is time-constrained

• a time-stamp-ordered ordering policy is in effect for the
specified instance-attribute at the sending federate

• a time-stamp is specified to the updateAttributeValues()
service invocation (in RTI 1.0, this is necessarily the case)

The default ordering policy for an instance-attribute is the ordering
policy specified for the corresponding class-attribute in the FED
file. The ordering policy for an instance-attribute will revert to the
default if the instance-attribute is transferred between federates
using ownership management services.

This service will allow an ordering policy to be set for any
instance-attributes of any objects known to the federate; however,
such a specification is only meaningful for instance-attributes
which are owned by the local federate.

RETURN VALUES
A non-exceptional return indicates that subsequent updates of the
specified instance-attributes will be sent using the specified
ordering-policy (if the sending federate is time regulating).

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotOwned
This exception is not thrown by the current implementations.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidOrderingHandle (RTI 1.3 Only)
The specified ordering policy is not a valid handle as returned
by the getOrderingHandle() service.

RTI::InvalidOrderType (RTI 1.0 Only)
The specified ordering policy is not a valid member of the
OrderType enumeration.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

 Time Management changeAttributeOrderType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-2

RTI 1.0
RTI::AttributeHandleSet
RTI::RTIambassador::

changeAttributeTransportType()

changeInteractionOrderType()

setTimeConstrained()

tick()

turnRegulationOn()

updateAttributeValues()

RTI 1.3
RTI::AttributeHandleSet

RTI::RTIambassador::

changeAttributeTransportType()

changeInteractionOrderType()

enableTimeConstrained()

enableTimeRegulation()

getOrderingHandle()

tick()

updateAttributeValues()

Time Management changeInteractionOrderType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-3

A.5.2 changeInteractionOrderType()

RTI 1.0 �RTI 1.3
ABSTRACT

This service specifies the ordering policy for a specified class of
interactions to use for interactions sent by the local federate. The
type of one argument to this service method changes between
RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Change Interaction Order Type” service
as specified in the HLA Interface Specification (§4.13 (Object

Management) in version 1.1; §8.24 (Time Management) in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
enum RTI::OrderType {

RECEIVE = 1,
TIMESTAMP

};

// RTI 1.0 Only
void
RTI::RTIambassador::

changeInteractionOrderType (
RTI::InteractionClassHandle theClass
RTI::OrderType theType

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::InteractionClassNotPublished,
RTI::InvalidOrderType,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

changeInteractionOrderType (
 RTI::InteractionClassHandle theClass,

 RTI::OrderingHandle theType ßß Changes Types Changes Types
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished,
 RTI::InvalidOrderingHandle, ßß Changes Types Changes Types
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

the interaction class affected by the ordering policy

theType
the ordering policy to use for the specified interaction class

DESCRIPTION
This service specifies the ordering policy to be associated with
subsequent interactions of the specified interaction class sent by
the local federate. Recall that an interaction is delivered in time-
stamp order to a subscribing federate if and only if

• the sending federate is time-regulating

• the receiving federate is time-constrained

• a time-stamp-ordered ordering policy is in effect for the
interaction class at the sending federate

• a time-stamp is specified to the sendInteraction() service
invocation (in RTI 1.0, this is necessarily the case)

The default ordering policy for an interaction class is the ordering
policy specified in the FED file.

The federate must be publishing the interaction class subject of a
changeInteractionOrderType() service invocation. If the
federate subsequently invokes publishInteractionClass()
again for the specified interaction class, the ordering policy will
revert to the default, even if there has been no intervening
unpublishInteractionClass() service invocation.

RETURN VALUES
A non-exceptional return indicates that future interactions of the
specified class will be sent using the specified ordering policy (if
the federate is time regulating).

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotPublished
The operation attempted requires that the interaction class be
currently published by the federate.

RTI::InvalidOrderingHandle (RTI 1.3 Only)
The specified ordering policy is not a valid handle as returned
by the getOrderingHandle() service.

RTI::InvalidOrderType (RTI 1.0 Only)
The specified ordering policy is not a valid member of the
OrderType enumeration.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI 1.0

RTI::RTIambassador::
changeAttributeOrderType()

changeInteractionTransportType()

sendInteraction()

setTimeConstrained()

tick()

 Time Management changeInteractionOrderType()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-4

turnRegulationOn()

RTI 1.3
RTI::RTIambassador::

changeAttributeOrderType()

changeInteractionTransportType()

enableTimeConstrained()

enableTimeRegulation()

sendInteraction()

tick()

Time Management disableAsynchronousDelivery()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-5

A.5.3 disableAsynchronousDelivery()

RTI 1.3
ABSTRACT

This service instructs the LRC not to deliver receive-ordered
events in the absence of an in-progress time-advancement service,
if the federate is time-constrained. The closest RTI 1.0
equivalent to this service is dequeueFIFOasynchronously; the
RTI 1.0 implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Disable Asynchronous Delivery” Time
Management service as specified in the HLA Interface
Specification (§8.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableAsynchronousDelivery()
throw (
 RTI::AsynchronousDeliveryAlreadyDisabled,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
);

DESCRIPTION
This service disables the delivery of receive-ordered events to the
federate in the absence of a time-advancement service. This only
applies to a time-constrained federate: if a federate is not time-
constrained, events may be delivered during any invocation of the
tick() service.

Asynchronous delivery is disabled by default for a federate, so this
service should only be used to undo the effects of an
enableAsynchronousDelivery() service invocation.

RETURN VALUES
A non-exceptional return indicates that receive-ordered events will
subsequently be delivered only during an in-progress time-
advancement service.

EXCEPTIONS
RTI::AsynchronousDeliveryAlreadyDisabled

Asynchronous delivery of FIFO events is already disabled for
the local federate.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal

state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

reflectAttributeValues()

RTI::RTIambassasor::
enableAsynchronousDelivery()

enableTimeConstrained()

flushQueueRequest()

nextEventRequest()

timeAdvanceRequest()

 Time Management disableTimeConstrained()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-6

A.5.4 disableTimeConstrained()

RTI 1.3
ABSTRACT

This service instructs the LRC not to constrain the advancement of
the federate’s time based on the federation’s time, and to deliver all
events in receive order. The closest RTI 1.0 equivalent to this
service is setTimeConstrained; the RTI 1.0 implementation
is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Disable Time Constrained” Time
Management service as specified in the HLA Interface
Specification (§8.7 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableTimeConstrained ()
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeConstrainedWasNotEnabled
)

DESCRIPTION
This service instructs the LRC not to constrain the advancement of
the federate’s time based on the federation’s time. Subsequent
invocations of time-advancement services such as
nextEventRequest() and timeAdvanceRequest() will
trivially succeed, as there are no longer any time-stamp-ordered
events in the federation from the perspective of a non-time-
constrained federate. (That is, for any arbitrary point on the
federation time axis, it can be guaranteed that no time-stamp-
ordered events will be delivered with an earlier time stamp.)

Any events subsequently received by the LRC of a non-time-
constrained federate will be queued for receive-order delivery to
the federate, regardless of the time-ordering policy associated with
the event by its sender. Events may be delivered to the federate
during any invocation of the tick() service, obviating the need to
invoke time-advancement services.

If there are any events remaining in the time-stamp-ordered queue
at the point time-constraint is disabled, they will be delivered to the
federate, in ascending order by time-stamp, before any receive-
ordered events are delivered.

Time-constraint is disabled by default for a federate. This service
should only be used after time-constraint has been enabled using
enableTimeConstrained() and has been achieved, as indicated
by a timeConstrainedEnabled() callback.

RETURN VALUES
A non-exceptional return indicates that the LRC will treat all
subsequently received events as receive-ordered and will not
constrain the advancement of federate time based on the federation
logical time.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeConstrainedWasNotEnabled
Time-constraint is not currently enabled for the local federate.

SEE ALSO
RTI::FederateAmbassador::

timeConstrainedEnabled()

RTI::RTIambassador::
enableTimeConstrained()

Time Management disableTimeRegulation()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-7

A.5.5 disableTimeRegulation()

RTI 1.3
ABSTRACT

This service instructs the federation to disregard the federate’s
logical time for purposes of regulating advancement of federation
logical time. All events generated subsequently by the federate
will be sent as receive-ordered. The closest RTI 1.0 equivalent to
this service is turnRegulationOff; the RTI 1.0
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Disable Time Regulation” Time
Management service as specified in the HLA Interface
Specification (§8.4 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableTimeRegulation ()
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeRegulationWasNotEnabled
)

DESCRIPTION
Time-regulation is disabled by default for a federate. This service
should only be used after time-regulation has been enabled using
enableTimeRegulation() and has been achieved, as indicated
by a timeRegulationEnabled() callback.

RETURN VALUES
A non-exceptional return indicates that time regulation has been
turned off for the local federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeRegulationWasNotEnabled
Time-regulation is not currently enabled for the local federate.

SEE ALSO

RTI::FederateAmbassador::
timeConstrainedEnabled()

RTI::RTIambassador::
enableTimeConstrained()

 Time Management enableAsynchronousDelivery()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-8

A.5.6 enableAsynchronousDelivery()

RTI 1.3
ABSTRACT

This service instructs the LRC to begin delivering receive-ordered
events to the federate even while no time-advancement service is
in progress. The closest RTI 1.0 equivalent to this service is
dequeueFIFOasynchronously; the RTI 1.0 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Enable Asynchronous Delivery” Time
Management service as specified in the HLA Interface
Specification (§8.14 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

enableAsynchronousDelivery()
throw (
 RTI::AsynchronousDeliveryAlreadyEnabled,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to deliver receive-ordered events to
the federate in the absence of an in-progress time-advancement
service. Subsequent to invoking this service, receive-ordered
events may be delivered to the federate during any invocation of
tick(). This setting is only relevant for federates that are time-
constrained: all events are always delivered asynchronously to
non-time-constrained federates.

The asynchronous delivery of receive-ordered events may be
subsequently disabled using the
disableAsynchronousDelivery() service.

RETURN VALUES
A non-exceptional return indicates that asynchronous delivery of
receive-ordered events has been enabled for the local federate.

EXCEPTIONS
RTI::AsynchronousDeliveryAlreadyEnabled

Asynchronous delivery of FIFO events is already enabled for
the local federate.

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

disableAsynchronousDelivery()

disableTimeConstrained()

enableTimeConstrained()

tick()

Time Management enableTimeConstrained()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-9

A.5.7 enableTimeConstrained()

RTI 1.3
ABSTRACT

This service instructs the LRC to constrain the advancement of the
federate’s time based on the federation’s time, and to deliver time-
stamp-ordered events in the correct order. The closest RTI 1.0
equivalent to this service is setTimeConstrained; the RTI 1.0
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Enable Time Constrained” Time
Management service as specified in the HLA Interface
Specification (§8.5 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

enableTimeConstrained ()
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeConstrainedPending,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress,
 RTI::TimeConstrainedAlreadyEnabled
)

DESCRIPTION
This service instructs the LRC to deliver time-stamp-ordered
events to the federate in non-decreasing order according to their
associated time stamp. Events occurring simultaneously in logical
time are subject to an arbitrary order of delivery.

Types of events that are potentially subject to time-stamp ordering
are updates, interactions, object deletions, and federation saves.
For a particular event to be subject to time-stamp ordering, the
following criteria must be met:

• For all events except saves, the sender must be time
regulating at the point in execution at which the event is
generated.

• For updates and interactions, the ordering policy (as
established by the FED file and subsequent invocations of
changeAttributeOrderType() and
changeInteractionOrderType(), respectively) in effect
for the relevant instance-attributes or interaction class at the
sender must be a time-stamp-ordered policy.

• For deletions, the ordering policy (as established by the FED
file and subsequent invocations of
changeAttributeOrderType()) in effect for some
instance-attribute of the object at the sender must be a time-
stamp-ordered policy.

• The receiver must be time-constrained at the point in
execution at which the event is received by the LRC and the
point in execution at which it delivered to the federate (though
not necessary at all subsequent points in-between.)

• A time-stamp argument must be provided to the service
invocation resulting in the federation event.

The federate will be notified through its
timeConstrainedEnabled() callback when time constraint has
taken effect. This callback occurs asynchronously to the
enableTimeConstrained() service invocation, during a
subsequent invocation of tick().

Time-stamp-ordered events will only be delivered to a time-
constrained federate when a time-advancement service (e.g.,
timeAdvanceRequest() or nextEventRequest()) is in
progress. A time-stamp-ordered event will not be delivered until
the LRC can guarantee that no events will be received with an
earlier time-stamp than the event to be delivered. The
timeAdvanceGrant() service informs the federate that all events
with time-stamps less than or equal to (or strictly less than,
depending on the time-advancement service used) a specified time
have been delivered to the federate.

No time-stamp ordered events will be delivered to a time-
constrained federate unless a time-advancement service is in
progress. No receive-ordered events will be delivered to a time-
constrained federate unless a time-advancement service is in
progress or the federate has enabled asynchronous delivery of
receive ordered events, using the
enableAsynchronousDelivery() service.

RETURN VALUES
A non-exceptional return indicates that the LRC will enable time
constraint for the federate as soon as possible and notify the
federate using the timeConstrainedEnabled() callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeConstrainedPending
Another enableTimeConstrained() request is currently
outstanding.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
The time-management disposition of a federate may not be
changed while a time-advancement service is currently in
progress.

RTI::TimeConstrainedAlreadyEnabled
Time-constraint is already enabled for the local federate.

SEE ALSO
RTI::FederateAmbassador::

timeConstrainedEnabled()

timeAdvanceGrant()

RTI::RTIambassador::
disableTimeConstrained()

enableAsynchronousDelivery()

 Time Management enableTimeConstrained()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-10

enableTimeRegulation()

flushQueueRequest()

nextEventRequest()

nextEventRequestAvailable()

timeAdvanceRequest()

timeAdvanceRequestAvailable()

Time Management enableTimeRegulation()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-11

A.5.8 enableTimeRegulation()

RTI 1.3
ABSTRACT

This service instructs the federation to consider the federate’s
logical time for the purposes of governing the advancement of
federation logical time. The closest RTI 1.0 equivalents to this
service are turnRegulationOn and turnRegulationOnNow;
the RTI 1.0 implementation is discussed in separate sections.

HLA IF SPECIFICATION
This method realizes the “Enable Time Regulation” Time
Management service as specified in the HLA Interface
Specification (§8.2 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void enableTimeRegulation (
 const RTI::FedTime& theFederateTime,
 const RTI::FedTime& theLookahead
)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeRegulationPending,
 RTI::FederateNotExecutionMember,
 RTI::InvalidFederationTime,
 RTI::InvalidLookahead,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress,
 RTI::TimeRegulationAlreadyEnabled
);

ARGUMENTS
theFederateTime

the minimum logical time to set the federate’s logical time to
when turning regulation on

theLookahead

the lookahead to use for the federate

DESCRIPTION
This service instructs the federation to consider the federate’s
logical time in controlling the advancement of federation time.
The specified lookahead represents the length of the logical-time
interval extending forward from the federate’s logical time at any
given point in execution in which the federate will not generate
events. That is, the minimum permissible time-stamp for a time-
stamp-ordered event generated by a time regulating federate is the
federate’s current logical time plus its lookahead. The sum of a
federate’s logical time and its lookahead may be referred to as the
effective logical time of the federate.

The federate’s logical time upon enabling time regulation will be
the minimum of the specified effective federate logical time and the
current lower-bound time-stamp of the federation.

If the specified lookahead is less than the federate’s current
lookahead, the specified lookahead will be phased in such that the
effective logical time of the federate remains strictly non-
decreasing. The new lookahead will completely take effect when
the federate has advanced its logical time from the time at which
regulation was enabled by an amount exceeding the difference
between the new and old lookahead values.

Enabling time regulation allows the federate to generate events that
are subject to time-stamp-ordering. While a federate is time
regulating, events sent by the federate may be designated as time-
stamp ordered, provided

• a time-stamp ordering policy is in effect for the relevant
interaction class or instance-attributes, as defined by the FED
file and subsequent invocations of
changeAttributeOrderType() and
changeInteractionOrderType()

• a time-stamp argument is provided to the service invocation
generating the event

The federate will be notified through its
timeRegulationEnabled() callback when time constraint has
taken effect. This callback occurs asynchronously to the
enableTimeRegulation() service invocation, during a
subsequent invocation of tick().

RETURN VALUES
A non-exceptional return indicates that time regulation will be
enabled for the federate as soon as possible.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeRegulationPending
Another enableTimeRegulation() request is currently
outstanding.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::InvalidLookahead
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
The time-management disposition of a federate may not be
changed while a time-advancement service is currently in
progress.

RTI::TimeRegulationAlreadyEnabled
Time-regulation is already enabled for the local federate.

SEE ALSO
RTI::FederateAmbassador::

timeRegulationEnabled()

 Time Management enableTimeRegulation()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-12

RTI::FedTime
RTI::RTIambassador::

disableTimeRegulation()

enableTimeConstrained()

Time Management flushQueueRequest()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-13

A.5.9 flushQueueRequest()

RTI 1.0 �RTI 1.3
ABSTRACT

This service initiates a flush of the federate’s event queues,
violating the ordering of time-stamp-ordered messages if
necessary. The type of the argument has changed in syntax,
but not in semantics, between RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Flush Queue Request” Time
Management service as specified in the HLA Interface
Specification (§6.9 in version 1.1; §8.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

flushQueueRequest (
RTI::FederationTime theTime

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress,
RTI::TimeAdvanceAlreadyInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

flushQueueRequest (
 const RTI::FedTime& theTime ßß Changes Types Changes Types

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeConstrainedPending,
 RTI::EnableTimeRegulationPending,
 RTI::FederateNotExecutionMember,
 RTI::FederationTimeAlreadyPassed,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress
)

ARGUMENTS
theTime

the maximum logical time to which to advance upon
completion of the flush

DESCRIPTION
This service designates all events currently in the federate's event
queue as eligible for presentation to the federate. Subsequent
invocations of tick() will first process any receive-ordered
events that have arrived, then will process events in the TSO queue
without regard for the federation lower-bound time stamp. For any
given invocation of tick(), the earliest available TSO event is
processed; however, RTI may not be able to guarantee that TSO
events with a lower time-stamp will not arrive in the future.

A time advance is granted when the federate has processed all TSO
events that were queued at the time of the request. The grant time
is the minimum of the minimum-next-event time and the specified
cutoff time. Note that this is trivial in the case of a non-time-
constrained federate, which by definition has no events in its TSO
queue; in this case, a grant to the specified cutoff time will be
made upon the next invocation of tick().

If time-stamp-ordered events arrive while a flush is in progress,
they will be delivered in order with respect to the events remaining
in the queue. Late-arriving events may replace events with a later
time-stamp in the set of events affected by the flush. That is, a
flushQueueRequest() invocation will flush a number of time-
stamp-ordered events equal to the number of events queued for
time-stamp-ordered delivery at the time of the service invocation.
However, the actual events delivered as a result of the flush may
not be the same events that were in the queue at the time of the
flushQueueRequest() service invocation.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully announced its desire to advance in time; the federate
will be notified of the successful completion of the request via a
subsequent timeAdvanceGrant() callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeConstrainedPending
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::EnableTimeRegulationPending
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified federation time is less than the current logical
time of the federation.

RTI::InvalidFederationTime
Not thrown in 1.0.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
A previous time advance request, next event request, or flush
queue request has not yet been completed.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::
timeAdvanceGrant()

RTI::RTIambassador::
nextEventRequest()

requestFederateTime()

requestLBTS()

 Time Management flushQueueRequest()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-14

setTimeConstrained()

tick()

timeAdvanceRequest()

turnRegulationOn()

RTI 1.3
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::FedTime
RTI::RTIambassador::

enableTimeConstrained()

enableTimeRegulation()

nextEventRequest()

queryFederateTime()

queryLBTS()

tick()

timeAdvanceRequest()

Time Management modifyLookahead()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-15

A.5.10 modifyLookahead()

RTI 1.3
ABSTRACT

This service changes the size of the interval extending forward
from the federate’s logical time at a given point in execution in
which the federate will not generate any time-stamp-ordered
events. The RTI 1.0 equivalent of this method is
setLookahead; the RTI 1.0 implementation is discussed in a
separate section.

HLA IF SPECIFICATION
This method realizes the “Modify Lookahead” Time Management
service as specified in the HLA Interface Specification (§8.19 in
version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

modifyLookahead (
 const RTI::FedTime& theLookahead

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidLookahead,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theLookahead

the size of the interval extending forward from the federate’s
logical time at a given point in execution in which the
federate will not generate any time-stamp-ordered events

DESCRIPTION
This service specifies a new lookahead value for the local federate.
The lookahead represents the length of the logical-time interval
extending forward from the federate’s logical time at any given
point in execution in which the federate will not generate events.
That is, the minimum permissible time-stamp for a time-stamp-
ordered event generated by a time regulating federate is the
federate’s current logical time plus its lookahead. The sum of a
federate’s logical time and its lookahead may be referred to as the
effective logical time of the federate.

If the specified lookahead is less than the federate’s current
lookahead, the specified lookahead will be phased in such that the
effective logical time of the federate remains strictly non-
decreasing. The new lookahead will completely take effect when
the federate has advanced its logical time from the time at which
regulation was enabled by an amount exceeding the difference
between the new and old lookahead values.

The lookahead setting is only meaningful for a time regulating
federate: non-time-regulating federates may always generate
events with any time stamp.

RETURN VALUES
A non-exceptional return indicates that the federate’s lookahead
will be adjusted to the specified value as soon as possible.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method

has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidLookahead
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::

enableTimeRegulation()

 Time Management nextEventRequest()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-16

A.5.11 nextEventRequest()

RTI 1.0 �RTI 1.3
ABSTRACT

This service advances the federate's logical time to the time-stamp
of the next relevant time-stamp-ordered event in the federation.
The type (but not semantics) of the parameter changes from
RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
The RTI 1.0 implementation of this method (in conjunction with
nextEventRequestAvailable()) realizes the “Next Event
Request” Time Management service as specified in the HLA
Interface Specification (§6.8 in version 1.1).

The RTI 1.3 implementation of this method realizes the “Next
Event Request” Time Management service as specified in the HLA
Interface Specification (§8.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

nextEventRequest (
RTI::FederationTime theTime

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress,
RTI::TimeAdvanceAlreadyInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

nextEventRequest (
 const RTI::FedTime& theTime ßß Changes Types Changes Types

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeConstrainedPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::EnableTimeRegulationPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::FederateNotExecutionMember,
 RTI::FederationTimeAlreadyPassed,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress
)

ARGUMENTS
theTime

the “cutoff point” at which to stop advancing logical time in
the absence of any intervening relevant time-stamp-ordered
events

DESCRIPTION
This service allows the federate to advance in time to the time-
stamp of the next time-stamp-ordered event occurring in the
federation which matches the federate’s current subscription
interests. A timeAdvanceGrant() callback will occur after one
or more time-stamp-ordered events have been delivered or the
federation lower-bound time stamp (LBTS) advances past the
specified cutoff time.

In the presence of an event, all relevant events with the same time-
stamp will be delivered before the grant. The grant time will be

equal to the time-stamp of the event(s) delivered to the federate.

In the absence of a relevant event, the grant time will be the
specified cutoff time.

Any number of receive-ordered events may be delivered while the
nextEventRequest() is in progress.

Note that if the federate is not time-constrained, the grant criteria
are trivially met (i.e. the effective federation LBTS for a non-
constrained federate is always infinity), so a
timeAdvanceGrant() to the cutoff time will be immediately
scheduled for delivery by a subsequent invocation of tick().

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully announced its desire to advance in time; the federate
will be notified of the successful completion of the request (as
described above) via a subsequent timeAdvanceGrant()
callback.

RELEASE NOTES
RTI 1.3

Time-advancement services may not be initiated while a
request to enable time-regulation or time-constraint is
pending.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeConstrainedPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::EnableTimeRegulationPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified federation time is less than the current logical
time of the federation.

RTI::InvalidFederationTime
This exception is not thrown by the current implementations.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
A previous time advance request, next event request, or flush
queue request has not yet been completed.

SEE ALSO

Time Management nextEventRequest()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-17

RTI 1.0
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::RTIambassador::
flushQueueRequest()

nextEventRequestAvailable()

requestFederateTime()

requestLBTS()

setTimeConstrained()

tick()

timeAdvanceRequest()

turnRegulationOn()

RTI 1.3
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::FedTime
RTI::RTIambassador::

enableTimeConstrained()

enableTimeRegulation()

flushQueueRequest()

nextEventRequestAvailable()

queryFederateTime()

queryLBTS()

tick()

timeAdvanceRequest()

 Time Management nextEventRequestAvailable()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-18

A.5.12 nextEventRequestAvailable()

RTI 1.0 �RTI 1.3
ABSTRACT

This service is similar to nextEventRequest(), except that a
time advance might be granted before all time-stamp-ordered
events at the grant time have been delivered to the federate.

HLA IF SPECIFICATION
The RTI 1.0 implementation of this method (in conjunction with
nextEventRequest()) realizes the “Next Event Request” Time
Management service as specified in the HLA Interface
Specification (§6.8 in version 1.1).

The RTI 1.3 implementation of this method realizes the “Next
Event Request Available” Federation Management service as
specified in the HLA Interface Specification (§8.11 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

nextEventRequestAvailable (
RTI::FederationTime theTime

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::RTIinternalError,
RTI::RestoreInProgress,
RTI::SaveInProgress,
RTI::TimeAdvanceAlreadyInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

nextEventRequestAvailable (
 const RTI::FedTime& theTime ßß Changes Types Changes Types

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeConstrainedPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::EnableTimeRegulationPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::FederateNotExecutionMember,
 RTI::FederationTimeAlreadyPassed,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress
)

ARGUMENTS
theTime

the “cutoff point” at which to stop advancing logical time in
the absence of any intervening relevant time-stamp-ordered
events

DESCRIPTION
This service allows the federate to advance in time to the time-
stamp of the next time-stamp-ordered event occurring in the
federation which matches the federate’s current subscription
interests. A timeAdvanceGrant() callback will occur after one
or more time-stamp-ordered events have been delivered or the
federation lower-bound time stamp (LBTS) advances past the
specified cutoff time.

In the presence of an event, all relevant events with the same time-
stamp that have been received by the LRC will be delivered before
the grant. The grant time will be equal to the time-stamp of the

event(s) delivered to the federate. It is possible that other time-
stamp-ordered events with a time stamp equal to the grant time
will be delivered to the federate during a subsequent time-
advancement service.

In the absence of a relevant event, the grant time will be the
specified cutoff time.

Any number of receive-ordered events may be delivered while the
nextEventRequestRequest() is in progress.

Note that if the federate is not time-constrained, the grant criteria
are trivially met (i.e. the effective federation LBTS for a non-
constrained federate is always infinity), so a
timeAdvanceGrant() to the cutoff time will be immediately
scheduled for delivery by a subsequent invocation of tick().

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully announced its desire to advance in time; the federate
will be notified of the successful completion of the request (as
described above) via a subsequent timeAdvanceGrant()
callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeConstrainedPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::EnableTimeRegulationPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified federation time is less than the current logical
time of the federation.

RTI::InvalidFederationTime
This exception is not thrown by the current implementations.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
A previous time advance request, next event request, or flush
queue request has not yet been completed.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::
timeAdvanceGrant()

Time Management nextEventRequestAvailable()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-19

RTI::RTIambassador::
flushQueueRequest()

nextEventRequest()

requestFederateTime()

requestLBTS()

setTimeConstrained()

tick()

timeAdvanceRequest()

turnRegulationOn()

RTI 1.3
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::FedTime
RTI::RTIambassador::

enableTimeConstrained()

enableTimeRegulation()

flushQueueRequest()

nextEventRequest()

queryFederateTime()

queryLBTS()

tick()

timeAdvanceRequest()

 Time Management queryFederateTime()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-20

A.5.13 queryFederateTime()

RTI 1.3
ABSTRACT

This service is used by a federate to obtain its current logical time.
The equivalent RTI 1.0 service is named
requestFederateTime; the RTI 1.0 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Query Federate Time” Time
Management service as specified in the HLA Interface
Specification (§8.17 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

queryFederateTime (
 RTI::FedTime& theTime

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theTime

out-parameter set to indicate the federate’s current logical
time

DESCRIPTION
This service allows the federate to its current logical time. If time-
regulation is enabled, this value (plus the federate’s lookahead)
represents the minimum time-stamp that may be associated with
time-stamp-ordered events generated subsequently by the federate.

If a timeAdvanceRequest() (or
timeAdvanceRequestAvailable()) service is in progress, the
federate’s logical time is the federation time subject of the
advancement request. If a nextEventRequest() (or
nextEventRequestAvailable()) service is in progress, the
federate’s logical time may be any value that is less than the
current federation lower-bound time-stamp. If a
flushQueueRequest() service is in progress, or if no time-
advancement service is in progress, the federate’s logical time is
the time associated with the last timeAdvanceGrant() callback.

RETURN VALUES
A non-exceptional return indicates that the theTime out-parameter
has been set to reflect the federate’s current logical time.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"

operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::FedTime
RTI::RTIambassador::

enableTimeRegulation()

flushQueueRequest()

nextEventRequest()

queryLBTS()

queryLookahead()

queryMinNextEventTime()

timeAdvanceRequest()

Time Management queryLBTS()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-21

A.5.14 queryLBTS()

RTI 1.3
ABSTRACT

This service is used by a federate to obtain the current federation
lower-bound time-stamp. The equivalent RTI 1.0 service is
named requestLBTS; the RTI 1.0 implementation is discussed
in a separate section.

HLA IF SPECIFICATION
This method realizes the “Query LBTS” Time Management
service as specified in the HLA Interface Specification (§8.16 in
version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

queryLBTS (
 RTI::FedTime& theTime

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theTime

out-parameter set to indicate the federation’s current lower-
bound time-stamp

DESCRIPTION
This service reports the federation lower-bound time-stamp
(LBTS) effective for the local federate. The LBTS is the greatest
time-stamp such that it can be guaranteed that no time-stamp-
ordered events will be subsequently generated in the federation
with a lesser time-stamp.

For a time-constrained federate, the effective LBTS is the
minimum of the most recently reported effective logical times (i.e.,
federate logical time plus federate lookahead) for all time-
regulating federates in the federation.

For a non-time-constrained federate, the effective LBTS is infinity:
there are no time-stamp-ordered events in the federation from the
perspective of a non-time-constrained federate.

Note that events with time stamps earlier than the LBTS may still
be queued for time-stamp-ordered delivery to a federate; the LBTS
merely indicates that no time-stamp-ordered events will be
subsequently generated with an earlier time stamp. A federate
may use the queryMinNextEventTime() service to determine
the minimum time-stamp of all time-stamp-ordered events that
may be subsequently delivered to the federate.

RETURN VALUES
A non-exceptional return indicates that the theTime argument has
been set to indicate the current federation lower-bound time-stamp.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::

enableTimeConstrained()

enableTimeRegulation()

queryFederateTime()

queryLookahead()

queryMinNextEventTime()

 Time Management queryLookahead()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-22

A.5.15 queryLookahead()

RTI 1.3
ABSTRACT

This service queries the size of the interval extending forward from
the federate’s logical time at a given point in execution in which
the federate will not generate any time-stamp-ordered events. The
RTI 1.0 equivalent of this method is requestLookahead; the
RTI 1.0 implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Query Lookahead” Time Management
service as specified in the HLA Interface Specification (§8.20 in
version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

queryLookahead (
 RTI::FedTime& theTime

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
);

ARGUMENTS
theTime

out-parameter that is set to indicate the current lookahead
interval of the local federate

DESCRIPTION
This service queries the length lookahead interval in effect for the
local federate. The lookahead represents the length of the logical-
time interval extending forward from the federate’s logical time at
any given point in execution in which the federate will not
generate events. That is, the minimum permissible time-stamp for
a time-stamp-ordered event generated by a time regulating federate
is the federate’s current logical time plus its lookahead. The sum
of a federate’s logical time and its lookahead may be referred to as
the effective logical time of the federate.

If the modifyLookahead() service has been used to decrease the
length of the lookahead interval, the new lookahead value will not
take effect immediately. The specified lookahead will be phased
in such that the effective logical time of the federate remains
strictly non-decreasing. The new lookahead will completely take
effect when the federate has advanced its logical time from the
time at which the lookahead was decreased by an amount
exceeding the difference between the new and old lookahead
values.

The lookahead setting is only meaningful for a time regulating
federate: non-time-regulating federates may always generate
events with any time stamp.

RETURN VALUES
A non-exceptional return indicates that the theTime argument has
been set to indicate the current lookahead interval of the federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent

Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::

enableTimeRegulation()

modifyLookahead()

queryFederateTime()

queryLBTS()

queryLookahead()

queryMinNextEventTime()

Time Management queryMinNextEventTime()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-23

A.5.16 queryMinNextEventTime()

RTI 1.3
ABSTRACT

This service obtains the minimum time-stamp of all time-stamp-
ordered events that may be subsequently delivered to the federate.

HLA IF SPECIFICATION
This method realizes the “Query Minimum Next Event Time”
Time Management service as specified in the HLA Interface
Specification (§8.18 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

queryMinNextEventTime (
 RTI::FedTime& theTime

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theTime

out-parameter set to indicate the minimum time stamp of the
next (potential) time-stamp-ordered event that may be
subsequently delivered to the federate

DESCRIPTION
This service may be used to obtain the largest time stamp such that
the LRC can guarantee that no time-stamp-ordered events will be
subsequently delivered to the federate with an earlier time stamp.
This is computed by taking the minimum of the effective
federation lower-bound time stamp (see queryLBTS()) and the
time stamps of all time-stamp-ordered events currently queued for
delivery to the federate (if any.)

Note that the minimum next-event time for a non-time-constrained
federate will generally be infinity. The effective LBTS of a non-
time-constrained federate is infinity and no events will be queued
for time-stamp-ordered delivery (although there may be some
time-stamp-ordered events already queued when time-constraint
was disabled.)

RETURN VALUES
A non-exceptional return indicates that the theTime argument has
been set to reflect the minimum time stamp of the next (potential)
time-stamp-ordered event that may be subsequently delivered to
the federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"

operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::

enableTimeConstrained()

queryLBTS()

 Time Management requestFederateTime()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-24

A.5.17 requestFederateTime()

RTI 1.0
ABSTRACT

This service requests the current federate logical time. The RTI
1.3 implementation of this service is named
queryFederateTime; the RTI 1.3 implementation is discussed
in a separate section.

HLA IF SPECIFICATION
This method realizes the “Request Federate Time” Time
Management service as specified in the HLA Interface
Specification (§6.3 in version 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::FederationTime
RTI::RTIambassador::

requestFederateTime ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
This service allows the federate to obtain its current logical time,
i.e. the most recent time requested by the federate via
RTIambassador::timeAdvanceRequest. If the federate is time-
regulating, its logical time plus its lookahead constitutes the
minimum allowable time-stamp of time-stamp-ordered messages
subsequently sent by the federate. If the federate is time-
constrained, the logical time represents the maximum time-stamp
of time-stamp-ordered events that will be delivered to the federate
prior to the next time-advance request.

RETURN VALUES
The returned value is the current federate logical time.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

requestFederationTime()

requestLBTS()

requestMinNextEventTime()

tick()

timeAdvanceRequest()

turnRegulationOn()

Time Management requestFederationTime()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-25

A.5.18 requestFederationTime()

RTI 1.0
ABSTRACT

This service requests the current federation time.

HLA IF SPECIFICATION
This method realizes the “Request Federation Time” Time
Management service as specified in the HLA Interface
Specification (§6.1 in version 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::FederationTime
RTI::RTIambassador::

requestFederationTime ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
Federation time for a given federate is defined as the minimum of
the current federation lower-bound time stamp and the federate's
logical time. This value represents the maximum time-stamp value
that is eligible for delivery to the federation at this particular
instance in time.

RETURN VALUES
The returned value is the current federation time, as perceived by
the federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

requestFederateTime()

requestLBTS()

requestMinNextEventTime()

tick()

timeAdvanceRequest()

 Time Management requestLBTS()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-26

A.5.19 requestLBTS()

RTI 1.0
ABSTRACT

This service requests the current effective federation lower-bound
time stamp (LBTS) for the federate. The RTI 1.3
implementation of this service is named queryLBTS; the RTI
1.3 implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Request LBTS” Time Management
service as specified in the HLA Interface Specification (§6.2 in
version 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::FederationTime
RTI::RTIambassador::

requestLBTS ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
The federation LBTS is defined as the minimum time-stamp such
that it can be guaranteed that no federate will generate any more
time-stamp-ordered events with a lower time-stamp. A time-
regulating federate's LBTS is its current logical time plus its
current lookahead; a non-time-regulating federate's LBTS is
positive infinity, as it cannot generate any time-stamp-ordered
messages. The federation LBTS is the minimum of the LBTS's of
all participating federates.

Time-stamp ordered messages with a time-stamp less than LBTS
may still be queued for processing, and may therefore be delivered
to the federate as a result of RTIambassador::tick invocations; the
LBTS simply guarantees that no new messages with a lower-time
stamp will be queued for processing (to find out the absolute
minimum time-stamp of all messages eligible for future delivery,
use RTIambassador::requestMinNextEventTime.)

Non-time-constrained federates cannot receive TSO events, so
their effective federation LBTS is infinity.

RETURN VALUES
The returned value is the current federation lower-bound time
stamp.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log

file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

requestFederateTime()

requestFederationTime()

requestMinNextEventTime()

tick()

timeAdvanceRequest()

turnRegulationOn()

Time Management requestLookahead()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-27

A.5.20 requestLookahead()

RTI 1.0
ABSTRACT

This service obtains the current lookahead window being used for
the federate. The RTI 1.3 implementation of this service is
named queryLookahead; the RTI 1.3 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Request Lookahead” Time Management
service as specified in the HLA Interface Specification (§6.6 in
version 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::FederationTimeDelta
RTI::RTIambassador::

requestLookahead ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
This service allows the federate to obtain the value of its effective
lookahead, i.e. the time window between its logical time and the
minimum allowable time-stamp of a time-stamp-ordered event
generated by the federate. The effective lookahead at a given time
is at least as great as the current lookahead as specified by the
RTIambassador::setLookahead service (see the section on this
service for a discussion of why this is true.)

RETURN VALUES
The return value is the current effective lookahead for the federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

requestFederateTime()

requestFederationTime()

requestLBTS()

setLookahead()

timeAdvanceRequest()

 Time Management requestMinNextEventTime()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-28

A.5.21 requestMinNextEventTime()

RTI 1.0
ABSTRACT

This service requests the minimum possible time-stamp of the
earliest time-stamp-ordered event that will ever be delivered in the
federation's future. The RTI 1.3 implementation of this service
is named queryMinNextEventTime; the RTI 1.3
implementation is discussed in a separate section.

HLA IF SPECIFICATION
This method realizes the “Request Minimum Next Event Time”
Time Management service as specified in the HLA Interface
Specification (§6.4 in version 1.1).

SYNOPSIS
#include <RTI.hh>

RTI::FederationTime
RTI::RTIambassador::

requestMinNextEventTime ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
The minimum next event time is defined as the largest time-stamp
such that RTI can guarantee that no time-stamp-ordered (TSO)
events will be delivered to the federate with a smaller time-stamp
value. This is defined as the minimum of the federation lower-
bound time stamp and the time-stamp of the earliest time-stamp-
ordered event (if any) in the federate's event queue. Note that in the
case of a non-constrained federate, this is always infinity (i.e. no
TSO events and an infinite LBTS.) A time advance grant can
never be made to a federation time greater than the minimum next
event time.

RETURN VALUES
The returned value is the current minimum next event time for the
federate.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

RTI::RTIambassador::
requestFederateTime()

requestFederationTime()

requestLBTS()

setTimeConstrained()

tick()

timeAdvanceRequest()

Time Management retract()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-29

A.5.22 retract()

RTI 1.0 RTI 1.3
ABSTRACT

This service cancels an update, interaction, or deletion previously
scheduled by the federate.

HLA IF SPECIFICATION
This method realizes the “Retract” service as specified in the HLA
Interface Specification (§4.16 (Object Management) in version 1.1;
§8.21 (Time Management) in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

retract (
RTI::EventRetractionHandle theHandle

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidRetractionHandle,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theHandle

the event-retraction handle (as obtained from
updateAttributeValues(), sendInteraction(),
deleteObject()) of the event to unschedule

DESCRIPTION
The federate can utilize this service to withdraw an update,
interaction, or deletion it has previously scheduled (or, in the
current implementations, one that has been scheduled by another
federate.) A successful invocation will result in the issuance of an
event-retraction message to every federate in the Federation
Execution. If the specified event is currently queued for delivery to
a given remote federate, it is removed from its queue. If the
specified event has been recently delivered to the federate (the
current implementations maintain a history of the last 50,000
events delivered), the appropriate callback is invoked and the
federate is responsible for rolling back its state as appropriate.

While the RTI event retraction services don't do very much in and
of themselves, they provide a cornerstone upon which optimistic
simulations can be built using such techniques as "anti-messages."

RETURN VALUES
A non-exceptional return indicates that the other federates in the
federation have been advised to cancel the event specified by the
retraction handle.

RELEASE NOTES
RTI 1.0

Retractions are delivered to federates using the
reflectRetraction() callback.

RTI 1.3
Retractions are delivered to federates using the
requestRetraction() callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method

has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidRetractionHandle
The event-retraction handle does not correspond to an event
previously scheduled by the federate. (Not thrown in 1.0.)

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::EventRetractionHandle

RTI::FederateAmbassador::
reflectRetraction() ßß RTI 1.0 Only

requestRetraction() ßß RTI 1.3 Only

RTI::RTIambassador::
deleteObject() ßß RTI 1.0 Only

deleteObjectInstance() ßß RTI 1.3 Only

sendInteraction()

updateAttributeValues()

 Time Management setLookahead()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-30

A.5.23 setLookahead()

RTI 1.0
ABSTRACT

This service redefines the lookahead window for the federate. The
RTI 1.3 implementation of this service is named
modifyLookahead; the RTI 1.3 implementation is discussed in
a separate section.

HLA IF SPECIFICATION

This method realizes the “Set Lookahead” Time Management
service as specified in the HLA Interface Specification (§6.5 in
version 1.1).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

setLookahead (
RTI::FederationTimeDelta theLookahead

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InvalidLookahead,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
theLookahead

new lookahead value to use for the federate

DESCRIPTION
This service allows the federate to dynamically modify its
lookahead window, i.e. the amount of time between the federate
logical time and the earliest allowable time-stamp on a time-stamp-
ordered (TSO) event generated by the federate. Lookahead is only
meaningful for time-regulating federates, as non-time-regulating
federates do not generate TSO events. To minimize the overhead
associated with synchronizing federation time advances, federates
should make their lookahead window as large as is feasible.

If the specified lookahead is smaller than the current lookahead,
the new lookahead does not go into effect immediately, as this
would result in the federate breaking an earlier "promise" not to
generate TSO events before a given federation time. In this case,
the federate's actual lookahead is gradually decreased as the
federate's logical time is increased (to preserve a constant value of
"logical time + lookahead") until it becomes possible to use the
specified lookahead value. If the specified lookahead is greater
than the current federation lookahead, it goes into effect
immediately.

Obviously, lookahead values must be non-negative. A federate's
lookahead defaults to EPSILON as defined in
$RTI_HOME/include/RTItypes.h.

Time-constrained zero-lookahead federates are an interesting
"special case"; see timeAdvanceRequestAvailable() and
nextEventRequestAvailable() for discussion of special
considerations for such federates.

RETURN VALUES
A non-exceptional return indicates that the federate lookahead will
be adjusted to the specified value as soon as possible.

EXCEPTIONS

RTI::ConcurrentAccessAttempted
An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidLookahead
The specified lookahead interval must be a non-negative size.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

nextEventRequest()

nextEventRequestAvailable()

requestLBTS()

requestLookahead()

timeAdvanceRequest()

timeAdvanceRequestAvailable()

Time Management setTimeConstrained()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-31

A.5.24 setTimeConstrained()

RTI 1.0
ABSTRACT

This service specifies whether a federate wishes to process time-
stamp-ordered events in time-stamp order. If so, the federate’s
logical time will be constrained by the federation logical time. .
The RTI 1.3 equivalents of this service are named
enableTimeConstrained and disableTimeConstrained;
the RTI 1.3 implementation is discussed in separate sections.

HLA IF SPECIFICATION
This method does not directly correspond to a service specified in
the HLA Interface Specification version 1.1.

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

setTimeConstrained (
RTI::Boolean state

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

ARGUMENTS
state

Whether or not the federate wishes to be time constrained.

DESCRIPTION
This method allows the federate to dynamically specify whether or
not RTI should take time into consideration when determining
when to present events to the federation. If a federate is not time-
constrained, all incoming events are processed in receive-order, i.e.
they are immediately made available for processing by an
RTIambassador::tick service call. Events only become eligible for
presentation to a time constrained federate when it can be
guaranteed that no time-stamp-ordered events with a lower time-
stamp will be received. This ordering only applies to events that
are designated by the sender as being time-stamp-ordered; events
designated as receive-ordered will always be made eligible for
presentation immediately.

Turning time constraints on affects only events received
subsequently; it does not affect any time-stamp-ordered events that
may have already been received and placed in the receive-order
queue.

Federates are non-time-constrained by default.

RETURN VALUES
A non-exceptional return indicates that the federate's time
constraints have been turned on or off as requested.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederationExecutionDoesNotExist
The RTI does not have a FedExec registered for the named
Federation.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

changeAttributeOrderType()
changeInteractionOrderType()
tick()
timeAdvanceRequest()
turnRegulationOn()

 Time Management timeAdvanceRequest()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-32

A.5.25 timeAdvanceRequest()

RTI 1.0 �RTI 1.3
ABSTRACT

This service requests an advance of the logical time of the federate
to a specified federation time. The syntax of this service has
changed from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This RTI 1.0 implementation of this method (in conjunction with
timeAdvanceRequestAvailable()) realizes the “Time
Advance Request” Time Management service as specified in the
HLA Interface Specification (§6.7 in version 1.1).

The RTI 1.3 implementation of this method realizes the “Time
Advance Request” Time Management service as specified in the
HLA Interface Specification (§8.8 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

timeAdvanceRequest (
RTI::FederationTime theTime

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress,
RTI::TimeAdvanceAlreadyInProgress

)

// RTI 1.3 Only
void timeAdvanceRequest (
 const RTI::FedTime& theTime ßß Changes Types Changes Types
)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeConstrainedPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::EnableTimeRegulationPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::FederateNotExecutionMember,
 RTI::FederationTimeAlreadyPassed,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress
)

ARGUMENTS
theTime

the time-stamp representing the point on the federation time
axis to which to advance the federate’s logical time

DESCRIPTION
This service releases all time-stamp-ordered (TSO) events between
the federate’s current logical time and the requested time,
inclusive, for delivery to the federate. Each relevant TSO event
occurring in this interval will be delivered to the federate as soon
as it can be guaranteed that all relevant TSO events with earlier
time stamps have already been delivered. That is, an event will be
delivered if and only if

• all events currently queued for TSO delivery to the federate
have a time stamp that is not greater than the event’s time
stamp

• the federation LBTS is not less than the time stamp of the
event (i.e., the LRC can guarantee that no TSO events with an

earlier time stamp will arrive subsequently)

When all relevant TSO events with time stamps less than or equal
to the requested time have been delivered to the federate (i.e., the
minimum next-event time is greater than the requested time), the
federate will receive a timeAdvanceGrant() callback indicating
that the time-advancement has completed. Only after receiving
such a callback may the federate proceed to initiate another time-
advancement service.

Subsequent to initiating a timeAdvanceRequest(), the federate
may not generate TSO events whose time stamps are less than the
requested time plus the federate’s lookahead. That is, the logical
time of the federate is immediately set equal to the requested time
upon a timeAdvanceRequest() service invocation.

For non-time-constrained federates, time advances are trivial: by
definition such federates do not receive any TSO events, so a time-
advance grant is immediately scheduled for delivery by a
subsequent invocation of the tick() service.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully initiated the time-advancement process. TSO events
from the current time through the requested time (inclusive) may
now be delivered to the federate, and the federate may no longer
generate TSO events with a time-stamp less than the requested
time plus the federate lookahead. The federate will receive
notification of the successful completion of the time advance (as
described previously) via its timeAdvanceGrant() callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeConstrainedPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::EnableTimeRegulationPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The requested time is less than the current logical time of the
federate.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal

Time Management timeAdvanceRequest()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-33

state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
A previous time advance request, next event request, or flush
queue request has not yet been completed.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::
timeAdvanceGrant()

RTI::RTIambassador::
flushQueueRequest()

nextEventRequest()

requestFederateTime()

requestLBTS()

setTimeConstrained()

tick()

timeAdvanceRequestAvailable()

turnRegulationOn()

RTI 1.3
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::FedTime

RTI::RTIambassador::

enableTimeConstrained()

enableTimeRegulation()

flushQueueRequest()

nextEventRequest()

queryFederateTime()

queryLBTS()

tick()

timeAdvanceRequestAvailable()

 Time Management timeAdvanceRequestAvailable()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-34

A.5.26 timeAdvanceRequestAvailable()

RTI 1.0 �RTI 1.3
ABSTRACT

This service is similar to the timeAdvanceRequest() service,
except that not all events occurring at exactly the requested time
will necessarily be delivered before a timeAdvanceGrant() is
made. The syntax of this service has changed from RTI 1.0 to
RTI 1.3.

HLA IF SPECIFICATION
This RTI 1.0 implementation of this method (in conjunction with
timeAdvanceRequest()) realizes the “Time Advance Request”
Time Management service as specified in the HLA Interface
Specification (§6.7 in version 1.1).

The RTI 1.3 implementation of this method realizes the “Time
Advance Request Available” Time Management service as
specified in the HLA Interface Specification (§8.9 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
void
RTI::RTIambassador::

timeAdvanceRequestAvailable (
RTI::FederationTime theTime

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::InvalidFederationTime,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress,
RTI::TimeAdvanceAlreadyInProgress

)

// RTI 1.3 Only
void
RTI::RTIambassador::

timeAdvanceRequestAvailable (
const RTI::FedTime& theTime ßß Changes Types Changes Types

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::EnableTimeConstrainedPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::EnableTimeRegulationPending, ßß RTI 1.3 Only RTI 1.3 Only
 RTI::FederateNotExecutionMember,
 RTI::FederationTimeAlreadyPassed,
 RTI::InvalidFederationTime,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::TimeAdvanceAlreadyInProgress
)

ARGUMENTS
theTime

the time-stamp representing the point on the federation time
axis to which to advance the federate’s logical time

DESCRIPTION
This service releases all time-stamp-ordered (TSO) events between
the federate’s current logical time and the requested time,
inclusive, for delivery to the federate. Each relevant TSO event
occurring in this interval will be delivered to the federate as soon
as it can be guaranteed that all relevant TSO events with earlier
time stamps have already been delivered. That is, an event will be
delivered if and only if

• all events currently queued for TSO delivery to the federate
have a time stamp that is not greater than the event’s time

stamp

• the federation LBTS is not less than the time stamp of the
event (i.e., the LRC can guarantee that no TSO events with an
earlier time stamp will arrive subsequently)

When all relevant TSO events with time stamps less than the
requested time have been delivered to the federate (i.e., the
minimum next-event time is greater than the requested time), the
federate will receive a timeAdvanceGrant() callback indicating
that the time-advancement has completed. Only after receiving
such a callback may the federate proceed to initiate another time-
advancement service. The available variant of this service does
not necessarily deliver all TSO events occurring exactly at the
requested time before making a timeAdvanceGrant().

Subsequent to initiating a timeAdvanceRequestAvailable(),
the federate may not generate TSO events whose time stamps are
less than the requested time plus the federate’s lookahead. That is,
the logical time of the federate is immediately set equal to the
requested time upon a timeAdvanceRequestAvailable()
service invocation.

For non-time-constrained federates, time advances are trivial: by
definition such federates do not receive any TSO events, so a time-
advance grant is immediately scheduled for delivery by a
subsequent invocation of the tick() service.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully initiated the time-advancement process. TSO events
from the current time through the requested time (inclusive) may
now be delivered to the federate, and the federate may no longer
generate TSO events with a time-stamp less than the requested
time plus the federate lookahead. The federate will receive
notification of the successful completion of the time advance (as
described previously) via its timeAdvanceGrant() callback.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::EnableTimeConstrainedPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::EnableTimeRegulationPending (RTI 1.3 Only)
A time-advancement service may not be initiated while a
request to enable regulation or constraint is pending.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The requested time is less than the current logical time of the
federate.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

Time Management timeAdvanceRequestAvailable()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-35

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::TimeAdvanceAlreadyInProgress
A previous time advance request, next event request, or flush
queue request has not yet been completed.

SEE ALSO
RTI 1.0

RTI::FederateAmbassador::
timeAdvanceGrant()

RTI::RTIambassador::
flushQueueRequest()

nextEventRequest()

requestFederateTime()

requestLBTS()

setTimeConstrained()

tick()

timeAdvanceRequest()

turnRegulationOn()

RTI 1.3
RTI::FederateAmbassador::

timeAdvanceGrant()

RTI::FedTime

RTI::RTIambassador::

enableTimeConstrained()

enableTimeRegulation()

flushQueueRequest()

nextEventRequest()

queryFederateTime()

queryLBTS()

tick()

timeAdvanceRequest()

 Time Management turnRegulationOff()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-36

A.5.27 turnRegulationOff()

RTI 1.0
ABSTRACT

This service indicates that a federate does not wish its logical time
to be considered in regulating the progress of federation logical
time. The RTI 1.3 equivalent of this service is named
disableTimeRegulation; the RTI 1.3 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method does not directly correspond to a service specified in
the HLA Interface Specification version 1.1.

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

turnRegulationOff ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
These methods allow the federate to specify whether its logical
time should be considered in the determination of the federation's
lower-bound time stamp (LBTS), i.e. the greatest time-stamp such
that the federation can guarantee that no time-stamp ordered
messages will be delivered with an earlier time-stamp.

RTIambassador::turnRegulationOnNow sets the federate's logical
time to the current federation LBTS before turning time regulation
on. If RTIambassador::turnRegulationOn is used instead, the
federate must be sufficiently advanced in time that it will not
generate time-stamp ordered messages that will be in the
federation's past (i.e. the federate's logical time plus its lookahead
must not be less than the federation LBTS.) Note that not all
updates and interactions sent by a time-regulating federate are
necessarily time-stamp ordered; the ordering is determined on a
per-attribute or per-interaction basis based on the definitions in the
federation FED file ($RTI_CONFIG/[federation name].fed) or
dynamically specified by the federate via
RTIambassador::changeAttributeOrderType or
RTIambassador::changeInteractionOrderType.

If a federate is not time-regulating, its logical time will not be
considered in the determination of the federation LBTS, and all
updates and interactions sent by the federate will be processed
receive-order, regardless of their individual ordering policies.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully indicated its desire to participate or not participate in
the regulation of federation time.

RTI::RTIambassador::turnRegulationOnNow returns the new
federate logical time, i.e. the current value of the federation's
lower-bound time stamp.

By default, federates are not time regulating.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent

Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified logical time argument lies in the federation’s
past, whereas the context of the service invocation required a
future logical time.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

changeAttributeOrderType()
changeInteractionOrderType()
requestFederateTime()
requestLBTS()
requestLookahead()
setLookahead()
setTimeConstrained()
timeAdvanceRequest()

turnRegulationOn(), turnRegulationOnNow()

Time Management turnRegulationOn()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-37

A.5.28 turnRegulationOn()

RTI 1.0
ABSTRACT

This service indicates that a federate wishes its logical time to be
considered in regulating the progress of federation logical time.
The RTI 1.3 equivalent of this service is named
enableTimeRegulation; the RTI 1.3 implementation is
discussed in a separate section.

HLA IF SPECIFICATION
This method does not directly correspond to a service specified in
the HLA Interface Specification version 1.1.

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

turnRegulationOn ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::FederationTimeAlreadyPassed,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
These methods allow the federate to specify whether its logical
time should be considered in the determination of the federation's
lower-bound time stamp (LBTS), i.e. the greatest time-stamp such
that the federation can guarantee that no time-stamp ordered
messages will be delivered with an earlier time-stamp.

RTIambassador::turnRegulationOnNow sets the federate's logical
time to the current federation LBTS before turning time regulation
on. If RTIambassador::turnRegulationOn is used instead, the
federate must be sufficiently advanced in time that it will not
generate time-stamp ordered messages that will be in the
federation's past (i.e. the federate's logical time plus its lookahead
must not be less than the federation LBTS.) Note that not all
updates and interactions sent by a time-regulating federate are
necessarily time-stamp ordered; the ordering is determined on a
per-attribute or per-interaction basis based on the definitions in the
federation FED file ($RTI_CONFIG/[federation name].fed) or
dynamically specified by the federate via
RTIambassador::changeAttributeOrderType or
RTIambassador::changeInteractionOrderType.

If a federate is not time-regulating, its logical time will not be
considered in the determination of the federation LBTS, and all
updates and interactions sent by the federate will be processed
receive-order, regardless of their individual ordering policies.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully indicated its desire to participate or not participate in
the regulation of federation time.

RTI::RTIambassador::turnRegulationOnNow returns the new
federate logical time, i.e. the current value of the federation's
lower-bound time stamp.

By default, federates are not time regulating.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method

has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified logical time argument lies in the federation’s
past, whereas the context of the service invocation required a
future logical time.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

changeAttributeOrderType()
changeInteractionOrderType()
requestFederateTime()
requestLBTS()
requestLookahead()
setLookahead()
setTimeConstrained()
timeAdvanceRequest()

turnRegulationOn(), turnRegulationOnNow(),
turnRegulationOff()

 Time Management turnRegulationOnNow()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.5-38

A.5.29 turnRegulationOnNow()

RTI 1.0
ABSTRACT

This service indicates that the federate wishes its logical time to be
considered in regulating the progress of federation logical time.
The federate’s logical time will be set to the currently value of
federation logical time. The RTI 1.3 equivalent of this service is
named enableTimeRegulation; the RTI 1.3 implementation
is discussed in a separate section.

HLA IF SPECIFICATION
This method does not directly correspond to a service specified in
the HLA Interface Specification version 1.1.

SYNOPSIS
#include <RTI.hh>

RTI::FederationTime
RTI::RTIambassador::

turnRegulationOnNow ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
These methods allow the federate to specify whether its logical
time should be considered in the determination of the federation's
lower-bound time stamp (LBTS), i.e. the greatest time-stamp such
that the federation can guarantee that no time-stamp ordered
messages will be delivered with an earlier time-stamp.

RTIambassador::turnRegulationOnNow sets the federate's logical
time to the current federation LBTS before turning time regulation
on. If RTIambassador::turnRegulationOn is used instead, the
federate must be sufficiently advanced in time that it will not
generate time-stamp ordered messages that will be in the
federation's past (i.e. the federate's logical time plus its lookahead
must not be less than the federation LBTS.) Note that not all
updates and interactions sent by a time-regulating federate are
necessarily time-stamp ordered; the ordering is determined on a
per-attribute or per-interaction basis based on the definitions in the
federation FED file ($RTI_CONFIG/[federation name].fed) or
dynamically specified by the federate via
RTIambassador::changeAttributeOrderType or
RTIambassador::changeInteractionOrderType.

If a federate is not time-regulating, its logical time will not be
considered in the determination of the federation LBTS, and all
updates and interactions sent by the federate will be processed
receive-order, regardless of their individual ordering policies.

RETURN VALUES
A non-exceptional return indicates that the federate has
successfully indicated its desire to participate or not participate in
the regulation of federation time.

RTI::RTIambassador::turnRegulationOnNow returns the new
federate logical time, i.e. the current value of the federation's
lower-bound time stamp.

By default, federates are not time regulating.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method

has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::FederationTimeAlreadyPassed
The specified logical time argument lies in the federation’s
past, whereas the context of the service invocation required a
future logical time.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

changeAttributeOrderType()
changeInteractionOrderType()
requestFederateTime()
requestLBTS()
requestLookahead()
setLookahead()
setTimeConstrained()
timeAdvanceRequest()

Data Distribution Management turnRegulationOnNow()

A.6 Data Distribution Management

Data Distribution Management associateRegionForUpdates()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-1

A.6.1 associateRegionForUpdates()

RTI 1.3
ABSTRACT

This service associates attributes of an object-instance with a
region of a routing space. The specified region replaces the
currently associated regions for the specified attribute-instances.

HLA IF SPECIFICATION
This method realizes the “Associate Region For Updates” Data
Distribution Management service as specified in the HLA Interface
Specification (§9.6 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

associateRegionForUpdates (
 RTI::Region &theRegion,
 RTI::ObjectHandle theObject,
const RTI::AttributeHandleSet &theAttributes

)
throw (
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidRegionContext,
 RTI::ObjectNotKnown,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theRegion

a region to associate with the specified instance-attributes

theObject

handle of object whose instance-attributes are being
associated with the region

theAttributes

handle-set specifying attributes of the given instance that are
to be associated with the region

DESCRIPTION
This service associates attributes of an object instance with a
distribution region. The federation is responsible for establishing
common semantics for the region extents such that all updates of
the attribute-instances are relevant only to the observers of the
prescribed region.

An attribute-instance is only associated with a single region at a
given point in (wallclock) time; the region subject of this service
replaces the currently associated regions for the specified attribute-
instances. In addition, the attribute-set replaces any previous
attribute-set associated with the region for the object instance in
question. If this service is invoked twice for the same
region/object combination, attributes not included in the
intersection of the old and new attribute-sets revert to the default
region.

Invoking this service with an empty attribute-set is equivalent to
calling unassociateRegionForUpdates() for the same
region/object pair.

Note that the extents actually associated with the attributes at a
given instant are the most recent set of extents for the region that
have been committed to the RTI using the
notifyAboutRegionModification() service. The effective

extents of the attributes can change over time if the associated
region object is modified and recommitted.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that attribute-instances may
only be associated with regions of the space to which the attribute
is bound in the FED file. The 1.3 implementation will allow
attribute-instances to be registered with regions of any routing
space. Federates should not rely on this behavior.

RETURN VALUES
A non-exceptional return indicates that the specified attribute-
instances have been associated with the specified region, and that
any attributes no longer associated with the region have been
associated with the default region.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidRegionContext
This exception is not thrown by the current implementation of
this service.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::Region
RTI::RTIambassador

createRegion()

notifyAboutRegionModification()

registerObjectInstanceWithRegion()

subscribeObjectClassAttributesWithRegion()

unassociateRegionForUpdates()

updateAttributeValues()

Data Distribution Management createRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-2

A.6.2 createRegion()

RTI 1.3
ABSTRACT

This service allocates a new region object for a specified routing
space and with a specified number of extents. Upon initialization,
all extents are set to span the entire routing space across all
dimensions.

HLA IF SPECIFICATION
This method realizes the “Create Region” Data Distribution
Management service as specified in the HLA Interface
Specification (§9.2 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::Region*
RTI::RTIambassador::

createRegion (
 RTI::SpaceHandle theSpace,
 RTI::ULong numberOfExtents

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidExtents,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress,
 RTI::SpaceNotDefined
)

ARGUMENTS
theSpace

the routing space for which to create a new region

numberOfExtents
the number of extents that will be used to define the region

DESCRIPTION
This service serves as a factory for creating new region objects.
Memory for created regions is allocated on the heap. A region
instance should be deleted using the deleteRegion() service
when no longer needed. The delete operator should not be used
to deallocate resources associated with the region.

Note that modifications of the returned region will not take effect
until the changes have been committed to the RTI. A new region
initially spans the entirety of the associated routing space, so it is
expected that the application will modify the extents of the region
and recommit it using the
notifyAboutRegionModification() service.

RETURN VALUES
A successful invocation of this service returns a pointer to a new
region object that initially spans the entire routing space.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidExtents

This exception is not thrown by this method in the current

implementation.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

RTI::SpaceNotDefined
The SpaceHandle argument does not correspond to a valid
federation routing space. Use
RTIambassador::getRoutingSpaceHandle to obtain valid
space handles.

SEE ALSO
RTI::Region
RTI::RTIambassador

associateRegionForUpdates()

deleteRegion()

getRoutingSpaceHandle()

notifyAboutRegionModification()

registerObjectInstanceWithRegion()

sendInteractionWithRegion()

subscribeInteractionClassWithRegion()

subscribeObjectClassAttributesWithRegion()

Data Distribution Management deleteRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-3

A.6.3 deleteRegion()

RTI 1.3
ABSTRACT

This service removes an unused region object from the RTI’s
internal tables and deallocates the memory associated with the
object.

HLA IF SPECIFICATION
This method realizes the “Delete Region” Data Distribution
Management service as specified in the HLA Interface
Specification (§9.4 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

deleteRegion (
 RTI::Region *theRegion

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theRegion

region object to be deleted

DESCRIPTION
This service deletes the memory associated with a region object
and removes references to the region from the RTI’s internal
tables. The memory referenced by the service’s pointer argument
is deallocated upon a successful completion and should not be
subsequently used by the application.

A region may only be deleted if it is not currently the subject of
any object or interaction subscriptions and is not associated with
any locally owned instance-attributes. The federate should
disassociate the region with any locally owned attribute-instances
and undo all subscriptions based on a region before deleting it.

RETURN VALUES
A non-exceptional return indicates that the region object is
recognized as an unused region and has been deleted from the RTI.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::Region
RTI::RTIambassador

createRegion()

unassociateRegionForUpdates()

unsubscribeInteractionClassWithRegion()

unsubscribeObjectClassWithRegion()

Data Distribution Management notifyAboutRegionModification()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-4

A.6.4 notifyAboutRegionModification()

RTI 1.3
ABSTRACT

This service commits changes made to a region object.
Subscriptions and associations based on the region object will be
updated accordingly.

HLA IF SPECIFICATION
This method realizes the “Modify Region” Data Distribution
Management service as specified in the HLA Interface
Specification (§9.3 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

notifyAboutRegionModification (
 RTI::Region &theRegion

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidExtents,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theRegion

the region whose extent changes are to be committed to the
RTI

DESCRIPTION
This service informs the federation of changes made to a region
object. Any associations and subscriptions for this region will be
updated in accordance with the new extents. If the update results
in a

RETURN VALUES
A non-exception return indicates that the changes to the region
extents have been committed to the RTI.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidExtents
One or more dimensions of one or more extents associated
with the region are incorrectly specified. (A dimension is
incorrect if its lower bound is greater than its upper bound or
the lower or upper bound falls outside the extent ranges
defined by the RTI.)

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"

operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::Region
RTI::RTIambassador

associateRegionForUpdates()

createRegion()

registerObjectInstanceWithRegion()

sendIntreactionWithRegion()

subscribeInteractionClassWithRegion()

subscribeObjectClassWithRegion()

Data Distribution Management registerObjectInstanceWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-5

A.6.5 registerObjectInstanceWithRegion()

RTI 1.3
ABSTRACT

This service simultaneously registers a new object-instance with
the federation and associates some or all of the object’s attributes
with DDM regions other than the default.

HLA IF SPECIFICATION
This method realizes the “Register Object Instance With Region”
Data Distribution Management service as specified in the HLA
Interface Specification (§9.5 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::ObjectHandle
RTI::RTIambassador::

registerObjectInstanceWithRegion (
 RTI::ObjectClassHandle theClass,
 const char *theObject,
 RTI::AttributeHandle theAttributes[],
 RTI::Region *theRegions[],
 RTI::ULong theNumberOfHandles

)
throw (

 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectAlreadyRegistered,
 RTI::ObjectClassNotDefined,
 RTI::ObjectClassNotPublished,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress

)

RTI::ObjectHandle
RTI::RTIambassador::

registerObjectInstanceWithRegion (
 RTI::ObjectClassHandle theClass,
 RTI::AttributeHandle theAttributes[],
 RTI::Region *theRegions[],
 RTI::ULong theNumberOfHandles

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::ObjectClassNotPublished,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

the object class to associate with the newly registered object

theObject

a unique symbolic name identifying the object instance

theAttributes

array of attribute handles of the specified object class that are
to be initially associated with regions

theRegions

array of regions to be associated with the corresponding items
in the attribute-handle array

theNumberOfHandles

the number of items contained in the attribute-handle and
region arrays

DESCRIPTION

This service is essentially shorthand for registering an object using
object-management services, then associating attribute-instances
with regions through one or more invocations of
associateRegionForUpdates(). The two variants of this
service correspond to the named and unnamed variants of the
registerObjectInstance() service.

The theAttributes and theRegions arguments represent parallel
arrays defining a subset of the object’s attributes and the regions
with which they should be associated. The nth handle in the
attribute-handle array will be associated with the nth region in the
regions array. Positions containing attribute handles that are not
valid in the context of the specified object class or handles of
attributes that are not published by the local federate will be
ignored. If the same attribute handle appears twice in the array, the
region corresponding to the first occurrence will be used. Any
locally published attributes for which a region is not specified will
be associated with the default region of the routing space bound to
the attributes in the FED file.

Note that the extents actually associated with the attributes at a
given instant are the most recent set of extents for the region that
have been committed to the RTI using the
notifyAboutRegionModification() service. The extents
associated with newly created attributes may not match the current
state of the corresponding region object if the region object differs
from its most recent committed state. The effective extents of the
attributes can change over time if their associated region objects
are modified and recommitted.

The creation of a new object instance is immediately announced to
the federation, resulting in discoverObjectInstance()
callbacks for any federates whose subscription interests include at
least one class-attribute of the registered object class. The object
instance may also be discovered as a result of subsequent updates
and data-distribution management operations affecting instance-
attributes of the object.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that attribute-instances may
only be associated with regions of the space to which the attribute
is bound in the FED file. The 1.3 implementation will allow
attribute-instances to be registered with regions of any routing
space. Federates should not rely on this behavior.

RETURN VALUES
Upon successful completion, this service returns a handle used to
reference the newly instantiated object.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectAlreadyRegistered
The symbolic name associated with the object has already
been registered within the federation.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

Data Distribution Management registerObjectInstanceWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-6

RTI::ObjectClassNotPublished
The operation attempted requires that the object class be
currently published by the federate.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::Region

RTI::RTIambassador

associateRegionForUpdates()

getAttributeHandle()

getObjectClassHandle()

notifyAboutRegionModification()

registerObjectInstance()

subscribeObjectClassAttributesWithRegion()

updateAttributeValues()

Data Distribution Management requestClassAttributeValueUpdateWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-7

A.6.6 requestClassAttributeValueUpdateWithRegion()

RTI 1.3
ABSTRACT

This service is similar to
requestClassAttributeValueUpdate(), except that updates
are only solicited for attribute-instances relevant in a specified
region.

HLA IF SPECIFICATION
This method realizes the “Request Attribute Value Update With
Region” Data Distribution Management service as specified in the
HLA Interface Specification (§9.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

requestClassAttributeValueUpdateWithRegion (
 RTI::ObjectClassHandle theClass,
 const RTI::AttributeHandleSet &theAttributes,
 const RTI::Region &theRegion

)
throw (
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

object class for which updates are being solicited

theAttributes

subset of the attributes of the specified class for which
updates are requested

theRegion

region of relevance used to narrow the logical scope of the
solicitation

DESCRIPTION
This service is similar to the
requestClassAttributeValueUpdate() Object Management
service, except that the set of attribute-instances for which updates
are solicited is filtered according to the specified region. Upon
receipt of such a request by a remote LRC, the LRC will invoke its
federate’s provideAttributeValueUpdate() callback for
exactly those attribute-instances that

• are instances of the class-attributes associated with the request
(including instance-attributes of instances of subclasses of the
objet class specified by the request)

• are owned by the federate

• are associated with a region that intersects the region
specified by the request (attribute-instances associated with
the default region will always be included in the solicitation)

It is the responsibility of the remote federates to respond to the
solicitations using the updateAttributeValues() service. (The
RTI has no “memory” of federation state, so it cannot
automatically respond to requests for attribute values.) There is no
direct integration of time-management with
requestClassAttributeValueUpdateWithRegion(); remote

federates will respond to the solicitation with updates at whatever
logical time(s) are appropriate for a particular federate (or no
logical time at all.)

Invoking this service with a region argument equal to default
region (i.e., a region spanning the entire routing space to which the
attributes are bound in the FED file) is equivalent to invoking the
requestClassAttributeValueUpdate() service for the same
class-attributes.

RETURN VALUES
A non-exceptional return indicates that updates for instances of the
specified class-attributes relevant in the specified region will be
solicited from the federation.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification version 1.3 describes a variant of
this service that solicits updates on a per-instance instead of a per-
class basis. This variant is not implemented by the RTI 1.3.

The HLA Interface Specification version 1.3 specifies that the
arguments to this service consist of pairs of region/attribute
groupings. The RTI 1.3 implementation has one region per
invocation that is associated with all requested attributes.

The HLA Interface Specification states that attribute-instances may
only be associated with regions of the space to which the attribute
is bound in the FED file. The 1.3 implementation will allow
attribute-instances to be registered with regions of any routing
space. Federates should not rely on this behavior.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

Data Distribution Management requestClassAttributeValueUpdateWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-8

RTI::AttributeHandleSet
RTI::FederateAmbassador::

provideAttributeValueUpdate()

RTI::Region
RTI::RTIambassador::

associateRegionForUpdates()

createRegion()

getAttributeHandle()

getObjectClassHandle()

notifyAboutRegionModification()

registerObjectInstance()

registerObjectInstanceWithRegion()

requestClassAttributeValueUpdate()

Data Distribution Management sendInteractionWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-9

A.6.7 sendInteractionWithRegion()

RTI 1.3
ABSTRACT

This service is similar to the sendInteraction() service, except
that the interaction is only delivered to federates that have declared
a subscription interest in a specified subspace of the routing space
bound to the interaction class.

HLA IF SPECIFICATION
This method realizes the “Send Interaction With Region” Data
Distribution Management service as specified in the HLA Interface
Specification (§9.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::EventRetractionHandle
RTI::RTIambassador::

sendInteractionWithRegion (
RTI::InteractionClassHandle

theInteraction,
 const RTI::ParameterHandleValuePairSet&

theParameters,
const RTI::FedTime&

theTime,
const char

*theTag
const RTI::Region
 &theRegion

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished,
 RTI::InteractionParameterNotDefined,
 RTI::InvalidFederationTime,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

void
RTI::RTIambassador::

sendInteractionWithRegion (
 RTI::InteractionClassHandle

theInteraction,
 const RTI::ParameterHandleValuePairSet

&theParameters,
 const char

*theTag,
 const RTI::Region

&theRegion
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotPublished,
 RTI::InteractionParameterNotDefined,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theInteraction

the class of the interaction being sent

theParameters

handle-value pair-set containing a subset of the parameters of
the interaction class and its superclasses

theTime

optional time-stamp associated with the interaction

theTag

opaque string data passed to receivers of the interaction

theRegion

region of relevance, used to limit recipients of the interaction

DESCRIPTION
This service is similar to the sendInteraction() Object
Management service, except that the set of remote federates
receiving the interaction is limited based on classes and regions of
subscription. The interaction will be delivered to those remote
federates that have subscribed to the interaction class (or a
superclass) with a region that intersects the region associated with
the interaction. The delivered class of the interaction for a
particular remote federate will be the most-specific interaction
class for which the remote federate’s region of subscription
intersects the region associated with the interaction. If this results
in the interaction being promoted to a more general class for
delivery to a federate, those parameters that are not present in the
delivered class will be filtered from the set of values delivered to
that federate.

Matching interactions to subscribers is performed by the local LRC
upon sending an interaction, and by remote LRCs when the
interaction is to be delivered to a remote federate. If a remote
federate changes subscriptions between the time an interaction is
sent out and the time at which it is considered for delivery to the
federate, the interaction may not be delivered. For example, if an
interaction that has been deferred by an LRC pending a logical
time-advance is no longer relevant at the time the federate achieves
the appropriate logical time, it will be discarded rather than
delivered to the federate. The converse is not generally true: a
remote federate subscribing to a relevant class and region will not
receive an interaction that has already been sent, even if the
interaction occurs in the federate’s logical-time future.

Invoking this service with a region argument equal to the default
region (i.e., a region spanning the entire routing space to which the
interaction class is bound in the FED file) is equivalent to invoking
sendInteraction() with the same arguments. A federate
subscribing to an interaction class without a region will receive all
instances of that class (and its subclasses) regardless of the region
associated with a particular instance.

RETURN VALUES
A non-exceptional return indicates that the interaction will be
delivered to remote federates that have declared a subscription
interest in the interaction class (or a subclass) in the specified
region.

The timed variant of this service returns a retraction handle that
may be used to uniquely refer to the event for purposes of event
retraction.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that interactions may only
be associated with regions of the space to which the interaction
class is bound in the FED file. The 1.3 implementation will allow
interactions to be sent with regions of any routing space. Federates
should not rely on this behavior.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

Data Distribution Management sendInteractionWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-10

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotPublished
The operation attempted requires that the interaction class be
currently published by the federate.

RTI::InteractionParameterNotDefined
One or more of the specified parameter handles is not valid in
the context of the specified interaction class.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis. RTI 1.0 and 1.3 semantics
define logical time as the set of non-negative numbers that
may be represented as an IEEE double.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

receiveInteraction()

RTI::ParameterHandleValuePairSet
RTI::Region
RTI::RTIambassador::

createRegion()

getInteractionClassHandle()

getParameterHandle()

notifyAboutRegionModification()

sendInteraction()

subscribeInteractionClass()

subscribeInteractionClassWithRegion()

Data Distribution Management subscribeInteractionClassWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-11

A.6.8 subscribeInteractionClassWithRegion()

RTI 1.3
ABSTRACT

This service instructs an LRC to begin delivering interactions of a
specified class occurring in a specified subspace to the federate.

HLA IF SPECIFICATION
This method realizes the “Subscribe Interaction Class With
Region” Data Distribution Management service as specified in the
HLA Interface Specification (§9.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

subscribeInteractionClassWithRegion (
 RTI::InteractionClassHandle theClass,
 RTI::Region &theRegion,
 RTI::Boolean active = RTI::RTI_TRUE

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateLoggingServiceCalls,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

interaction class to which to subscribe in the specified region

theRegion

the region being subscribed

active

flag indicating whether the subscription should be considered
by remote federates in determining relevance of interactions

DESCRIPTION
This service is similar to the subscribeInteractionClass()
Declaration Management service, except that the subscription is
limited based on a specified region of the routing space to which
the interaction class is bound in the FED file. The effects of this
service are cumulative; that is, a newly subscribed region is added
to the set of regions already subscribed for the interaction class.
An interaction of the specified class (or its subclasses) is delivered
to a federate if the region associated with the interaction instance
intersects any region that is subscribed by the federate for the
interaction class. The union of all regions in which an interaction
is subscribed may be thought of as the effective subscription region
of the interaction class for a federate.

An interaction instance will be delivered to a federate as the most-
specific interaction class for which the region associated with the
interaction intersects a region subscribed by the federate. If an
instance is promoted in this fashion for delivery to a federate,
parameters not present in the delivered class will be filtered from
the set of values delivered to that federate.

If the optional active argument is equal to RTI::RTI_TRUE, remote
publishers of the subscribed interaction class (and its subclasses)
may receive turnInteractionsOn() callbacks to advise them of
the presence of a subscriber.

If the optional active argument is equal to RTI::RTI_FALSE, the
federation will not be notified of the subscription. Thus, no

turnInteractionsOn() callbacks will be made as a result of the
subscription. This option is appropriate for a federate that should
not have interactions generated solely for its benefit, but that
should receive any interactions that would normally be generated
(e.g. data-logging federates).

Invoking this service with a region argument equal to the default
region (i.e., the region spanning the entire routing space to which
the interaction class is bound in the FED file) is equivalent to
invoking subscribeInteractionClass() for the same
interaction class.

RETURN VALUES
A non-exceptional return indicates that the specified region has
been added to the set of regions for which the specified interaction
class is subscribed by the federate.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that interactions may only
be associated with regions of the space to which the interaction
class is bound in the FED file. The 1.3 implementation will allow
interactions to be sent with regions of any routing space. Federates
should not rely on this behavior.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateLoggingServiceCalls
This exception is not thrown by the current implementation.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

receiveInteraction()

turnInteractionsOn()

Data Distribution Management subscribeInteractionClassWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-12

RTI::Region
RTI::RTIambassador::

createRegion()

getInteractionClassHandle()

notifyAboutRegionModification()

subscribeInteractionClass()

unsubscribeInteractionClassWithRegion()

Data Distribution Management subscribeObjectClassAttributesWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-13

A.6.9 subscribeObjectClassAttributesWithRegion()

RTI 1.3
ABSTRACT

This service instructs an LRC to begin delivering to the federate
updates of instances of a specified set of class-attributes occurring
in a specified subspace.

HLA IF SPECIFICATION
This method realizes the “Subscribe Object Class Attributes With
Region” Data Distribution Management service as specified in the
HLA Interface Specification (§9.8 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

subscribeObjectClassAttributesWithRegion (
 RTI::ObjectClassHandle theClass,
 RTI::Region &theRegion,
 const RTI::AttributeHandleSet &attributeList,
 RTI::Boolean active = RTI_TRUE

)
throw (
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

the object class for which to subscribe to the specified region

theRegion

the region to which to subscribe

attributeList

the attributes of the specified object class to which to
subscribe

active

flag indicating whether the subscription should be considered
by remote federates in determining relevance of updates and
registrations

DESCRIPTION
This service is similar to the
subscribeObjectClassAttributes() Declaration
Management service, except that the subscription is limited based
on a specified region of the routing space to which the class-
attributes class are bound in the FED file. The effects of this
service are cumulative; that is, a newly subscribed region is added
to the set of regions already subscribed for each of the specified
class-attributes. The union of all regions in which a class-attribute
is subscribed may be thought of as the effective subscription region
of that class-attribute for a federate.

An invocation of this service replaces the effects of any previous
invocations for the same class/region pair. That is, any class-
attributes previously subscribed in the specified region will be
implicitly unsubscribed in that region if they do not appear in the
class-attribute set of a subsequent
subscribeObjectClassAttributeWithRegion() service
invocation whose subject is the same class/region pair.

An object instance will be discovered at the most specific object

class for which there exists a class-attribute whose effective
subscription region intersects the region associated with the
corresponding instance-attribute of the instance at the time the
discovery is computed. Subsequent reflections for an instance will
include values for a non-empty subset of attributes of the
discovered class that are subscribed by the federate. Only
attribute-instances whose associated update region intersects the
federate’s effective subscription region for the corresponding
class-attribute at the level of the discovered class will be included
in a reflection.

If the optional active argument is equal to RTI::RTI_TRUE, remote
publishers of the subscribed object class (and its subclasses) may
receive startRegistrationForObjectClass() callbacks to
advise them of the presence of a subscriber.

If the optional active argument to the subscription is equal to
RTI::RTI_FALSE, the federation will not be notified of the
subscription. Thus, no startRegistrationForObjectClass()
callbacks will be made as a result of the subscription. This option
is appropriate for a federate that should not have registrations and
updates made solely for its benefit, but that should receive any
updates that would normally be generated (e.g. data-logging
federates).

Subscriptions occur independently of federation logical time.
Subscription to a class-attribute generally does not cause updates
occurring in the (wallclock) past of the federation to be delivered
to the subscribing federates, even if such updates occur at a logical
time that is in the federate’s future. Unsubscription to a class-
attribute (implicit or explicit) will cause updates for instances of
the attribute that have been previously queued for delivery to be
discarded at the point that they would have otherwise been
delivered to the federate.

Invoking this service with a region argument equal to the default
region (i.e., the region spanning the entire routing space to which
the attributes are bound in the FED file) is equivalent to invoking
the subscribeObjectClassAttributes() service with the
same arguments. Invoking this service with an empty attribute set
is equivalent to invoking the
unsubscribeObjectClassWithRegion() service with the
specified object class and region.

RETURN VALUES
A non-exceptional return indicates that the specified region has
been added to the subscriptions for the specified class-attributes.
In addition, the specified region has been removed (if present)
from the subscriptions of any attributes of the specified class not
appearing in the specified set of class-attributes.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that attribute-instances may
only be associated with regions of the space to which the attribute
is bound in the FED file. The 1.3 implementation will allow
attribute-instances to be registered with regions of any routing
space. Federates should not rely on this behavior.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

Data Distribution Management subscribeObjectClassAttributesWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-14

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributesInScope()

discoverObjectInstance()

reflectAttributeValues()

startRegistrationForObjectClass()

RTI::Region
RTI::RTIambassador::

associateRegionForUpdates()

getAttributeHandle()

getObjectClassHandle()

notifyAboutRegionModification()

publishObjectClass()

registerObjectInstanceWithRegion()

subscribeObjectClass()

Data Distribution Management unassociateRegionForUpdates()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-15

A.6.10 unassociateRegionForUpdates()

RTI 1.3
ABSTRACT

This service removes the association between a region and any
attributes of an object-instance associated with the region. The
affected attributes revert to the default region.

HLA IF SPECIFICATION
This method realizes the “Unassociate Region For Updates” Data
Distribution Management service as specified in the HLA Interface
Specification (§9.7 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador

unassociateRegionForUpdates (
 RTI::Region &theRegion,
 RTI::ObjectHandle theObject

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidRegionContext,
 RTI::ObjectNotKnown,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,

RTI::RTIinternalError
 RTI::SaveInProgress,
)

ARGUMENTS
theRegion

a region to be unassociated with the specified instance-
attributes

theObject

the instance whose attributes are being unassociated

DESCRIPTION
This service undoes the effect of any
RTIambassador::registerObjectInstanceWithRegion or
RTIambassador::associateRegionForUpdates invocations for the
specified region/object pair. Any attributes of the object-instance
that are associated with the region revert to the default region of
the routing space to which the attribute is bound in the FED file.

This service must be used to break the association between a
region and any locally owned attribute-instances before the region
may be deleted.

RETURN VALUES
A non-exceptional return indicates that the associations (if any)
between attributes of the specified object instance and the specified
region have been removed.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidRegionContext
This exception is not thrown by the current implementation of

this service; if the region is not associated with any attributes
of the object-instance, the service equates to a no-op.

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExec or is not known to the federate.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador

associateRegionForUpdates()

notifyAboutRegionModification()

registerObjectInstanceWithRegion()

deleteRegion()

Data Distribution Management unsubscribeInteractionClassWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-16

A.6.11 unsubscribeInteractionClassWithRegion()

RTI 1.3
ABSTRACT

This service withdraws a federate’s interest in receiving
interactions of a specified class in a specified region.

HLA IF SPECIFICATION
This method realizes the “Unsubscribe Interaction Class With
Region” Data Distribution Management service as specified in the
HLA Interface Specification (§9.11 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

unsubscribeInteractionClassWithRegion (
 RTI::InteractionClassHandle theClass,
 RTI::Region &theRegion

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionClassNotSubscribed,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

ARGUMENTS
theClass

the interaction class to unsubscribe in the specified region

theRegion

the region being unsubscribed

DESCRIPTION
This service removes the specified region from the set of regions in
which the specified interaction class is subscribed by the local
federate. The arguments to this service must be a class/region pair
that has been the subject of a previous
subscribeInteractionClassWithRegion() invocation by the
local federate.

Subsequent to an invocation of
unsubscribeInteractionClassWithRegion(), interactions
of the specified class (and its subclasses) will only be delivered to
the federate if some other region subscribed by the local federate
intersects the region associated with a particular interaction
instance. In the presence of overlapping subscription regions,
unsubscripion to a region does not necessarily imply the cessation
of interaction delivery over the entirety of the unsubscribed region.
Only those portions of the unsubscribed region that are unique
among the set of currently subscribed regions will be effectively
removed from the cumulative subscription region for the
interaction class. That is, interactions will continue to be delivered
to a federate if their associated regions intersect any of the
remaining subscribed regions, even if the region of intersection is
entirely subsumed by the unsubscribed region.

Subscription changes by a federate affect interactions that are
queued for delivery to the federate at the time of the subscription
change (e.g., time-stamp-ordered interactions deferred by the LRC
pending the achievement of the appropriate logical time by the
federate). This is in addition to interactions that occur
subsequently in the federation (in wallclock time).

If the subscription region removed by an invocation of this service
was an active subscription, remote publishers of the specified

interaction class (and its subclasses) may receive
turnInteractionsOff() callbacks advising them of an absence
of subscribers.

Invoking this service with a region argument equal to the default
region (i.e., the region spanning the entire routing space to which
the interaction class is bound in the FED file) is equivalent to
invoking unsubscribeInteractionClass() for the same
interaction class.

RETURN VALUES
A non-exceptional return indicates that the specified region has
been removed from the set of regions subscribed for the specified
interaction class.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::InteractionClassNotSubscribed
The interaction class is not currently subscribed by the local
federate, but is used in a context requiring a subscribed
interaction class.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

turnInteractionsOff()

RTI::Region
RTI::RTIambassador::

createRegion()

getInteractionClassName()

notifyAboutRegionModification()

sendInteractionWithRegion()

subscribeInteractionClass()

subscribeInteractionClassWithRegion()

Data Distribution Management unsubscribeObjectClassWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-17

A.6.12 unsubscribeObjectClassWithRegion()

RTI 1.3
ABSTRACT

This service withdraws the federate’s interest in receiving updates
of a specified object class in a specified region.

HLA IF SPECIFICATION
This method realizes the “Unsubscribe Object Class With Region”
Data Distribution Management service as specified in the HLA
Interface Specification (§9.9 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

unsubscribeObjectClassWithRegion (
 RTI::ObjectClassHandle theClass,

RTI::Region &theRegion
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::RegionNotKnown,
 RTI::RestoreInProgress,
 RTI::RTIinternalError
 RTI::SaveInProgress,
)

ARGUMENTS
theClass

object class for which to unsubscribe the region

theRegion

the region being unsubscribed

DESCRIPTION
This service removes the specified region from any subscription
sets for class-attributes at the level of the specified object class in
which the region is currently present. The arguments to this
service must be a class/region pair that has been the subject of a
previous subscribeObjectClassAttributesWithRegion()
invocation by the local federate.

Subsequent to an invocation of
unsubscribeObjectClassWithRegion(), discoveries and
updates of class-attributes at the level of the specified class will
only be delivered to the federate if some other region subscribed
by the local federate intersects the region associated with a
particular attribute-instance. In the presence of overlapping
subscription regions, unsubscripion to a region does not
necessarily imply the cessation of class-attribute delivery over the
entirety of the unsubscribed region. Only those portions of the
unsubscribed region that are unique among the set of currently
subscribed regions will be effectively removed from the
cumulative subscription region for the class-attribute. That is,
discoveries and updates will continue to be delivered to a federate
if their associated regions intersect any of the remaining subscribed
regions, even if the region of intersection is entirely subsumed by
the unsubscribed region.

Unsubscription to a class/region pair may cause updates for object
instances that have been discovered as the unsubscribed class by
the federate to be no longer delivered. Such attribute-instances
will not be delivered to the federate even if the federate is
subscribing to the class-attributes in a relevant region at an object-
class level different from the discovered class of the object
instance. The federate may wish to use the
localDeleteObjectInstance() service to allow for

rediscovery of object instances at a currently subscribed object-
class level. A federate will receive attributesOutOfScope()
callbacks advising it as to which attribute-instances will no longer
be updated as a result of the unsubscription.

Subscription changes by a federate affect updates that are queued
for delivery to the federate at the time of the subscription change
(e.g., time-stamp-ordered updates deferred by the LRC pending the
achievement of the appropriate logical time by the federate). This
is in addition to updates that occur subsequently in the federation
(in wallclock time).

If the subscription region removed by an invocation of this service
was an active subscription, remote publishers of the affected class-
attributes (including subclasses) may receive
stopRegistrationForObjectClass() and
turnUpdatesOffForObjectInstance() callbacks advising
them of an absence of subscribers.

Invoking this service with a region argument equal to the default
region (i.e., the region spanning the entire routing space to which
the class-attributes are class is bound in the FED file) is equivalent
to invoking unsubscribeObjectClass() for the same set of
class-attributes at the same object-class level.

RETURN VALUES
A non-exceptional return indicates that the specified region has
been removed from the subscription sets of any class-attributes at
the specified object-class in which it was present.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RegionNotKnown
The region argument is not recognized as a valid region as
instantiated by the createRegion() service.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador::

attributesOutOfScope()

stopRegistrationForObjectClass()

turnUpdatesOffForObjectInstance()

Data Distribution Management unsubscribeObjectClassWithRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.6-18

RTI::Region
RTI::RTIambassador::

createRegion()

getObjectClassHandle()

notifyAboutRegionModification()

subscribeObjectClassAttributes()

subscribeObjectClassAttributesWithRegion()

unsubscribeObjectClass()

A.7 Types and Ancillary Services

Types and Ancillary Services ~RTIambassador()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-1

A.7.1 ~RTIambassador()

RTI 1.0 RTI 1.3
ABSTRACT

This destructor frees heap-allocated memory and all other
resources associated with an RTIambassador object instance.

HLA IF SPECIFICATION
This destructor does not correspond to a service explicitly listed in
the HLA Interface Specification version 1.3.

SYNOPSIS
#include <RTI.hh>

RTI::RTIambassador::
~RTIambassador()

throw (
RTI::RTIinternalError

)

DESCRIPTION
This destructor is implicitly invoked when an RTIambassador
object is destroyed, either by a stack-allocated object going out of
scope or a heap-allocated object being explicitly deallocated using
the delete operator.

The destructor deallocates memory and other resources associated
with the RTIambassador instance. The federate is responsible
for properly resigning from any federation execution that may
be associated with an RTIambassador before destroying the
object instance.

RETURN VALUES
A non-exceptional return indicates that the resources associated
with the RTI ambassador instance have been freed.

EXCEPTIONS
RTI::RTIinternalError

An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador::

resignFederationExecution()

RTIambassador()

Types and Ancillary Services dequeueFIFOasynchronously()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-2

A.7.2 dequeueFIFOasynchronously()

RTI 1.0
ABSTRACT

This service specifies whether a federate wishes to process receive-
ordered events in the absence of an in-progress time-advancement
service. The RTI 1.3 equivalents of this service are named
enableAsynchronousDelivery and
disableAsynchronousDelivery; the RTI 1.3 implementation
is discussed in separate sections.

HLA IF SPECIFICATION
This method does not directly correspond to a service specified in
the HLA Interface Specification version 1.1.

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

dequeueFIFOasynchronously (
RTI::Boolean theSwitch

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::RestoreInProgress,
RTI::RTIinternalError,
RTI::SaveInProgress

)

DESCRIPTION
This service allows the federate to specify whether or not it wishes
to process receive-ordered events in the absence of an outstanding
time-advance service. This is only meaningful for time-constrained
federates, as non-time-constrained federates always process events
as soon as possible.

A true setting will result in receive-ordered events being delivered
to the federate as soon as possible in response to a
RTIambassador::tick invocation. A false setting (the default) will
result in receive-ordered events being queued until the federate
initiates a time-advancement service (e.g.
RTIambassador::timeAdvanceRequest.)

RETURN VALUES
A non-exceptional return value indicates that the federate has reset
its asynchronous-dequeue preference.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"

operation.

SEE ALSO
RTI::RTIambassador::

setTimeConstrained()
tick()
timeAdvanceRequest()

Types and Ancillary Services disableAttributeRelevanceAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-3

A.7.3 disableAttributeRelevanceAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to stop notifying the federate of
changes in attribute-instance update relevance.

HLA IF SPECIFICATION
This method realizes the “Disable Attribute Relevance Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.26 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableAttributeRelevanceAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to stop notifying the federate of
changing attribute-instance update relevance. The federate will no
longer receive turnUpdatesOnForObjectInstance() or
turnUpdatesOffForObjectInstance() callbacks.

The attribute relevance advisory is disabled by default.

Attribute-instance update relevance advising may be re-enabled
using the enableAttributeRelevanceAdvisorySwitch()
service. The federate will not be retroactively notified of changes
in relevance that occurred while relevance advising was disabled.

Invoking this service while attribute-instance update relevance
advising is already disabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will not inform
the federate of subsequently occurring changes in attribute-
instance update relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

turnUpdatesOffForObjectInstance()

turnUpdatesOnForObjectInstance()

RTI::RTIambassador
disableAttributeScopeAdvisorySwitch()

disableClassRelevanceAdvisorySwitch()

disableInteractionRelevanceAdvisorySwitch()

enableAttributeRelevanceAdvisorySwitch()

Types and Ancillary Services disableAttributeScopeAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-4

A.7.4 disableAttributeScopeAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to stop notifying the federate of
changes in attribute-instance scope.

HLA IF SPECIFICATION
This method realizes the “Disable Attribute Scope Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.28 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableAttributeScopeAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to stop notifying the federate of
changing attribute-instance scope. The federate will no longer
receive attributesInScope() or attributesOutOfScope()
callbacks.

The attribute scope advisory is disabled by default.

Attribute-instance scope advising may be re-enabled using the
enableAttributeScopeAdvisorySwitch() service. The
federate will not be retroactively notified of changes in scope that
occurred while relevance advising was disabled.

Invoking this service while attribute-instance scope advising is
already disabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will not inform
the federate of subsequently occurring changes in attribute-
instance scope.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

attributesInScope()

attributesOutOfScope()

RTI::RTIambassador
disableAttributeRelevanceAdvisorySwitch()

disableClassRelevanceAdvisorySwitch()

disableInteractionRelevanceAdvisorySwitch()

enableAttributeScopeAdvisorySwitch()

Types and Ancillary Services disableClassRelevanceAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-5

A.7.5 disableClassRelevanceAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to stop notifying the federate of
changes in object-class registration relevance.

HLA IF SPECIFICATION
This method realizes the “Disable Class Relevance Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.24 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableClassRelevanceAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to stop notifying the federate of
changing object-class registration relevance. The federate will no
longer receive startRegistrationForObjectClass() or
stopRegistrationForObjectClass() callbacks. Object-class
registration relevance advising may be re-enabled using the
enableClassRelevanceAdvisorySwitch() service. The
federate will not be retroactively notified of changes in relevance
that occurred while relevance advising was disabled.

Invoking this service while object-class registration relevance
advising is already disabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will not inform
the federate of subsequently occurring changes in object-class
registration relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

RTI::FederateAmbassador
startRegistrationForObjectClass()

stopRegistrationForObjectClass()

RTI::RTIambassador
disableAttributeRelevanceAdvisorySwitch()

disableAttributeScopeAdvisorySwitch()

disableInteractionRelevanceAdvisorySwitch()

enableClassRelevanceAdvisorySwitch()

Types and Ancillary Services disableInteractionRelevanceAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-6

A.7.6 disableInteractionRelevanceAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to stop notifying the federate of
changes in interaction-class relevance.

HLA IF SPECIFICATION
This method realizes the “Disable Interaction Relevance Advisory
Switch” Federation Management service as specified in the HLA
Interface Specification (§10.30 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

disableInteractionRelevanceAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to stop notifying the federate of
changing interaction-class relevance. The federate will no longer
receive turnInteractionsOn() or turnInteractionsOff()
callbacks.

Interaction-class relevance advising may be re-enabled using the
enableInteractionRelevanceAdvisorySwitch() service.
The federate will not be retroactively notified of changes in
relevance that occurred while relevance advising was disabled.

Invoking this service while interaction-class relevance advising is
already disabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will not inform
the federate of subsequently occurring changes in interaction-class
relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO

RTI::FederateAmbassador
turnInteractionsOff()

turnInteractionsOn()

RTI::RTIambassador
disableAttributeRelevanceAdvisorySwitch()

disableAttributeScopeAdvisorySwitch()

disableClassRelevanceAdvisorySwitch()

enableInteractionRelevanceAdvisorySwitch()

Types and Ancillary Services enableAttributeRelevanceAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-7

A.7.7 enableAttributeRelevanceAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to begin notifying the federate of
changes in attribute-instance update relevance.

HLA IF SPECIFICATION
This method realizes the “Enable Attribute Relevance Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.25 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

enableAttributeRelevanceAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to begin notifying the federate of
changing attribute-instance update relevance, using the
turnUpdatesOnForObjectInstance() and
turnUpdatesOffForObjectInstance() callbacks. Updates of
an attribute-instance are considered to be relevant for a federate if
and only if the attribute-instance is actively subscribed by at least
one remote federate.

Relevance advising is disabled by default.

This service is required to enable the service and when re-enabling
relevance advising after a
disableAttributeRelevanceAdvisorySwitch() invocation.
The federate will not be retroactively notified of changes in
relevance that occurred while relevance advising was disabled.

Invoking this service while attribute-instance update relevance
advising is already enabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will inform the
federate of subsequently occurring changes in attribute-instance
update relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

turnUpdatesOffForObjectInstance()

turnUpdatesOnForObjectInstance()

RTI::RTIambassador
disableAttributeRelevanceAdvisorySwitch()

enableAttributeScopeAdvisorySwitch()

enableClassRelevanceAdvisorySwitch()

enableInteractionRelevanceAdvisorySwitch()

Types and Ancillary Services enableAttributeScopeAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-8

A.7.8 enableAttributeScopeAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to begin notifying the federate of
changes in attribute-instance scope.

HLA IF SPECIFICATION
This method realizes the “Enable Attribute Scope Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.27 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

enableAttributeScopeAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to begin notifying the federate of
changing attribute-instance scope, using the
attributesInScope() and attributesOutOfScope()
callbacks. An attribute-instance is considered in-scope for a
federate if and only if:

• the object instance is known to the federate through
registration or discovery

• the attribute-instance is not owned by the federate

• the federate has subscribed to the class-attribute with a region
overlapping the associated attribute-instance’s update region

Scope advising is disabled by default. This service is required to
enable attribute scope advisory and when re-enabling scope
advising after a disableAttributeScopeAdvisorySwitch()
invocation. The federate will not be retroactively notified of
changes in scope that occurred while scope advising was disabled.

Invoking this service while attribute-instance scope advising is
already enabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will inform the
federate of subsequently occurring changes in attribute-instance
scope.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log

file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

attributesInScope()

attributesOutOfScope()

RTI::RTIambassador
disableAttributeScopeAdvisorySwitch()

enableAttributeRelevanceAdvisorySwitch()

enableClassRelevanceAdvisorySwitch()

enableInteractionRelevanceAdvisorySwitch()

Types and Ancillary Services enableClassRelevanceAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-9

A.7.9 enableClassRelevanceAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to begin notifying the federate of
changes in object-class registration relevance.

HLA IF SPECIFICATION
This method realizes the “Enable Class Relevance Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.23 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

enableClassRelevanceAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to begin notifying the federate of
changing object-class registration relevance, using the
startRegistrationForObjectClass() and
stopRegistrationForObjectClass() callbacks. Registration
of an object class is considered to be relevant for a federate when
there exists an attribute of the object class that is both published by
the federate and actively subscribed by at least one remote
federate. This includes subscriptions to more general superclasses
of the object class in question.

Relevance advising is enabled by default, so this service is only
required when re-enabling relevance advising after a
disableClassRelevanceAdvisorySwitch() invocation. The
federate will not be retroactively notified of changes in relevance
that occurred while relevance advising was disabled.

Invoking this service while object-class registration relevance
advising is already enabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will inform the
federate of subsequently occurring changes in object-class
registration relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

startRegistrationForObjectClass()

stopRegistrationForObjectClass()

RTI::RTIambassador
disableClassRelevanceAdvisorySwitch()

enableAttributeRelevanceAdvisorySwitch()

enableAttributeScopeAdvisorySwitch()

enableInteractionRelevanceAdvisorySwitch()

Types and Ancillary Services enableInteractionRelevanceAdvisorySwitch()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-10

A.7.10 enableInteractionRelevanceAdvisorySwitch()

RTI 1.3
ABSTRACT

This service instructs the LRC to begin notifying the federate of
changes in interaction-class relevance.

HLA IF SPECIFICATION
This method realizes the “Enable Interaction Relevance Advisory
Switch” RTI Support & Operational service as specified in the
HLA Interface Specification (§10.29 in version 1.3).

SYNOPSIS
#include <RTI.hh>

void
RTI::RTIambassador::

enableInteractionRelevanceAdvisorySwitch()
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RestoreInProgress,
 RTI::RTIinternalError,
 RTI::SaveInProgress
)

DESCRIPTION
This service instructs the LRC to begin notifying the federate of
changing interaction-class relevance, using the
turnInteractionsOn() and turnInteractionsOff()
callbacks. Generation of an interaction class is considered to be
relevant for a federate when at least one remote federate has
subscribed to the interaction class. This includes subscriptions to
more general superclasses of the interaction class in question.

Relevance advising is enabled by default, so this service is only
required when re-enabling relevance advising after a
disableInteractionRelevanceAdvisorySwitch()

invocation. The federate will not be retroactively notified of
changes in relevance that occurred while relevance advising was
disabled.

Invoking this service while interaction-class relevance advising is
already enabled results in a no-op.

RETURN VALUES
A non-exceptional return indicates that the LRC will inform the
federate of subsequently occurring changes in interaction-class
relevance.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal

state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::FederateAmbassador

turnInteractionsOff()

turnInteractionsOn()

RTI::RTIambassador
disableInteractionRelevanceAdvisorySwitch()

enableAttributeRelevanceAdvisorySwitch()

enableAttributeScopeAdvisorySwitch()

enableClassRelevanceAdvisorySwitch()

Types and Ancillary Services getAttributeHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-11

A.7.11 getAttributeHandle()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts a symbolic (string) attribute name and an
object-class context to the RTI handle associated with the attribute.
The syntax and semantics of this service have changed from
RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Attribute Handle” RTI Support &
Operational Services as specified in the HLA Interface

Specification (not explicitly listed in version 1.1; §10.4 in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::AttributeHandle
RTI::RTIambassador::

getAttributeHandle (
const RTI::AttributeName theName
RTI::ObjectClassHandle whichClass

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::NameNotFound,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
RTI::AttributeHandle
RTI::RTIambassador::

getAttributeHandle (
 const char *theName, ßß Changes Types Changes Types

RTI::ObjectClassHandle whichClass
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::ObjectClassNotDefined,
 RTI::RTIinternalError
)

ARGUMENTS
theName

a string specifying the symbolic attribute class name to be
converted to an RTI-defined handle

whichClass
the object-class context of the specified attribute name

DESCRIPTION
This service converts an attribute name (i.e., the descriptive string
identifier found in the FED file) to an RTI handle that is used by
the various RTI services to refer to the attribute. The attribute
name must refer to an attribute of the specified object class, i.e. the
attribute must be natively defined in the object class or defined in a
superclass of the object class.

Conceptually, an attribute handle is only valid when considered in
the context of an object class. Implications of this include:

the same physical value may refer to different attributes in the
context of two different object classes (this is true of RTI 1.0 and
RTI 1.3)

different physical values may refer to the same attribute in the
context of different object classes (this is not true of RTI 1.0 and

RTI 1.3)

multiple distinct attributes may share the same name provided they
may never occur in the context of the same object class (i.e., no
object class containing an attribute name is a superclass of another
object class containing the same attribute name)

The returned handle is valid throughout the remainder of the
current federation execution. RTI 1.0 and RTI 1.3 assign handles
in a predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the RTI handle
associated with the specified attribute.

RELEASE NOTES
RTI 1.0

Names in RTI 1.0 are case-sensitive.

RTI 1.3
Names in RTI 1.3 are case-insensitive.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::AttributeHandleValuePairSet
RTI::RTIambassador::

createFederationExecution()

getAttributeName()

getObjectClassHandle()

joinFederationExecution()

Types and Ancillary Services getAttributeName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-12

A.7.12 getAttributeName()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts an RTI attribute handle and its object-class
context to the symbolic (string) name of the FED attribute they
represent. The syntax and semantics of this service have
changed from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Attribute Name” RTI Support &
Operational service as specified in the HLA Interface Specification

(not explicitly listed in version 1.1; §10.5 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::AttributeName
RTI::RTIambassador::

getAttributeName (
RTI::AttributeHandle theHandle
RTI::ObjectClassHandle whichClass

)
throw (

RTI::AttributeNotDefined,
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
char * ßß Changes Types Changes Types
RTI::RTIambassador::

getAttributeName (
 RTI::AttributeHandle theHandle,
 RTI::ObjectClassHandle whichClass

)
throw (
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::RTIinternalError
);

ARGUMENTS
theHandle

a handle representing the attribute whose name is being
queried

whichClass
the object-class context of the specified attribute handle

DESCRIPTION
This service converts an RTI attribute handle (i.e., a unique
identifier used by the RTI to refer to an attribute), and its object-
class context, to the symbolic (string) name of the attribute as
found in the FED file.

The returned name is valid (i.e., guaranteed to be associated with
the specified handle) throughout the remainder of the current
federation execution. RTI 1.0 and RTI 1.3 assign handles in a
predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the symbolic
attribute name corresponding to the specified attribute handle and
object-class context. The caller is responsible for freeing the
memory associated with the returned string using the

delete[] operator.

RELEASE NOTES
RTI 1.0

The name returned is the attribute name exactly as it appears
in the FED file, e.g. “FederateHandle”.

RTI 1.3
The name returned is the lower-case attribute name, e.g.
“federatehandle”.

EXCEPTIONS
RTI::AttributeNotDefined

One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::ConcurrentAccessAttempted
This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::AttributeHandleSet
RTI::AttributeHandleValuePairSet
RTI::RTIambassador::

createFederationExecution()

getAttributeHandle()

getObjectClassHandle()

getObjectClassName()

joinFederationExecution()

Types and Ancillary Services getAttributeRoutingSpaceHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-13

A.7.13 getAttributeRoutingSpaceHandle()

RTI 1.3
ABSTRACT

This service queries the routing space bound to an attribute in the
FED file.

HLA IF SPECIFICATION
This method realizes the “Get Attribute Routing Space Handle”
RTI Support & Operational service as specified in the HLA
Interface Specification (§10.16 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::SpaceHandle
RTI::RTIambassador::

getAttributeRoutingSpaceHandle (
 RTI::AttributeHandle theHandle,
 RTI::ObjectClassHandle whichClass

)
throw (
 RTI::AttributeNotDefined,
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

a handle representing the attribute whose routing space is
being queried

whichClass
the object-class context of the specified attribute handle

DESCRIPTION
This service queries the routing space bound to a particular
attribute in the FED file. If no routing space is specified in the
FED file, the attribute is bound to the default routing space.

Different attributes of the same object class may be bound to
different routing spaces. An attribute is always bound to the same
routing space in any subclasses of which it is (implicitly) an
attribute as it is in the object class in which it is natively declared.

RETURN VALUES
A successful invocation of this service returns a handle to the
routing space bound to the attribute in the FED file.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that attribute-instances may
only be associated with regions of the space to which the attribute
is bound in the FED file. The 1.3 implementation will allow
attribute-instances to be registered with regions of any routing
space. Federates should not rely on this behavior.

EXCEPTIONS
RTI::AttributeNotDefined

The attribute handle is not valid in the context of the specified
object class.

RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with

a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::Region
RTI::RTIambassador::

associateRegionForUpdates()

createFederationExecution()

getInteractionRoutingSpaceHandle()

getRoutingSpaceName()

joinFederationExecution()

registerObjectInstance()

registerObjectInstanceWithRegion()

Types and Ancillary Services getDimensionHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-14

A.7.14 getDimensionHandle()

RTI 1.3
ABSTRACT

This service converts a symbolic (string) dimension name and a
routing-space context to the RTI handle associated with the
dimension.

HLA IF SPECIFICATION
This method realizes the “Get Dimension Handle” RTI Support &
Operational service as specified in the HLA Interface Specification
(§10.14 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::DimensionHandle
RTI::RTIambassador::

getDimensionHandle (
 const char *theName,
 RTI::SpaceHandle whichSpace

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::RTIinternalError,
 RTI::SpaceNotDefined
)

ARGUMENTS
theName

a string specifying the symbolic dimension name to be
converted to an RTI-defined handle

whichSpace
the routing-space context of the specified dimension name

DESCRIPTION
This service converts a dimension name (i.e., the descriptive string
identifier found in the FED file) to an RTI handle that is used by
the various RTI services to refer to the dimension. The dimension
name must refer to a dimension of the specified routing space.

Conceptually, a dimension handle is only valid when considered in
the context of a routing space. Implications of this include:

• the same physical value may refer to different dimensions in
the context of two different routing spacees (this is true of
RTI 1.0 and RTI 1.3)

• multiple distinct dimensions may share the same name
provided they do not occur in the same routing space

The returned handle is valid throughout the remainder of the
current federation execution. RTI 1.0 and RTI 1.3 assign handles
in a predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

Names in RTI 1.3 are case-insensitive.

RETURN VALUES
A successful invocation of this service returns the RTI handle
associated with the specified dimension.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SpaceNotDefined
The SpaceHandle argument does not correspond to a valid
federation routing space. Use
RTIambassador::getRoutingSpaceHandle to obtain valid
space handles.

SEE ALSO
 RTI::Region
RTI::RTIambassador::

createFederationExecution()

getDimensionName()

getRoutingSpaceHandle()

joinFederationExecution()

Types and Ancillary Services getDimensionName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-15

A.7.15 getDimensionName()

RTI 1.3
ABSTRACT

This service converts an RTI dimension handle and its routing-
space context to the symbolic (string) name of the FED dimension
they represent.

HLA IF SPECIFICATION
This method realizes the “Get Dimension Name” RTI Support &
Operational service as specified in the HLA Interface Specification
(§10.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

char *
RTI::RTIambassador::

getDimensionName (
 RTI::DimensionHandle theHandle,
 RTI::SpaceHandle whichSpace

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::DimensionNotDefined,
 RTI::FederateNotExecutionMember,
 RTI::RTIinternalError,
 RTI::SpaceNotDefined
)

ARGUMENTS
theHandle

a handle representing the dimension whose name is being
queried

whichSpace
the routing-space context of the specified dimension handle

DESCRIPTION
This service converts an RTI dimension handle (i.e., a unique
identifier used by the RTI to refer to a dimension), and its routing-
space context, to the symbolic (string) name of the dimension as
found in the FED file.

The returned name is valid (i.e., guaranteed to be associated with
the specified handle) throughout the remainder of the current
federation execution. RTI 1.0 and RTI 1.3 assign handles in a
predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

The name returned is the lower-case dimension name.

RETURN VALUES
A successful invocation of this service returns the symbolic
dimension name corresponding to the specified dimension handle
and routing-space context. The caller is responsible for freeing
the memory associated with the returned string using the
delete[] operator.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RestoreInProgress
The attempted action would result in a change in the internal

state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::Region
RTI::RTIambassador::

createFederationExecution()

getDimensionHandle()

getRoutingSpaceHandle()

getRoutingSpaceName()

joinFederationExecution()

Types and Ancillary Services getInteractionClassHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-16

A.7.16 getInteractionClassHandle()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts a symbolic (string) interaction class name to
the RTI handle associated with the interaction class. The syntax
and semantics of this service have changed from RTI 1.0 to
RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Interaction Class Handle” RTI
Support & Operational service as specified in the HLA Interface

Specification (not explicitly listed in version 1.1; §10.6 in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::InteractionClassHandle
RTI::RTIambassador::

getInteractionClassHandle (
const RTI::InteractionClassName theName

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::NameNotFound,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
RTI::InteractionClassHandle
RTI::RTIambassador::

getInteractionClassHandle (
 const char *theName ßß Changes Types Changes Types

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::RTIinternalError
);

ARGUMENTS
theName

a string specifying the symbolic interaction class name to be
converted to an RTI-defined handle

DESCRIPTION
This service converts an interaction class name (i.e., the descriptive
string identifier found in the FED file) to an RTI handle that is
used by the various RTI services to refer to the interaction class.

The returned handle is valid throughout the remainder of the
current federation execution. RTI 1.0 and RTI 1.3 assign handles
in a predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES

A successful invocation of this service returns the RTI
handle associated with the specified interaction class.

RELEASE NOTES
RTI 1.0

• RTI 1.0 names are case-sensitive.

• The RTI 1.0 implementation expects an argument that is
the unqualified class name. For example, the Federate
subclass of the Manager interaction class would be
referred to as simply “Federate”. An implication of this

is that no two interaction classes may have the same
name regardless of their relative locations in the FED.

RTI 1.3
• RTI 1.3 names are case-insensitive.

• The RTI 1.3 implementation expects an argument that is
the fully-qualified class name, with a period used to
delimit classes. The InteractionRoot class that is
required to be the root of the interaction class hierarchy
may optionally be omitted from the fully-qualified class
name. For example, the Federate subclass of the
Manager interaction class might be referred to as
“interactionroot.manager.federate” or simply
“Manager.Federate”. An implication of this is that
multiple interaction classes may share the same name
provided they are distinguishable based on their position
in the class hierarchy (i.e., they do not have the same
direct superclass.)

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

createFederationExecution()

getParameterHandle()

getInteractionClassName()

joinFederationExecution()

Types and Ancillary Services getInteractionClassName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-17

A.7.17 getInteractionClassName()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts an RTI interaction class handle to the
symbolic (string) name of the FED interaction class it represents.
The syntax and semantics of this service have changed from
RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Interaction Class Name” RTI
Support & Operational service as specified in the HLA Interface
Specification (not explicitly listed in version 1.1; §10.7 in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::InteractionClassName
RTI::RTIambassador::

getInteractionClassName (
RTI::InteractionClassHandle theHandle

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
char * ßß Changes Types Changes Types
RTI::RTIambassador::

getInteractionClassName (
 RTI::InteractionClassHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

a handle representing the interaction class whose name is
being queried

DESCRIPTION
This service converts an RTI interaction class handle (i.e., a unique
identifier used by the RTI to refer to an interaction class) to the
symbolic (string) name of the interaction class as found in the FED
file.

The returned name is valid (i.e., guaranteed to be associated with
the specified handle) throughout the remainder of the current
federation execution. RTI 1.0 and RTI 1.3 assign handles in a
predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the symbolic class
name corresponding to the specified class handle. The caller is
responsible for freeing the memory associated with the
returned string using the delete[] operator.

RELEASE NOTES
RTI 1.0

The name returned is the unqualified class name exactly as it
appears in the FED file, e.g. “Federate”.

RTI 1.3
The name returned is the lower-case fully-qualified
interaction class name, e.g.
“interactionroot.manager.federate”.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

createFederationExecution()

getAttributeName()

getInteractionClassHandle()

joinFederationExecution()

Types and Ancillary Services getInteractionRoutingSpaceHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-18

A.7.18 getInteractionRoutingSpaceHandle()

RTI 1.3
ABSTRACT

This service queries the routing space bound to an interaction in
the FED file.

HLA IF SPECIFICATION
This method realizes the “Get Interaction Routing Space Handle”
RTI Support & Operational service as specified in the HLA
Interface Specification (§10.18 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::SpaceHandle
RTI::RTIambassador::

getInteractionRoutingSpaceHandle (
 RTI::InteractionClassHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

a handle representing the interaction class whose routing
space is being queried

DESCRIPTION
This service queries the routing space bound to a particular
interaction class in the FED file. If no routing space is specified in
the FED file, the interaction class is bound to the default routing
space.

RETURN VALUES
A successful invocation of this service returns a handle to the
routing space bound to the interaction in the FED file.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The interaction class handle is not valid in the context of the
current federation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::Region
RTI::RTIambassador::

createFederationExecution()

getAttributeRoutingSpaceHandle()

getRoutingSpaceName()

joinFederationExecution()

sendInteraction()

sendInteractionWithRegion()

Types and Ancillary Services getObjectClass()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-19

A.7.19 getObjectClass()

RTI 1.3
ABSTRACT

This service queries the discovered object class of an object
instance.

HLA IF SPECIFICATION
This method realizes the “Get Object Class” RTI Support &
Operational service as specified in the HLA Interface Specification
(§10.17 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::ObjectClassHandle
RTI::RTIambassador::

getObjectClass (
 RTI::ObjectHandle theObject

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RTIinternalError
)

ARGUMENTS
theObject

the handle of the object instance whose class is being queried

DESCRIPTION
This service obtains the discovered object class of an object
instance.

This service may be used independently of any other RTI services,
i.e. the federate need not have discovered the object instance or
even have subscribed to the appropriate classes to query the
object’s class. The only limitation is that some objects may not be
known to some LRCs due to DDM filtering. Information about an
instance may never be distributed to some LRCs if its attributes are
confined to regions outside the actively subscribed regions of a
particular federate.

If the object instance has been discovered by the local federate, the
returned object class is the discovered class of the object instance.
If the object instance has not been discovered by the local federate,
the returned object class is the registered class of the object
instance.

RETURN VALUES
A successful invocation of this service returns the handle of the
specified object’s object class.

INTERFACE SPECIFICATION NOTES
The HLA Interface Specification states that interactions may only
be associated with regions of the space to which the interaction
class is bound in the FED file. The 1.3 implementation will allow
interactions to be sent with regions of any routing space. Federates
should not rely on this behavior.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with

a FedExec.

RTI::ObjectNotKnown
The object handle does not correspond to an object instance
known to the LRC.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::FederateAmbassador

discoverObjectInstance()

RTI::RTIambassador
getObjectClassHandle()

getObjectClassName()

Types and Ancillary Services getObjectClassHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-20

A.7.20 getObjectClassHandle()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts a symbolic (string) object class name to the
RTI handle associated with the object class. The syntax and
semantics of this service have changed from RTI 1.0 to RTI
1.3.

HLA IF SPECIFICATION
This method realizes the “Get Object Class Handle” RTI Support
& Operational service as specified in the HLA Interface

Specification (not explicitly listed in version 1.1; §10.2 in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::ObjectClassHandle
RTI::RTIambassador::

getObjectClassHandle (
 const RTI::ObjectClassName theName
)

throw (
RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::NameNotFound,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
RTI::ObjectClassHandle
RTI::RTIambassador::

getObjectClassHandle (
 const char *theName ßß Changes Types Changes Types

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::RTIinternalError
)

ARGUMENTS
theName

a string specifying the symbolic object class name to be
converted to an RTI-defined handle

DESCRIPTION
This service converts an object class name (i.e., the descriptive
string identifier found in the FED file) to an RTI handle that is
used by the various RTI services to refer to the object class.

The returned handle is valid throughout the remainder of the
current federation execution. RTI 1.0 and RTI 1.3 assign handles
in a predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the RTI handle
associated with the specified object class.

RELEASE NOTES
RTI 1.0

• RTI 1.0 names are case-sensitive.

• The RTI 1.0 implementation expects an argument that is
the unqualified class name. For example, the Federate
subclass of the Manager object class would be referred
to as simply “Federate”. An implication of this is that no

two object classes may have the same name regardless of
their relative locations in the FED.

RTI 1.3
• RTI 1.3 names are case-insensitive.

• The RTI 1.3 implementation expects an argument that is
the fully-qualified class name, with a period used to
delimit classes. The ObjectRoot class that is required to
be the root of the object class hierarchy may optionally
be omitted from the fully-qualified class name. For
example, the Federate subclass of the Manager object
class might be referred to as
“objectroot.manager.federate” or simply
“Manager.Federate”. An implication of this is that
multiple object classes may share the same name
provided they are distinguishable based on their position
in the class hierarchy (i.e., they do not have the same
direct superclass.)

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

createFederationExecution()

getAttributeHandle()

getObjectClassName()

joinFederationExecution()

Types and Ancillary Services getObjectClassName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-21

A.7.21 getObjectClassName()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts an RTI object class handle to the symbolic
(string) name of the FED object class it represents. The syntax
and semantics of this service have changed from RTI 1.0 to
RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Object Class Name” RTI Support &
Operational service as specified in the HLA Interface Specification
(not explicitly listed in version 1.1; §10.3 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::ObjectClassName
RTI::RTIambassador::

getObjectClassName (
RTI::ObjectClassHandle theHandle

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::ObjectClassNotDefined,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
char * ßß Changes Types Changes Types
RTI::RTIambassador::

getObjectClassName (
 RTI::ObjectClassHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectClassNotDefined,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

a handle representing the object class whose name is being
queried

DESCRIPTION
This service converts an RTI object class handle (i.e., a unique
identifier used by the RTI to refer to an object class) to the
symbolic (string) name of the object class as found in the FED file.

The returned name is valid (i.e., guaranteed to be associated with
the specified handle) throughout the remainder of the current
federation execution. RTI 1.0 and RTI 1.3 assign handles in a
predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the symbolic class
name corresponding to the specified class handle. The caller is
responsible for freeing the memory associated with the
returned string using the delete[] operator.

RELEASE NOTES
RTI 1.0

The name returned is the unqualified class name exactly as it
appears in the FED file, e.g. “Federate”.

RTI 1.3
The name returned is the lower-case fully-qualified object
class name, e.g. “objectroot.manager.federate”.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectClassNotDefined
The object class handle is not valid in the context of the
current FedExec.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::RTIambassador::

createFederationExecution()

getAttributeName()

getObjectClassHandle()

joinFederationExecution()

Types and Ancillary Services getObjectInstanceHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-22

A.7.22 getObjectInstanceHandle()

RTI 1.3
ABSTRACT

This service converts a symbolic (string) name to the RTI object
handle uniquely associated with the name in the current federation
state.

HLA IF SPECIFICATION
This method realizes the “Get Object Instance Handle” RTI
Support & Operational service as specified in the HLA Interface
Specification (§10.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::ObjectHandle
RTI::RTIambassador::

getObjectInstanceHandle (
 const char *theName

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RTIinternalError
)

ARGUMENTS
theName

symbolic name associated with a global federation object

DESCRIPTION
This service converts a symbolic object name to an object handle.
Every object in the federation at a given instant is associated with a
unique symbolic name, either explicitly specified to the
registerObjectInstance() service or automatically supplied
by the LRC.

This service may be used independently of any other RTI services,
i.e. the federate need not have discovered the object instance or
even have subscribed to the appropriate classes to obtain an object
handle. The only limitation is that some objects may not be known
to some LRCs due to DDM filtering. Information about an
instance may never be distributed to some LRCs if its attributes are
confined to regions outside the actively subscribed regions of a
particular federate.

Named object instances will generally be used to implement
“global” objects in the federation.

RETURN VALUES
A successful invocation of this service returns the object handle
uniquely associated with the symbolic name.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The specified symbolic name does not correspond to an active
object known to the LRC.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

getObjectInstanceName()

registerObjectInstance()

Types and Ancillary Services getObjectInstanceName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-23

A.7.23 getObjectInstanceName()

RTI 1.3
ABSTRACT

This service converts an RTI object handle to the symbolic (string)
name associated with the object in the current federation state.

HLA IF SPECIFICATION
This method realizes the “Get Object Instance Name” RTI Support
& Operational service as specified in the HLA Interface
Specification (§10.11 in version 1.3).

SYNOPSIS
#include <RTI.hh>

char *
RTI::RTIambassador::

getObjectInstanceName (
 RTI::ObjectHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::ObjectNotKnown,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

the RTI object handle whose unique instance name is being
queried

DESCRIPTION
This service converts a symbolic object handle to an object name.
Every object in the federation at a given instant is associated with a
unique symbolic name, either explicitly specified to the
registerObjectInstance() service or automatically supplied
by the LRC.

This service may be used independently of any other RTI services,
i.e. the federate need not have discovered the object instance or
even have subscribed to the appropriate classes to obtain an object
name. The only limitation is that some objects may not be known
to some LRCs due to DDM filtering. Information about an
instance may never be distributed to some LRCs if its attributes are
confined to regions outside the actively subscribed regions of a
particular federate.

Named object instances will generally be used to implement
“global” objects in the federation.

RETURN VALUES
A successful invocation of this service returns the string name
associated with the object handle. The caller is responsible for
freeing the memory associated with this string using the
delete[] operator.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::ObjectNotKnown
The object handle does not correspond to an active object

known to the LRC.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

getObjectInstanceHandle()

registerObjectInstance()

Types and Ancillary Services getOrderingHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-24

A.7.24 getOrderingHandle()

RTI 1.3
ABSTRACT

This service converts a symbolic (string) name of an ordering
service category to an RTI handle.

HLA IF SPECIFICATION
This method realizes the “Get Ordering Handle” RTI Support &
Operational service as specified in the HLA Interface Specification
(§10.21 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::OrderingHandle
RTI::RTIambassador::

getOrderingHandle (
 const char *theName

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::RTIinternalError
)

ARGUMENTS
theName

a symbolic name of an ordering category

DESCRIPTION
This service converts a symbolic (string) identifier to an RTI
handle associated with an ordering service category defined in the
ordering_map section of the RID file. These handles are used by
various RTI services when referring to ordering categories.

The federation may define its own named ordering service
categories as aliases for timestamp- or receive-order service. This
technique may be used to decouple quality-of-service decisions for
various types of federation data from the code of the constituent
federates.

The RTI defines two ordering categories: receive and timestamp.
These identifiers should always appear in the ordering_map
section of the RID file.

Identifiers in RTI 1.3 are case-insensitive. For example, “receive”
or “Receive” may be used to obtain the handle of the receive
service category.

RETURN VALUES
A successful invocation of this service returns the handle
associated with the named ordering service category.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log

file for more details.

SEE ALSO
RTI::RTIambassador

changeAttributeOrderType()

changeInteractionOrderType()

getOrderingName()

Types and Ancillary Services getOrderingName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-25

A.7.25 getOrderingName()

RTI 1.3
ABSTRACT

This service converts an RTI ordering service category handle to
the associated symbolic (string) name defined in the RID file.

HLA IF SPECIFICATION
This method realizes the “Get Ordering Name” RTI Support &
Operational service as specified in the HLA Interface Specification
(§10.22 in version 1.3).

SYNOPSIS
#include <RTI.hh>

char *
RTI::RTIambassador::

getOrderingName (
 OrderingHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidOrderingHandle,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

the handle of the ordering service category whose name is
being queried

DESCRIPTION
This service converts an RTI handle associated with a ordering
service category to its symbolic (string) identifier defined in the
transport_map section of the RID file. These handles are used by
various RTI services when referring to ordering categories.

The federation may define its own named ordering service
categories as aliases for timestamp- or receive-order service. This
technique may be used to decouple quality-of-service decisions for
various types of federation data from the code of the constituent
federates.

The RTI defines two ordering categories: receive and timestamp.
These identifiers should always appear in the ordering_map
section of the RID file.

The returned string is all lower-case.

RETURN VALUES
A successful invocation of this service returns the symbolic
ordering service-category name corresponding to the specified
ordering service-category handle. The caller is responsible for
freeing the memory associated with the returned string using
the delete[] operator.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidTransportationHandle
The ordering handle does not correspond to a ordering service
category defined in the RID file.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

changeAttributeTransportType()

changeInteractionTransportType()

getOrderingHandle()

Types and Ancillary Services getParameterHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-26

A.7.26 getParameterHandle()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts a symbolic (string) parameter name and an
interaction-class context to the RTI handle associated with the
parameter. The syntax and semantics of this service have
changed from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Parameter Handle” RTI Support &
Operational Services as specified in the HLA Interface

Specification (not explicitly listed in version 1.1; §10.8 in version
1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::ParameterHandle
RTI::RTIambassador::

getParameterHandle (
const RTI::ParameterName theName
RTI::InteractionClassHandle whichClass

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::NameNotFound,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
RTI::ParameterHandle
RTI::RTIambassador::

getParameterHandle (
 const char *theName, ßß Changes Types Changes Types
 RTI::InteractionClassHandle whichClass

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::NameNotFound,
 RTI::RTIinternalError
)

ARGUMENTS
theName

a string specifying the symbolic parameter name to be
converted to an RTI-defined handle

whichClass
the interaction-class context of the specified parameter name

DESCRIPTION
This service converts a parameter name (i.e., the descriptive string
identifier found in the FED file) to an RTI handle that is used by
the various RTI services to refer to the parameter. The parameter
name must refer to a parameter of the specified interaction class,
i.e. the parameter must be natively defined in the interaction class
or defined in a superclass of the interaction class.

Conceptually, a parameter handle is only valid when considered in
the context of an interaction class. Implications of this include:

• the same physical value may refer to different parameters in
the context of two different interaction classes (this is true of
RTI 1.0 and RTI 1.3)

• different physical values may refer to the same parameter in
the context of different interaction classes (this is not true of

RTI 1.0 and RTI 1.3)

multiple distinct parameters may share the same name provided
they may never occur in the context of the same interaction class
(i.e., no interaction class containing an parameter name is a
superclass of another interaction class containing the same
parameter name)

The returned handle is valid throughout the remainder of the
current federation execution. RTI 1.0 and RTI 1.3 assign handles
in a predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the RTI handle
associated with the specified parameter.

RELEASE NOTES
RTI 1.0

Names in RTI 1.0 are case-sensitive.

RTI 1.3
Names in RTI 1.3 are case-insensitive.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

This method is safe for reentrance into the RTI ambassador;
this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The specified interaction class handle is not valid in the
context of the current federation execution.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::ParameterHandleSet
RTI::ParameterHandleValuePairSet
RTI::RTIambassador::

createFederationExecution()

getParameterName()

getInteractionClassHandle()

joinFederationExecution()

Types and Ancillary Services getParameterName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-27

A.7.27 getParameterName()

RTI 1.0 �RTI 1.3
ABSTRACT

This service converts an RTI parameter handle and its interaction-
class context to the symbolic (string) name of the FED parameter
they represent. The syntax and semantics of this service have
changed from RTI 1.0 to RTI 1.3.

HLA IF SPECIFICATION
This method realizes the “Get Parameter Name” RTI Support &
Operational service as specified in the HLA Interface Specification

(not explicitly listed in version 1.1; §10.9 in version 1.3).

SYNOPSIS
#include <RTI.hh>

// RTI 1.0 Only
RTI::ParameterName
RTI::RTIambassador::

getParameterName (
RTI::ParameterHandle theHandle
RTI::InteractionClassHandle whichClass

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::FederateNotExecutionMember,
RTI::InteractionClassNotDefined,
RTI::InteractionParameterNotDefined,
RTI::RestoreInProgress, ßß RTI 1.0 Only RTI 1.0 Only
RTI::RTIinternalError,
RTI::SaveInProgress ßß RTI 1.0 Only RTI 1.0 Only

)

// RTI 1.3 Only
char * ßß Changes Types Changes Types
RTI::RTIambassador::

getParameterName (
RTI::ParameterHandle theHandle,

 RTI::InteractionClassHandle whichClass
)

throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InteractionClassNotDefined,
 RTI::InteractionParameterNotDefined,
 RTI::RTIinternalError
);

ARGUMENTS
theHandle

a handle representing the parameter whose name is being
queried

whichClass
the interaction-class context of the specified parameter handle

DESCRIPTION
This service converts an RTI parameter handle (i.e., a unique
identifier used by the RTI to refer to an parameter), and its
interaction-class context, to the symbolic (string) name of the
parameter as found in the FED file.

The returned name is valid (i.e., guaranteed to be associated with
the specified handle) throughout the remainder of the current
federation execution. RTI 1.0 and RTI 1.3 assign handles in a
predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

RETURN VALUES
A successful invocation of this service returns the symbolic
parameter name corresponding to the specified parameter handle
and interaction-class context. The caller is responsible for
freeing the memory associated with the returned string using

the delete[] operator.

RELEASE NOTES
RTI 1.0

The name returned is the parameter name exactly as it appears
in the FED file, e.g. “ReportPeriod”.

RTI 1.3
The name returned is the lower-case parameter name, e.g.
“reportperiod”.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

These methods are safe for reentrance into the RTI
ambassador; this exception is not thrown.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InteractionClassNotDefined
The specified interaction class handle is not valid in the
context of the current Federation Execution.

RTI::InteractionParameterNotDefined
The specified parameter handle is not valid in the context of
the specified interaction class.

RTI::RestoreInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "restore"
operation.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SaveInProgress (RTI 1.0 Only)
The attempted action would result in a change in the internal
state of the RTI, which is not permitted during a "save"
operation.

SEE ALSO
RTI::ParameterHandleSet
RTI::ParameterHandleValuePairSet
RTI::RTIambassador::

createFederationExecution()

getParameterHandle()

getInteractionClassHandle()

getInteractionClassName()

joinFederationExecution()

Types and Ancillary Services getRegion()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-28

A.7.28 getRegion()

RTI 1.3
ABSTRACT

This service converts an abstract region identifier (“token”) to the
physical address of the corresponding region.

HLA IF SPECIFICATION
This method does not correspond to a service explicitly listed in
the HLA Interface Specification version 1.3.

SYNOPSIS
#include <RTI.hh>

RTI::Region *
RTI::RTIambassador::

getRegion(
 RTI::RegionToken token

)
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RegionNotKnown,
 RTI::RTIinternalError
)

ARGUMENTS
token

an abstract region identifier returned by the
getRegionToken() service

DESCRIPTION
This service converts an abstract region identifier obtained from
the getRegionToken() service to the physical address of the
corresponding region object. This facility exists so that restoring
federates may reconstitute references to region objects even though
the physical location of the objects will differ from their locations
in the saved LRC.

Note that a region token is no longer valid if the region is
subsequently deleted using the deleteRegion() service.

RETURN VALUES
A successful invocation of this service returns the physical address
of the region referenced by the abstract region identifier.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RegionNotKnown
The region token is not valid in the context of the current
LRC state.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

getRegionToken()

initiateFederateRestore()

initiateFederateSave()

Types and Ancillary Services getRegionToken()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-29

A.7.29 getRegionToken()

RTI 1.3
ABSTRACT

This service converts a physical address associated with a region
object to an abstract region identifier (“token”).

HLA IF SPECIFICATION
This method does not correspond to a service explicitly listed in
the HLA Interface Specification version 1.3.

SYNOPSIS
#include <RTI.hh>

RTI::RegionToken
RTI::RTIambassador::

getRegionToken(
RTI::Region *region

)
throw(
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RegionNotKnown,
 RTI::RTIinternalError
)

ARGUMENTS
region

the physical address of the region object whose token is being
queried

DESCRIPTION
This service converts a physical address of a region object to an
abstract region identifier (“token”). This token may be reconverted
to a physical address using the getRegion() service. This facility
exists to allow saving federates to marshal references to region
objects that can be reconstituted by restoring federates even though
the physical locations of the region objects will differ.

Note that a region token is no longer valid if the region is
subsequently deleted using the deleteRegion() service.

RETURN VALUES
A successful invocation of this service returns a unique abstract
region identifier (“token”) corresponding to the specified region.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

getRegion ()

initiateFederateRestore()

initiateFederateSave()

Types and Ancillary Services getRoutingSpaceHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-30

A.7.30 getRoutingSpaceHandle()

RTI 1.3
ABSTRACT

This service converts a symbolic (string) routing space name to the
RTI handle associated with the routing space.

HLA IF SPECIFICATION
This method realizes the “Get Routing Space Handle” RTI Support
& Operational service as specified in the HLA Interface
Specification (§10.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::SpaceHandle
RTI::RTIambassador::

getRoutingSpaceHandle (
 const char *theName

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::RTIinternalError
)

ARGUMENTS
theName

a string specifying the symbolic routing space name to be
converted to an RTI-defined handle

DESCRIPTION
This service converts a routing space name (i.e., the descriptive
string identifier found in the FED file) to an RTI handle that is
used by the various RTI services to refer to the routing space.

The returned handle is valid throughout the remainder of the
current federation execution. RTI 1.0 and RTI 1.3 assign handles
in a predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

Names in RTI 1.3 are case-insensitive.

RETURN VALUES
A successful invocation of this service returns the RTI handle
associated with the specified routing space.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::Region
RTI::RTIambassador::

createFederationExecution()

getDimensionHandle()

getRoutingSpaceName()

joinFederationExecution()

Types and Ancillary Services getRoutingSpaceName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-31

A.7.31 getRoutingSpaceName()

RTI 1.3
ABSTRACT

This service converts an RTI routing space handle to the symbolic
(string) name of the FED routing space it represents.

HLA IF SPECIFICATION
This method realizes the “Get Routing Space Name” RTI Support
& Operational service as specified in the HLA Interface
Specification (§10.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

char *
RTI::RTIambassador::

getRoutingSpaceName (
 const RTI::SpaceHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::RTIinternalError,
 RTI::SpaceNotDefined
)

ARGUMENTS
theHandle

a handle representing the routing space whose name is being
queried

DESCRIPTION
This service converts an RTI routing space handle (i.e., a unique
identifier used by the RTI to refer to an routing space) to the
symbolic (string) name of the routing space as found in the FED
file.

The returned name is valid (i.e., guaranteed to be associated with
the specified handle) throughout the remainder of the current
federation execution. RTI 1.0 and RTI 1.3 assign handles in a
predictable fashion based on the layout of the FED file, but
federates are discouraged from relying on this behavior.

The name returned is the lower-case routing space name, e.g.
“geographicspace”.

RETURN VALUES
A successful invocation of this service returns the symbolic class
name corresponding to the specified class handle. The caller is
responsible for freeing the memory associated with the
returned string using the delete[] operator.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SpaceNotDefined
The SpaceHandle argument does not correspond to a valid
federation routing space. Use

RTIambassador::getRoutingSpaceHandle to obtain valid
space handles.

SEE ALSO
RTI::Region
RTI::RTIambassador::

createFederationExecution()

getDimensionName()

getRoutingSpaceHandle()

joinFederationExecution()

Types and Ancillary Services getTransportationHandle()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-32

A.7.32 getTransportationHandle()

RTI 1.3
ABSTRACT

This service converts a symbolic (string) name of a transportation
service category to an RTI handle.

HLA IF SPECIFICATION
This method realizes the “Get Transportation Handle” RTI Support
& Operational service as specified in the HLA Interface
Specification (§10.19 in version 1.3).

SYNOPSIS
#include <RTI.hh>

RTI::TransportationHandle
RTI::RTIambassador::

getTransportationHandle (
 const char *theName

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::NameNotFound,
 RTI::RTIinternalError
)

ARGUMENTS
theName

symbolic name of a transportation category

DESCRIPTION
This service converts a symbolic (string) identifier to an RTI
handle associated with a transportation service category defined in
the transport_map section of the RID file. These handles are used
by various RTI services when referring to transportation
categories.

The federation may define its own named transportation service
categories as aliases for reliable or best-effort service. This
technique may be used to decouple quality-of-service decisions for
various types of federation data from the code of the constituent
federates.

The RTI defines two categories of reliable service, reliable and
state_consistent, and one category of best-effort service,
best_effort. These identifiers should always appear in the
transport_map section of the RID file.

Identifiers in RTI 1.3 are case-insensitive. For example,
“state_consistent” or “State_Consisent” may be used to obtain the
handle of the state_consistent service category.

RETURN VALUES
A successful invocation of this service returns the handle
associated with the named transportation service category.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::NameNotFound
The symbolic name does not correspond to a handle of the
requested type.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

changeAttributeTransportType()

changeInteractionTransportType()

getTransportationName()

Types and Ancillary Services getTransportationName()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-33

A.7.33 getTransportationName()

RTI 1.3
ABSTRACT

This service converts an RTI transportation service category
handle to the associated symbolic (string) name defined in the RID
file.

HLA IF SPECIFICATION
This method realizes the “Get Transportation Name” RTI Support
& Operational service as specified in the HLA Interface
Specification (§10.20 in version 1.3).

SYNOPSIS
#include <RTI.hh>

char *
RTI::RTIambassador::

getTransportationName (
 TransportationHandle theHandle

)
throw (
 RTI::ConcurrentAccessAttempted,
 RTI::FederateNotExecutionMember,
 RTI::InvalidTransportationHandle,
 RTI::RTIinternalError
)

ARGUMENTS
theHandle

the handle of the transportation service category whose name
is being queried

DESCRIPTION
This service converts an RTI handle associated with a
transportation service category to its symbolic (string) identifier
defined in the transport_map section of the RID file. These
handles are used by various RTI services when referring to
transportation categories.

The federation may define its own named transportation service
categories as aliases for reliable or best-effort service. This
technique may be used to decouple quality-of-service decisions for
various types of federation data from the code of the constituent
federates.

The RTI defines two categories of reliable service, reliable and
state_consistent, and one category of best-effort service,
best_effort. These identifiers should always appear in the
transport_map section of the RID file.

The returned string is all lower-case.

RETURN VALUES
A successful invocation of this service returns the symbolic
transportation service-category name corresponding to the
specified transportation service-category handle. The caller is
responsible for freeing the memory associated with the
returned string using the delete[] operator.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the Programmer’s Guide.

RTI::FederateNotExecutionMember
The RTIambassador instance is not currently associated with
a FedExec.

RTI::InvalidTransportationHandle
The transportation handle does not correspond to a
transportation service category defined in the RID file.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador

changeAttributeTransportType()

changeInteractionTransportType()

getTransportationHandle()

Types and Ancillary Services RTIambassador()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-34

A.7.34 RTIambassador()

RTI 1.0 RTI 1.3
ABSTRACT

This constructor initializes internal data structures of an RTI
ambassador instance.

HLA IF SPECIFICATION
This constructor does not correspond to a service explicitly listed
in the HLA Interface Specification version 1.3.

SYNOPSIS
#include <RTI.hh>

RTI::RTIambassador::
RTIambassador()

throw (
 RTI::MemoryExhausted,
 RTI::RTIinternalError
);

DESCRIPTION
This constructor is implicitly invoked when an RTI ambassador
instance is declared on the stack or allocated on the heap using the
new operator. The constructor prepares the RTI ambassador
instance for use by initializing any data structures and network
connections that are independent of a particular federation
execution. To access the majority of RTI ambassador services, a
newly constructed instance should be associated with a particular
federation using joinFederationExecution().

For an RTI ambassador to be successfully constructed, RTI
environment variables such as RTI_CONFIG must be set correctly
and global RTI processes such as the RtiExec should be reachable
from the machine on which the federate is running.

RETURN VALUES
A non-exceptional return indicates that the RTI ambassador
instance has been successfully initialized.

EXCEPTIONS
RTI::MemoryExhausted

Not enough system resources are available to construct a
RTIambassador instance.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

SEE ALSO
RTI::RTIambassador::

~RTIambassador()

joinFederationExecution()

Types and Ancillary Services tick()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-35

A.7.35 tick()

RTI 1.0 �RTI 1.3
ABSTRACT

This service is invoked by the federate to yield processor time to
the LRC. During a tick() invocation, the LRC will process
incoming traffic, deliver callbacks to the federate, and perform
various internal RTI maintenance essential to the operation of the
federation. The semantics of tick() have changed
substantially between RTI 1.0 and RTI 1.3.

HLA IF SPECIFICATION
This service does not correspond directly to a service specified in
the HLA Interface Specification version 1.1 or version 1.3.

SYNOPSIS
#include <RTI.hh>

RTI::Boolean
RTI::RTIambassador::

tick ()
throw (

RTI::ConcurrentAccessAttempted,
RTI::RTIinternalError,
RTI::SpecifiedSaveLabelDoesNotExist

)

RTI::Boolean
RTI::RTIambassador::

tick (
RTI::TickTime minimum
RTI::TickTime maximum

)
throw (

RTI::ConcurrentAccessAttempted,
RTI::RTIinternalError,
RTI::SpecifiedSaveLabelDoesNotExist

)

ARGUMENTS
minimum

the minimum time interval (in wall clock seconds) to spend in
tick()

maximum
the maximum time interval (in wall clock seconds) after
which tick() will not begin execution of any additional
processing

DESCRIPTION
The tick() service temporarily passes execution control from the
federate to the LRC. The LRC will perform periodic federation
maintenance (e.g., sending federate “heartbeats” and updating and
servicing MOM objects and interactions) and process incoming
traffic from the network.

It is essential that all federates invoke tick() frequently so
that internal RTI communications may be serviced in a timely
fashion. Federates should use a timed tick in lieu of a sleep or
other system call designed to suspend execution for a specified
wall clock time interval.

If a federate is time-constrained, time-stamp ordered events (i.e.,
updates, interactions, deletions, and saves) will only be delivered
by tick() in accordance with an in-progress time-advancement
service. If asynchronous delivery of receive-ordered events is not
enabled, receive-ordered events will only be delivered when a
time-advancement service is in progress. If asynchronous delivery
of receive-ordered events is enabled, receive-ordered events may
be delivered during any invocation of tick().

Any callbacks that are not subject to time-stamp ordering (i.e.,
anything except for updates, interactions, deletions, and saves)

may be delivered to a federate during any invocation of tick(),
regardless of whether a time-advancement service is in progress.

In general, no federate-ambassador callbacks will be invoked
except during an invocation of tick(). Exceptions to this rule are
noted in the individual FederateAmbassador service
descriptions.

RTI ambassador functions, with the exception of a handful of
reentrant operational and support functions, may not be invoked
from within callbacks made during a tick() invocation; such an
attempt will result in a ConcurrentAccessAttempted exception.

LRC processing is broken into a number of atomic operations that
must be completely executed within a single invocation of
tick(). For this reason, it is not always possible to interrupt
tick() execution after precisely the specified maximum time
interval. In these cases, tick() will return immediately after the
completion of the atomic processing unit that was in progress at
the end of the specified maximum time interval. As such, the
maximum-time argument to tick() should not be used to enforce
extremely precise timing constraints.

RELEASE NOTES
RTI 1.0

The zero-argument variant, known as an instantaneous tick,
generally results in one federate-ambassador callback being
invoked for the federate. If there are no callbacks ready to be
delivered, an instantaneous tick invocation returns
immediately. Some sets of closely related callbacks, such as
an object-discovery callback and an initial reflection for the
discovered object, may all occur during a single invocation of
an instantaneous tick.

The two-argument variant, known as a timed tick, may result
in a number of federate-ambassador callbacks being invoked
for the federate. A timed-tick invocation will continue to
process traffic and invoke callbacks until the amount of wall
clock time specified by the maximum argument has elapsed.
If a timed-tick invocation runs out of processing to do, it will
block waiting for incoming traffic until the amount of wall
clock time specified by the minimum argument has elapsed, as
measured from the start of the tick() invocation. If there is
no pending processing to be done and the wall clock interval
specified by minimum has elapsed, the timed tick invocation
will return.

The dequeueFIFOasynchronously() service is used to
toggle the delivery of receive-ordered events in the absence of
an in-progress time-advancement service.

If a federate is not time-constrained, receive-ordered events
will not be delivered in the absence of time-advancement
services unless asynchronous delivery is enabled. It is
recommended that non-time-constrained federates enable
asynchronous delivery of receive-ordered events.

The tick() service should only be invoked from the same
thread in which the RTI ambassador was instantiated.

RTI 1.3
The zero-argument variant of tick reads all available network
traffic, then does as much processing as possible without
blocking for additional network communications. This may
result in many federate-ambassador notifications being
delivered to the federate. The federate should not rely on the
zero-argument variant of tick() completing execution in
any particular interval of time.

The two-argument variant of tick() reads all available

Types and Ancillary Services tick()

High Level Architecture – Run-Time Infrastructure (HLA-RTI) 1.3v5 16 December 1998
A.7-36

network traffic and does as much processing as possible
without blocking or exceeding the specified maximum time
interval. If the specified minimum time interval has not
elapsed after all available processing has been done, the LRC
will pause until the minimum time interval has elapsed, then
return immediately. While paused, the LRC will continue to
perform further processing if additional network traffic
subsequently arrives at the LRC within the minimum time
interval.

The enableAsynchronousDelivery() and
disableAsynchronousDelivery() services are used to
toggle the delivery of receive-ordered events in the absence of
an in-progress time-advancement service on and off,
respectively.

If a federate is not time-constrained, any events may be
delivered during any invocation of tick(), regardless of
whether or not asynchronous delivery is enabled.

RETURN VALUES
RTI 1.0

A return value of RTI::RTI_TRUE indicates that the LRC still
has processing that is pending execution. Immediately
invoking tick() again may be in order. A return value of
RTI::RTI_FALSE indicates that the LRC has performed all
processing that may be done based on traffic that has
currently been received from the network.

A return from a timed tick indicates that the wall clock time
interval specified by maximum has elapsed, or that the wall
clock time interval specified by minimum has elapsed and the
LRC has no further processing that may be done immediately.

RTI 1.3

The zero-argument always returns RTI::RTI_FALSE.

The two-argument variant returns RTI::RTI_TRUE if
processing was interrupted because of the maximum time
interval being exceeded; otherwise, it returns
RTI::RTI_FALSE.

EXCEPTIONS
RTI::ConcurrentAccessAttempted

An illegal attempt to reenter the RTIambassador has been
detected. Typically: A FederateAmbassador callback method
has called an RTIambassador method. See “Concurrent
Access” in the programmer’s Guide.

RTI::RTIinternalError
An RTI internal error has occurred. Consult the Federate log
file for more details.

RTI::SpecifiedSaveLabelDoesNotExist
This exception is not thrown by the current implementations.

SEE ALSO
RTI 1.0
RTI::FederateAmbassador
RTI::RTIambassador::

dequeueFIFOasynchronously()

joinFederationExecution()

setTimeConstrained()

timeAdvanceRequest()

RTI 1.3
RTI::FederateAmbassador

RTI::RTIambassador::

enableAsynchronousDelivery()

enableTimeConstrained()

joinFederationExecution()

timeAdvanceRequest

